“An inventory of supraglacial lakes and channels across the West Antarctic Ice
Sheet” by Diarmuid Corr et al.
Response to Referees

We thank the referees for the time and effort they have dedicated to reviewing our
manuscript, and are grateful for their constructive comments, which have increased the
quality of this manuscript substantially. We address each of the referee's comments in
turn, with our responses given in blue text. In addition to improvements from the
referees, we have addressed further issues throughout the manuscript, as is evident in
the mark-up text.

Referee 1: https://doi.org/10.5194 /essd-2021-257-RC1

Corr et al. present the first inventory of supraglacial lakes and channels across the West
Antarctic Ice Sheet. The data quality and data presentation are excellent in the linked
Zenodo repository (Corr et al., 2021). This paper is an excellent pair with Stokes et al.
(2019), and, together, the papers provide a baseline dataset of supraglacial hydrology
across the Antarctic (as highlighted in the author's Conclusion). The figures are clear
overall, and I just have a few suggestions on some rough locations in the manuscript.

Thank you very much for this review. The authors agree with all suggestions and agree
that these will improve the quality of the paper. Further details are provided in response
to the specific comments below.

Specific Comments
L12: The sentence that begins with percentage is a comma splice. Suggest a re-write to

not begin the sentence with a number and to split this sentence in two.
As requested, we have rewritten this sentence to improve the readability. The sentence
now reads:

‘We found 27.3% of feature area on grounded ice and 54.9% on floating ice shelves. In
total, 17.8% of feature area crossed the grounding line.” (Page 1, Lines 12-13).

L.34: Cite this inventory for the EAIS.

We have cited the appropriate paper (Stokes et al., 2019) as the inventory is downloaded
from a link in the supplementary information (detailed in Stokes et al., 2019), and
therefore no inventory citation has been included. (Page 3, Line 32).

Figure 1: Delineate WAIS and the EAIS on Figure 1.
We have delineated WAIS and EAIS on Figure 1 by adding the approximate boundary
between the ice sheets that we have used in mapping. (Page 2, Figure 1).
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Introduction: This section could use proofreading to identify a few typos here and there.
Several sentences could be shortened to increase writing clarity (e.g., run-on sentence
from L61-65).

We have proofread this section and the remainder of the paper, editing typos, and
increasing the clarity of writing throughout. We have amended run-on sentences (with
original line numbers given first and new line numbers in brackets at the end):

Original L22-25 now reads: ‘The configuration of the supraglacial hydrological network
is transient. It is determined both by the surface topography and the amount of water in
the system; greater melt, for example, is likely to lead to deeper and more extensive lakes
and channels (Tedesco et al., 2012; Luthje et al., 2006; Bell et al., 2018).” (Page 2, Line 21-
23).

Original L57-59 now reads: ‘Indeed, a recent study has shown evidence of five glaciers on
the Antarctic Peninsula (Drygalski, Hektoria, Jorum, Crane and Cayley) undergoing near-
synchronous speed-up events in March 2017, November 2017 and March 2018 (Tuckett
et al, 2019). This suggests the surface meltwater may have entered the subglacial
hydrological system.” (Page 3, Line 54-56).

Original L61-65 now reads: ‘Supraglacial hydrology may exert a large effect on
Antarctica’s future evolution. For example, the UN Paris Agreement’s limit on the rise in
global temperatures of 1.5-C
(https://unfccc.int/sites/default/files/english_paris_agreement.pdf) will likely cause the
Antarctic Peninsula to experience irreversible, dramatic change to glacial, terrestrial and
ocean systems (Siegert et al, 2019). Under this warming (1.5°C), ice shelves will
experience a continued increase in meltwater production, and meltwater will therefore
become more extensive (Siegert et al,, 2019).” (Page 3, Line 58-62).

For the correction of various typos and changes see mark-up document.

Section 2.1.4. Lake vs channel classification: It would be great to have an additional figure
that shows how the shape index metrics are used within the K-Means clustering
approach. The figure cited in this section (Figure 4) only shows supraglacial channel and
lake outlines, but not how the various metrics are combined. Additional details on how
the K-Means algorithm was applied communicated via a descriptive figure would help
better illustrate the "20 distinct clusters" (L195) identified. What do the top 3 or 4
clusters in the dataset look like? Suggest revise Figure 4 to illustrate the K-Means
clustering approach, or add a new figure in addition to Figure 4.

As suggested, we've added examples of complex lakes, ringed lakes, standard small lakes,
and thin ribbon lakes to Figure 4 (which had a larger lake and channel already identified).
These examples are from the clusters, which represent different supraglacial features
clustered by the K-Means approach. (Page 11, Figure 4).



The caption on Figure 4 now reads:

‘Figure 4. Outlines of supraglacial features over RGB composites from S2 and L8 imagery.
These outlines demonstrate 6 of the distinct clusters from the K-Means approach. A) A
large SGL covering 0.20 km? on Hull Glacier (Figure 1); b) complex SGL with area 0.35
km? on Bach IS (Figure 1); c) ring lake with area 0.05 km? on Bach IS; d) 11 ’standard’
SGLs on Bach IS with areas ranging from 300 m? to 0.02 km?; e) ribbon lake on GVI IS
(Figure 1) which spans 2.6 km and covers 0.19 km?; and f) discontinuous supraglacial
channel spanning 1.3 km and covering 0.04 km? near Hull Glacier. RGB composites
formed from L8 tile LCO8_L1GT_022114_20170111 (a,f) from 11 January2017 and S2
tiles TI8DXF_20170129 (b,c,d) from 29 January 2017 and T19DEB_20170103 (e) from 3
January 2017." (Page 11, Figure 4).

We've added a table with the shape index values corresponding to each feature in Figure
4, which has the caption:

‘Table 1. Value of each individual shape index (Equations 5-10) for the feature type
defined in Figure 4. (Page 12, Table 1).

Finally, we’'ve added more explanation in the text around the K-Means Clustering
approach, referencing Figure 4 and Table 1. The additional text reads:

‘Samples from 6 of the 20 clusters are shown in Figure 4, with the corresponding value
for each shape index in Table 1. As expected, ribbon lakes are similar to channels in most
metrics, as both take long, narrow forms. However, the A:P (Equation 5) value differs
vastly between channels and ribbon SGLs. The values displayed for A:P, Fractal, Reock
and W:L (Equations 5, 7, 8 and 10) demonstrate clear differences between channels and
all other lake classes. While IPQ and Schwartzberg (Equations 6 and 9) are useful in
delineating standard, smaller lakes from channels. Through this method, we identify
10,223 lakes and 255 channels to be present during January 2017 on the WAIS and AP
(Figure 4). “ (Page 10, Line 206-211).

L310: Move this equation up closer to where it is cited in the text.

Equation 14 has been moved as requested. It now follows the text:

‘To estimate the volume of water contained within each feature, we use an area-volume
(A-V, Equation 14) scaling relationship from literature (Stokes et al., 2019). Based on this
relationship, the total volume of meltwater stored in supraglacial lakes and streams is
estimated to be 0.085 km3 across the entire WAIS and AP.” (Page 20, Line 324-327).



Referee 2: https://doi.org/10.5194 /essd-2021-257-RC2

The manuscript presents an approach to map supraglacial lakes and channels for the year
2017 across the West Antarctic Ice Sheet on the basis of Sentinel-2 and Landsat-8 data
and spectral thresholding. It complements the study of Stokes et al 2019 that used a
similar approach to map supraglacial lakes around the margin of the East Antarctic Ice
Sheet. The resulting inventory of mapped lakes and channels is suggested as benchmark
datasets for Earth system science data. Although the manuscript is generally well written
and well presented, | have some major concerns, especially regarding the fit to the SI.

Thank you very much for this review. We appreciate your concerns and have taken steps
to remedy each comment accordingly as discussed below. However, we believe the
manuscript is a good fit for this Special Issue, which aims to provide a platform to develop
and share benchmark datasets. Machine Learning algorithms have been employed to map
supraglacial hydrological features in Antarctica (Dirscherl et al. 2020; Halberstadt et al.
2020), however no continental scale datasets exist to be used as a benchmark. This
manuscript and accompanying datasets (which are a result of extensive manual
enhancement and quality control beyond simple thresholding approach) aim to close this
gap. We believe the manuscript fits the SI by providing the first large scale, continental
(when combined with Stokes et al., 2019) dataset, using the most rigorous approach
currently available, which provides new benchmark data to be used as training,
validation and testing in further machine learning processes.

The authors have considered all further comments and suggestions and address the
specific comments below.

Specific Comments
[ don’t think that the resulting inventory can be regarded as a benchmark dataset for

machine learning. First, the inventory is the result of a modelling procedure (by spectral
thresholding) and hence does not present reference data with “ground truth quality”,
which however would be required for a good benchmark dataset to be useful for
algorithm and model comparison.

The authors agree that the results of NDWI thresholding approach alone would not
present data with “ground truth quality”, however the thresholding approach is just one
part of our process. The datasets were enhanced by intensive manual post-processing,
carried out by human experts, to ensure the high-quality dataset being established, which
is of much higher quality than spectral thresholding alone. We carried out extensive
quality control checks, where the output of the manually enhanced thresholding
approach was compared to datasets generated manually by three human experts. As
noted in the manuscript (Section 2.2. Accuracy Assessment, Pages 13-14, Lines 250-253),
the manually post-processed methods resulted in scores of 85.3% and 77.6% for
sensitivity, 99.1% and 99.7% for specificity and overall accuracy of 98.7% and 98.3% for
Sentinel-2 and Landsat-8 sensors respectively. We believe this presents a dataset at large
scale, that is as close to ground truth quality as feasibly possible.
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We acknowledge that these aspects were not sufficiently clear within the original
manuscript, and so have amended the text to clarify the points raised by the reviewer;
specifically, we have added text to explain that the inventory is more detailed than the
result of a modelling procedure alone:

‘However, identifying supraglacial lake and channel pixels using NDWI alone is
insufficient, because slush, rocks, clouds, and shadows can be spectrally similar to water
(Moussavi et al.,,2020). For this reason, they require additional processing steps to
identify and mask these features in each image. Additional, manual post-processing steps
described in Section 2.1.4 Lake vs channel classification, carried out by human experts,
provide data which is of much higher quality than spectral thresholding alone.” (Page 5,
Line 109-113)

In addition, systematic, continent-scale inventories of Antarctic supraglacial hydrology
are rare, which was one of the primary motivations for this work. Only a single continent-
scale study has been done previously, and this only covered East Antarctica (Stokes et al.,
2019). Therefore, no continent-wide dataset currently exists for this type of exercise. As
in-situ datasets at such large scale are not available, manually enhanced datasets using
satellite imagery is the only credible solution for the creation of training data. However,
the usage of our dataset in machine learning algorithms is one of many potential
applications as is discussed in the manuscript (Page 3, Lines 35-38 and Page 21, Lines
363-365).

‘Our inventory provides a baseline for monitoring future changes and also serves as a
training/forcing dataset for other studies, such as those focused upon methodological
development or climate and glaciological modelling. High quality training data are, for
example, a vital component of machine learning methodologies, while accurate
observations of melt features can act as both boundary conditions and validation for
physical models.’

‘Others can use the dataset produced in this study to assist approaches that utilise other
types of satellite data, for example, those that exploit Synthetic Aperture Radar imagery
but that require an a-priori lake distribution (Miles et al., 2017; Leeson et al., 2020).’

Second, the dataset is limited to the labelled locations of lakes and channels, but no
predictor data are given so that the data cannot be used to test different machine learning
approaches without extensive further data acquisition.

We agree that the addition of predictor data will result in a high-quality manuscript, we
have now adapted the dataset to include all predictor data (i.e., the sensor data for each).
Because the satellite sensor data are widely available from the sources listed, we believed
it wasn’t necessary to include the sensor data alongside shapefiles, as discussed in the
manuscript:



‘Additional L8 and S2 imagery are freely available at earthexplorer.usgs.gov and
scihub.copernicus.eu respectively. Scripts for downloading the data were extracted from
GitHub (Hagolle, Olivier, since 2014) and (Hagolle, Olivier, since 2015), however with
changes to data structure on both repositories these scripts may no longer be effective.
Alternatively, imagery is available to download from Google Cloud Storage
(https://cloud.google.com/storage/docs/public-datasets/) using Python scripting
(Nunes, Vasco, since 2016).” (Page 22, Lines 381-385)

As discussed in the text (Section 3.3 Data Usage, Page 21, Lines 369-370), the final lake
dataset doesn’t contain predictor data as it is a combination of Sentinel-2 and Landsat-8
data and isn’t intended for use in ML approaches. It gives a measure of the maximum
extent of supraglacial hydrology across the region, throughout January 2017 (extended
into February 2017 for full coverage at the cloudy Antarctic Peninsula). This dataset
compliments, and is used for comparison with Stokes et al., 2019. With the source data-
tile specified for each polygon, the polygons can be used in a water: not-water binary
classification approach. The dataset consists of 23,389 individual polygons for S2 and,
17,571 individual polygons for L8 across the test area covering approximately half the
Antarctic coastline, throughout 6 weeks of the 2017 melt-season. The data covers a large
area and due to this spatial scale displays variation in the cycle of supraglacial hydrology
from first formation to refreezing/draining of lakes. This is useful in training algorithms
for use in within a single melt-season and throughout multiple melt-seasons, across the
continent.

The relevant lines in section 5. Code and data availability now read:

‘The datasets consist of the final lake and channel polygon maps for both sensors
combined (i.e. our final maximum extent map of supraglacial hydrology)
https://doi.org/10.5281/zenodo.5589525 (Corr et al., 2021f), plus polygons for
each sensor, L8 (https://doi.org/10.5281/zenodo0.5589460 (Corr et al., 2021c) and
https://doi.org/10.5281/zenodo.5588496 (Corr et al.,, 2021b)) and S2
(https://doi.org/10.5281/zenodo0.5589494 (Corr et al,, 2021d) and
https://doi.org/10.5281/zenodo.5589522 (Corr et al., 2021e)) individually. In addition,
predictor data for each sensor (i.e., the data tiles containing all bands for S2 and L8) are
provided for each of the polygons.’ (Page 22, Lines 375-380)

Further, [ have concerns about the thresholding approach used to delineate water pixels.
The authors applied a series of thresholds (see Fig. 2 and 3) to the spectral channels but
itis unclear to me how these thresholds were derived. Is that based on try and error, and
if so, how was the error assessed (visual? statistically by comparing to the manually
digitized reference data?).

We agree that the choice of thresholds and their derivation in the manuscript is not
explained clearly, we have revised the manuscript to include more details as below. The
thresholds used were derived from existing literatures (Moussavi et al., 2020, Stokes et
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al,, 2019; Williamson et al., 2017), however, Stokes et al., 2019 (Green-NIR) and Moussavi
et al., 2020 (Blue-Red) use two different variations of NDWI in their approach. As we
aimed to compare and combine our outputs with Stokes et al., 2019, we decided on using
a Green-NIR NDWI equation as the primary threshold. To determine the thresholds, we
compared the output from two thresholds on the Green-NIR NDWI (0.3 as in Stokes et al,,
2019) and a lower threshold of 0.175 to maximise the delineated lake area, with the Dual-
NDWI thresholding approach. This analysis has now been added as supplementary
material to the manuscript in Appendix A and demonstrates the rationale behind
choosing the Dual-NDWI thresholding approach. (Appendix A, Pages 23-24, Lines 400-
422)

Moussavi et al., 2020 carried out analysis on the distribution of pixel values from Landsat-
8 and Sentinel-2 tiles (Figures 2 and 4, Moussavi et al.,, 2020) representing the different
spectral properties of lakes, slush, snow, shaded snow, clouds, cloud shadows, sunlit
rocks, and shaded rocks to determine the thresholds in their approach. The thresholds
for rock and cloud masking were adapted from Moussavi et al., 2020, and were selected
to ensure maximum lake delineation, with any additional false positives created removed
in the manual post-processing stage. These points have been described in the revised
manuscript which reads:

‘Previous analysis on the distribution of pixel values from Landsat-8 and Sentinel-2 tiles
(Figures 2 and 4 in Moussavi et al. (2020)) represent the different spectral properties of
lakes, slush, snow, shaded snow, clouds, cloud shadows, sunlit rocks, and shaded rocks.
This analysis was used to determine the thresholds in their approach. The thresholds we
select for rock and cloud masking were adapted from this approach (Moussavi et al,,
2020; and the source code from GitHub (Moussavi, Mahsa, since 2019)). Thresholds were
selected to produce maximum lake delineation, with any additional false positives
created removed in the manual post-processing stage. The analysis conducted to select
the thresholds, the NDWI thresholding approach and the additional band filters is
described in Appendix A.” (Page 8, Lines 143-150)

[ also wonder why the authors did not use a supervised classification algorithm but
decided for a series of manually selected thresholds instead.

We agree that supervised classification approaches could potentially be a valuable tool
for mapping supraglacial hydrology from satellite imagery. However, machine learning
algorithms are largely unexploited in this field, with a distinct lack of available training
data. In addition, a large-scale study such as this requires widescale validation and testing
for generalisation and transferability of the methods. It is hoped that this dataset will be
used for such a task, and we hope to apply machine learning techniques using supervised
classification in our future work; however, it is beyond the scope of the current study.
Currently, Quality Control with NDWI thresholding is the best option to provide a
benchmark dataset in such large scale. The authors believe this study to be an important
starting point in the use of ML approaches in mapping supraglacial hydrology. For this



reason and because NDWI thresholding approaches are the golden standard approach to
mapping supraglacial hydrology in Greenland and Antarctica (Morriss et al., 2013;
Moussavi et al., 2016; Xu, 2006; Stokes et al., 2019; Williamson et al., 2017), we decided
to use the thresholding approach coupled with extensive manual enhancement. We have
amended the manuscript to make our rationale clear in choosing the approach, which
now reads:

‘Supervised classification algorithms are in their infancy in the supraglacial hydrology
field (Dirscherl et al., 2020; Halberstadt et al., 2020) and large-scale, continental studies
require validation and testing for generalisation and transferability of the methods. The
aim of this study was to produce a dataset to assist such studies and, consequently NDWI
(Normalised Difference Water Index) thresholding was selected as our approach.
Currently, NDWI thresholding methods are the standard approach to mapping
supraglacial hydrology in Greenland and Antarctica (Morriss et al., 2013; Moussavi et al.,
2016, 2020; Stokes et al., 2019; Williamson et al., 2017; Xu, 2006).” (Page 5, Lines 99-104)

The validation is not complete. If I get it correctly, the accuracy/sensitivity/specificity
values that are given in the manuscript refer to the water delineation. What is missing is
the validation for the classification into channels and lakes.

We agree it would be valuable to provide validation for the classification of water into
channels and lakes, however due to the lack of an objective definition as to what lakes
and channels are, it is not possible to compute quantitative accuracy metrics. Instead, this
distinction should be viewed more as a guide to the relative split between different
shaped hydrological features. We have revised the manuscript to reflect this description,
which now reads:

‘The values reported for accuracy, sensitivity and specificity are for the thresholding
approach, which consists of all water pixels, including channels and lakes. Although it
would be valuable to also provide validation metrics for the classification of water into
channels and lakes, due to the lack of an objective definition as to what lakes and channels
are it is not possible to compute accuracy, sensitivity, or specificity metrics at present.
Channels and lakes are defined from within the classification of surface water, based
solely upon their shape. To concretely define channels, would require auxiliary data, such
as water flow and topography at instances in close temporal proximity to the satellite
imagery. The aim of our channel and lake discrimination is therefore not to provide a
measure or definition of each, but rather it is an indicator that should be viewed more as
a guide to the relative split between them.” (Page 14, Lines 260-267).



