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Abstract. The concept of plant functional types (PFTs) is shown to be beneficial in representing the complexity of plant

characteristics in land use and climate change studies using regional climate models (RCMs). By representing land use and

land cover (LULC) as functional traits, responses and effects of specific plant communities can be directly coupled to the

lowest atmospheric layers. To meet the requirements of RCMs for realistic LULC distribution, we developed a PFT dataset

for Europe (LANDMATE PFT Version 1.0; Reinhart et al., 2021b). The dataset is based on the high-resolution ESA-CCI5

land cover dataset and is further improved through the the additional use of climate information. Within the LANDMATE

PFT dataset, satellite-based LULC information and climate data are combined to create the representation of the diverse plant

communities and their functions in the respective regional ecosystems while keeping the dataset most flexible for application

in RCMs. Each LULC class of ESA-CCI is translated into PFT or PFT fractions including climate information by using the

Holdridge Life Zone concept. Through consideration of regional climate data, the resulting PFT map for Europe is regionally10

customized. A thorough evaluation of the LANDMATE PFT dataset is done using a comprehensive ground truth database over

the European Continent. The assessment shows that the dominant LULC types, cropland and woodland, are well represented

within the dataset while uncertainties are found for some less represented LULC types. The LANDMATE PFT dataset provides

a realistic, high-resolution LULC distribution for implementation in RCMs and is used as basis for the LUCAS LUC dataset

introduced in the companion paper by Hoffmann et al. (submitted) which is available for use as LULC change input for RCM15

experiment setups focused on investigating LULC change impact.

Copyright statement. CC BY 4.0

1 Introduction

Land use and land cover (LULC), including the vegetation type and function, were declared Essential Climate Variables

(ECVs) by the Global Climate Observing System (GCOS) (Bojinski et al., 2014). Changes in ECVs are crucial factors of20
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climate change and therefore need to be monitored and further represented in climate models to be able to assimilate and

understand atmospheric processes and feedback effects on different scales. For LULC, anthropogenic modifications are the

most important drivers of change. De- and reforestaion and expansion of urban and cropland areas affect biogeophysical (e.g.,

albedo, roughness, evapotranspiration, runoff) and biogeochemical (e.g., carbon emissions and sinks) surface properties and

processes (Mahmood et al., 2014; Lawrence and Vandecar, 2015; Alkama and Cescatti, 2016; Perugini et al., 2017; Davin25

et al., 2020). Besides LULC changes, land management practices are being assessed regarding influence of related land surface

modifications on regional climate, and also the potential of land management practices regarding climate change adaptation

and mitigation efforts (Lobell et al., 2006; Kueppers et al., 2007; Burke and Emerick, 2016).

In order to represent impacts and feedbacks of LULC modifications as realistically as possible, regional climate models

(RCMs) require an accurate representation of LULC and its changes. In this context, the concept of plant functional types30

(PFTs) is used frequently for the representation of LULC in RCMs (Davin et al., 2020).

PFTs are aggregated plant species groups that share comparable biophysical properties and functions. The aggregation makes

it possible to represent these functionality groups within one single model grid unit as a mosaic. The main difference of the

PFT representation in comparison to the LULC class representation is the grouping of vegetation according to function instead

of a descriptive definition. The function of a group is directly represented by the biophysical and biochemical properties that35

are prescribed or dynamically computed within the vegetation layer of an RCM. A comprehensive review of the subsequent

development of PFTs representing vegetation dynamics in climate models was done by Wullschleger et al. (2014). Attempts

have been made, particularly by the dynamic global vegetation modeling community, to move beyond the PFT representation

and apply the concept of plant functional traits (e.g. van Bodegom et al. (2014); Yang et al. (2015)). While some plant functional

traits are already introduced to land surfaces models, which are employed by RCMs, (e.g. Li et al. (2021)) it is debated if the40

PFT approach can be replace by the plant functional traits approach or by using new evolution-based Lineage Functional Types

(Anderegg et al., 2021).

The need for applicable global PFT maps for vegetation models that are used with atmospheric models was already well

emphasized by Box (1996). Moreover, the requirement that a climate model should include a vegetation model representing

the biosphere was discussed by Lavorel et al. (2007). One criterion that is highly emphasized is the inter-regional applicability45

of a preferably simple PFT classification, which has the ability to capture key characteristics of the biosphere from biome to

continental scale, regardless of climate zone and individual vegetation composition. A variety of PFT definitions and cross-

walking procedures (CWPs), used for translating LULC products into global or regional PFT maps emerged in the last decades

(Bonan et al., 2002; Poulter et al., 2011; Ottlé et al., 2013; Poulter et al., 2015). The respective CWP documentation consist of

the utilized input data, the translation table where each LULC class is assigned to PFT proportions and a description on how the50

input data is used to create the final product. However, the individual PFT definitions and CWPs as well as the mostly satellite

based input data differ greatly in complexity and temporal and horizontal resolution (Bonan et al., 2002; Winter et al., 2009;

Lu and Kueppers, 2012). Moreover, inter-regional consistency cannot be achieved by products that origin from regionally

constrained input data or regionally adapted CWPs. Therefore, the additional use of climate information in the CWP from
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LULC to PFT is a highly useful step in order to create a dynamically customizable product, that can be adapted to various55

climate and vegetation characteristics (Poulter et al., 2011).

With the present work, we introduce a PFT map for the European Continent that specifically addresses the requirements

of the RCM community. The land cover maps of the ESA-CCI are translated into 16 PFTs creating an updated version of

the interactive MOsaic-based Vegetation (iMOVE) PFTs that were originally developed for the RCM REMO (Wilhelm et al.,

2014). Climate information is implemented into the CWP employing the Holdridge ecosystem classification concept based on60

the Holdridge Life Zones (HLZs; Holdridge et al., 1967), which provide a global classification of climatic zones in relation to

potential vegetation cover. The HLZ concept is commonly used as a tool for ecosystem mapping from various overlapping re-

search communities (Lugo et al., 1999; Yue et al., 2001; Khatun et al., 2013; Szelepcsényi et al., 2014; Tatli and Dalfes, 2021).

This paper gives a detailed documentation on the preparation of the PFT map - hereinafter referred to as "LANDMATE PFT" -

within the Helmholtz Institute for Climate Service Science (HICSS) project "Modelling human LAND surface Modifications65

and its feedbacks on local and regional cliMATE" (LANDMATE). The LANDMATE PFT map is prepared in close collabora-

tion with the EURO-CORDEX Flagship Pilot Study Land Use and Climate Across Scales (FPS LUCAS; Rechid et al., 2017).

Within the FPS LUCAS, RCM experiments are coordinated among an RCM ensemble to investigate the impact of LULC

change for past climate and future climate scenarios. Through creation of LANDMATE PFT and the time series LUCAS LUC

(Hoffmann et al., submitted), the need for improved LULC and LULC change representation among the FPS LUCAS RCM70

ensemble is met. For the preparation of LANDMATE PFT, we developed a CWP for the translation of LULC classes of ESA-

CCI into 16 PFTs according to the needs of regional climate modellers from all over Europe (Bontemps et al., 2013). The focus

in development of the LANDMATE PFT map Version 1.0 is on the distinguished representation of biophysical properties in

the RCMs while the representation of biochemical properties of different LC types will be addressed in a future approach. A

key issue to address in the map development process is the accuracy of LULC representation in the final product (Hartley et al.,75

2017). In order to assess the quality of the product, we compared the LANDMATE PFT map to a comprehensive ground truth

database for large parts of the European Continent. The quality information derived from the assessment supports the RCM

community in addressing and interpreting uncertainties caused by LULC representation in RCMs. The general workflow and

subsequently all utilized datasets are summarized in section 2 while the major steps of the CWP are listed in section 3. Section

4 introduces in detail the accuracy assessment procedure followed directly by the results in section 5. All CWTs and figures80

corresponding to the CWP and the accuracy assessment can be found in Appendix A and B.

2 Methods and data

The LANDMATE PFT map (Reinhart et al., 2021b) is a combination of multiple datasets and concepts created using well-

established methods and in addition, by considering the expertise of regional climate modellers from all over Europe within

the FPS LUCAS.85
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2.1 General workflow

The workflow to generate the LANDMATE PFT map is summarized in fig. 1, which also includes the steps to generate the

LUCAS LUC dataset further described in the companion paper by Hoffmann et al. (submitted). First, a high-resolution land

cover map (ESA-CCI LC, Sect. 2.2.1), which has a native resolution of ∼300 m, is aggregated to the 0.1° target resolution

using SAGA GIS (Conrad et al., 2015). The target resolution results from the FPS LUCAS ensemble resolution (i.e., EURO-90

CORDEX domain EUR-11) that is used for LULCC impact studies in FPS LUCAS Phase II. The LULC type information from

the original product is preserved in fractions per 0.1° grid cell which is advantageous to common majority resampling methods.

The sum of PFT fractions in the whole dataset remains the same in all target resolutions, only the distribution of fractions per

grid cell changes depending on the target resolution.

Figure 1. The general workflow to generate LANDMATE PFT 2015 Version 1.0. This workflow is part of the workflow to generate the

LUCAS LUC time series as introduced in the companion paper by Hoffmann et al. (submitted)

A climate dataset for Europe (E-OBS, Sect. 2.2.2) is utilized for the preparation of a climate zone map over Europe95

(Holdridge Life Zones, Sect. 2.2.4). From the climate dataset, the ensemble means 2-meter-temperature and annual precip-

itation from 1950-2020 are used to create the climate zone map of 0.1° horizontal resolution which is further implemented in
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the CWTs to prepare the final LANDMATE PFT maps. For regions that are not covered by E-OBS, the respective data of the

CRU dataset (Sect. 2.2.3) is used.

A CWT (Sect. 3) is created for each of the the 37 ESA-CCI LC classes. Since the table has three dimensions (Land cover100

class, HLZ and PFT), it was necessary to prepare the individual tables that include unique translations for each HLZ. For

example, table 1 shows the CWT for LC class 40 - Mosaic natural vegetation (tree, shrub, herbaceous cover)(>50%) / cropland

(<50%) where the the numbers of the HLZs in the first column are corresponding to the HLZ numbers in figure 2. For each

HLZ in the first column, the LC class 40 is translated into fractions of the LANDMATE PFTs. For the example class that

means an increasing tree fraction from the boreal to the tropical HLZs and a change in tree species composition which makes105

the whole PFT fraction composition per pixel regionally adjustable. Each pixel of the map that contains one specific ESA-CCI

LC class is translated to contain multiple PFT fractions representing the properties of multiple LC types, such as roughness

length, albedo or leaf area index. These multiple properties can further be implemented into an RCM. Depending on the ability

of the RCM, multiple fraction properties or an average of the properties are passed on to the over- and underlaying layers,

where the average of all PFT fraction properties is still a more accurate representation of LC than the properties of only one110

LC class. An example of the implementation of PFT fractions into an RCM is given by Wilhelm et al. (2014) where the use of

PFTs within the RCM REMO is described.

The translation process is based on Wilhelm et al. (2014) where the translation of the Global Land Cover (GLC) 2006 to the

16 REMO-iMOVE PFTs is described. Since the nomenclature of GLC 2006 and ESA-CCI LC are similar and based on the

same classification system some of the CWTs were initially adopted from (Wilhelm et al., 2014). For the more diverse ESA-115

CCI LC classes new CWTs need to be created. The new CWTs follow the translation of Poulter et al. (2015) (ESA POULTER)

but were carefully revised and modified during the process. After application of the CWP, an additional map of potential C3/C4

grass vegetation (NACP MsTMIP, Sect. 2.2.6 is used to divide the grass PFT fractions. The quality of the LANDMATE PFT

dataset is finally assessed by comparison to a comprehensive ground truth database (LUCAS land use and land cover survey,

Sect. 4).120

2.2 Datasets & concepts

2.2.1 ESA-CCI LC

The European Space Agency Climate Change Initiative (ESA-CCI) provides continuous global land cover maps (ESA-CCI

LC) on ∼300 m horizontal grid resolution. The ESA-CCI LC maps are available for download in annual time steps for the

years 1992-2018 (ESA, 2017). The classification of the LC maps follows the United Nations Land Cover Classification System125

(UN-LCCS) protocol (Di Gregorio, 2005) and consists of 22 level 1 classes and 14 additional level 2 classes, which include

regional specifications. More information on ESA-CCI LC data processing can be found at maps.elie.ucl.ac.be/CCI/viewer/

download/ESACCI-LC-Ph2-PUGv2_2.0.pdf. An overview of the satellite missions involved in the production of ESA-CCI

LC is given in table 2. Besides systematic global validation efforts (ESA, 2017; Hua et al., 2018), a few regional approaches

investigated the quality of ESA-CCI LC over Europe (Vilar et al., 2019; Reinhart et al., 2021a).130
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Table 2. Satellite missions involved in the production of ESA-CCI LC according to ESA (2017)

Time period Satellite product

Baseline Production

2003-2012

MERIS FR/RR 1 global SR 2 composites

1992-1999 Baseline 10-year global map; AVHRR 3 global SR

composites for back-dating baseline

1999-2013 Baseline 10-year global map; SPOT-VGT 4 global

SR composites for up and back-dating the baseline;

PROBA-V 5 global SR composites at 300 m

2013-2015 Baseline 10-year global map; PROBA-V global SR

composites at 1 km for years 2014 and 2015 for up-

dating the baseline; PROBA-V time series at 300 m

Since 2016 Sentinel-3 OLCI and SLSTR 6 7-day composites

2.2.2 E-OBS Climate data

The E-OBS dataset (Cornes et al., 2018) is a daily gridded observational dataset, derived from station observations from

European countries covering the period from 1950 to 2020. The point observations are interpolated using a spline method

with random perturbations in order to produce an ensemble of realizations. For the creation of the HLZs that are used for

the conversion of ESA-CCI LC classes to PFTs (Section 2.2.5), the ensemble mean of the 2-meter-temperature (TG) and135

precipitation (RR) on a regular 0.1◦ grid from E-OBS version 19.0e is used. It covers most of Europe, some parts of the Middle

East and a narrow strip of Northern Africa.

2.2.3 CRU

The Climate Research Unit (CRU) TS 4.03 dataset is a global gridded high-resolution climate dataset based on station obser-

vations produced and maintained by the CRU of the University of East Anglia (Harris et al., 2014). The dataset provides global140

monthly means of climate parameters at 0.5° resolution from 1901 to 2019. In order to achieve the target resolution of 0.1°

for the global LANDMATE PFT maps, the CRU climate data is downscaled using bilinear interpolation. Following Hoffmann

et al. (2016), distance-weighted interpolation was applied to the atmospheric observation dataset CRU to extrapolate the cli-

mate data to the coastlines of the ESA-CCI LC maps in order to compensate for the different land-sea-masks of the products.

1MEdium Resolution Imaging Spectrometer Full Resolution/Reduced Resolution (ESA, 2002)
2Surface Reflectance
3Advanced Very-High-Resolution Radiometer (Hastings and Emery, 1992)
4SPOT Vegetation satellite program (Maisongrande et al., 2004)
5Project for On-Board Autonomy - Vegetation (Dierckx et al., 2014)
6Ocean and Land Colour Instrument (OLCI) and Sea and Land Surface Temperature Radiometer (SLSTR) (Donlon et al., 2012)
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The CRU climate dataset was used within this application for regions where E-OBS is not available. The bilinear interpolation145

of E-OBS caused minor issues on coastlines and small islands all over the research area, where this interpolation method was

not able to correctly account for the resolution differences of the 0.1° EOBS and 0.018° LANDMATE PFT land-sea masks,

respectively. The issue caused by the large resolution difference is fixed with a preceding extrapolation of the climate data

along coastlines and islands in the LANDMATE PFT map Version 1.1 that is currently being prepared. Since the interpolation

issue only affected a negligible amount of LANDMATE PFT cells the validation measures are not affected by this issue in a150

noticeable way.

2.2.4 Holdridge Life Zones

The Holdridge Life Zone (HLZ) concept was initially developed in 1967 (Holdridge et al., 1967) to define all divisions of

the global biosphere, depending on the relation of biotemperature (average of monthly temperature above 0°C; since plant

activities are idle below freezing, all values below 0°C are adjusted to 0°C), mean annual precipitation and ratio of potential155

evapotranspiration to mean annual precipitation. By combining threshold values of biotemperature and annual rainfall, the 38

HLZs are created (Table 3). In the present analysis, the subtropical and warm temperate as well as the polar and subpolar HLZs

are mereged. Through the merging of the aforementioned HLZs, 30 individual HLZs in total are available for the creation

of the European HLZ map (Fig. 2). The dynamic character of the specific quantitative ranges of the long-term means of the

utilized climate parameters make the HLZ classification more flexible than other available global ecosystem classifications and160

therefore makes the HLZs most suitable for the application presented in this article. In addition the requirement for input data

is relatively low.

In the past, the HLZ concept was not only found useful for global applications but successfully implemented especially for

regional mapping approaches due to its ability to capture regional climate features with the support of bioclimatic variables

(Daly et al., 2003; Tatli and Dalfes, 2016). Further, the HLZ concept was used for LULC change predictions, such as land use165

impact assessments, related to current and future climate change scenarios (Chen et al., 2003; Skov and Svenning, 2004; Yue

et al., 2006; Saad et al., 2013; Szelepcsényi et al., 2018). With the implementation of climate data through the HLZ concept,

the resulting PFT maps become more detailed and can be customized to individual regions without losing global consistency.

2.2.5 Plant Functional Types

Figure 3 shows the LANDMATE PFTs that are based on the PFTs introduced by Wilhelm et al. (2014). The implementation170

of an irrigated cropland PFT (PFT 14) that is currently being developed within the HICSS project LANDMATE will be

implemented in a later version of the dataset. In the initial version that is presented in this article, all cropland proportions are

assigned to the cropland PFT (PFT 13).
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Table 3. The Holdridge Life Zones following (Holdridge et al., 1967).

Bio-

temperature

[°C]

Precipitation [mm]

<125 125 to <250 250 to <500 500 to <1000 1000 to <2000 >2000

<3 Subpolar dry

tundra

Subpolar moist

tundra

Subpolar wet

tundra

Subpolar rain

tundra

- -

3 to <6 Boreal desert Boreal dry

shrub

Boreal moist

forest

Boreal wet for-

est

Boreal rain for-

est

-

6 to <12 Cool temperate

desert

Cool temperate

desert shrub

Cool temperate

steppe

Cool temperate

moist forest

Cool temperate

wet forest

Cool temperate

rain forest

12 to <18 Warm temper-

ate desert

Warm temper-

ate desert scrub

Warm tem-

perate thorn

steppe/woodland

Warm temper-

ate dry forest

Warm temper-

ate moist forest

Warm temper-

ate wet/rain for-

est

18 to <24 Subtropical

desert

Subtropical

desert shrub

Subtropical

thorny

steppe/woodland

Subtropical dry

forest

Subtropical

moist forest

Subtropical

wet/rain forest

>24 Tropical desert Tropical desert

shrub

Tropical thorny

woodland

Tropical very

dry forest

Tropical dry

forest

Tropical

moist/wet/rain

forest

2.2.6 Potential C4 grass fraction NACP MsTMIP

The initial land cover map from the ESA-CCI LC does not provide a distinction between C3 and C4 grassland. The focus of the175

present approach is the improvement of representation of the biophysical properties of LC types. Since the distinction between

C3 and C4 grasses is rather important for biochemical properties, such as the carbon cycle, the decision was made to use a

preexisting, external product for the spatial distinction between C3 and C4 grasses. The map from the North American Carbon

Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project (NACP MsTMIP; Wei et al., 2014) is constructed

based on the synergetic land cover product (SYNMAP) by Jung et al. (2006). SYNMAP is a combination of multiple high-180

resolution LULC products using a fuzzy agreement approach. The NACP MsTMIP map uses the grassland fractions from

the SYNMAP product. The potential C4 grass distribution is generated by Wei et al. (2014) employing the well established

method introduced by Still et al. (2003), which is based on the growing season temperature and rainfall, in combination with

present climate conditions from the global CRU-NCEP dataset. The potential C4 grass map is provided on a 0.5° horizontal

grid for the period from 1801 to 2010. For the preparation of LANDMATE PFT the NACP MsTMIP map of 2010 is used. The185
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Figure 2. Holdridge Life Zones map for the extent of LANDMATE PFT

LANDMATE PFT grass fraction is split up into C4 and C3 grasses by multiplying grassland with the potential C4 vegetation

fraction and for C3 grass (1 - potential C4 vegetation fraction), respectively.

The spatial distribution of C3 and C4 grasses is not evaluated in the present approach due to the lack of information in the

reference dataset. Through the use of the state of the art NACP MsTMIP map, it is ensured that the highest possible quality of

C3 and C4 grass distribution is given in the LANDMATE PFT map190

2.3 LUCAS - land use and land cover survey

The harmonized LUCAS in situ land cover and use database for field surveys from 2006 to 2018 (d’Andrimont et al., 2020)

is the most consistent ground truth database for the European Continent. The survey was carried out at three-yearly intervals

between 2006 and 2018. The systematic sampling design of the survey consists of a theoretical, regular grid over the European

Continent with ∼2 km grid size. The reference point locations are the corner points of the theoretical grid. Not all locations195

within the survey were easily accessible. Therefore, the survey is supported by in situ photo interpretation, in-office photo

interpretation and satellite data in the latest time steps 2015 and 2018 (table 4). However, the main proportion of the reference
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Figure 3. LANDMATE PFT map for Europe for 2015 (a). Below a map section of the Alpine region shows an example of the resolution

difference between LANDMATE PFT 0.1 (b) and LANDMATE PFT 0.018 (c). LANDMATE PFT 0.018 is used in the present accuracy

assessment. For improved visualization all maps show the majority PFT per grid cell. The irrigated cropland PFT (14) is not used in this

map. More information is given in section 3.4

.

points was recorded through location visits at all time steps, which makes this land survey the most reliable and consistent

ground truth database for Europe.
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Table 4. Number and recording method of reference points in the LUCAS land cover and use database per timestep.

Year Reference points in situ in situ PI7 in-office PI8 GT9 [%]

2006 168401 155238 13163 92.18

2009 234623 175029 59594 74.6

2012 270272 243603 26669 90.13

2015 340143 242823 25254 71970 71.39

2018 337854 215120 22894 99803 63.67

The extent of the LUCAS survey was increased over time. The 2006 survey covered 11 countries while the 2018 map covers200

large parts of the European Continent with 28 countries. Throughout the survey, the ground truth data has been continuously

checked for quality and plausibility. For the accuracy assessment of the LANDMATE PFT map the ground truth points of the

year 2015 are employed (Sect. 4). In order to avoid confusion between the FPS LUCAS and the LUCAS ground truth dataset,

the latter will be further referred to as Ground Truth Survey or GT-SUR.

3 Cross-walking procedure - ESA-CCI LC classes to PFTs205

The CWP from ESA-CCI LC classes to PFTs presented in this article is based generally on (1) the translation introduced by

Poulter et al. (2015) and (2) the translation by Wilhelm et al. (2014). Both translations are not just combined with each other

but modified using additional data. The following sections introduce the PFTs of LANDMATE PFT aggregated into general

LULC types and give an overview of the decisions on modifications that are made during the production process based on

literature and additional data.210

3.1 Trees and shrubs, tropical and temperate | PFT 1-8

The LANDMATE PFTs are more diversified regarding tree-PFTs than the generic ESA POULTER PFTs. While the generic

ESA POULTER PFTs have four shrub-PFTs, the LANDMATE dataset has only two while the tree-PFT count was increased

to six. The increase of tree-PFT diversity is done in order to address the strong biogeophysical impacts of forested areas

on regional and local climate, such as decreased albedo and increased roughness length (Bright et al., 2015). The effects of215

forested areas on near-surface climate are distinctively different to the effects of shrub or grass covered areas, and are also

highly depending on tree species composition and latitudinal range (Bonan, 2008; Richardson et al., 2013). Another reason for

the six tree-PFTs is the intended use of the PFT maps in RCMs. In the Land Surface Models (LSMs) of current generation

RCMs, where a distinction is rather made between different tree or tree community types than between different shrub types.

7Photo interpretation close to the reference location
8Photo interpretation with supporting data, such as satellite images
9Ground truth
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Therefore and with regard to the implementation process that needs to be done for each RCM individually, an increase in the220

number of tree-PFTs and a decrease in the number of shrub-PFTs is considered to be convenient. Accordingly, the tree and

shrub proportions were distributed following both, the needleleaf and broadleaf definitions of the ESA-CCI LC classes as well

as the HLZ map, where the HLZ map was decisive for an assignment of forest proportions to the temperate or tropical tree-

PFT, respectively. Following a comparison with different forest datasets over Europe (not shown), the tree proportions in the

translation of the mixed land cover classes (e.g. class 61 - Tree cover, broadleaved, deciduous, closed (>40 %)) are increased225

to be in line with the indicated overall forest amount over Europe.

3.2 Grassland | PFT 9 & 10

The generic ESA POULTER PFTs include a natural grassland- and a managed grassland-PFT to include grassland and cropland

respectively. The LANDMATE PFTs include two grassland-PFTs, distinguishing between C3 and C4 grass. The contrasting

photosynthetic pathways and therefore contrasting synthetic response to CO2 and temperature determine specific ecosystem230

functions for both PFTs respectively. The main differences are found in global terrestrial productivity and water cycling (Lat-

tanzi, 2010; Pau et al., 2013). The translation from the LULC classes that contain grassland proportions into C3 or C4 grass-

PFTs respectively is supported by a map of potential C4 vegetation by Wei et al. (2014) where the potential global distribution

of C4 is estimated using bioclimatic parameters (Sect. 2.2.6).

3.3 Tundra and swamps | PFT 11 & 12235

The specific vegetation PFTs tundra and swamps are treated individually in LANDMATE PFT. Tundra is mostly used for the

polar and subpolar HLZs, where the climatic conditions require a clear distinction of the land surface properties to the boreal

and temperate regions regarding exchange and feedback processes with the atmosphere (Thompson et al., 2004). Chapin Iii

et al. (2000) further suggest a differentiation of vegetation composition within these northern vegetation communities, which

can also be realized using the introduced CWP. The swamp-PFT is mostly used for translating the ESA-CCI LC mosaic240

tree/shrub/herbaceous classes and also partly for the flooded tree cover classes in most of the HLZs. Swamps occur mainly in

the boreal and polar regions in the European domain.

3.4 Cropland | PFT 13 & 14

Currently, two cropland-PFTs are defined in the LANDMATE PFT map. The cropland-PFT (PFT 13, fig. 3) includes all

managed, agricultural land surface proportions. The uncertainties of the translation of the ESA-CCI cropland classes and245

mixed cropland classes into the cropland-PFTs was investigated by Li et al. (2018) where the comparison of LULC change in

the ESA POULTER PFT maps against other LULC products showed inconsistencies between global trends and geographical

patterns between the products. However, Li et al. (2018) provide a modified CWT that was adjusted in regard to an improved

knowledge base on how to translate LULC classes into PFTs for climate models. Particular focus is laid on mosaic classes
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and the sparsely vegetated classes of which appear numerous in ESA-CCI LC. Therefore, the CWP from Li et al. (2018) for250

cropland is adopted into the present CWP.

The irrigated cropland-PFT (PFT 14, fig 3) is currently empty in the LANDMATE PFT map Version 1.0. This decision

is made following intense research on available irrigation information. The ESA-CCI LC map that is used as initial input

contains an "irrigated cropland" class but this information was not used in the process. The investigation on irrigated areas

included the comparison of ESA-CCI LC to other products that are available, such as the irrigation map from the FAO (Siebert255

et al., 2005). Although the ESA-CCI LC quality assessment shows a very good agreement of the ESA-CCI LC irrigated

cropland with the validation database (ESA, 2017), the comparison showed considerable differences between the products. The

success of detection of irrigated areas is highly dependent on the correct detection of the crop types to infer the water needs of

the respective crops, on atmospheric and environmental conditions and on the availability of multi-temporal, high resolution

imagery (Bégué et al., 2018; Karthikeyan et al., 2020). Further, most remote sensing applications depend highly on ground truth260

data and local knowledge. Applications using different satellite imagery to detect agricultural management practices, such as

irrigation, are only successfully tested and applied in local spatial units (Rufin et al., 2019; Ottosen et al., 2019). Therefore,

the irrigated cropland PFT remains unoccupied for now. Nevertheless, PFT 14 is defined within LANDMATE PFT Version

1.0 for the purpose of adding irrigated LULC fractions in the future. For the long term LUCAS LUC dataset (Hoffmann et al.,

submitted) which is extended backward and forward based on the LANDMATE PFT map for Europe 2015, irrigated cropland265

areas are already implemented following the irrigated area definition of the Land Use Harmonization (LUH2) dataset (Hurtt

et al., 2011).

3.5 Non-vegetated | PFT 15 & 16

The non vegetated-PFTs in the LANDMATE PFT dataset are urban and bare. The urban grid cells from ESA-CCI LC are

directly translated into urban fractions for all HLZs in the CWP. The same applies for all bare ground proportions that are270

translated fully into the bare-PFT. In addition, the ESA-CCI LC mixed classes are split up and the bare ground proportions

within the mixed classes are added to the bare-PFT. The explicit treatment of urban areas and especially differentiation from

bare ground provides the possibility to resolve urban surface characteristics in RCMs. The treatment of urban areas as a slab

surface or as an equal to rock surface as done in several RCM approaches cannot account for the complex geobiophysical

processes associated with an urban agglomeration (Daniel et al., 2019; Belda et al., 2018). Due to the distinction of the two275

surface types, the LANDMATE PFT map can be used for impact studies with an urban focus.

3.6 Water, permanent snow & ice

The LANDMATE PFTs do not include individual PFT definitions for water and snow/ice respectively. Regarding the water

representation, most currently used RCMs are utilizing a land-sea-mask to account for oceans and inland water areas. Therefore,

an explicit definition of water as individual PFT has not been implemented. Consequently, all water fractions, such as marine280

water, lakes and rivers are set to no data. In the present translation, the snow/ice grid cells from ESA-CCI land cover are

translated into bare-PFT following Wilhelm et al. (2014).
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4 Quality assessment of the LANDMATE PFT map

The LANDMATE PFT map is based on the ESA-CCI LC map which was quality checked and compared to similar LULC

products on a global (ESA, 2017; Yang et al., 2017; Hua et al., 2018; Li et al., 2018) and regional level (Reinhart et al., 2021a;285

Vilar et al., 2019). However, the translation from LULC classes to PFTs necessarily results in change of the map. The final

product, the LANDMATE PFT map, is intended to be used in RCMs, which means the quality of the final product must be

assessed in addition to the available quality assessments of the initial ESA-CCI LC map. In order to overcome the resolution

difference, which is non negligible between LANDMATE PFT and the reference data GT-SUR, the LANDMATE PFT map is

prepared on 0.018° horizontal resolution, which corresponds closely to the 2 km theoretical grid of GT-SUR.290

The design of such a quality assessment of a large scale map product is not trivial, especially since the map product itself

and the reference data are often different in structure and nomenclature, given that ground truth reference data is mostly

collected as point data and independently from the assessed map product Foody (2002); Wulder et al. (2006); Olofsson et al.

(2014). In order to produce reliable quality information for LANDMATE PFT, the present assessment follows closely the

well established good-practice recommendations. Nevertheless, adjustments are done to account for the fractional structure of295

LANDMATE PFT. Section 4.2 provides additional information on the requirements of a "good practice" accuracy assessment,

the key components and the selected sampling design and metrics.

4.1 Research area

The coverage of GT-SUR in the year 2015 includes 28 countries which are highlighted in dark grey in fig. 4.
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Figure 4. Coverage of the Land Use and Coverage Area frame Survey (LUCAS) for reference year 2015 (top). The lower figure shows the

points and LULC type representation within the grid cell highlighted in black color in the top map as an example for the whole research area.

The total number of GT-SUR points for 2015 is 340,143. Out of these points, 338,619 points (∼99.55 %) are covered with300

valid LANDMATE PFT grid cells of the assessed LULC types and can be used in the analysis. Countries located within

the contiguous area but missing in the assessment are Switzerland, Norway, the Russian Oblast Kaliningrad, Bosnia and

Herzegovina, Montenegro, Albania, Serbia, Kosovo, North Macedonia, and Belarus. Figure 4 also shows the 2.5° grid that was

used for the analysis of the accuracy assessment results (Sect. 5). Due to the fine scale and the high number of points over the

whole research area, the visualization of the spatial analyses on continental scale is challenging. Therefore, the research area is305

overlayed with a 2.5° grid (as shown in fig. 4). While the results are presented in these 2.5° grid units, the results are calculated

for each point within one unit and then aggregated. For example, in a 2.5° grid unit containing 1000 pairs of LANDMATE
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PFT cells and GT-SUR points, 50 % overall accuracy are achieved when 500 pairs agree on the LC type. The overall and

class-wise accuracy results for all points within each 2.5° grid cell are aggregated in order to identify large scale spatial quality

differences for the analyzed LULC types. In order to give information on the relevance of the accuracy metrics, the number of310

LANDMATE PFT/GT-SUR pairs for each LULC type per grid cell are displayed alongside the accuracy figures in section 5.

4.2 Accuracy assessment - background & design

The key components of the accuracy assessment of a large-scale land cover product are objective, sampling design, response

design and the final analyses and estimation (Wulder et al., 2006). All of the key components have great impact on the

quality of the assessment and further, on the final metrics, especially in the present assessment, where reference and assessed315

dataset differ widely in structure. LANDMATE PFT is a gridded dataset with fractional LULC classes but no information

on the subgrid location within the grid cell. Other than that, the points of GT-SUR have fixed locations expressed through

exact coordinates, but no (exact) information on the spatial extent of this class. Another challenge is the fractional structure of

LANDMATE PFT itself, where one unit (grid cell) possibly contains multiple fractions. Therefore, the design of the accuracy

assessment needs to be customized to the objective, which is to determine the overall quality of the LANDMATE PFT map for320

Europe 2015 as well as the quality of individual LULC type representation within the map in order to derive recommendations

for the use of LANDMATE PFTs in RCMs.

When it comes to the sampling design, sampling size, spatial distribution of the respective sample and the representation

of each LULC type or class within the sample are crucial to produce reliable quality information about a LULC product

(Stehman, 2009). The collection of ground truth data is a rather expensive procedure regarding time and money, which needs325

to be considered during the process. However, in the present assessment we are able to rely on an existing ground truth database

containing over 340,000 records, which eliminates the possible issue of a too small reference database. It is also known that all

assessed LULC types are represented in a sufficiently high number (Table 6). Nevertheless, the present assessment is a special

case situation with every unit of LANDMATE PFT containing more than one LULC type potentially. Therefore, the subsets

are selected through application of a filter to capture the map accuracy in a way that accounts for the fractional structure within330

the grid cells in the LANDMATE PFT map (see section 4.2.1).

The response design deals with the spatial support regions (SSR) and the labelling protocol or classification harmonization.

The SSR is a buffer region around a sampling unit that is selected to account for small-scale landscape heterogeneity that is

likely not captured by larger scale map products. In the present case, the sampling design is selected in a way that the grid

cells of LANDMATE PFT serve as SSR for each GT-SUR point. A fraction is not located precisely at one location within335

the respective grid cell but evenly distributed over the whole grid cell. Assuming, the uniformly distributed fraction can occur

in small patches or in one large patch within the grid cell, the whole grid cell is defined as SSR for the respective LULC

type. The labelling protocol needs to be determined to deal with the different legends of the reference and the assessed map.

The harmonization of legends is selected in regard to the objective of the respective assessment, as in this case, to provide

information about the quality of representation of the most dominant LULC types in LANDMATE PFT. The labelling protocol340

used in the present assessment is summarized in table 5.
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The analyses and estimation used are error matrices, that give an overview of the overall and LULC type-wise accuracy of

the LANDMATE PFT map. For both resolutions of LANDMATE PFT, the error matrices and the resulting accuracy measures

overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA) are calculated, where PA and OA are calculated

group-wise. The error matrix is a cross-tabulation between map and reference of the size q x q, where q stands for the number345

of land cover classes or groups. The map classes are placed in the rows and the reference classes in the columns so that

the diagonal of the matrix gives the sum of the correctly classified map units. The off-diagonal cell values represent the

disagreement between the map and the reference. The overall accuracy is calculated according to equation 1:

OAi =

∑q
i=1nii

n
∗ 100 (1)

The sum of the agreeing diagonal elements nii of all LULC types is divided by the number of all observations n. The350

PA represents the accuracy from the view of the map producer. The PA stands for the probability, that a LULC feature in the

reference is classified as the respective feature by the map. The PA is calculated using equation 2 where the number of correctly

classified units per LULC type nii is divided by the total number of LULC type occurrences of the reference n+i:

PAi =
nii

n+i
∗ 100 (2)

While the PA gives the proportion of features in the reference that are actually represented as those in the produced map,355

the UA is the accuracy from the perspective of the map user. It is the probability of a feature classified as such in the map is

actually present in the reference. The UA is calculated using equation 3, where the number of correctly classified pixels nii per

LULC type is divided by the row sum ni+

∑p
i=1nji:

UAi =
nii

ni+
∗ 100 (3)

4.2.1 Dataset harmonization & filter360

The quality assessment is done assigning the PFT type with the maximum fraction per grid cell to the GT-SUR points located

within the respective grid cell. The classifications of both datasets are harmonized as shown in table 5 where the focus is laid

on the main LULC types in order to make the comparison as detailed as possible but also to be able to produce reliable and

robust results for the RCM community.
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Table 5. Classification harmonization between LANDMATE PFT map and GT-SUR

GT-

SUR

LC

group

GT-SUR group

name

LANDMATE

PFT number

LANDMATE PFT name Harmonization

group number

Harmonization

name

A Artificial Land 15 Urban 1 URBAN

B Cropland 13 Non-irrigated Crops 2 CROPLAND

14 Irrigatred crops

C Woodland 1 Tropical broadleaf evergreen trees 3 WOODLAND

2 Tropical deciduous trees

3 Temperate broadleaf evergreen

trees

4 Temperate deciduous trees

5 Evergreen coniferous trees

6 Evergreen deciduous trees

D Shrubland 7 Coniferous shrubs 4 SHRUBLAND

8 Deciduous shrubs

E Grassland 9 C3 Grass 5 GRASSLAND

10 C4 Grass

F Bare land 16 Bare 6 BARE AREAS

G Water 11 Tundra 7 OTHER

H Wetlands 12 Swamps

Other Marine areas

The LULC types URBAN, CROPLAND, WOODLAND, SHRUBLAND, GRASSLAND, and BARE ARES are harmo-365

nized without applying modifications to the classifications. The LANDMATE PFTs can easily be grouped or directly adopted

while the GT-SUR level one classification (letters A-H) is completely adopted into the harmonized groups. In general, RCMs

implement a dedicated land-sea-mask to determine aquatic areas for both, inland and marine water. Therefore, the categories

Water and Marine areas are not further analyzed. Since the LULC types Tundra, Swamps (LANDMATE PFT) and Wetlands

(GT-SUR) cannot be harmonized with sufficient agreement to the GT-SUR LULC type definitions, the LULC types are also not370

further analyzed in the assessment. Thus, the LULC types Water, Marine areas and Wetlands (GT-SUR), Tundra and Swamps

(LANDMATE PFT) are merged into the LULC type OTHER. Although the group cannot be evaluated regarding the quality

of the LANDMATE PFT map, the group needs to be involved in the assessment to keep the numbers in the assessment correct

and reliable for all other groups. However, as it is shown in table 6, only a minor amount of points/cells is affected.
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Both datasets are provided in a regular Gaussian grid (WGS84 EPSG:4326) so that no reprojection of the datasets needs to375

be done for the comparison.

The LANDMATE PFT dataset includes multiple LULC fractions per grid cell. Accordingly, the area proportion of the

dominant LULC type varies widely and thus the likelihood that the GT-SUR point sample falls within this area. The grid cells

are grouped by minimum coverage of the dominant LULC type from 0.1 to 1 where 0.1 means a minimum coverage of 10 %

and 1 means full coverage of the dominant LULC type. The coexisting fractions are not located in particular parts within a grid380

cell but equally distributed while the GT-SUR points have fixed locations on the map. With the applied grouping of the cells

dependent on the minimum coverage of the dominant LULC type, the influence of grid cell heterogeneity on accuracy metrics

is investigated within the assessment.

Beside the total number of LANDMATE PFT cells in the analysis, diversity among the represented LULC types is important.

The right column of table 6 shows the number of LANDMATE PFT cells where the respective LULC type (left column) is385

dominant. The table is not grouped by minimum coverage but by LULC type and shows that each assessed LULC type is

represented in a sufficiently high number when only the cells with dominant coverage (regardless the total proportion) are

considered for each LULC type.

Table 6. General information on data in the comparison

LULC type10 GT-SUR11 LANDMATE

PFT 0.018°12

LANDMATE PFT

0.018° dominant 13

URBAN 14,393 65,000 7,577

CROPLAND 83,295 248,301 136,970

WOODLAND 124,374 277,290 124,437

SHRUBLAND 27,298 302,035 19,790

GRASSLAND 66,541 333,948 44,244

BARE AREAS 10,395 31,756 4,148

OTHER 12,340 28,823 1,470

Sums 338,636 338,636

10LULC type analyzed in the quality assessment
11Number of GT-SUR points per LULC type
12total number of grid cells in LANDMATE PFT that have a share >0 % of the respective LULC type
13Number of cells where the LULC type is dominant in LANDMATE PFT 0.018°
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5 Results

In order to show the impact of the grid cell heterogeneity of LANDMATE PFT, the agreement of LANDMATE PFT with390

the reference GT-SUR is investigated for each threshold for minimum coverage (0.1-1) of the dominant LULC type. For

visualization of the spatial analysis, the point count and percentage agreement with the reference dataset are aggregated per

2.5° cell of the auxiliary grid, which was established as most useful for visualization of the results. Nevertheless, the comparison

of LANDMATE PFT to GT-SUR is done on cell-level for the whole research area. All resulting confusion matrices for the

assessed LC types on cell-level are available in Appendix B.395

In order to be able to capture the spatial distribution of the quality of the LULC type representation within LANDMATE

PFT, the assessed cells must be distributed well over the research area and contain a sufficiently large cell count of each LULC

type. Figure 5 shows the distribution and count of cells grouped by threshold for minimum coverage. The maps show that the

groups with a threshold lower than 0.7 are distributed very well over the research area. Each region is covered with a sufficient

amount of LANDMATE PFT grid cells that can be compared to the respective GT-SUR points. The 0.8 group shows a quite400

patchy pattern and a strongly decreasing sample number in Northern Europe. For the 0.9 group, the patchy pattern and low

number of cells per 2.5° grid cell spreads over the whole research area. While the 0.9 group could still be used for evaluation

of LANDMATE PFT for limited regions in Europe, the group only containing cells with 100 % coverage of one LULC type

(map 1) is clearly not evaluable due to the overall small cell count (< 1500). Figure 6a gives an overview of the cell count per

group for each individual LULC type.405

For CROPLAND, WOODLAND and GRASSLAND, the threshold for minimum coverage of the respective dominant LULC

type has a strong influence on the total cell count within each group while for URBAN and BARE AREAS, the cell count

remains similar up to the 0.6 group. For SHRUBLAND, the cell count decreases strongly from the 0.4 group upwards. The

curve characteristics suggest that the LULC types CROPLAND, WOODLAND, and GRASSLAND have a higher proportion

of cells with a relatively low dominant coverage but since they are the three most populated LULC types overall (see tab. 6)410

the proportions are comparable to the other three groups.

Figure 6c shows the PA for all LULC types dependent on the threshold for minimum coverage of the dominant LULC type

including the overall accuracy for all LULC types together (dark grey line). While the overall accuracy is relatively independent

of the threshold for minimum coverage, some LULC types are affected strongly. For WOODLAND, PA decreases rapidly for

the 0.8 group. Considered that the cell count for this group does decrease noticeably from 0.7 to 0.8 (fig. 6a, the low PA is415

likely a result of this too low cell count. The PAs for GRASSLAND and SHRUBLAND remain almost constant but at a lower

level compared to the other groups.

Figure 6b shows the highest UA for WOODLAND and the lowest for SHRUBLAND while all other LULC types range in

between. The threshold for minimum coverage of the individual LULC types has slightly more influence on the UA than on

the PA of LANDMATE PFT, where the UA increases towards the groups with higher cell homogeneity.420
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Figure 5. The distribution of the LANDMATE PFT cells grouped by threshold for minimum coverage of the respective dominant LULC

type over the research area in Europe. The same number of LANDMATE PFT cells falls into the groups with a minimum coverage of 0.1

and 0.2. Therefore, the 0.1 group is not shown in the figure.

The urban representation in LANDMATE PFT for the 0.7 group is shown in fig. 7a and 7d. Figure 6c shows that the PA for

all groups is overall low and not majorly influenced by the threshold for minimum coverage. With increasing coverage of the

dominant LULC type URBAN the PA increases slightly but is still lower than 40 % for groups that include enough points to

be considered representative for the research area.
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(a) Cell count of LANDMATE PFT per LULC type as function of the threshold for minimum coverage of the

respective dominant LULC type.

(b) User’s accuracy for LANDMATE PFT as function of the threshold for minimum coverage of the respective

dominant LULC type.

(c) Producer’s accuracy for LANDMATE PFT as function of the threshold for minimum coverage of the respective

dominant LULC type.

Figure 6. Cell count and accuracy figures for each assessed LC type and minimum threshold group 0.1-1.0.
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The spatial analysis for the six assessed LULC types for the 0.7 group is shown in fig. 7. In order to give an overview of the425

spatial agreement patterns for the range of evaluable groups, the respective figures for the 0.2 and 0.5 group are included in

appendix B (tables B1 & B2).

(a) URBAN (b) CROPLAND (c) WOODLAND

(d) URBAN (e) CROPLAND (f) WOODLAND

(g) SHRUBLAND (h) GRASSLAND (i) BARE AREAS

(j) SHRUBLAND (k) GRASSLAND (l) BARE AREAS

Figure 7. Total count of evaluated LANDMATE PFT grid cells per 2.5° grid cell of the auxiliary grid as introduced in section 4.1 (a-c; g-i)

and producer’s accuracy for the individual LULC types (d-f;j-l) for group 0.7 (dominant LULC type occupies > 70 % per LANDMATE PFT

grid cell)
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A visualization of the map agreement between LANDMATE PFT and GT-SUR reveals the issue that leads to the overall low

PA. Figure 8 shows four large URBAN agglomerations in different areas of Europe where the red points represent GT-SUR

urban points while the white points represent GT-SUR point representing non-urban LULC types. The grey-scaled squares430

represent the LANDMATE PFT URBAN fractions from zero (no coverage, white) to one (full coverage, black) within one grid

cell.

Figure 8. Examples of URBAN representation in LANDMATE PFT (greyscale grid) and GT-SUR (points). Cities shown are Hamburg (a),

London (b), Rome (c) and Bucharest (d).

The LANDMATE PFT grid cells with a large urban fraction represent the respective city core of the selected example cities

while the GT-SUR points that are located within the city core are mostly not classified as URBAN. However, the GT-SUR

points do not fail to represent the structure of urban areas because these areas are characterized through a heterogeneous435

pattern of sealed surfaces, recreational areas (e.g. parks) and different building types and density, not through a homogeneous

sealed area. The LANDMATE PFT map represents this heterogeneous structure through the varying fractions of non-urban

PFTs within the grid cell. However, in order to make the impact of a larger city visible in an RCM simulation, it is beneficial

for LANDMATE PFT to represent a larger city with a dense core structure. Further, the URBAN fractions in LANDMATE

PFT are directly adopted from the ESA-CCI LC dataset, which was thoroughly validated. Therefore, despite the low agreement440

with GT-SUR in the present assessment, the URBAN PFT of LANDMATE PFT 2015 is considered to be of sufficiently good

quality and suitable to represent urban land cover in high resolution (∼3 km) RCM simulations. Due to the aforementioned

comparability issues the UA of the LULC type URBAN is not further discussed in this assessment.
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The CROPLAND representation in LANDMATE PFT shows, together with WOODLAND the highest PA for the research

area. As shown in fig. 6c the PA for all ten groups is is > 80 % which is to be considered as a very good agreement with the445

reference.

Figure 7b shows the distribution of CROPLAND points in GT-SUR over the research area. CROPLAND points are the

second most frequent LULC type in GT-SUR and are mainly distributed over middle and southern Europe. Although the

northern European grid cells show a lower count of CROPLAND points, figure 7e shows that the PA is still very high in these

areas. The PA increases with increasing cell homogeneity (Fig. B2 and 7). Regarding the UA for CROPLAND, LANDMATE450

PFT shows a strong overestimation, where ∼36 % of the LANDMATE PFT CROPLAND cells in the 0.7 group are actually

another LULC type in the reference, where 36 % are GRASSLAND and 13 % are WOODLAND. The UA for CROPLAND

increases rapidly towards the more homogeneous groups. However, the confusion with WOODLAND and GRASSLAND is

non-negligible and will be discussed in section 7.

For the representation of WOODLAND, the PA shows the second highest values with > 70 % for all groups with a reasonably455

high cell count (groups 0.1-0.7, fig. 6a). Similar to CROPLAND, the cell heterogeneity does not have a large impact on PA.

The highest PA is reached over the Northern European regions (Fig. 7f). Deficits are visible over the southern British Isles,

parts of Iberian Penninsula and the coastline along Belgium and the Netherlands. Further, a low PA is found for cells that have

an overall small cell count in the Mediterranean (Fig. 7c).

The differences between northern and southern regions tend to increase towards the more homogeneous groups (see fig. B1f460

and B2f for comparison. Agreement over the northern regions increases while agreement over the Iberian Peninsula decreases

together with a rapid decrease of the WOODLAND cell count within the corresponding grid cells. The UA for WOODLAND

is noticeably higher than for all other LULC types (> 70 % for the 0.2 group and increasing towards the more homogeneous

groups) which emphasises the very good quality of WOODLAND representation in LANDMATE PFT. The most confusion is

found with LULC type GRASSLAND and the OTHER LULC types (not investigated in this assessment). Altogether, the UA465

of ∼85 % for group 0.7 is interpreted as a very good representation of the LULC type WOODLAND within LANDMATE PFT

2015.

The coverage of cells with the dominant LULC type GRASSLAND is well distributed except for the Northern European

regions (Fig. 7h). The PA for LANDMATE PFT GRASSLAND according to fig. 7k is very high on the British Iles and in some

regions of Central Europe. For the remaining regions of the research area, the PA for GRASSLAND is considerably low . This470

PA pattern remains similar throughout the range of evaluable groups (fig. B1k & B2k), with an average of 31-37 %.

The main reason for this low accuracy of LANDMATE PFT regarding GRASSLAND can be found looking at the results

of the LULC types CROPLAND and WOODLAND. The UA of CROPLAND and WOODLAND reveal that ∼36 % of the

LANDMATE PFT CROPLAND cells actually represent GRASSLAND in the reference, which adds up to over almost 55 % of

the total GT-SUR GRASSLAND points. Another reason is found in the dataset structure of LANDMATE PFT. A considerable475

amount of GRASSLAND is not part of the assessment because GRASSLAND does not make the dominant but the second

dominant PFT in ∼45 % of all LANDMATE PFT grid cells. Therefore,the seemingly weak GRASSLAND representation in

LANDMATE PFT rather shows a weakness of the present assessment that is caused by the different dataset structures.
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The PA for SHRUBLAND and BARE AREAS is the lowest of all assessed LULC types with < 20 % for all groups of both

LULC types respectively (Fig. 6c). The low overall cell count of both LULC types might be one reason for the low PA. How-480

ever, looking at the distribution of the SHRUBLAND and BARE AREA points in fig. 7i and 7g, LANDMATE PFT is not able

to capture the LULC types even in grid cells with a relatively high cell count. The GT-SUR includes ∼27,000 SHRUBLAND

points while LANDMATE PFT includes only ∼19,000 cells where SHRUBLAND is the dominant LULC type. Therefore, one

reason for the poor SHRUBLAND representation lies within the base map (ESA-CCI LC) used for the creation of LANDMATE

PFT, where the known low count of SHRUBLAND proportions was inherited by LANDMATE PFT. It must be noted, that a485

large proportion of SHRUBLAND in ESA-CCI LC is part of the mixed LC classes, such as Shrubland/Cropland or Shrub-

land/Forest. The known deficit was partly compensated by the translation into the PFTs, where SHRUBLAND proportions

were added to the total as proportions of the mixed ESA-CCI LC classes. Further SHRUBLAND makes the second dominant

PFT in ∼20 % of the total LANDMATE PFT grid cells in the assessment. Just like for GRASSLAND, these SHRUBLAND

proportions can not be addressed sufficiently within the present assessment.490

The overall BARE AREAS cell count in LANDMATE PFT in the 0.7 group is only about 28 % of the actual BARE

AREA points in GT-SUR. Further, within the 0.7 group, over 64 % of the GT-SUR BARE AREAS points are identified as

CROPLAND while. Only ∼17 % (< 1,000 points for the 0.7 group) of the GT-SUR BARE AREAS are actually identified by

LANDMATE PFT with the highest PA in the Alps, Northern Great Britain, and Northern Scandinavia (Fig. 7l. However, due

to the comparably low cell count the spatial assessment is rather not reliable. Just like for SHRUBLAND, the homogeneity of495

LANDMATE PFT cells does not have a large impact on the PA. UA is higher than PA with ∼43% for group 0.2 and increasing

towards more homogeneous groups (over 60 % for group 0.7). However, considering the rapidly decreasing cell count for the

more homogeneous groups, the accuracy measures are becoming even less representative for the BARE AREA representation

in LANDMATE PFT. Nevertheless, the BARE AREA representation in LANDMATE PFT is further discussed in section 7.

5.1 Comparison to ESA POULTER PFT validation results500

In order to compare the LANDMATE PFT map quality to the ESA POULTER PFT map quality, the validation workflow

presented in this manuscript is also applied to the latter for the year 2015. The PA differences of LANDMATE PFT and ESA

POULTER PFT are shown in fig. 9. The spatial PA differences vary between the assessed LULC types and groups. For URBAN,

the differences are negligible. Since the ESA-CCI LC URBAN proportions are directly adopted in both PFT translations, this

result was expected. The small differences in some grid cells of the map might result from the changes in the CWP within505

the LANDMATE PFT workflow that cause other LULC types to be of dominant coverage and therefore change the total cell

counts per LULC type in the aggregation. LANDMATE PFT represents CROPLAND slightly worse than ESA POULTER PFT

according to the differences seen in the maps. The difference is mainly caused by the translation of the "cropland tree or shrub

cover" class of ESA CCI LC, which is dominant in the Mediterranean region. Within the LANDMATE PFT translation, the

LC class is translated to 70 % shrubs and 30 % cropland according to (Li et al., 2018). Using this translation the Mediterranean510

cropland properties, where the cultivation of lemons or olives makes a large proportion of the total agricultural landscape,

are better represented. These types of cultivation grow in short to medium height trees having the properties of shrubs rather
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than cropland. Therefore, a considerable amount of dominant cropland cells is changed into dominant shrubland cells within

the comparison to GT-SUR which is reflected in the accuracy numbers in fig. 9. The threshold for minimum coverage does

not have considerable influence on the CROPLAND representation, except for Northern Europe, where the highest minimum515

coverage threshold (0.7) shows the lowest PA for cropland. In contrast, the LANDMATE PFT WOODLAND representation is

most improved for the highest minimum threshold (0.7) in comparison to the ESA POULTER PFTs. A similar result is found

for the GRASSLAND representation. It is noticeable that the signal changes for the BARE AREAS representation. For the

group with a minimum coverage of 0.2, ESA POULTER PFT shows the better BARE AREAS representation while for the 0.7

group, LANDMATE PFT shows the better quality.520
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Figure 9. Comparison between the PA for LANDMATE PFT and ESA PFT. The plots show the differences between the PA where the

positive values mean a higher PA of LANDMATE PFT and the negative values a higher PA of ESA POULTER PFT. The differences were

calculated per 2.5° grid cell of the auxiliary grid as introduced in section 4.1 for each LULC type of the 0.2 group (left column), the 0.5

group (middle column) and the 0.7 group (right column)

29



6 Data availability

The LANDMATE PFT dataset for Europe 2015 is published with the Long Term Archiving Service (LTA) for large research

datasets, which are relevant for climate or earth system research, of the German Climate Computing Service (DKRZ). As World

Data Center for Climate (WDCC), the DKRZ LTA is accredited as regular member of the World Data System. The LAND-

MATE PFT dataset for Europe 2015 is available within the LANDMATE project data at https://cera-www.dkrz.de/WDCC/ui/525

cerasearch/entry?acronym=LM_PFT_LandCov_EUR2015_v1.0_af (Reinhart et al., 2021b). Within the LANDMATE project,

a short documentation summarizes the technical information corresponding to LANDMATE PFT.

7 Discussion & conclusion

The present work introduces the preparation of the LANDMATE PFT map 2015 for the European Continent based on high-

resolution LULC datasets and climate data. The LANDMATE PFT map for 2015 Version 1.0 is prepared in order to provide530

realistic, high-resolution LULC representation for RCMs. The dataset includes LULC information from different, validated

sources as well as regional climate information through involvement of the HLZs. A cross-walking procedure (CWP) is devel-

oped to translate the original LULC classes into PFTs. The various mixed LULC classes included in the base map ESA-CCI

LC are difficult to resolve within RCMs which is taken into account by ESA with providing a default CWT for the translation

of the LC classes into PFTs within the dedicated user tool. The revised and improved CWTs of the present approach include535

high resolution climate data in the translation. The involvement of climate data allows customized translation of LULC classes

for individual regions in addition to the disaggreagtion of LULC classes into PFT fractions. The 16 LANDMATE PFTs are se-

lected to provide simple transferability into various RCM families in order to be able to conduct coordinated RCM experiments

where the implementation of a common, high quality LULC map provides minimum uncertainty for a multi-model ensemble.

The accuracy assessment of LANDMATE PFT is conducted in the form of a comparison with the ground truth dataset540

LUCAS - land use and land cover survey (GT-SUR). In order to account for the different structure of the reference GT-SUR and

the assessed LANDMATE PFT map and further, the fractional structure of the LANDMATE PFT grid cells, the grid cells are

grouped by a threshold for minimum coverage of the dominant LULC type. All groups are analyzed regarding agreement with

the reference (i.e., GT-SUR). In order to investigate regional differences in accuracy measures, a spatial analysis supported by

an auxiliary grid over the research area is done. The quality of the LANDMATE PFT map is assessed using the overall accuracy545

(OA) and the producer’s and user’s accuracy (PA and UA) for the individual LULC types. The additional comparison to the

generic ESA POULTER PFT map (ESA POULTER PFT) should give information on the regional improvement of LULC type

representation in LANDMATE PFT. Overall, the validation serves as recommendation and uncertainty information for regional

climate modellers that use LANDMATE PFT, or the time series LUCAS LUC (Hoffmann et al., submitted), which is based on

LANDMATE PFT, in RCMs.550

Within the accuracy assessment, the OA does not change considerably between the evaluable groups of the respective LULC

types which shows that the dataset structure has no noticeable impact on that accuracy measure. The highest PA is found

for CROPLAND and WOODLAND which are the dominant LULC types in the research area. The lowest PA is found for
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SHRUBLAND and BARE AREAS, which are also the LULC types with the lowest overall cell count. The UA is found to be

highest for WOODLAND, followed by CROPLAND, GRASSLAND and BARE AREAS. Both accuracy measures, PA and555

UA are influenced by grid cell heterogeneity of the dominant LULC type within a grid cell. The difference between the groups

for UA is 10 to 20 % per group while the difference for PA is noticeable but considerably lower, which means that the applied

threshold range has a higher influence on the former.

The URBAN representation in LANDMATE PFT represents a special case in the present assessment due to the heteroge-

neous structure of urban areas. Both datasets, GT-SUR and LANDMATE PFT are able to represent the LULC type URBAN560

very well for their respective purpose. Nevertheless, the PA for URBAN reflects the limitations of the present assessment

method. The fine scale point data of GT-SUR represents the patchwork structure of recreational areas, building blocks, and

other urban elements at the location of the respective points while LANDMATE PFT represents the urban area as an agglom-

eration of grid cells with URBAN as the dominant LULC type. Therefore and despite the accuracy assessment results for the

LULC type URBAN, the LANDMATE PFT dataset can be recommended to be used in RCMs that resolve urban features over565

the European Continent.

A limitation of LANDMATE PFT is the overestimation of CROPLAND to the expense of GRASSLAND and WOODLAND

and the overestimation of WOODLAND to the expense of mostly GRASSLAND. This overestimation has a minor impact on

the overall WOODLAND and CROPLAND representation but a major impact on the representation of GRASSLAND in

LANDMATE PFT. The representation of GRASSLAND is comparably low due to the aforementioned reasons. Further, the570

LULC types with the lowest point counts SHRUBLAND and BARE AREAS are not well represented, which happens due to

the low overall sample size but also due to the overall too low representation in LANDMATE PFT, which is partly inherited

from the base map ESA-CCI LC. The representation of these LULC types needs to be considered when using LANDMATE

PFT in RCM simulations using the supporting maps in fig. B1,B2 and 7. Nevertheless, the representation of SHRUBLAND

and BARE AREAS is improved in some regions, compared to ESA POULTER PFT.575

Another limitation is the distinction between C3 and C4 grass and the missing irrigated cropland fractions. The distinction

between C3 and C4 grass is made through the use of an additional product and not based on the HLZ approach. Further, the

grass fractions are not evaluated separately due to the missing C3/C4 grass information in GT-SUR. The suggested C3/C4

grass distribution in LANDMATE PFT relies on a product that is dedicated to the C3/C4 grass representation and employed by

climate modellers. However, the use of the external product holds additional uncertainties within LANDMATE PFT that cannot580

be quantified with the present assessment method. The main focus of LANDMATE PFT Version 1.0 is on the representation of

biophysical properties of LULC types within RCMs. While C3 and C4 grasses differ in their biophysical properties, which is

the reason to include them as a separate PFTs, the main impacts can be expected for biogeochemical processes. Hence, for the

further improvement of LANDMATE PFT and for the use of this dataset for the modelling of the carbon cylce it is advisable

to put additional effort into the implementation and evaluation of C3/C4 grass fractions.585

Regarding the irrigated cropland fractions we aimed to proceed the same way as for the C3/C4 grass fractions - to rely on an

external product because the land cover category provided by ESA-CCI LC does not cover the full extent of irrigated land use.

Unlike for C3/C4 grass, were one particular high quality product is available, the multiple products that were considered are of
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different structure, resolution, acquisition date and show considerable differences in irrigated cropland proportions. Also, the

ESA-CCI LC class "cropland irrigated" that could have been directly adopted from the initial LC dataset shows considerable590

differences to the other state of the art products. Since irrigation is a land management practice that is shown to have large

biopyhsical impacts on regional climate and therefore of importance to the RCM community, we prepared the dataset to easily

implement irrigated cropland using additional datasets. For instance, in the time series LUCAS LUC, which is based on the

LANDMATE PFT dataset, the annually varying irrigated cropland fractions are taken from the LUH2 dataset in order to be

consistent for the past and future time steps.595

Further improvements could be made with respect to the distinction of tree PFTs. Currently, six tree PFTs are considered

in LANDMATE PFT following (Wilhelm et al., 2014), with two tropical broadleaf tree-PFTs, two broadleaf temperate tree-

PFTs, and two coniferous tree-PFTs. The CWP employed in this study could be further refined to include a separation between

temperate and boreal tree-PFTs, which would involve a careful extension of the individual CWTs.

The quality of the representation of LULC types in LANDMATE PFT is assessed through the comparison with ground truth600

data. The structural differences of the datasets, where gridded data is compared to point data, is a major weakness of this

assessment. Although the fractional structure does not have a major influence on the OA, the LULC type-wise PA and even

more the UA is affected.

The present assessment takes into account the dominant LULC type per grid cell of LANDMATE PFT. Depending on

the proportion of this LULC type, the second or third-most represented LULC type can occupy a considerable area of the605

respective grid cell. Therefore, a follow up assessment, where these LULC type proportions are also considered and compared

to the ground truth is needed in order to investigate, if the PA of the less dominant LULC types GRASSLAND, SHRUBLAND,

and BARE AREAS is increased. The use of additional LULC data specialized one one LULC type would be a useful step to

validate the quality of GRASSLAND, SHRUBLAND and BARE AREAS representation in LANDMATE PFT 2015.

The results show that the LANDMATE PFT map is able to represent LULC over large parts of Europe in a sufficient quality.610

Especially the dominant LULC types are represented overall well which is highly beneficial for RCM experiments that require

realistic, high-resolution LULC representation. Nevertheless, there are uncertainties found for the less represented LULC types.

Regarding the presence of less represented LULC types, we did a qualitative assessment where we checked certain locations

of interest with other available datasets (e.g. CORINE Land Cover, google earth images) supporting the development process

of the CWTs. The additional cross-checking did improve the quality of the final LANDMATE PFT map. However, it was not615

done with a predefined workflow or protocol. Hence, we suggest to develop a strategic and quantifiable sampling protocol for

the qualitative assessment as an additional step within the map production workflow. This could further improve the CWTs

and subsequently the PFT product. When using LANDMATE PFT in an RCM it is crucial to consider these uncertainties when

interpreting simulation results. Especially the spatial distribution of uncertainties in LANDMATE PFT needs to be considered

when comparing simulation results to observations because the input parameters in the employed land-surface schemes are620

influenced by the individual LULC, which subsequently considerably impacts on lower-atmosphere processes, such as the

intensity of heat and moisture exchange. Thus, by carefully considering the issue of uncertainty introduced by the LULC input,
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misconclusions about RCM model performance and about small-scale interconnections can be reduced (Ge et al., 2007; Sertel

et al., 2010; Santos-Alamillos et al., 2015; Reinhart et al., 2021a).

Beside the quality of the LULC product, the implementation process of each individual RCM is crucial for the realistic625

representation of LULC in regional climate model experiments. When translating a LULC product into the model specific

LULC classes and structure, modifications are done that can change the map characteristics. When the LANDMATE PFT

product is used in an RCM that only uses the dominant LULC fraction per grid cell, the overall LULC proportions can change.

The same applies when LANDMATE PFT is used in a model with limited fractions per grid cell or a different classification

system. The present assessment gives a guideline on the quality of LANDMATE PFT (Version 1.0) when used unaltered.630

Through the involvement of the ground truth data, regional deficits of LANDMATE PFT are presented that can be compensated

during the implementation process into the individual RCM or RCM family.

The findings of the present assessment support the identification of uncertainties within the LANDMATE PFT map for

Europe. Nevertheless, user feedback is crucial for the future overall improvement of LANDMATE PFT. The RCM community

within the WCRP FPS LUCAS is already participating in the feedback process where implementation of LANDMATE PFT635

and the LUCAS LUC time series into different RCMs is comprehensively documented. The future work on LANDMATE

PFT also includes the extension of the dataset to other CORDEX regions. Although, the dataset is based on various globally

available datasets and therefore, can be created globally, the introduced quality assessment method must be performed for each

region individually, desirably using region-specific expert knowledge. Further, the assessment should be expanded in order to

include the second or third-most represented LULC type per grid cell to possibly achieve more accurate quality information640

about LANDMATE PFT.
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Appendix A

Table A1. Cross-walking table for ESA-CCI LC class 10 - Cropland, rainfed and LC class 11 - Cropland, herbaceous cover. For LC class 10

and 11, no HLZ were assigned

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-30 10 90

Table A2. Cross-walking table for ESA-CCI LC class 12 - Cropland, tree or shrub cover. For LC class 12, no HLZ were assigned

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-30 70 30

Table A3. Cross-walking table for ESA-CCI LC class 20 - Cropland, irrigated or post flooding. For LC class 20, no HLZ were assigned

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-30 100
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Table A4. Cross-walking table for ESA-CCI LC class 30 - Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous

cover)(<50%).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 20 20 60

7-9 40 60

10 10 30 60

11,12 30 10 60

13,14 40 60

15 5 5 20 10 60

16 7.5 7.5 10 15 60

17,18 20 10 10 60

19 40 60

20 20 20 60

21,22 10 10 10 10 60

23,24 10 10 20 60

25 40 60

26 20 20 60

27 20 10 10 60

28 10 15 15 60

29 15 10 15 60

30 20 10 10 60

Table A5. Cross-walking table for ESA-CCI LC class 40 - Mosaic natural vegetation (tree, shrub, herbaceous cover)(>50%) / crop-

land(<50%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1,2 35 30 35

3-5 30 35 35

6 25 40 35

7 60 40

8 10 50 40

9,10 15 45 40

11 20 40 40

12 30 20 10 40

13 10 10 10 30 40

14,15 20 20 10 10 40

16 25 20 15 40

17 25 25 10 40

18 30 30 40

19 60 40

20 35 25 40

21 20 15 15 10 40

22 25 10 15 10 40

23,24 20 20 20 40

25 60 40

26 30 30 40

27 10 50 40

28 40 20 40

29 40 20 40

30 50 10 40
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Table A6. Cross-walking table for ESA-CCI LC class 50 - Tree cover, broadleaved, evergreen, closed to open (>15%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 12.5 12.5 75

7-18 90 10

19-24 100

25-30 100

Table A7. Cross-walking table for ESA-CCI LC class 60 - Tree cover, broadleaved, deciduous, closed to open (>15%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 100

7-24 70 15 15

25-30 70 15 15

Table A8. Cross-walking table for ESA-CCI LC class 61 - Tree cover, broadleaved, deciduous, closed (>40%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 85 15

7-24 70 15 15

25-30 70 15 15

Table A9. Cross-walking table for ESA-CCI LC class 62 - Tree cover, broadleaved, deciduous, open (15-40%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 65 35

7-24 30 25 45

25-30 30 25 45
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Table A10. Cross-walking table for ESA-CCI LC class 70 - Tree cover, needleleaved, evergreen, closed to open (>15%) and LC class 71 -

Tree cover, needleleaved, evergreen, closed (>40%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 35 35 15 15

7-18 70 10 5 15

19-24 35 35 10 5 15

25-30 70 10 5 15

Table A11. Cross-walking table for ESA-CCI LC class 72 - Open (15-40%) needleleaved deciduous or evergreen forest (>5m)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 15 15 25 45

7-18 30 20 5 45

19-24 15 15 20 5 45

25-30 30 20 5 45

Table A12. Cross-walking table for ESA-CCI LC class 80 - Tree cover, needleleaved, deciduous, closed to open (>15%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-30 50 5 15 30

Table A13. Cross-walking table for ESA-CCI LC class 81 - Treecover, needleleaved, deciduous, closed (>40%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-30 70 15 15

Table A14. Cross-walking table for ESA-CCI LC class 82 - Tree cover, needleleaved, deciduous, open (15-40%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-30 30 5 20 45
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Table A15. Cross-walking table for ESA-CCI LC class 90 - Tree cover, mixed leaf type (broadleaved and needleleaved)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-12 20 70 10

13-24 70 20 10

25-30 45 45 10

Table A16. Cross-walking table for ESA-CCI LC class 100 - Mosaic tree and shrub (>50%) / herbaceous cover(<50%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1 30 30 30 10

2,3 30 25 25 20

4-6 30 20 20 30

7-9 20 20 20 40

10 25 25 20 30

11 30 30 20 20

12 30 30 25 15

13 15 15 35 35

14 20 20 30 30

15 25 25 25 25

16-18 25 25 30 20

19,20 30 30 40

21,22 35 35 30

23,24 40 30 30

25 20 50 30

26 25 50 25

27 30 45 25

28 40 35 25

29 60 20 20

30 70 15 15

Table A17. Cross-walking table for ESA-CCI LC class 110 - Mosaic herbaceous cover (>50%) / tree and shrub (<50%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 50 45 5

7 10 10 20 60

8 10 20 10 60

9 25 25 50

10 30 30 40

11,12 35 35 30

13 15 15 70

14,15 20 10 70

16 30 10 60

17,18 35 15 50

19 15 15 70

20 10 20 70

21 20 10 70

22 30 10 60

23,24 35 15 50

25 15 15 70

26 20 10 70

27 25 15 60

28 30 10 60

29 40 10 50

30 50 10 40
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Table A18. Cross-walking table for ESA-CCI LC class 120 - Shrubland

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 40 55 5

7-12 10 50 40

13 70 30

14 40 30 30

15 20 60 20

16 20 70 10

17,18 10 80 10

19 10 90

20 50 50

21 90 10

22 80 10 10

23,24 100

25 10 10 80

26,27 20 60 20

28 10 70 20

29,30 10 80 10

Table A19. Cross-walking table for ESA-CCI LC class 121 - Evergreen shrubland and LC class 122 - Deciduous Shrubland

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 40 55 5

7-12 60 40

13,14 70 30

15 80 20

16-18 90 10

19 10 90

20 50 50

21,22 90 10

23,24 100

25 20 80

26-28 80 20

29,30 90 10

Table A20. Cross-walking table for ESA-CCI LC class 122 - Evergreen shrubland and LC class 122 - Deciduous Shrubland

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 40 55 5

7-12 60 40

13,14 70 30

15 80 20

16-18 90 10

19 10 90

20 50 50

21,22 90 10

23,24 100

25 80 20

26-28 80 20

29,30 90 10
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Table A21. Cross-walking table for ESA-CCI LC class 130 - Grassland

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 90 10

7-13 100

14 5 95

15 7.5 92.5

16 10 90

17 12.5 87.5

18 15 85

19 100

20,21 5 95

22 7.5 92.5

23,24 10 90

25 100

26 5 95

27 5 5 90

28 10 90

29 12.5 87.5

30 15 85

Table A22. Cross-walking table for ESA-CCI LC class 140 - Lichens and mosses

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 90 10

7-30 100
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Table A23. Cross-walking table for ESA-CCI LC class 150 - Sparse vegetation (tree, shrub, herbaceouscover)(<15%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 50 10 40

7-12 10 40 50

13 5 5 5 35 50

14 5 5 10 30 50

15 5 5 10 30 50

16 5 5 20 20 50

17,18 10 10 20 10 50

19 5 45 50

20,21 5 5 40 50

22 5 10 35 50

23 10 10 30 50

24 15 15 20 50

25 5 5 40 50

26,27 10 5 5 30 50

28,29 10 20 20 50

30 10 20 20 50

Table A24. Cross-walking table for ESA-CCI LC class 151 - Sparse tree (<15%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 50 10 40

7-12 10 40 50

13 5 5 40 50

14,15 5 10 35 50

16 10 5 35 50

17,18 10 10 30 50

19-21 5 45 50

22 10 40 50

23 15 35 50

24 20 30 50

25 10 40 50

26-29 15 35 50

30 15 35 50
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Table A25. Cross-walking table for ESA-CCI LC class 152 - Sparse shrub (<15%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1 5 45 10 40

2-6 10 40 10 40

7-10 10 40 50

11,12 20 30 50

13,14 10 40 50

15,16 15 35 50

17,18 20 30 50

19 5 45 50

20,21 10 40 50

22,23 15 35 50

24 20 30 50

25 5 45 50

26 10 40 50

27 7.5 7.5 35 50

28,29 15 35 50

30 20 30 50

Table A26. Cross-walking table for ESA-CCI LC class 153 - Sparse herbaceous cover (<15%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 40 10 50

7-30 50 50
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Table A27. Cross-walking table for ESA-CCI LC class 160 - Tree cover, flooded, fresh or brakish water

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 10 45 45

7-18 70 30

19-24 70 30

25-30 35 35 30

Table A28. Cross-walking table for ESA-CCI LC class 170 - Tree cover, flooded, saline water

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 40 30 10 20

7-12 20 60 20

13-18 30 50 20

19-24 60 10 10 20

25-30 80 20
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Table A29. Cross-walking table for ESA-CCI LC class 180 - Shrub or herbaceous cover, flooded, fresh / saline / brakish water

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-6 95 5

7 10 90

8 15 15 20 50

9 20 20 20 40

10-12 20 20 20 40

13 20 20 60

14 25 25 50

15 30 30 40

16 35 35 30

17,18 45 15 40

19,20 30 40 30

21,22 40 40 20

23 40 50 10

24 30 60 10

25 30 30 40

26 30 40 30

27 40 40 20

28 40 50 10

29 70 30

30 90 10

Table A30. Cross-walking table for ESA-CCI LC class 190 - Urban

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-30 100

Table A31. Cross-walking table for ESA-CCI LC class 200 - Bare areas, LC class 201 - Consolidated bare areas and LC class 202 -

Unconsolidated bare areas.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree Shrub Grass Special vegetation Crops Non-vegetated

Holdridge Life

Zone

tropical

broadleaf

evergreen

tropical

broadleaf

deciduous

temperate

broadleaf

evergreen

temperate

broadleaf

deciduous

evergreen

coniferous

deciduous

coniferous

evergreen deciduous C3 C4 Tundra Swamps crops urban bare ground

1-30 100
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Appendix B

(a) URBAN (b) CROPLAND (c) WOODLAND

(d) URBAN (e) CROPLAND (f) WOODLAND

(g) SHRUBLAND (h) GRASSLAND (i) BARE AREAS

(j) SHRUBLAND (k) GRASSLAND (l) BARE AREAS

Figure B1. Total count of evaluated LANDMATE PFT grid cells per 2.5° grid cell of the auxiliary grid as introduced in section 4.1 (a-c; g-i)

and producer’s accuracy for the individual LULC types (d-f;j-l) for group 0.2 (dominant LULC type occupies > 20 % per LANDMATE PFT

grid cell)
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(a) URBAN (b) CROPLAND (c) WOODLAND

(d) URBAN (e) CROPLAND (f) WOODLAND

(g) SHRUBLAND (h) GRASSLAND (i) BARE AREAS

(j) SHRUBLAND (k) GRASSLAND (l) BARE AREAS

Figure B2. Total count of evaluated LANDMATE PFT grid cells per 2.5° grid cell of the auxiliary grid as introduced in section 4.1 (a-c; g-i)

and producer’s accuracy for the individual LULC types (d-f;j-l) for group 0.5 (dominant LULC type occupies > 50 % per LANDMATE PFT

grid cell)
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1 2 3 4 5 6 7 SUM UA

1 3234 806 1063 178 1769 120 407 7577 42.68

2 6625 67374 22298 5444 28559 4185 2485 136970 49.19

3 2414 5081 88064 8989 12818 1527 5544 124437 70.77

4 624 5316 4637 5498 1789 439 1487 19790 27.78

5 1411 4515 8063 6082 20763 1767 1643 44244 46.93

6 82 199 200 830 567 1810 460 4148 43.64

7 3 4 49 277 276 530 314 1453 21.61

SUM 14393 83295 124374 27298 66541 10378 12340

PA 22.47 80.887 70.81 20.14 31.20 17.44 2.54 OA: 55.24

Table B1. Confusion matrix for LANDMATE PFT group 0.1 - Dominant LULC type occupies a minimum of 10 % of a LANDMATE PFT

grid cell

1 2 3 4 5 6 7 SUM UA

1 3234 806 1063 178 1769 120 407 7577 42.68

2 6625 67374 22298 5444 28559 4185 2485 136970 49.19

3 2414 5081 88064 8989 12818 1527 5544 124437 70.77

4 624 5316 4637 5498 1789 439 1487 19790 27.78

5 1411 4515 8063 6082 20763 1767 1643 44244 46.93

6 82 199 200 830 567 1810 460 4148 43.64

7 3 4 49 277 276 530 314 1453 21.61

SUM 14393 83295 124374 27298 66541 10378 12340

PA 22.47 80.887 70.81 20.14 31.20 17.44 2.54 OA: 55.24

Table B2. Confusion matrix for LANDMATE PFT group 0.2 - Dominant LULC type occupies a minimum of 20 % of a LANDMATE PFT

grid cell
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1 2 3 4 5 6 7 SUM UA

1 3221 793 1041 174 1748 117 404 7498 42.96

2 6596 67323 22210 5395 28488 4168 2457 136637 49.27

3 2377 5034 87838 8903 12750 1511 5483 123896 70.90

4 615 5280 4484 5363 1748 425 1401 19316 27.76

5 1401 4485 7961 5983 20716 1754 1559 43859 47.23

6 78 187 186 798 552 1799 452 4052 44.40

7 3 4 47 276 275 530 310 1445 21.45

SUM 14291 83106 123767 26892 66277 10304 12066

PA 22.54 81.01 70.97 19.94 31.26 17.46 2.57 OA: 55.41

Table B3. Confusion matrix for LANDMATE PFT group 0.3 - Dominant LULC type occupies a minimum of 30 % of a LANDMATE PFT

grid cell

1 2 3 4 5 6 7 SUM UA

1 3079 715 904 152 1597 109 364 6920 44.49

2 6263 66184 20069 4795 27209 4034 2304 130858 50.58

3 2061 4045 83073 7509 11168 1274 5030 114160 72.77

4 501 4813 3013 4235 1392 329 742 15025 28.19

5 1238 4031 6748 5091 19572 1571 1219 39470 49.59

6 54 123 122 606 469 1681 425 3480 48.30

7 2 2 40 254 258 517 252 1325 19.02

SUM 13198 79913 113969 22642 61665 9515 10336

PA 23.33 82.82 72.89 18.70 31.74 17.67 2.44 OA: 57.22

Table B4. Confusion matrix for LANDMATE PFT group 0.4 - Dominant LULC type occupies a minimum of 40 % of a LANDMATE PFT

grid cell
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1 2 3 4 5 6 7 SUM UA

1 2632 499 676 117 1218 84 292 5518 47.70

2 5482 62499 15269 3772 23519 3737 1913 116191 53.79

3 1510 2215 71799 5277 7767 853 4284 93705 76.62

4 362 3865 1752 2689 915 206 350 10139 26.52

5 933 2992 4373 3605 16306 1227 893 30329 53.76

6 31 61 62 292 321 1375 392 2534 54.26

7 1 0 29 110 214 233 70 657 10.65

SUM 10951 72131 93960 15862 50260 7715 8194

PA 24.03 86.65 76.41 16.95 32.44 17.82 0.85 OA: 60.74

Table B5. Confusion matrix for LANDMATE PFT group 0.5 - Dominant LULC type occupies a minimum of 50 % of a LANDMATE PFT

grid cell

1 2 3 4 5 6 7 SUM UA

1 2123 284 464 85 844 67 231 4098 51.81

2 4436 56963 10802 2887 19016 3314 1556 98974 57.55

3 1025 978 57212 2949 4699 488 3345 70696 80.93

4 194 2459 967 1713 518 122 240 6213 27.57

5 628 1847 2584 2333 12497 798 630 21317 58.62

6 14 27 34 104 181 1022 339 1721 59.38

7 1 0 18 40 153 87 25 324 7.72

SUM 8421 62558 72081 10111 37908 5898 6366

PA 25.21 91.06 79.37 16.94 32.97 17.33 0.39 OA: 64.70

Table B6. Confusion matrix for LANDMATE PFT group 0.6 - Dominant LULC type occupies a minimum of 60 % of a LANDMATE PFT

grid cell
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1 2 3 4 5 6 7 SUM UA

1 1684 167 311 53 568 44 185 3012 55.91

2 3288 49624 7217 2088 14351 2840 1145 80553 61.60

3 414 255 30158 806 1745 177 1910 35465 85.04

4 40 793 458 988 191 42 160 2672 36.98

5 410 1053 1363 1415 9113 478 425 14257 63.92

6 5 11 15 61 104 768 302 1266 60.66

7 1 0 9 19 99 50 9 187 4.81

SUM 5842 51903 39531 5430 26171 4399 4136

PA 28.83 95.61 76.29 18.20 34.82 17.46 0.22 OA: 67.20

Table B7. Confusion matrix for LANDMATE PFT group 0.7 - Dominant LULC type occupies a minimum of 70 % of a LANDMATE PFT

grid cell

1 2 3 4 5 6 7 SUM UA

1 1261 83 208 29 369 32 138 2120 59.48

2 2009 38997 4002 1296 9321 2239 745 58609 66.54

3 32 21 3201 54 195 8 108 3619 88.45

4 10 74 198 442 51 9 106 890 49.66

5 241 518 640 691 5957 240 229 8516 69.95

6 3 5 10 39 62 533 268 920 57.93

7 1 0 6 8 53 17 6 91 6.59

SUM 3557 39698 8265 2559 16008 3078 1600

PA 35.45 98.23 38.73 17.27 37.21 17.32 0.38 OA: 67.41

Table B8. Confusion matrix for LANDMATE PFT group 0.8 - Dominant LULC type occupies a minimum of 80 % of a LANDMATE PFT

grid cell
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1 2 3 4 5 6 7 SUM UA

1 808 44 111 14 207 16 89 1289 62.68

2 592 17167 877 414 2601 1043 269 22963 74.76

3 1 1 47 1 1 0 14 65 72.31

4 2 7 28 74 11 1 10 133 55.64

5 40 81 108 181 1358 83 58 1909 71.14

6 3 1 7 20 28 338 230 627 53.91

7 0 0 1 2 2 1 1 7 14.29

SUM 1446 17301 1179 706 4208 1482 671

PA 55.88 99.23 3.99 10.48 32.27 22.81 0.15 OA: 73.33

Table B9. Confusion matrix for LANDMATE PFT group 0.9 - Dominant LULC type occupies a minimum of 90 % of a LANDMATE PFT

grid cell

1 2 3 4 5 6 7 SUM UA

1 252 10 28 0 40 8 51 389 64.78

2 22 565 16 7 52 14 20 696 81.18

3 0 0 0 0 0 0 0 0 /

4 0 0 0 0 0 0 0 0 /

5 0 1 4 14 48 6 1 74 64.86

6 2 0 4 7 9 112 156 290 38.62

7 0 0 0 0 0 0 0 0 /

SUM 276 576 52 28 149 140 228

PA 91.30 98.09 0.00 0.00 32.21 80.00 0.00 OA: 67.43

Table B10. Confusion matrix for LANDMATE PFT group 1.0 - Dominant LULC type occupies 100 % of a LANDMATE PFT grid cell
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