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Abstract. The surface radiation budget, also known as all-wave net radiation (Rn), is a key parameter for various land surface 

processes including hydrological, ecological, agricultural and biogeochemical processes. Satellite data can be effectively used 10 

to estimate Rn, but existing satellite products have coarse spatial resolutions and limited temporal coverage. In this study, a 

point-surface matching estimation (PSME) method is proposed to estimate surface Rn using a residual convolutional neural 

network (RCNN) integrating spatially adjacent information to improve the accuracy of retrievals. A global high-resolution 

(0.05°), long-term (1981–2019), and daily mean Rn product was subsequently generated from Advanced Very High-Resolution 

Radiometer (AVHRR) data. Specifically, the RCNN was employed to establish a nonlinear relationship between globally 15 

distributed ground measurements from 523 sites and AVHRR top of atmosphere (TOA) observations. Extended triplet 

collocation (ETC) technology was applied to address the spatial scale mismatch issue resulting from the low spatial support of 

ground measurements within the AVHRR footprint by selecting reliable sites for model training. The overall independent 

validation results show that the generated AVHRR Rn product is highly accurate, with R2, root-mean-square error (RMSE), 

and bias of 0.84, 26.77 Wm-2 (31.54%), and 1.16 Wm-2 (1.37%), respectively. Inter-comparisons with three other Rn products, 20 

i.e., the 5 km Global Land Surface Satellite (GLASS), the 1° Clouds and the Earth’s Radiant Energy System (CERES), and 

the 0.5° × 0.625° Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2), illustrate that our 

AVHRR Rn retrievals have the best accuracy under most of the considered surface and atmospheric conditions, especially 

thick cloud or hazy conditions. However, the performance of the model needs to be further improved for the snow/ice cover 

surface. The spatiotemporal analyses of these four Rn datasets indicate that the AVHRR Rn product reasonably replicates the 25 

spatial pattern and temporal evolution trends of Rn observations. The long-term record (1981-2019) of the AVHRR Rn product 

shows its value in climate change studies. This dataset is freely available at https://doi.org/10.5281/zenodo.5546316 for 1981-

2019 (Xu et al., 2021). 

https://doi.org/10.5281/zenodo.5509854%20for%201981-2019
https://doi.org/10.5281/zenodo.5509854%20for%201981-2019
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1 Introduction 

Net radiation (Rn), which characterizes the surface radiation budget, is the difference between downward and upward radiation 30 

across the shortwave (0.3–3.0 μm) and longwave (3.0–100 μm) spectra. The surface radiation budget links the atmospheric 

climate system to the land surface. Rn is thus a critical variable for studying Earth–atmosphere interactions, including 

meteorological, hydrological, and biological processes, and is also responsible for the redistribution of surface available energy 

(Sellers et al., 1997). Accurate characterization and quantification of spatial-temporal variations in surface Rn are essential for 

both scientific and industrial applications, such as hydrological modeling and water resource management (Hao et al., 2019). 35 

However, because the spatial and temporal dynamics of surface Rn are affected by multiple surface features (e.g., albedo, 

emissivity, and land surface temperature) and atmospheric parameters (e.g., clouds, aerosols, ozone, and water vapor) (Wang 

et al., 2015b), existing surface Rn data suffer from large uncertainties (Jia et al., 2016; Jia et al., 2018; Jiang et al., 2018; Yang 

and Cheng, 2020). Therefore, there is an urgent need for long-term, high-resolution surface Rn dataset to more properly 

understand its spatial pattern and temporal dynamics (i.e., seasonal and inter-annual variability).  40 

Traditionally, historical Rn and surface radiative components have been measured at ground meteorological stations. These 

ground-based measurements are widely used to study spatiotemporal variations in regional surface radiation and to evaluate 

gridded products (Jia et al., 2018; Zhang et al., 2020; Zhang et al., 2015). Nevertheless, the high cost of maintaining radiometers 

means that stations are sparely distributed, severely hindering our ability to study and understand the spatiotemporal variability 

of surface Rn at global scale.  45 

Alternatively, reanalysis products provide long-term global surface Rn information (Zhang et al., 2016). The greatest advantage 

of reanalysis products is their global coverage over a long-term period; however, the large uncertainty and coarse spatial 

resolution of reanalysis products hinder their applications at regional spatial scale (Jia et al., 2018; Zhang et al., 2016; Zhang 

et al., 2020).  

Retrieving Rn from satellite data is another effective method (Liang et al., 2010; Liang et al., 2019). Currently, satellite-based 50 

Rn retrieval methods can be broadly divided into two categories, physical methods based on radiative transfer (RT) and 

empirical statistical methods. RT-based physical methods are more applicable to a larger spatiotemporal extent because they 

consider the physical processes of solar radiation from the top of the atmosphere to the Earth’s surface (Tang et al., 2019). The 

look-up-table (LUT) and parameterization methods are two typical physical schemes that are widely used to estimate surface 

radiation from satellite data. To address the low computational efficiency of the radiative transfer model (RTM), the LUT 55 

method was proposed to estimate the surface radiation from satellite top of atmosphere (TOA) observations, which combines 

the advantages of RTM-based simulations and statistical methods (Wang et al., 2015b, a; Wang et al., 2020b; Cheng and Liang, 

2016; Cheng et al., 2017; Huang et al., 2011). This approach relies on several theoretical assumptions in the RTM simulation 
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process, such as water vapor amounts, aerosol types, plane-parallel homogeneous clouds, horizontal homogeneity and 

directional properties of the surface (Jiang et al., 2019b), which results in errors in the final radiation estimates (Hao et al., 60 

2018; Cheng et al., 2017; Jiao et al., 2015). The parameterization scheme is another typical physical method that uses various 

surface and atmospheric parameter data to calculate surface radiation based on simplified RT (Huang et al., 2020; Qin et al., 

2012). However, in the calculation of parameterized formulas, errors from each input variable accumulate in the final 

calculated surface radiation.  

Conversely, different from physical methods, empirical statistical methods typically account for spatial-temporal variations in 65 

Rn by establishing statistical relationships between satellite measures or sensed variables, including surface and atmospheric 

variables or TOA observations, and surface radiation measurements (Tang et al., 2017; Huang et al., 2020; Jiang et al., 2015; 

Bisht and Bras, 2010; Bisht et al., 2005) using linear or non-linear models. Machine learning (ML) has played an important 

role in the development of empirical statistical methods owing to its strong nonlinear fitting ability (Jiang et al., 2014; Jiang et 

al., 2016; Chen et al., 2020; Xu et al., 2020). Although statistical methods incorporate very little physical knowledge and have 70 

limited ability to expand their coverage, they are still widely employed owing to their low computational cost and easy 

implementation.  

Several well-known global Rn datasets have been generated from satellite data (Table 1), such as the Global Energy and Water 

Cycle experiment surface radiation budget (GEWEX-SRB) (Pinker and Laszlo, 1992), the Clouds and the Earth’s Radiant 

Energy System (CERES) (Loeb et al., 2018), and the International Satellite Cloud Climatology Project (ISCCP) (Zhang et al., 75 

2004). Although these products have been widely used in various fields, their coarse spatial resolution (≥ 100 km) cannot meet 

the requirements of high-resolution Rn data. A high-resolution (5 km) global Rn product was recently released (Jiang et al., 

2018) from the Global Land Surface Satellite (GLASS) product suite (Liang et al., 2020). The GLASS Rn product, available 

since 2000, was produced from the Moderate Resolution Imaging Spectroradiometer (MODIS) data and reanalysis products. 

The Fluxcom initiative recently published a gridded product of surface Rn using multiple ML methods to merge energy flux 80 

measurements with remote sensing and meteorological data to estimate Rn retrievals, but the product only provides available 

data on areas covered by vegetation and the dataset only spans 15 years (Jung et al., 2019b). A long-term, high-resolution, and 

accurate surface Rn dataset is, therefore, still urgently needed to help more clearly understand the long-term spatiotemporal 

variation of global surface Rn. 

In this study, deep learning ML methods were explored to produce a long-term, high-resolution surface Rn dataset from 85 

AVHRR data. Reviewing recent studies on surface Rn estimation using ML methods, many significant advancements have 

been made (Jiang et al., 2014; Husi et al., 2020; Wei et al., 2019; Wang et al., 2019); however, clear deviations still exist 

between satellite-derived estimations and ground-based measurements. Apart from the performance of the ML method itself, 



4 
 

many of these discrepancies are attributed to two aspects: first, the spatial representation mismatch between satellite data and 

ground-based measurements and, second, the neglect of spatial adjacent effects on surface radiation estimation. 90 

The spatial scale mismatch between surface radiation for domain averages and ground point measurements with insufficient 

spatial representativeness (Jiang et al., 2019b; Barker and Li, 1997) has attracted attention for a long time in the development 

of ML (Yuan et al., 2020a) and in the evaluation of gridded products (Huang et al., 2016; Yang, 2020; Román et al., 2009). 

However, many current studies still use matched point-surface sample datasets to train ML model regardless of the difference 

in spatial representativeness of matched point-surface data. The triple collocation (TC) technique (Stoffelen, 1998) was 95 

considered as an appropriate upscaling approach for the impact of random measurement error on ground-based measurements 

in comparison to other complicated upscaling methods (e.g., the time stability approach and the block kriging algorithm (Crow 

et al., 2012)) (Yuan et al., 2020a). Furthermore, an extended triple collocation (ETC) method was proposed by Mccoll et al. 

(2014) and then applied to the validation activities of the Soil Moisture Active Passive (SMAP) level-2 surface soil moisture 

(SSM) product (Chen et al., 2017) and satellite surface albedo products (Wu et al., 2019). Therefore, the ETC technology is 100 

employed to limit the effect of upscaling errors of ground measurements on the final surface Rn estimates at the satellite 

footprint scale. 

Spatial adjacent effects should also be considered in the development of ML methods. With an increase in spatial resolution, 

horizontal inhomogeneities in the atmosphere have become increasingly important and reduce accuracy of surface radiation 

retrievals at higher spatial resolutions, especially in conjunction with high solar and viewing angles (Wyser et al., 2002); the 105 

correlation between satellite TOA observations and surface radiation measurements weakens, and surface radiation cannot be 

accessed directly from satellite TOA data for individual pixels. Convolutional neural networks (CNNs) were initially designed 

to perform image recognition tasks; they can be readily used to extract various high-level, hierarchical, and abstract spatial 

pattern features from original multispectral or hyperspectral satellite images (Yuan et al., 2020b; Ball et al., 2017). Using this 

approach, multiple environmental parameters and their spatially adjacent effects can be accounted for in the estimation of 110 

surface Rn (Jiang et al., 2019b). Therefore, CNN represents a promising method for integrating potential spatially adjacent 

effects in surface radiation estimation (Jiang et al., 2020b; Jiang et al., 2019b).  

Several studies have successfully employed CNNs and other deep neural networks to retrieve surface parameters, such as 

global solar radiation (Jiang et al., 2019a), precipitation (Wu et al., 2020), and land surface temperature (Yin et al., 2020), with 

varying success rates. However, no study has yet attempted to retrieve global surface Rn using a CNN model. In this study, a 115 

residual CNN (RCNN) based point-surface matching estimation method (PSME) is proposed for estimating global land surface 

Rn. Specifically, the RCNN model links ground-based Rn measurements with multiple image blocks of AVHRR TOA 

observation data, including reflectance in visible channels and brightness temperature in thermal infrared channels, along with 
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other additional auxiliary variables. These auxiliary variables include angular information, i.e., solar zenith angle (SZA), 

viewing zenith angle (VZA), and relative azimuth angle (RAA), and daily Modern-Era Retrospective analysis for Research 120 

and Applications, Version 2 (MERRA2) Rn data (Jia et al., 2018; Zhang et al., 2016). Before training the RCNN, ETC 

technology is applied to select reliable sites at a global level to generate representative training samples, making the established 

statistical relationship more representative of surface Rn variation at the AVHRR footprint scale. After validation and 

comparison, the best-trained model was subsequently implemented through the proposed PSME scheme to generate a global-

scale 39-year daily surface Rn dataset (1981–2019) with 0.05° resolution from the AVHRR data and MERRA2 reanalysis.  125 

The remainder of this paper is organized as follows. Section 2 summarizes the characteristics of the data used for the 

reconstruction of the ETC triplet and PSME method development. Section 3 describes the ETC method for the selection of 

reliable sites and the PSME process for surface Rn estimation using the RCNN model. The results for selected sites based on 

the ETC, the performance of the RCNN model and the long-term spatiotemporal variation of the Rn dataset are presented in 

Sect. 4. The discussion is presented in Sect. 5. The data availability is described in Sect. 6. Finally, the conclusions are 130 

presented in Sect. 7. 

 

Table 1: Summary of available Rn products. 

Product name Spatial resolution Temporal resolution Period References 

Reanalysis     

NCEP/CFSR ~38 km 6 hours 1979–2010 Saha et al. (2010) 

NASA/MERRA2 0.5° × 0.625° 1 hour 1979–present Gelaro et al. (2017a) 

ERA5 0.25° × 0.25° 3 hours 1950–present Hersbach et al. (2020) 

JRA55 ~55 km 3 hours 1958–present Kobayashi et al. (2015) 

NCEP-DOE R2 ~200 km 6 hours 1979–present Kanamitsu et al. (2002) 

Satellite products     

CERES-SYN 1° × 1° 1 hour 2000–present Doelling et al. (2016) 

GEWEX-SRB 1° × 1° 3 hour 1983–2007 Stackhouse Jr et al. (2000) 

ISCCP-FD 280 km 8 days 1983–2012 Rossow and Zhang (1995) 

FLUXCOM 0.0833° × 0.0833° 8 days 2001–2015 Jung et al. (2019a) 

MODIS-TERRA 0.05° × 0.05° daily 2001–2009 Verma et al. (2016) 

GLASS-MODIS 0.05° × 0.05° daily/daytime 2000–2019 Jiang et al. (2018) 

 

2 Datasets 135 

2.1 Ground measurements 

Ground measurements of daily surface Rn were used for the RCNN model development. The in situ measurements used in this 

study cover the period from 2001 to 2019, and were obtained using various instruments (e.g., Kipp & ZonenCNR-1 and Eppley) 

at 523 globally distributed stations from 15 observation networks/programs, as shown in Fig. 1. Detailed information about 
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these observation networks/programs is listed in Table 2, and specific information about these sites is shown in Table S1. 140 

These stations are maintained by multiple global and regional observation network organizations, such as Global Fluxnet, the 

Greenland Climate Network (GCNET) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) (Jiang et 

al., 2018). These stations vary in elevation from 4 to 5,063 m above sea level and are located in areas with different land covers, 

including forest, grassland, shrubland, wetland, cropland, ice/snow, and urban areas. The collective in situ measurements, 

therefore, represent an accurate and comprehensive dataset that is capable of accounting for surface Rn spatial-temporal 145 

variation on a global scale.  

The instruments applied to obtain surface radiation have different uncertainties. To be specific, the operational thermoelectric 

pyranometers are known for their high-accuracy performance, with a spectral response of 0.3-3.0 μm, a sensitivity of 7-

14μVW-1 m2, a thermal effect of less than 5%, and an annual stability of 5% (Lu et al., 2011; Jiang et al., 2019b). The Eppley 

Precision Infrared Radiometers (PIR, 3.5-50 μm) and Kipp & Zonen CG 4 pyrgeometers (4.5-42 μm) are applied to measure 150 

the surface radiation with a uncertainty of ± 6% or 15 Wm-2 at the 95% confidence level (Philipona et al., 1998). The largest 

uncertainty for surface radiation measurements are ~2% for pyrheliometers and ~5% for pyranometers (i.e., 15 Wm-2), 

respectively (Augustine et al., 2000). Additionally, the radiation measurements obtained by Kipp & Zonen CNR1 and CNR4 

instruments are with an expected accuracy of ±10% for daily totals (Wang and Dickinson, 2013). The radiation observations 

measured by Kipp & Zonen net radiometers (CNR1, 5-50 μm or CNR1-lite, 4.5-42 μm), are with uncertainty of ~10% at 95% 155 

confidence level for daily totals (Yamamoto et al., 2005). Besides, the uncertainties of the shortwave radiation measured by 

LI-COR Photodiode and Rn observed by REBS Q*7 are about 5 (5-15%) and 10 Wm-2 (5-50%), respectively, at monthly time 

scale (Box and Rinke, 2003; Steffen and Box, 2001). To deal with equipment and operational errors, daily mean surface Rn 

measurements were calculated based on several strict processing rules successfully applied in previous studies (Jia et al., 2018; 

Jiang et al., 2014; Chen et al., 2020; Jiang et al., 2018). As shown in Fig. 1, the surface Rn measurements from 448 stations 160 

were used to train the proposed RCNN model (red circles), while the measurements from the remaining 75 stations (blue 

circles) were selected as independent test datasets to evaluate the model performance. Similar and comprehensive surface and 

atmospheric conditions between training and validation sites illustrate the good representations of the training and test datasets 

(Fig. S1). More than 89% of validation sites come from the continental and international networks, including BSRN, FluxNet, 

CEOP, EOL, AsiFlux, PROMICE, which ensure the independence of the test dataset. 165 
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Figure 1: Geographic locations of the 523 ground stations used in this study. The 448 stations marked with red circles are used to 

train the RCNN model, while the 75 other stations marked with blue circles are used for the independent validation of the resulting 

trained model. Background colors indicate different land cover according to International Geosphere–Biosphere Programme (IGBP) 170 

classification system. 

 

Table 2: Information about the observation networks. ARM: Atmospheric Radiation Measurement, BSRN: Baseline Surface 

Radiation Network, CEOP-Int: Coordinated Enhanced Observing Period, CEOP: Coordinated Enhanced Observation Network of 

China, EOL: Earth Observing Laboratory, GAME.ANN: GEWEX Asian Monsoon Experiment, GCNET: Greenland Climate 175 

Network, IMAU-Ktransect: Institute for Marine and Atmospheric Research Ice and Climate, PROMICE: Programme for 

Monitoring for the Greenland Ice Sheet, SURFRAD: Surface Radiation Budget Network. 

Network/Program Instrument Temporal Interval Number of sites 

ARM Kipp&Zonen CNR-1 10 minutes 33 

AsiaFlux Kipp&Zonen CNR-1/EKO MS201 30 minutes 29 

BSRN Kipp&Zonen CG4/Eppley. PIR 1 minutes 15 

CEOP Eppley. PIR/EKO MS202 30 minutes 16 

CEOP-Int Kipp&Zonen CG4/Eppley. PIR 30 minutes 8 

ChinaFlux Kipp&Zonen CNR-1 30/60 minutes 3 

EOL Kipp&Zonen pyrgeometers, Eppley. PIR 30/60 minutes 17 

GCNET Li Cor Photodiode & REBS Q*7 60 minutes 18 

GAME.ANN EKO MS0202F 30 minutes 3 

Global FluxNet Kipp&Zonen CNR-1, etc. 30 minutes 308 

HiWATER Kipp&Zonen CNR-1/CNR-4 10 minutes 19 

IMAU-Ktransect Kipp&Zonen CNR-1 60 minutes 4 

LBA-ECO Kipp&Zonen CG2/CNR-1 30 minutes 8 

PROMICE Kipp&Zonen CNR-1/CNR-4 10 minutes 24 

SURFRAD Eppley pyrgeometer 1/3 minutes 7 
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2.2 AVHRR data 

AVHRR TOA observations at five spectral channels (a visible band (0.55–0.68 μm), a near-infrared band (0.75–1.1 μm), a 180 

middle-infrared band (3.55–3.93 μm), and two thermal bands (10.5–11.3 and 11.5–12.5 μm) were utilized for their 

comprehensive surface and atmospheric electromagnetic information. The National Aeronautics and Space Administration’s 

(NASA) Land Long-term Data Record (LTDR) project produced a consistent long-term dataset by reprocessing Global Area 

Coverage (GAC) data, which were obtained from AVHRR sensors onboard the National Oceanic and Atmospheric 

Administration (NOAA) satellites (Pedelty et al., 2007). The primary reprocessing improvements included radiometric in-185 

flight vicarious calibrations for the visible and near infrared channels, along with inverse navigation to relate a specific Earth 

location to each sensor’s instantaneous field of view (Vermote and Kaufman, 1995; Pedelty et al., 2007). Multiple Climate 

Modeling Grid (CMG) data from AVHRR and MODIS instruments have been created for land climate studies (Xiao et al., 

2017; Pedelty et al., 2007). In this study, we utilized a daily AVHRR TOA data product (AVH02C1) with a resolution of 0.05° 

from 1981 to 2019 to retrieve surface Rn estimates. Additionally, solar/viewing geometry data (i.e., SZA, VZA, and RAA) 190 

were also incorporated into the model as the amount of solar radiation incident on the Earth's surface varies greatly under 

different geometric observation conditions. A summary of these gridded products and their attributes is presented in Table 3. 

 

Table 3: List of the satellite and reanalysis products used in this study. 

Product names Sensors Spatial 

resolution 

Temporal 

resolution 

References  

AVH02C1 AVHRR 0.05°×0.05° daily Pedelty et al. (2007); (Vermote and 

Kaufman, 1995) 

GLASS07B11 MODIS 0.05°×0.05° daily Jiang et al. (2018); (Liang et al., 2020) 

CERES-SYN CERES/MODIS 1°×1° 1 hour Doelling et al. (2016); (Doelling et al., 

2013) 

MERRA2 – 0.5°×0.625° 3 hours Gelaro et al. (2017a) 

 195 

2.3 GLASS product 

The GLASS daily surface Rn product from MODIS data, one part of the GLASS product suite (Liang et al., 2020), was 

produced using two sets of algorithms. The main algorithm primarily uses the well-documented conversion relationships 

between downward shortwave radiation and all-wave Rn combinations (Wang and Liang, 2009; Jiang et al., 2015). It also 

incorporates a combination of other meteorological variables under various environmental conditions, such as different 200 

daytime lengths and land cover characteristics, which are designated based on the albedo and normalized difference vegetation 

index (NDVI). Multiple MARS learners were employed to establish efficient statistical relationships using GLASS downward 

shortwave radiation and MERRA2 meteorological variables, allowing land surface Rn to be estimated from these inputs across 
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most spatial domains (Jiang et al., 2016; Jiang et al., 2015). Conversely, when surface solar radiation data were not available, 

the backup algorithm created a function that separately employed MODIS TOA observations to retrieve surface all-wave Rn 205 

using the length ratio of daytime (LRD) classification method, which was accomplished by the genetic algorithm-artificial 

neural network (GA-ANN) (Chen et al., 2020). By using these two algorithms, the GLASS Rn product can provide seamless 

global land surface Rn estimates with a 0.05° resolution. Several studies have used in situ measurements to conduct evaluation 

studies, illustrating high accuracy performance as well as good application potential (Jiang et al., 2018; Guo et al., 2020). Thus, 

we used the GLASS daily Rn product covering 2000 to 2018 as a reference to help select reliable sites and validate the results 210 

from this study. 

2.4 CERES-SYN product 

The CERES instruments onboard the Terra, Aqua, and Suomi National Polar-Orbiting Partnership (Suomi NPP) satellites 

observe the TOA global energy budget by measuring shortwave reflected radiation, longwave Earth-emitted radiation and all 

wavelengths of radiation at a spatial resolution of 20 km at nadir (Wielicki et al., 1996). The CERES Synoptic (CERES-SYN) 215 

product combines CERES and MODIS observations with geostationary (GEO) data to provide hourly broadband TOA radiant 

flux and cloud properties (Doelling et al., 2013). The CERES-SYN product also contains computed TOA and in-atmosphere 

and surface fluxes based on the Fu-Liou radiation transfer model. Aerosol and atmospheric data were included as inputs to 

calculate the radiation flux. CERES-SYN fluxes were provided as a 1° gridded product with an hourly temporal resolution. 

CERES-SYN surface Rn data have been evaluated in many studies, which indicate that the product has high accuracy, although 220 

systematic overestimation exists in the surface net radiation flux data (Jia et al., 2018; Jiang et al., 2016; Jia et al., 2016). Thus, 

the CERES-SYN surface Rn obtained from four surface radiative components was used as a reference for comparison. 

2.5 MERRA2 reanalysis 

MERRA2, produced by the NASA Global Modeling and Assimilation Office (GMAO), is the latest global atmospheric product 

and employs satellite observation data from 1980 to the present. The MERRA2 reanalysis assimilates space-based observations 225 

of aerosols and represents their interactions with other physical processes in the climate system. The goals of MERRA2 are to 

provide a regularly gridded, homogeneous record of the global atmosphere, and to incorporate additional climatic variables 

and conditions, including trace gas constituents (stratospheric ozone), improved land surface representation, and cryospheric 

processes (Gelaro et al., 2017b). The MERRA2 products have a 0.5° × 0.625° spatial resolution and hourly temporal resolution. 

Previous studies (Jiang et al., 2018; Jia et al., 2018; Delgado-Bonal et al., 2020) have confirmed that the MERRA2-calculated 230 

surface Rn and its radiative component provide outstanding accuracy and a reasonable spatial-temporal distribution compared 
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to other reanalysis data. Therefore, MERRA2 Rn data calculated from four surface radiative components were also used in this 

study to help retrieve accurate high-resolution surface Rn estimates by providing average atmospheric information. 

3 Methods 

The entire workflow of the RCNN-based PSME method is shown in Fig. 2. First, the ETC technology was applied to the triplet 235 

system constructed from ground-, satellite-, and model-based Rn data to identify reliable sites at which measurements can well 

represent the dynamic variation of surface Rn at a 5 km scale. Then, AVHRR TOA reflectance, brightness temperature, angular 

information and MERRA2 Rn were matched with the ground-based Rn measurements, both spatially and temporally. 

Specifically, the site-measured Rn data were collocated with the 5 km AVHRR grid product covering the site. If one grid in 

the AVH02C1 product covered multiple sites, the mean values from these sites’ measurements were used to match the grid 240 

data. Subsequently, the matched input-output training samples were fed into the RCNN to train the model. Reference Rn 

measurements taken from reliable sites were used to evaluate the model’s performance and, subsequently, identify the best 

option to produce surface Rn by tuning the hyper-parameters of the RCNN. Finally, surface Rn retrievals were generated using 

the best-trained model for the global scale, and CERES-SYN and GLASS Rn products were applied to perform inter-

comparisons to illustrate the accuracy and spatiotemporal variation of the surface Rn retrievals. 245 

 

 

Figure 2: Workflow of RCNN-based point-surface matching estimation (PSME) method for surface Rn retrievals. TOA: Top of 

Atmosphere; RCNN: Residual Convolution Neural Network; GLASS: Global Land Surface Satellite; CRES-SYN: Clouds and the 

Earth’s Radiant Energy System Synoptic; MERRA2: Modern-Era Retrospective analysis for Research and Applications, Version 250 

2; SZA: Solar Zenith Angle; VZA: Viewing Zenith Angle; RAA: Relative Azimuth Angle. 
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3.1 Extended triple collocation (ETC) 

To address the spatial scale mismatch issue owing to the small spatial support of sparse ground measurements in comparison 

to gridded satellite data, which introduces large uncertainty into the collaborative inversion process, triplet collocation (TC) 

technology was employed (Stoffelen, 1998; Yuan et al., 2020a). Specifically, based on the availability of three collocated, 255 

independent measurement systems describing the same geophysical variable, TC was designed to estimate the unknown error 

standard deviations (or RMSEs) of three mutually independent measurement systems, without treating any one system as 

perfectly observed “truth” (Stoffelen, 1998; Gruber et al., 2016). To perform the TC, the following assumptions were made: 

1) each of the triplet is related with the unknown truth of the geophysical variable in the linear form; 2) zero cross-correlation 

across each of the triplet; 3) zero error cross-correlation between the triplet and the true signal state (T); and 4) the signal and 260 

error statistics are stationary (Chen et al., 2017). Following the first assumption, the independent triplet systems (Xi, Xj, and 

Xk) are related to the unknown true quantity in a linear error model: 

𝑋𝑖 = 𝛽𝑖 + 𝛼𝑖𝑇 + 𝜀𝑖                                                                               (1) 

where 𝛼𝑖 and 𝛽𝑖 are the additive and multiplicative bias terms, respectively; and 𝜀𝑖 is the mean-zero random error. Similar 

calibration constants (𝛼𝑗, 𝛽𝑗, 𝛼𝑘, and 𝛽𝑘) and random error terms (𝜀𝑗 and 𝜀𝑘) are also defined for Xj and Xk. 265 

The objective of TC is to find a solution that individually estimates the variance of the random error term (𝜀𝑖) for each of 

the triplet based on the listed assumptions (Stoffelen, 1998; Yuan et al., 2020a). However, to obtain the calibration constants, 

one dataset is chosen from the three collocated measurement systems as the reference dataset, and the other two are rescaled 

into the same reference data space. This results in a dependency of the error variance of the other two datasets on the 

climatology of the scaling reference (Draper et al., 2013; Yuan et al., 2020a). To deal with this issue, ETC technology was 270 

proposed by Mccoll et al. (2014), based on the same assumptions as TC, to estimate an additional evaluation metric 

independent of the reference dataset, i.e., a correlation coefficient (𝜌(𝑇,𝑋𝑖)) of each measurement system with respect to the 

unknown target variable as formulated below: 

𝜌(𝑇, 𝑋𝑖) = 𝑠𝑖𝑔𝑛(±)√
𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝐶𝑜𝑣(𝑋𝑖,𝑋𝑘)

𝐶𝑜𝑣(𝑋𝑖,𝑋𝑖)𝐶𝑜𝑣(𝑋𝑗,𝑋𝑘)
                                                    (2) 

where 𝜌(𝑇,𝑋𝑖) is correct up to the sign ambiguity, as the measurement systems will almost always be positively correlated to 275 

the unobserved truth. 

Following the ideals of Chen et al. (2017) and Yuan et al. (2020a), ETC was applied to determine the reliable site measurements 

over the AVHRR data footprint scale (i.e., 5 km grid). Specifically, the triplet dataset was first constructed using ground-based 

measurements (i.e., site measurements), satellite-derived retrievals (GLASS Rn) and downscaled model-based simulations 

(MERRA2 Rn) depending on the conversion ratio of GLASS Rn between original (0.05°) and aggregated (0.5°) spatial 280 

resolutions, as they belong to different measurement systems and are not dependent on each other. Then, 𝜌(𝑇,𝑋𝑖)  was 
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calculated using Eq. (2) for individual site, illustrating the fraction of 5 km satellite footprint-scale Rn dynamics captured by 

point-scale ground-based measurements. An appropriate threshold of 𝜌(𝑇,𝑋𝑖) was determined to select reliable sites with the 

greatest representativeness within a 5 km footprint to obtain sample datasets for the model training. After testing a series of 

thresholds between 0.2 and 0.9 at intervals of 0.1, a threshold of 0.9 was selected, above which the sites were assigned as 285 

‘reliable’ (also see Sect. 5). Based on these reliable sites, errors of upscaling reliable site-based measurement to a 5-km scale 

can be weakened to a certain degree due to its better representativeness within the AVHRR footprint. 

3.2 RCNN-based PSME  

3.2.1 RCNN 

As the spatial resolution of satellite sensors increases, the spatial adjacent effects induced by spatially inhomogeneous 290 

atmospheric constitutes (or clouds) fields become more significant, for example, clouds affect the distribution of surface 

radiation in a region larger than the resolution of an individual pixel. One spatial adjacent effect is the diffusion of radiation 

that removes part of radiation from an atmospheric column and transfer it to neighboring columns. Two other effects are related 

to the solar and viewing geometry, such as a shift of the apparent position of clouds and their shadows. Surface Rn is no longer 

accurately estimated with retrieval algorithms based on the individual pixel approximation (IPA). Comprehensive information 295 

within a certain spatial extent centered at reliable sites needs to be considered to help retrieve surface Rn.  

Loosely inspired by the human visual cortex, CNNs were originally applied to analyze common visual imagery using 

convolution instead of general matrix multiplication (Ball et al., 2017). CNN model can extract features hierarchically from 

input multi-channel images using multiple filters. Therefore, the most important feature information regarding reliable site-

based Rn measurements can be effectively extracted by CNN within a certain spatial extent rather than on IPA, to help retrieve 300 

Rn, which weakens the spatial adjacent effects to a certain extent. A general CNN consists of multiple layers of operations, 

such as convolution, pooling, normalization, and nonlinear activation functions. In the convolutional layers, a series of 

convolution (Conv) operations are performed using convolutional kernel weights and biases on the input images within the 

receptive field. The result of the locally weighted sum (feature map) is then passed through a nonlinear layer, such as a rectified 

linear unit (ReLU), which increases the nonlinear properties of the decision function and the overall network (Romanuke, 305 

2017). The pooling layer, a form of non-linear down-sampling, merges semantically similar features into one, thereby reducing 

the amount of computation in the network (Géron, 2019). Additionally, a batch normalization layer is placed between the 

convolutional layers and nonlinearities to speed up the training of the CNN and reduce the sensitivity to network initialization. 

By stacking two or three stages of convolution, nonlinearity, and pooling, followed by more fully connected layers, a typical 

CNN architecture is built. 310 
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To improve network performance in complicated tasks, a deeper CNN architecture is needed; however, a deeper neural network 

is difficult to train well because a degradation problem occurs with deeper networks converge (He et al., 2016). Specifically, 

as the network depth increase, the training accuracy becomes saturated and then degrades rapidly. To address the degradation 

problem, He et al. (2016) proposed a residual block to improve the gradient flow through the network , which enables the 

training of deeper networks. Residual blocks were employed in our CNN architecture to construct the RCNN. The structure of 315 

the RCNN proposed in this study is shown schematically in Fig. 3. Table 4 lists the detailed configurations of the proposed 

RCNN. 

The input signals of the RCNN included AVHRR TOA reflectance and brightness temperature, angular information (SZA, 

VZA, and RAA), and daily MERRA2 Rn with a spatial size of 15×15 pixels (these specifications are further discussed in Sect. 

5). To avoid introducing new errors, nearest-neighbor interpolation was used to resample MERRA2 Rn to 0.05° to match the 320 

spatial resolution of the other predictors. The output signal was ground-based Rn from the reliable sites. Essentially, the RCNN 

model uses a convolution operation taken at stages of the feature map and residual learning block to recognize spatial patterns 

centered on a reliable site. Then, the multiple layer perceptron links abstract spatial patterns with ground-based measurements 

to construct a strong non-linear relationship to reproduce the spatial and temporal variation of surface Rn. This approach had 

been carried out in previous studies (Jiang et al., 2019b; Jiang et al., 2020a; Jiang et al., 2019a). 325 

 

 

Figure 3: Depiction of the RCNN network. The model uses AVHRR TOA observations, angular information (SZA, VZA, and RAA), 

and MERRA-2 Rn as inputs, which are used to calculate daily surface Rn values as output. Conv represents the convolution operation; 

MP and GAP are the max-pooling and global average-pooling operations, respectively; RB: residual block; FC: fully-connected layer. 330 

 

Table 4: Detailed configuration of the RCNN. eLU: exponential linear unit; DROP: dropout layer. 

Module Unit Input size Kernel 

num. 

Kernel 

size 

Stride Activation 

function 

Output size 

 Input 9 × 15 × 15     –      –    –     – 9 × 15 × 15 

Feature 

Mapping 

Conv1 9 × 15 × 15 32 3 × 3  [1, 1]   ReLU 32 × 15 × 15 

Conv2 32 × 15 × 15 32 3 × 3 [1, 1] ReLU 32 × 15 × 15 

MP1 32 × 15 × 15 – 2 × 2 [2, 2] – 32 × 7 × 7 
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Residual 

Learning 

Block 

RB1_Conv1 32 × 7 × 7 64 3 × 3 [1, 1] ReLU 64 × 7 × 7 

RB1_Conv2 64 × 7 × 7 64 3 × 3 [1, 1] ReLU 64 × 7 × 7 

RB1_Conv3 64 × 7 × 7 64 3 × 3 [1, 1] ReLU 64 × 7 × 7 

MP2 64 × 7 × 7 – 2 × 2 [2, 2]  – 64 × 3 × 3 

RB2_Conv1 64 × 3 × 3 128 3 × 3 [1, 1] ReLU 128 × 3 × 3 

RB2_Conv2 128 × 3 × 3 128 3 × 3 [1, 1] ReLU 128 × 3 × 3 

RB2_Conv3 128 × 3 × 3 128 3 × 3 [1, 1] ReLU 128 × 3 × 3 

GPA 128 × 3 × 3 –      – [0, 0] – 128 × 1 × 1 

Multiple 

Layer 

perceptron 

FC_1  128 –      –   –   eLU      128 

DROP    128 –      –   –    –      128 

FC_2    128 –      –   –   eLU      64 

FC_3    64 –      –   –   eLU      64 

FC4    64 –      –   –   eLU       1 

3.2.2 RCNN model training and evaluation 

Sample data from the reliable sites in the training site group (red circles as shown in Fig. 1) were used to train the RCNN 

model; datasets from reliable sites in the independent validation site group (blue circles shown in Fig. 1) served as test datasets 335 

to independently evaluate the model’s performance. Specifically, in the training process, 10-fold cross-validation (CV) was 

used to test the model’s predictive power. All of the sample datasets from the reliable training sites were randomly shuffled 

and divided into ten groups. One group of these data was then removed as a hold-out or validation dataset and the remaining 

nine groups of data were treated as the training datasets. The training datasets were used to fit the RCNN model, and the 

validation datasets were applied to evaluate the trained model’s performance to fine-tune the model’s parameters. The process 340 

was repeated ten times to ensure that each group of data validated the model, and the remaining nine groups of data were 

trained. Finally, the evaluation results were presented by summarizing and averaging the ten evaluation scores. After 

determining the hyper-parameter settings using the CV, the model was trained again using datasets from all the reliable training 

sites, which was then independently evaluated using the test datasets from the reliable validation sites. 

The following five evaluation metrics were used to evaluate the performance of the RCNN model and the Rn retrievals: bias, 345 

relative bias (rbias), RMSE, relative RMSE (rRMSE) and the coefficient of determination (R2). Detailed information regarding 

the application of these metrics can be found in Yang et al. (2018). 

4 Results 

4.1 Identification of reliable sites 

The number of reliable and unreliable sites for each observation network, identified by a threshold of 0.9 for the ETC-derived 350 

correlation coefficient, is listed in Table 5. A total of 262 sites could be considered reliable, accounting for ~50% of the sites. 
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Furthermore, no site was considered reliable for some observation networks/programs, namely ChinaFlux, GCNET, 

GAME.ANN, HiWATER, IMAU-Ktransect, and LBA-ECO. It is not surprising that sites from the ChinaFlux network were 

assigned as unreliable; several studies have revealed that the reliability of site measurements from China is questionable and 

should be examined carefully before use (Zhang et al., 2015; Tang et al., 2013; Tang et al., 2011). The GCNET network is 355 

located in inner Greenland, where systematic measurements errors are common due to difficulties in instrument maintenance 

and operation-related failures. Sites from the GAME.ANN network are located in the Tibetan Plateau (TP) region, where 

abnormal climate and complex terrain make it difficult to accurately measure variations in Rn. Similar issues also exist in in 

situ measurements from the IMAU-Ktransect, HiWATER and LBA-ECO networks. In contrast, some of the international 

observational networks, such as BSRN (Ohmura et al., 1998) and FluxNet (Wilson et al., 2002), provide many ground-based 360 

measurements with sufficient spatial representativeness for Rn at 5 km resolution. In addition, the ARM (Stokes and Schwartz, 

1994) and SURFRAD (Augustine et al., 2000) networks were classified as containing reliable sites. In situ measurements from 

the SURFRAD (Augustine et al., 2000) network were well known in surface radiation budget studies because of their high 

data quality, and have been widely utilized as a result (Wang et al., 2015b; Hao et al., 2019; Wang et al., 2015a; Qin et al., 

2012). Overall, compared to other networks, the sites from ARM, BSRN, SURFRAD, and FluxNet networks were mostly 365 

identified as reliable sites, illustrating the superiority of these observation networks. 

The spatial and proportion distributions of the reliable training and validation sites for different surface types are presented in 

Fig. 4. The most reliable sites are distributed in the United States, Europe, and East Asia. In turn, many sites located in South 

America, Africa, Eurasia, and the Polar Regions were identified as unreliable. The reasons that these sites were classified as 

unreliable are closely related to the complex surface and atmospheric environment and poor instrument maintenance in their 370 

corresponding regions. Most grassland and cropland sites were classified as reliable (~66% and ~62%, respectively), whereas 

the fewest reliable sites were classified in ice/snow-covered areas (~14%). In addition, sites neighboring the sea were mostly 

identified as unreliability due to the presence of large water bodies within the satellite footprint. Thus, the processing of 

identifying reliable sites highlights the need to pay more attention to such areas for surface radiation estimations.  

 375 

Table 5: Summary of the selected reliable and unreliable sites based on ETC for each observation network 

Network/Program Number of reliable sites Number of unreliable sites  

ARM 33 0 

AsiaFlux 12 17 

BSRN 8 7 

CEOP 5 11 

CEOP-Int 4 4 

ChinaFlux 0 3 

EOL 2 15 

GCNEET 0 18 
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GAME.ANN 0 3 

Global FluxNet 185 123 

HiWATER 0 19 

IMAU-Ktransect 0 4 

LBA-ECO 0 8 

PROMICE 6 24 

SURFRAD 7 0 

 

 

Figure 4: (a) Spatial distribution of reliable sites and the absolute numbers of (b) all sites and (c) reliable sites under different surface 

types.  380 

4.2 Assessment of the RCNN model 

Ten-CV was used to evaluate the performance of the RCNN model at reliable and all training sites, respectively, and the 

evaluated performances are summarized in Table 6. Note that the model fitting result represents the model with the best fitting 

accuracy over the 10 CV rounds, while the cross-validation results are the averages of the 10-round combination. The RCNN 

model showed a high fitting accuracy at the reliable training sites with R2, RMSE (rRMSE) and bias (rbias) values of 0.90, 385 

20.67 Wm-2 (25.82%) and -0.18 Wm-2 (-0.23%), respectively. Compared to the model fitting accuracy across all sites, the 

result for the reliable sites was improved, with R2 values increased by 0.04 and rRMSE values reduced by 7.72%. The 

implementation of ETC for the selection of reliable sites ensures more consistent spatial representativeness of ground-based 

measurements and AVHRR data, which improves the accuracy of Rn retrievals. Indeed, the CV-derived average accuracy is 

extremely similar to the model fitting accuracy, illustrating that the trained RCNN model is highly robust. Additionally, an 390 

unbiased estimation was achieved by the RCNN model with CV-derived biases close to zero. 

Figure 5 shows the overall training accuracy and test accuracy for the RCNN model at reliable training and independent 

validation sites. The over-training accuracy of the RCNN model is close to that of the CV-derived result. Between the model 

training to the test phase, the R2 score dropped by 0.06 and RMSE increased by 6.01 Wm-2 (5.61%), which indicates that slight 

over-fitting by the proposed model. However, with the highest cross-validated R2 of 0.90, and the lowest RMSE of 20.92 Wm-395 
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2, the RCNN model trained using ground-based Rn measurements obtained at the reliable sites is considered as the best-trained 

model, which was selected for the subsequent analysis.  

 

Table 6: Ten-fold cross-validation performance of the RCNN models. 

Used sites Model fitting Cross-validation 

 R2 RMSE rRMSE bias rbias R2 RMSE rRMSE bias rbias 

All sites 0.86 25.64 33.74 -0.16 -0.21 0.86 25.77 33.85 -0.28 -0.36 

Reliable sites 0.90 20.67 25.82 -0.18 -0.23 0.90 20.92 26.13 0.11 0.13 

 400 

 

Figure 5: Scatterplots of (a) mode training (fitting) accuracy and (b) model test accuracy for the reliable training and independent 

validation sites. The color bar illustrates the normalized density of samples. 

 

4.3 Evaluation of the RCNN-based AVHRR Rn retrievals 405 

4.3.1 Inter-comparisons of Rn products 

Figure 6 shows the validation results of the four datasets at the reliable sites, including the AVHRR, CERES-SYN, MERRA2, 

and GLASS Rn estimates. Comparatively, the RCNN-derived AVHRR Rn retrievals show the best performance with R2, RMSE, 

and bias of 0.90, 20.99 Wm-2 (26.18%), -0.04 Wm-2 (-0.05%), respectively, followed by the GLASS Rn estimates with 

corresponding values of 0.89, 22.29 Wm-2 (27.81%) and -2.78 Wm-2 (-3.47%), respectively. The CERES Rn estimates show a 410 

notable overestimation at higher values against the in situ measurements with a bias of 7.25 Wm-2 (9.04%). In addition, a 

greater uncertainty exists in the CERES Rn compared to the AVHRR and GLASS Rn estimates, with an RMSE of 25.11 Wm-

2. The CERES-SYN cloud product, an input for the calculation of flux products, underestimated low-level clouds (by 11.8% 

and 20.9% for day and night, respectively) over the sun-glint ocean and polar regions both during daytime and nighttime (Xi 

et al., 2018; Xu et al., 2020). Additionally, when the aerosol optical depths (AODs) used to calculate CERES-SYN surface 415 

solar radiation are compared with the ground-based observations, the calculated shortwave radiation is 1–2% higher (Fillmore 

et al., 2021). Therefore, large uncertainties in these atmospheric input parameters may lead to serious overestimations of the 
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CERES-SYN Rn. In addition, the MERRA2 Rn shows the lowest accuracy, with an RMSE of 20.87 Wm-2, reflecting the 

reanalysis model’s inability to accurately describe the evolution of cloud properties (Betts et al., 2006). Comparatively, the 

AVHRR retrievals show a better accuracy than the other three products. In addition, our estimates have a higher spatial 420 

resolution compared to the CERES-SYN and MERRA2 data.  

Compared to the validation results at the reliable sites, the accuracy evaluation at all sites shows the ability of the RCNN to 

accurately capture Rn variation at a global scale, even though some measurements from unreliable sites added large 

uncertainties to the final evaluation. Figure S2 shows a comparison of results for the four datasets at all of the sites. Overall, 

the AVHRR and GLASS Rn retrievals were still better than those of CERES-SYN and MERRA2; however, the accuracy of 425 

AVHRR Rn decreases slightly, with R2, RMSE, and bias values of 0.85, 26.51 Wm-2 (35.50%) and 1.32 Wm-2 (1.76%), which 

is comparable to the GLASS Rn retrievals, with values of 0.85, 26.56 Wm-2 (35.38%) and -0.83 Wm-2 (-1.10%), respectively. 

Therefore, even if the RCNN model is trained using measurements from less reliable sites, it still accurately reproduces surface 

Rn distributions at global scale. In the following analysis, the GLASS Rn retrievals were used as the main comparison because 

of their high accuracy and reasonable spatiotemporal variation (Jia et al., 2018; Jiang et al., 2018). 430 

 
Figure 6: Scatterplots of product validation for (a) AVHRR, (b) CERES-SYN, (c) MERRA2, and (d) GLASS at the reliable sites. 
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Inter-comparison results for the AVHRR and GLASS Rn retrievals against the ground-based measurements over each network 

are displayed in Fig. 7. The AVHRR Rn retrievals performed better than the GLASS Rn retrievals in most of the observation 435 

networks. Specifically, the AVHRR Rn retrievals show lower RMSE values over seven networks, except for the EOL and 

PROMICE networks. However, the RMSE differences over the EOL and PROMICE networks are very small—only 1.4 and 

0.3 Wm-2, respectively. The EOL is a small regional network, and its measurements thus only reflect local-scale Rn variation. 

However, only two out of 17 sites were identified as reliable for the model training and, therefore, the RCNN model cannot 

capture specific Rn dynamics within such a small spatial extent. Similar reasons also account for the poor performance at the 440 

PROMICE network because most of the sites in the GCNET and PROMICE networks are identified as unreliable sites. Thus, 

the RCNN model has less knowledge of Rn dynamics for snow and ice surfaces. The most significant difference for RMSE 

was observed over the ARM network, for which the mean RMSE value decreased by 2.1 Wm-2 for the AVHRR Rn retrievals 

relative to the GLASS Rn retrievals. Additionally, these two datasets showed very similar performance based on their R2 values. 

 445 
Figure 7: The average performance of the AVHRR and GLASS Rn retrievals against ground-based measurements at the reliable 

sites over each network. 

 

To further improve understanding of the temporal variations of the AVHRR Rn retrievals, coincident time series from all the 

Rn datasets were inter-compared over seven sites representing different surface types, as shown in Fig. 8. Overall, all four 450 

datasets broadly captured the true dynamics of Rn under the different surface types. Comparatively, the AVHRR and GLASS 

Rn retrievals are more consistent with in situ measurements than the CERES-SYN and MERRA2 products. Specifically, the 

MERRA2 and CERES-SYN Rn retrievals show higher values compared to the in situ measurements at the BSRN_DRA site, 

especially during 140–200 day period. In comparison, the AVHRR and GLASS Rn values closely match the ground-based 

measurements, and thereby better reflect the true temporal variation in Rn. At the Lath_UK-AMo site, four of the datasets 455 

slightly overestimated during the summer; however, the AVHRR and GLASS Rn retrievals still performed best. Moreover, 
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large discrepancies occurred at the PM-SCO_U site under the snow/ice surface for the four datasets. Notably, MERRA2 Rn 

values do not reflect true variations for snow and ice surfaces, especially during the 150–250 day period. Comparatively, the 

satellite-derived retrievals better capture Rn dynamics, although the CERES-SYN product still exhibits overestimation. 

Because less reliable sites were screened at the global scale to train the RCNN model under the snow/ice surfaces, the AVHRR 460 

Rn values only capture the general Rn trend in the snow/ice areas. The GLASS Rn retrievals are also most consistent with the 

in situ measurements among the four datasets, although small biases still exist.   

The overall evaluation results of the AVHRR and GLASS Rn retrievals for different surface types are displayed in Table 7. 

Generally, both datasets achieved high accuracy, with RMSEs ranging from 20 to 25 Wm-2. The AVHRR Rn retrievals show 

the better performance for most of the surface types, except for snow/ice, as previously discussed; however, the difference in 465 

the RMSEs between the AVHRR and GLASS Rn retrievals for the snow/ice cover type is small (0.5 W/m-2). Together, these 

results further indicate that the RCNN model can generate accurate Rn estimates for different land cover types. 

 

 

Figure 8: Coincident time series of the AVHRR, GLASS, MERRA2, CERES-SYN Rn retrievals and ground-based measurements 470 

over seven sites representing different surface cover types for (a) ARM_E06 (38.061°, -99.134°), (b) BSRN_DRA (36.626°, -116.018°), 
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(c) Lath_CA-NS7 (56.635°, -99.948°), (d) Lath_DE-Har (47.934°, 7.601°), (e) Lath_UK-AMo (55.791°, -3.238°), (f) PM-SCO_U 

(72.393°, -27.233°) and (g) SF_BND (40.050°, -88.37°). 

 

Table 7: Evaluation of the AVHRR and GLASS Rn retrievals for different surface cover types. 475 

Surface 

types 

AVHRR Rn  GLASS Rn 

R2 RMSE rRMSE bias rbias  R2 RMSE rRMSE bias rbias 

Forest 0.90 22.38 27.12 -4.18 -5.07  0.89 23.73 28.75 -5.16 -6.26 

Crop 0.90 21.18 27.05 3.57 4.56  0.89 22.07 28.18 -0.87 -1.11 

Grass 0.92 18.70 22.80 4.01 4.88  0.90 20.37 24.83 -0.57 -0.70 

Shrub 0.90 18.52 21.93 -0.88 -1.04  0.89 20.08 23.78 -2.03 -2.40 

Ice/snow 0.85 24.46 76.37 1.84 5.75  0.86 23.96 74.84 -0.59 -1.83 

Barren 0.90 15.23 21.48 4.01 5.66  0.87 17.27 24.37 1.87 2.64 

Wetland 0.91 23.15 27.72 -7.21 -8.63  0.90 23.96 28.69 -7.88 -9.44 

 

4.3.2 Analysis of influencing factors 

Variation in surface Rn is mainly affected by atmospheric conditions, but also, to a lesser degree, by surface characteristics 

(He et al., 2015). Under clear-sky conditions, AOD and column water vapor (CWV) are the main atmospheric constituents 

that modulate surface shortwave and longwave radiation, and further affect spatiotemporal variations of surface Rn. In contrast, 480 

clouds and CWV control surface Rn dynamics under cloud-sky conditions, especially clouds that have significant impacts on 

shortwave and longwave radiation. Therefore, AOD, CWV, and cloud optical thickness (COT, as a surrogate for cloud optical 

properties) derived from MERRA2 were employed to analyze the sensitivity of the accuracy of the AVHRR and GLASS Rn 

retrievals to variations in these influencing factors. In addition, Rn retrieval performance at different elevations was also 

evaluated. 485 

All the evaluation results are displayed in Figure 9. The AVHRR Rn retrievals were always better than the GLASS Rn retrievals 

under all conditions of the four influencing factors, except for elevations ranging 800–1000 and 1200–1500 m, which 

demonstrates the superiority of our algorithm. Specifically, as the COT increases (i.e., increasing cloud thickness), the AVHRR 

and GLASS Rn RMSE values increase accordingly but still remain relatively low for both datasets (< 27 Wm-2). Note that the 

differences in RMSE between the two datasets also increased with increasing COT (Fig, 9(a)). A small COT indicates relative 490 

clear-sky conditions, which results in surface total solar radiation dominated by direct solar radiation. Therefore, the 

performance of the RCNN model and the MARS models used for the GLASS Rn product (Jiang et al., 2016) is comparable 

with regard to the accuracy of their Rn retrievals. However, when the absorption and scattering effects are enhanced for direct 

solar radiation from TOA, depending on the IPA, it is difficult to retrieve the total surface Rn accurately using the MARS 

model because the spatially adjacent effects (i.e., 3-D effects from clouds) are not considered. Although the RMSEs of the 495 

AVHRR retrievals also increase, the rate of increase is lower than that of the GLASS Rn retrievals. This is because the RCNN 
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model recognizes spatial textural and contextual information and comprehensively considers atmospheric conditions within a 

certain area rather than on IPA, which to some extent addresses the spatially adjacent effect on the accuracy of AVHRR Rn 

retrievals.  

Aerosols also have absorption and scattering influences on solar radiation, and therefore, a similar conclusion can be drawn. 500 

For example, when AOD increases from 0.3 (a non-clean atmosphere), the difference in the performance of the two retrieved 

model becomes more pronounced. The AVHRR Rn retrievals maintain a stable level of uncertainty (RMSEs = 22–24 Wm-2), 

while the errors GLASS Rn retrieval errors increase dramatically (up to 29 Wm-2). This illustrates the importance of integrating 

the spatial adjacent effect into the inversion model under hazy atmospheric conditions.  

In the case of CWV, which has a strong influence on longwave radiation, when the condition is < 50 kgm-2, the accuracy 505 

differences between the AVHRR and GLASS Rn values are small (< 1 Wm-2). However, as CWV increases, the RMSEs of the 

GLASS Rn retrievals increase dramatically, while the AVHRR Rn estimates maintain a high level of accuracy (RMSEs = ~23 

Wm-2).  

With respect to elevation, there was no notable difference between the two datasets; our estimates were better than GLASS Rn 

under different elevation ranges, except for the 800–1,000 and 1,200–1,500 m bins, although these differences were less than 510 

1 Wm-2. The lower accuracy of AVHRR Rn values for these two elevation ranges is attributable to the less reliable sites used 

for the RCNN training. In addition, the AVHRR Rn retrievals show steady and very low (close to zero) biases under different 

conditions, while the biases of the GLASS Rn retrievals show a high degree of variation. This illustrates that the RCNN model 

has a greater capability for unbiased surface Rn estimation. 

Overall, the RCNN-derived Rn retrievals show a high accuracy under different atmospheric and surface conditions relative to 515 

the GLASS Rn retrievals and especially for thick-cloud and hazy atmospheric conditions. In such cases, spatially adjacent 

information is important for accurately estimating the surface Rn retrievals. Although previous studies have proposed several 

methods for integrating spatial information to retrieve surface and atmospheric variables, such as PM2.5 (Li et al., 2020b; Wang 

et al., 2020a), ozone (Li and Cheng, 2021), and nitrogen dioxide (Li et al., 2020a), these methods only considered discrete 

surrounding points within a certain area to train the model using IPA. This artificially destroys the natural correlation between 520 

the target and the surroundings. Our RCNN model can automatically recognize complete spatial information centered at an 

interesting location and, thus, is a more reasonable and effective method.  
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Figure 9: Accuracy changes in AVHRR and GLASS Rn retrievals under different conditions for (a) cloud optical thickness (COT), 

(b) aerosol optical depth (AOD), (c) column water vapor (CWV), and (d) elevation. The values in parentheses on the left-axis 525 

correspond to the RMSE differences denoted by bar charts. The shaded area show the variance ranges of the biases. 

4.3.3 Spatiotemporal analysis 

The global-scale spatial distributions of mean AVHRR and GLASS surface Rn for January and July 2008 are displayed in Fig. 

10. The missing values in the Polar Regions reflects the unavailability of valid data at the five bands in the case of the 

AVH02C1 product. The overall distribution of surface Rn for the two datasets is very similar, although slight differences exist 530 

in some regions, such as the TP region, the Sahara Desert, and Greenland. AVHRR Rn retrievals are notably larger than the 

GLASS Rn retrievals in the TP region. Based on the results shown in Fig. 9(d), greater confidence can be placed in the AVHRR 

Rn retrievals for high-elevation regions relative to GLASS Rn retrievals; however, the AVHRR Rn retrievals are relatively 

lower in Greenland. Because few sites from the GCNET and PROMICES networks were classified as reliable for the model 

training, the RCNN model has less knowledge about the spatiotemporal variations of Rn in Greenland compared to other 535 

regions. The validation results in Fig. 8 and Table 7 for the ice/snow surface cover type further confirm that GLASS Rn product 

may offer a better performance in Greenland region. Therefore, new algorithms and data are required for the Polar Regions to 

address this problem.  
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Figure 10: Spatial distribution of monthly mean AVHRR and GLASS Rn retrievals in January (a, b) and July (c, d) 2008.  540 

 

The spatiotemporal consistency of the AVHRR and GLASS daily Rn retrievals against COT was examined at a global scale in 

January and July 2008, respectively, as shown in Fig. 11. Overall, the spatial consistency is high for the two datasets. 

Specifically, in January, as the COT increases, the daily mean Rn values and the absolute differences between the two datasets 

also increase. As shown in Fig. 9(a), when COT increases, the AVHRR Rn retrievals are more accurate. Thus we believe that 545 

the large discrepancies under high COT conditions are mainly attributed to the uncertainty of GLASS Rn retrievals. In July, 

surface daily mean Rn remained relatively stable under different COT conditions, and the absolute differences between the two 

datasets also remain steady, with a mean absolute difference of about 20 Wm-2.  

Based on the previous analysis, spatially adjacent information is important for surface Rn estimation when COTs values are 

large; however, if the cover of the entire cloud layer is small compared to the scale of the AVHRR footprint, the spatial adjacent 550 

effects will be significantly weakened in the inversion process, even if the corresponding COT is large. IPA-provided 

information includes the properties of the entire cloud layer. Figure S3 shows the spatial distribution of the monthly mean 

cloud cover fraction (CF) at the global scale in January and July, and the corresponding differences in CFs (Jan.-July). In 

January, the CFs are higher than in July over most land regions except in Central Africa, Southern Asia, Southern Australia 

and Antarctica. However, most regions had smaller CFs in July. The differences in CFs for the two months are also marked; 555 

the positive differences demonstrate that more than 72% of the land pixels had a higher CFs in January than in July. The spatial 

adjacent effects induced by clouds are more significant on surface Rn in January than in July. Therefore, when large and thick 
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cloud layers exist, such as in the Polar Regions, CNN is a better choice for surface Rn estimation, especially for downward 

longwave radiation (DLR) because the temperature of cloud-base, which is an essential variable in the parameterized 

calculation of DLR, is difficult to retrieve from multispectral remote sensing (Yang and Cheng, 2020). 560 

 
Figure 11: Variations in the spatial and temporal consistency of AVHRR and GLASS daily Rn retrievals against cloud optical 

thickness (COT) in (a) January and (b) July 2008. The absolute difference is defined as |𝐑𝐧𝐚𝐯𝐡𝐫𝐫 − 𝐑𝐧𝐠𝐥𝐚𝐬𝐬|. The shading represents 

the variation range (stand deviation) of global daily AVHRR and GLASS Rn retrievals and their absolute differences. 

4.3.4 Temporal analysis 565 

To examine the temporal reliability of the generated AVHRR Rn dataset, a long-term analysis of surface Rn for the four datasets 

was carried out, the results of which are shown in Fig. 12. In view of missing values for the Polar Regions, we focused on 

surface Rn within the ± 60° latitudes region. Overall, the AVHRR Rn retrievals are highly consistent with MERRA2 Rn values 

during the period of 1981 to 2019 as well as CERES and GLASS Rn retrievals after 2000. However, the MERRA2 and CERES 

Rn values are generally higher than AVHRR Rn retrievals. Inter-comparison results illustrated that the CERES and MERRA2 570 

Rn values are overestimated against ground-based measurements. GLASS Rn temporal profile is more consistently correlated 

with the AVHRR Rn retrievals. 

Note that the LTDR project only uses afternoon satellite to generate the AVHRR product to do with the high uncertainty of 

the atmospheric correction algorithm when applied to low sun elevation pixels present in morning (am) satellites. Afternoon 

satellites include NOAA-7, NOAA-9, NOAA-11, NOAA-14, NOAA-16, NOAA-18, NOAA-19, and NOAA-20. The use of 575 

these satellites alone inevitably leads to small gaps in the data in exchange for a higher accuracy in the atmospheric correction. 

The time series is not fully complete and presents some observational gaps. Specifically, some large discrepancies occur, 
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during some periods including 1994–1995, 1999–2000, 2007–2008, and 2018–2019. These periods correspond to the 

alternative update times of the NOAA-series satellites. For example, NOAA-11 was successfully succeeded by NOAA-14 

from 1994 to 1995. Important gaps and noise were found in the images from March to September and empty data from 580 

September to December, due to NOAA-11 orbital degradation. NOAA-16 replaced NOAA-14 in 2000 for monitoring of the 

Earth’s surface and atmosphere. During these periods of satellite replacement, the corresponding AVHRR data also contain 

large gaps. Similarly, NOAA-20 was launched on November 18, 2017, yet the quality of the AVHRR TOA observations from 

this platform was poor due to important gaps in the images and the presence of artefacts. This explains the abnormal temporal 

variations in the AVHRR Rn profile in these years shown in Fig. 12(a). Therefore, effective multi-source data fusion algorithms 585 

and spatial gap-filling technology are urgently needed to improve the quality and coverage of the AVHRR Rn dataset. 

The temporal variations in monthly Rn anomalies for the four datasets are shown in Fig. 12(b). High temporal consistency 

exists between AVHRR Rn anomalies and the other three datasets. Specifically, the correlation coefficient for the AVHRR and 

MERRA2 Rn anomalies for 1981–2019 is 0.952, and for the period after 2000, is 0.957 and 0.956 for the AVHRR and CERES, 

and AVHRR and GLASS, Rn anomalies, respectively. Thus, the RCNN-derived AVHRR Rn dataset is temporally stable and 590 

reliable when the other three Rn datasets are used as a comparative baseline. In fact, the LTDR project has adapted a calibration 

method that can be consistently applied across the AVHRR instruments onboard various NOAA satellites to account for sensor 

degradation (Vermote and Kaufman, 1995), which enables a temporally reliable Rn dataset to be produced. Following the 

approach, overall, our AVHRR Rn dataset is more accurate and shows reasonable spatiotemporal variations compared to the 

other three datasets. This dataset will play an important role in climate change study. 595 

 

 

Figure 12: Long-term temporal variation of (a) monthly average Rn and (b) monthly Rn anomalies for the AVHRR, CERES, GLASS 

and MERRA2 datasets, respectively. The shading represents the variation range (stand deviation) of the global monthly mean Rn. 
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5 Discussion 600 

5.1 Determination of an appropriate spatial scale 

To provide appropriate AVHRR sub-image blocks containing sufficient information for the RCNN model to generate high-

accuracy retrievals, the spatial adjacent effects on surface Rn under different valid spatial extents should be examined. For this, 

we used a simple multivariate linear regression (MLR) model (see supplementary data for further details). The spatial sizes of 

the sub-images denoted as B3 … B19 vary from 3 × 3 to 19 × 19, respectively, with an interval of 2 pixels. The true areas 605 

correspond to approximately 15 × 15 km2 (B3) to 135 × 135 km2 (B19) on the ground. The results are shown in Fig. 13. Overall, 

the average R increases from 0.61 to 0.708, and RMSE decreases from 50.12 to 46.17, respectively, for the MLR model. As 

the valid spatial extent increases, essential and complete spatial features are exposed and incorporated into the MLR model, 

which helps to continuously improve the model’s retrieval accuracy. The spatial extent of B13 (approximately 65 × 65 km2) 

is the smallest size that exhibits convergent R and RMSE values, and the spatial extent at the B15 reaches a more stable state 610 

for surface Rn estimations. This finding is in line with the results of Jiang et al. (2020b), showing that scale effects have a 

considerable impact on solar radiation retrieval accuracy, and distances of approximately 20 to 40 km from the central point 

(corresponding to areas of 40 × 40 km2 to 80 × 80 km2), are optimal spatial scale. In addition, previous studies (Hakuba et al., 

2013; Huang et al., 2016) recommended a threshold distance of approximately 30 km, equal to a 13 × 13 grid region with a 

spatial resolution of 0.05°, for shortwave radiation estimation. Therefore, a 15 × 15 grid area was selected for the input sub-615 

images to generate AVHRR Rn retrievals.  

 
Figure 13: Variations of (a) R and (b) RMSE indices for each spatial scale in the MLR model. The red lines in the subplots are the 

average curves of indices at the different spatial scales. 
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5.2 Role of daily mean MERRA2 Rn 620 

The RCNN model uses instantaneous satellite-sensed signals to directly estimate daily mean Rn retrievals. Though some 

previous studies (Chen et al., 2020; Wang et al., 2015a; Wang and Liang, 2017; Xu et al., 2020) directly estimated daily-

averaged surface radiation from instantaneous satellite observations, like MODIS, the idea is theoretically flawed because the 

AVHRR sensor only offers instantaneous “snapshots”, which cannot capture daily mean information about the diurnal cycles 

of the atmosphere and clouds. King et al. (2013) acknowledged that the frequency of cloud variations is high at different times 625 

and locations based on twin MODIS cloud products. In view of the wide satellite overpass times over a particular location, 

e.g., equatorial crossing time generally ranges from 1300 to 1730 in local time, representing different instantaneous 

atmospheric conditions for different AVHRR sensors, daily mean MERRA2 Rn is incorporated into the input collection to 

provide daily mean information about the surface, atmosphere and clouds for the RCNN model. 

Figure 14 shows the effect of the daily mean MERRA2 Rn on the final AVHRR Rn retrievals at different AVHRR overpass 630 

times in local time. The improved effect is slightly more significant during the afternoon than in the morning when more over-

land clouds are present (King et al., 2013). This improvement is also more pronounced during the night. The AVHRR Rn 

retrievals can only be obtained when solar radiation is available (Fig. 10) because of the missing values in the AVH01C1 

product; therefore, the results during the night are based on the validation results for high latitudes, which demonstrate that 

daily mean information about the diurnal cycles of the atmosphere and clouds is more important for daily surface radiation 635 

estimation at high latitudes than that at middle and low latitudes. Shupe et al. (2011) found annual cloud occurrence fractions 

are 58%–83% at the Arctic observatories, with a clear annual cycle wherein clouds are least frequent in the winter and most 

frequent in the late summer and autumn. 

Additionally, MERRA2 downward shortwave radiation (DSR) was used as a replacement for MERRA2 Rn to test its 

contribution to daily mean surface Rn estimations when using instantaneous satellite data. The results presented in Fig. S4 640 

show that the improved effect of daily MERRA2 DSR is not comparable with that achieved using daily MERRA2 Rn, and the 

former is closer to the results obtained when only instantaneous AVHRR observations are used. Therefore, MERRA2 Rn is a 

meaningful input for the RCNN model. Moreover, the AVHRR Rn retrievals could also be further improved by using more 

accurate daily mean Rn data, such as GLASS Rn, or other parameters that accurately represent daily mean atmospheric and 

cloud variations.  645 
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Figure 14: Effect of daily mean MERRA2 Rn on AVHRR Rn retrievals at different satellite crossing times in local time over sites. 

The bars indicate RMSE and lines indicate absolute biases. The shading shows the variation range of absolute bias. 

5.3 Determination of a threshold for the ETC-derived correlation coefficient 

The threshold for the ETC-derived correlation coefficient between in situ measurements and the unknown truth within the 5 650 

km AVHRR grid in Eq. (2) affects the selection of reliable sites and the subsequent PSME process. A series of thresholds for 

the ETC-derived coefficients were considered, ranging from 0.2 to 0.9 with an interval of 0.1. In each case, the corresponding 

measurements from the selected reliable sites were fed into the RCNN model to train and subsequently generate AVHRR Rn 

retrievals. Then, the training and test accuracies of the RCNN were calculated over all of the reliable sites for comparison. 

Another important consideration is the representativeness of the RCNN for global Rn estimation, given that the number of 655 

reliable training sites decreases with higher thresholds. Thus, the trained RCNN model was again evaluated at all sites, 

including reliable and unreliable sites, to examine the global representativeness. The number of reliable sites (training and test 

accuracies) and the associated global accuracy are presented in Fig. 15. As the threshold increases, the number of reliable sites 

decreased. The training and test relative RMSEs of the RCNN model showed a general decreasing trend, especially above a 

threshold of 0.5, which illustrates that the selection of reliable sites and the measurements from these sites have better 660 

representativeness for the AVHRR footprint scale using ETC. This helps address the spatial scale mismatch issue and improve 

the accuracy of AVHRR retrievals at a 5 km resolution. In addition, a trade-off between the RCNN’s fitting accuracy at the 

reliable sites and the global accuracy at all sites needs to be considered. Even when a threshold of 0.9 was used, the global 

accuracy of the RCNN was only slightly lower, which explains why this threshold was applied in Sect. 3.1.  
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 665 
Figure 15: Effect of extended triplet collocation (ETC)-derived correlation coefficients on the number of reliable sites and the 

corresponding RCNN’s training, test, and global accuracies. 

5.4 Orbital drift of the NOAA-series satellites 

The orbital drift problem of the NOAA-series satellites has attracted the attention of users applying AVHRR-derived high-

level remote sensing products, such as land surface temperature (LST) (Ma et al., 2020; Liu et al., 2019) and TOA albedo 670 

(Song et al., 2018). As shown in Fig. 16, the orbital drift makes the true equatorial crossing time (ECT) of the NOAA-series 

afternoon satellites range from 13:00 to 17:30 in the solar time system. Previous geophysical variable retrievals based on 

AVHRR data are instantaneous values at satellite overpass times, which need to be corrected to a specific time, such as LST 

at 14:30 and albedo at noon local time. However, the RCNN model uses instantaneous AVHRR TOA observations at different 

satellite overpass times to directly retrieve daily surface Rn estimates, which differs from previous studies.  675 

Additionally, daily MERRA2 Rn and instantaneous SZA values closely related to satellite transit times are taken as inputs; 

therefore, the RCNN model can automatically learn the relationships between instantaneous satellite data at different overpass 

times and corresponding daily surface Rn measurements. Moreover, the results of the long-term temporal analysis of the 

AVHRR Rn dataset provide more evidence to ensure that the quality of the long-term AVHRR daily Rn datasets is not affected 

by orbital-drift. As such, orbital drift does not affect our long-term AVHRR Rn dataset. 680 
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Figure 16: Equatorial Crossing Time (ECT) for the National Oceanic and Atmospheric Administration (NOAA)-series afternoon 

Satellites. Figure obtained from Liu et al. (2019). 

6 Data availability 

Global surface Rn retrieved from NOAA/AVHRR data from 1981 to 2019 are freely available at 685 

https://doi.org/10.5281/zenodo.5546316 for 1981-2019 (Xu et al., 2021). 

The AVH02C1 product data were downloaded from Level-1 and Atmosphere Archive & Distribution System Distributed 

Active Archive Center (https://ladsweb.modaps.eosdis.nasa.gov/, last access: 2 July 2021, NASA, 2021). CERES-SYN 

product was downloaded from CERES team (https://ceres.larc.nasa.gov/, last access: 2 July 2021, NASA, 2021). GLASS Rn 

product was provided by GLASS team at (http://www.glass.umd.edu/, last access: 2 July 2021, Beijing Normal University and 690 

University of Maryland, College Park, 2021). MERRA2 reanalysis was downloaded from the Global Modelling and 

Assimilation Office (https://gmao.gsfc.nasa.gov/, last access: 2 July 2021, NASA, 2021). The download links of ground-based 

measurements from different observational networks were referenced to Jiang et al. (2018). 

7 Conclusions and outlook 

A long-term (1981–2019) global daily surface Rn product with spatial resolution of 0.05° was generated from historical NOAA-695 

series AVHRR data using a RCNN-based PSME method. The specific steps employed were as follows: (1) selecting reliable 

sites from all sites based on ETC to generate the sample dataset; (2) training and independent testing of the proposed RCNN 

model; (3) evaluating the AVHRR Rn retrievals against in situ measurements and performing inter-comparisons with three 

other Rn products (GLASS, CERES-SYN, and MERRA2); and (4) generating and evaluating the long-term AVHRR Rn 

product. 700 

ETC was first applied to select reliable sites to prepare a sample dataset with better spatial representativeness at the AVHRR 

footprint scale (i.e., 5 km). In total, 262 sites were classified as reliable sites from a total of 523 sites and used as a sample 

https://doi.org/10.5281/zenodo.5546316
https://ceres.larc.nasa.gov/
http://www.glass.umd.edu/
https://gmao.gsfc.nasa.gov/
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dataset for the RCNN model. The proportions of the selected reliable sites representing cropland and grassland surfaces were 

highest (~66% and ~62%, respectively), while those representing ice/snow surface were lowest (~14%). The sample dataset 

from the 262 sites ensured that the trained RCNN model had both a good fitting accuracy for the reliable sites and global 705 

accuracy across all sites. 

A simple MLR model was used to examine the spatial adjacent effects on surface Rn estimation, and a spatial extent of 15 × 

15 pixels (75 × 75 km2) was then determined as the input size of the RCNN to provide sufficient spatial information. Based 

on 10-fold CV, the trained RCNN model achieved an R2 of 0.90, with an RMSE of 20.76 Wm-2 (25.93%), and a bias of -0.11 

Wm-2 (-0.14%); the corresponding independent validation values were 0.84, 26.77 Wm-2 (31.54%), and 1.16 Wm-2 (1.37%) at 710 

the reliable sites, respectively. These results demonstrate the overall ability of the RCNN model to accurately predict surface 

Rn. 

The results of an inter-comparison between the AVHRR Rn retrievals and three other products illustrated that our retrievals 

show a better accuracy against in situ measurements, with an R2 of 0.90, RMSE of 20.99 Wm-2 (26.18%), and bias of -0.04 

W/m2 (-0.05%) at the reliable sites, and an R2 of 0.85, RMSE of 26.51 Wm-2 (35.30%), and bias of 1.32 Wm-2 (1.76%) across 715 

all sites. At the same time, the AVHRR Rn retrievals show better performance for different observational networks and surface 

cover types, except for the snow/ice surface cover. Under different elevations and atmospheric conditions, the AVHRR Rn 

retrievals performed better than the GLASS Rn equivalent, especially in the presence of thick clouds and hazy atmospheric 

conditions because of the integration of spatially adjacent information into the inversion process in the RCNN model. In 

addition, the spatiotemporal variation of the AVHRR Rn retrievals is similar to that of the GLASS Rn values, demonstrating 720 

the ability of the RCNN model to generate a long-term global Rn product.  

The long-term global Rn dataset generated by the RCNN model displays high accuracy and reasonable spatiotemporal variation 

at the global scale, which is suited to many applications including, for example, studies to understand the radiation budget and 

global climate change. Besides, compared to current satellite-derived Rn products, e.g., CERES-SYN and GLASS (2000-

present), a more long record (1981-2019) of the AVHRR Rn dataset shows its value in climate change studies. However, 725 

further research is needed to solve some problems to further improve the data quality of the AVHRR Rn dataset. First, new 

algorithms and satellite data are needed to estimate surface Rn in the Polar Regions, such as MODIS data (Chen et al., 2020). 

Second, an effective data gap-filling method or multi-source data-fusion algorithm is required to fill the data gaps over land, 

especially during periods of satellite replacement work. Third, coupled with spatially adjacent information, real-time temporal 

information, or historical information should be incorporated to further improve the accuracy of the Rn retrievals.  730 

As a type of machine learning, deep learning involves using data-driven models to find potential relationships and patterns, 

and offers high adaptability to training data sample inputs. The predictive ability of a data-driven model completely depends 
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on the limitations of the training dataset and in the case of Rn, the ability of the model to accurately portray spatiotemporal 

dynamics in areas where the availability of training data is relatively poor, such as for AVHRR Rn retrievals for ice/snow-

covered surfaces. To address this problem, more physical knowledge is needed to fully utilize data-driven modeling to estimate 735 

surface Rn under different atmospheric and surface conditions. In particular, more attention should be paid to understanding 

inherent physical processes in addition to obtaining optimal estimation by coupling physical process models with the versatility 

of data-driven machine learning (Reichstein et al., 2019). 
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