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Abstract. As a key component of the Earth system, roots play a key role in linking Earth’s lithosphere, hydrosphere, 

biosphere, and atmosphere. Here we combine 10307 field measurements of forest root biomass worldwide with global 

observations of forest structure, climatic conditions, topography, land management and soil characteristics to derive a 

spatially explicit global high-resolution (~ 1km) root biomass dataset, including fine and coarse roots. In total, 142 ± 25 

(95% CI) Pg of live dry matter biomass is stored below-ground, representing a global average root:shoot biomass ratio of 35 

0.25 ± 0.10. Our estimations of total root biomass in tropical, temperate and boreal forests are 44-226% smaller than earlier 

studies (Jackson et al., 1997; Robinson, 2007; Saugier et al., 2001), and the total global forest root biomass is 32% smaller 

than a recent estimate (Spawn et al., 2020). The smaller estimation is attributable to the updated forest area, spatially explicit 

above-ground biomass density used to predict the patterns of root biomass, new root measurements and upscaling 

methodology. We show specifically that the root shoot allometry is one underlying driver that leads to methodological 40 

overestimation of root biomass in previous estimations. Raw datasets and global maps generated in this study are deposited 

at the open access repository Figshare 

(https://figshare.com/articles/Supporting_data_and_code_for_A_global_map_of_root_biomass_across_the_world_s_forests/

12199637) 

1 Introduction 45 

Roots act as a hub that connects complex feedbacks among biomes, soil, water, air, rocks and nutrients. Roots 

mediate nutrient and water uptake by plants, below-ground organic carbon decomposition, the flow of carbohydrates to 

mycorrhizae, species competition, soil stabilization and plant resistance to windfall(Warren et al., 2015). The global 

distribution of root biomass is related to how much photosynthates plants must invest below-ground to obtain water, nitrogen 

and phosphorus for sustaining photosynthesis, leaf area and growth. Root biomass and activity also control the land surface 50 

energy budget through plant transpiration(Wang et al., 2016; Warren et al., 2015). While Earth Observation data combined 

with field data enables the derivation of spatially explicit estimates of above-ground biomass with a spatial resolution of up 

to 30 meters over the whole globe(GlobalForestWatch, 2019; Santoro, 2018b), the global carbon stock and spatial details of 

the distribution of below-ground root biomass (fine + coarse) rely on sparse measurements and coarse extrapolation so far, 

therefore remaining highly uncertain. 55 

More than twenty years ago, Jackson et al, 1996, 1997 1,2 provided estimates of the average biomass density (weight 

per unit area) and vertical distribution of roots for 10 terrestrial biomes. Multiplying their average root biomass density with 

the area of each biome results in a global root biomass pool of 292 Pg, with forests accounting for ~68%. Saugier, et al. 

(2001) estimated global root biomass to be 320 Pg by multiplying biome-average root to shoot ratios (R:S) by shoot biomass 

density and the land area of each biome. Mokany, et al. (2006) argued that the use of mean R:S values at the biome scale is a 60 

source of error because root biomass measurements are performed at small scales, but root distributions are highly spatially 

heterogeneous and their size distribution spans several orders of magnitude, fine roots being particularly difficult to 

https://figshare.com/articles/Supporting_data_and_code_for_A_global_map_of_root_biomass_across_the_world_s_forests/12199637
https://figshare.com/articles/Supporting_data_and_code_for_A_global_map_of_root_biomass_across_the_world_s_forests/12199637
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sample(Jackson et al., 1996; Taylor et al., 2013). With updated R:S and broader vegetation classes, Mokany, et al. (2006) 

gave a higher global root biomass of 482 Pg. Robinson (2007) further suggested that R:S was underestimated by 60%, which 

translated into an even higher global root biomass of 540-560 Pg. These studies provided a first order estimation of the root 65 

biomass for different biomes, but not of its spatial details. Further, it is worth noting that estimations of the global total root 

biomass have increased with time, likely associated with improved methods in excavating roots that reduce under-sampling.   

  An alternative approach to estimate root biomass is through allometric scaling, dating back to West, Brown and 

Enquist (1997, 1999)6 7 and Enquist and Niklas (2002). The allometric scaling theory assumes that biological attributes scale 

with body mass, and in the case of roots, an allometric equation verified by data takes the form of 𝑅 ∝ 𝑆𝛽 where R is the root 70 

mass, S the shoot mass and 𝛽 a scaling exponent. In contrast to the studies listed above assuming the R:S ratio to be uniform, 

this equation implies that the R:S ratio varies with shoot size when β is not equal to one (Cairns et al., 1997; Enquist and 

Niklas, 2002; Jiang and Wang, 2017; McCarthy and Enquist, 2007; Niklas, 2005; Robinson, 2004; Zens and Webb, 2002) . 

Allometric equations also predict that smaller trees generally have a larger R:S with 𝛽 < 1 , which is well supported by 

measurement of trees of different sizes (Cairns et al., 1997; Jiang and Wang, 2017; Niklas, 2005; Robinson, 2004; Zens and 75 

Webb, 2002). The allometric equation approach was applied for various forest types, and the scaling exponent 𝛽  was 

observed to differ across sites(Yunjian Luo et al., 2018), species(Cheng and Niklas, 2007), age(Cairns et al., 1997), leaf 

characteristics(Luo et al., 2012), elevation(Moser et al., 2011), management status(Ledo et al., 2018), climatic conditions, 

such as temperature(Reich et al., 2014), soil moisture and climatic water deficit (Ledo et al., 2018), as well as soil nutrient 

content and texture(Jiang and Wang, 2017). Despite successful application of allometric equations for site- and species-80 

specific studies(Yunjian Luo et al., 2018), their use to predict global root biomass patterns appears to be limited and 

challenging.     

2 Methods  

2.1 Overview  

We use a new approach to upscale root biomass of trees at the global scale (Supplementary Figure 1) based on 85 

machine learning algorithms trained by a large dataset of in-situ measurements (n=10307) 14,30,31of root and shoot biomass 

for individual woody plants (see Methods: Field measurement, Supplementary Data), covering 465 species across 10 biomes 

defined by The Nature Conservancy(Olson and Dinerstein, 2002) (Supplementary Figure 2). We compared the allometric 

upscaling and tested three machine learning techniques (the random forest, the artificial neural networks and multiple 

adaptive regression splines), through a pool of 47 predictor variables that include shoot biomass and other vegetation, 90 

edaphic, topographic, anthropogenic and climatic variables (Supplementary Table 1). After comparing the results of all three 

machine learning techniques and the allometric upscaling, we chose the random forest model (RF) because it performed best 

on cross validation samples (see section Building predictive models below and Supplementary Table 8), and we only used 

the RF for subsequent mapping and analysis. Using this RF model, we mapped the root biomass of an average tree over an 

area of ~1km x1 km across the globe using as predictors gridded maps of shoot biomass (weight per area) (Santoro, 2018a), 95 

tree height(Simard et al., 2011), soil nitrogen(Shangguan et al., 2014), pH(Shangguan et al., 2014), bulk density(Shangguan 
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et al., 2014), clay content(Shangguan et al., 2014), sand content(Shangguan et al., 2014), base saturation(Shangguan et al., 

2014), cation exchange capacity(Shangguan et al., 2014), water vapor pressure(Fick and Hijmans, 2017), mean annual 

precipitation(Fick and Hijmans, 2017), mean annual temperature(Fick and Hijmans, 2017), aridity(Trabucco and Zomer, 

2019) and water table depth(Fan et al., 2013) (Supplementary Figures 10,11,12). Combining our map of root biomass per 100 

tree with the tree density (number of trees per area)(Crowther et al., 2015) at the global scale, we quantified the global forest 

root biomass.   

2.2 Field measurements  

Our dataset (available at our Figshare repository) was compiled from literature and existing forest biomass structure 

or allometry databases(Falster et al., 2015) (Ledo et al., 2018; Schepaschenko et al., 2018; Schepaschenko et al., 2017). We 105 

included studies and databases that reported georeferenced location, root biomass and shoot biomass. Note here we focus on 

studies that measured biomass of individual trees instead of stand level biomass. We included studies that measured biomass 

directly, instead of estimated indirectly via allometric equations. For example, Ref(Poorter et al., 2015) is not included due to 

lack of georeferenced location and Ref(Iversen et al., 2017) in not used as we also need measurements of other plant 

compartments like shoot biomass. Repeated entries from existing databases were removed. One of the databases(Falster et 110 

al., 2015) reported data on woody plants which also include shrub species. We kept the shrub data partly because the remote 

sensing products we used to generate our root map do not clearly separate trees from shrubs. Around 82% of the extracted 

entries also recorded plant height and management status. Height was identified as an important predictor in our model 

assessment, and entries were discarded when height was missing (18% of data). As woody plant age was reported in 19% of 

the entries only, the values of this variable was determined from another source of information, i.e. from a composite global 115 

map introduced in the next section. Species names were systematically reported, but biotic, climatic, topographic and soil 

information were missing for a substantial proportion of entries and values of these variables were thus extracted from 

independent observation-driven global maps as explained in the next section. Our final dataset includes biomass 

measurements collected in 494 different locations from 10307 individual plants, which cover 465 species across 10 biomes 

as defined by The Nature Conservancy(Olson and Dinerstein, 2002) (Supplementary Figure 2; Supplementary Data).  120 

2.3 Preparing predictor variables  

We used 47 predictors that broadly cover 5 categories: vegetative, edaphic, climatic, topographic and anthropogenic 

(Supplementary Table 1). These variables are chosen due to their relevance to root dynamics based on field studies and their 

availability at the global scale. Vegetative variables include shoot biomass, height, age, maximum rooting depth, biome class 

and species. Edaphic predictors cover soil bulk density, organic carbon, pH, sand content, clay content, total nitrogen, total 125 

phosphorus, Bray phosphorus, total potassium, exchangeable aluminium, cation exchange capacity, base saturation (BS), soil 

moisture and water table depth (WT). Climatic predictors are mean annual temperature (MAT), mean annual precipitation 

(MAP), the aridity index that represents the ratio between precipitation and the reference evapotranspiration, solar radiation, 

potential evapotranspiration (PET), vapor pressure, cumulative water deficit (CWD=PET - MAP), wind speed, and mean 

diurnal range of temperature (BIO2, BIO is the abbreviation for WorldClim bioclimatic indicators), isothermality 130 
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(BIO2/BIO7) (BIO3), temperature seasonality (BIO4), max temperature of warmest month (BIO5), min temperature of 

coldest month (BIO6), temperature annual range (BIO7), mean temperature of wettest quarter (BIO8), mean temperature of 

driest quarter (BIO9), mean temperature of warmest quarter (BIO10), mean temperature of coldest quarter (BIO11), 

precipitation of wettest month (BIO13), precipitation of driest month (BIO14), precipitation seasonality (BIO15), 

precipitation of wettest quarter (BIO16), precipitation of driest quarter (BIO17), precipitation of warmest quarter (BIO18), 135 

precipitation of coldest quarter (BIO19). The topographic variable is elevation. We did not have the slope and aspect as 

topographic factors after a preliminary test which showed minor effect of elevation from our database. We take the 

management status (managed or not) as the anthropogenic predictor. All references are given in Supplementary Table 1. For 

each variable, we collected multiple datasets whenever possible only for uncertainty quantification. For the “central” 

estimate, we stick to only one set of these predictors considering the quality and coverage of the databases. We favoured the 140 

database that is known to have higher quality data or covered more predictors that are relevant to our study for consistency.       

As in-situ field measurements of above-ground biomass (AGB) do not offer a full global coverage, gridded shoot 

biomass data were derived from satellite AGB products to predict root biomass at the global scale with a 1km by 1 km 

spatial resolution. The gridded global shoot biomass dataset used in our study has been extensively calibrated with in-situ 

observations and is currently the most reliable source of information on shoot biomass offering a global coverage(Santoro, 145 

2018a; Spawn et al., 2020). To derive the shoot or  AGB per tree (in unit of weight per tree) to generate spatially explicit 

global root biomass, we combined the GlobBiomass-AGB satellite data product(Santoro, 2018a) ( in unit of weight per unit 

area) with a tree density map (number of trees per unit area)(Crowther et al., 2015). The GlobBiomass dataset was based on 

multiple remote sensing products (radar, optical, LiDAR) and a large pool of in-situ observations of forest variables(Santoro 

et al., 2015; Santoro, 2018b). The original GlobBiomass-AGB map was generated at 100 m spatial resolution; for this study, 150 

the map was averaged into a 1 km pixel by considering only those pixels that were labeled as forest (Santoro, 2018b). A 

pixel was labeled as forest when the tree canopy density was larger than 15% according to Hansen et al. (2013)’s dataset 

(hereafter Hansen2013) averaged at 100 m. The 1-km resolution global tree density map was constructed through upscaling 

429,775 ground-based tree density measurements with a predictive regression model for forests in each biome(Crowther et 

al., 2015). The forest canopy height map took advantage of the Geoscience Laser Altimeter System (GLAS) aboard ICESat 155 

(Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011). Forest definitions are slightly different among these three 

maps. Forest area of the tree density map was based on a global consensus land cover dataset that merged four land cover 

products (Tuanmu and Jetz, 2014).Crowther et al. (2015) showed the total tree count from tree density map based on the 

Tuanmu and Jetz (2014) land cover is the same as from the Hansen2013 land cover product. The canopy height map used the 

Globcover land cover map (Hagolle et al., 2005) as reference to define forest land. We approximated the missing values in 160 

tree density and height (due to mismatches in forest cover) by the mean of a 5x5 window that is centered on the 

corresponding pixel. We quantified the potential impact of mismatches in forest definition by looking into two different 

thresholds: 0% and 30%.       

We merged several regional age maps to generate a global forest age map. The base age map was derived from 
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biomass through age-biomass curve similarly as conducted in tropical regions in ref.(Poulter, 2019).This age map does not 165 

cover the northern region beyond 35 N. We filled the missing northern region with a North American age map (Pan et al., 

2011) and a second age map covering China (Zhang et al., 2017). The North American age map represents the year around 

2003 and as a coarse approximation, we added 7 to represent the year 2010. The China age map was derived for the period 

2009-2013. We took it to approximate age values in China around 2010. Remaining missing pixels were further filled with 

the age map derived from MODIS disturbance observations. For the final step, we filled the remaining pixels with the GFAD 170 

V1.1 age map(Poulter, 2019). GFAD V1.1 has 15 age classes and 4 plant functional types (PFTs). GFAD V1.1 represents 

the 2000-2010 era. As a coarse approximation, we choose the middle value of each age class and estimated the age as the 

average among different PFTs. 

Detailed information of all ancillary variables is listed in Supplementary Table 1. To stay coherent, we re-gridded 

each map to a common 1 km x 1 km grid through the nearest neighbourhood method.   175 

2.4 Building predictive models   

We investigated the performance of the allometric scaling and three non-parametric models: the random forest 

(RF), the artificial neural networks (ANN) and multiple adaptive regression splines (MARS). Allometric upscaling relates 

root biomass to shoot biomass in the form of 𝑅 ∝ 𝑆𝛽. We assume that one universal allometric equation governs (Enquist 

and Niklas, 2002) biomass partitioning across species without stratifying the data by species. RF is an ensemble machine 180 

learning method that builds a number of decision trees through training samples(Breiman, 2001). A decision tree is a flow-

chart-like structure, where each internal (non-leaf) node denotes a binary test on a predictor variable, each branch represents 

the outcome of a test, and each leaf (or terminal) node holds a predicted target variable. With a combination of learning trees 

(models), RF generally increases the overall prediction performance and reduces over-fitting. ANN computes through an 

interconnected group of nodes, inspired by a simplification of neurons in a brain. MARS is a non-parametric regression 185 

method that builds multiple linear regression models across a range of predictors.  

Tree shoot biomass from the in-situ observation data spans a wider range than shoot biomass per plant derived from 

global maps (1x10-7 to 8800 vs. 7.9x10-5 to 933 kg/plant). To reduce potential mapping errors, we selected training samples 

with shoot biomass between 5x10-5 and 1000 kg/plant. The medians and means of shoot biomass, root biomass and R:S from 

the selected training samples are similar to those from the entire database. Also, to reduce the potential impact of outliers, we 190 

analyzed samples with R:S falling between the 1st and 99th percentiles, which consists of 9589 samples with R:S ranging 

from 0.05 to 2.47 and a mean of 0.47 and a median of 0.36. Sample filtering slightly deteriorated model performance and 

had minor impact on the final global root biomass prediction (145 from whole samples vs.142 Pg from filtered data). We 

chose root biomass as our target variable instead of R:S because big and small trees contribute equally to R:S while big trees 

are relatively more important in biomass quantification. In our observation database, we have more samples being small 195 

woody plants (Supplementary Figure 6). We furthermore split the in-situ measured shoot biomass into three groups, namely 

measurements with shoot biomass smaller than 0.1, between 0.1 and 10, and larger than 10 kg/plant, and trained a specific 

model for each class. The rationale behind this splitting is: (1), to remove the bias of small plants from the distribution of in-
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situ measured woody shoot biomass (Supplementary Figure 6); (2), to account for the shift of root shoot allometry with tree 

size(Poorter et al., 2015) (Ledo et al., 2018; Zens and Webb, 2002); (3), to improve the performance of independent 200 

validation through numerous combinations of splitting trials; (4), and because tests through weighting samples or resampling 

samples (e.g., over-sampling using Synthetic Minority Over-sampling Technique) showed no better performance.    

Model performances were assessed by 4-fold cross-validation using two criteria: the mean absolute error (MAE) 

and the R-squared value (R2). MAE quantifies the overall error while R2 estimates the proportion of variance in root biomass 

that is captured by the predictive model. We favoured the model with a smallest MAE and a highest R2. For models with 205 

comparable MAE and R2, we favoured the model with the minimum number of predictors. For non-parametric models, 

starting from a model with all 47 predictors, we sequentially excluded predictors that did not improve model performance 

one after another. The order of removing predictors was random. After a combination of trials, the best model was from RF 

(Supplementary Table 8) and the final set of predictors included shoot biomass, height, soil nitrogen, pH, bulk density, clay 

content, sand content, base saturation, cation exchange capacity, vapor pressure, mean annual precipitation, mean annual 210 

temperature, aridity and water table depth. Note the maximum rooting depth had a minor impact on model performance and 

was not selected in the final model. The depth to which roots inhabit varies among species and environment. Our model 

predictions are therefore not specific to a certain soil depth.  

2.5 Generation of the global root biomass map  

Over an area of 1km x 1km, we assumed a tree with an average shoot biomass follows the RF model trained above. 215 

Building upon a large set of samples with each field measurement being an outcome of complex local interactions (including 

within-vegetation competition), we implicitly accounted for some sub-pixel variability (e.g., resource competition and 

responses to environmental conditions) on root biomass. Our RF model was built upon individual woody trees. We 

combined the RF model with global maps of selected predictor variables to produce the map of root biomass for an average 

woody tree which has a unit of weight per tree. This map was multiplied by tree density (number of woody trees per area) 220 

(Crowther et al., 2015) at 1-km resolution to obtain the final root biomass map with a unit of weight per area (Supplementary 

Figure 1).   

2.6 Uncertainty quantification   

We estimated the overall uncertainty of the root biomass estimates through quantifying errors caused by predicting 

root biomass at the 1-km resolution (ƞpred) and converting root biomass per tree to root biomass per unit area ( ƞcon). We 225 

quantified the prediction uncertainty through an ensemble of predictions. We collected 8 additional global predictor datasets 

(3 shoot biomass, 2 soil and 3 climate datasets) (Supplementary Table 2) and carried out 8x4 (4 folds) sets of additional 

predictions replacing the predictors by each of these additional data maps. We calculated the standard deviation among 36 

predictions for each pixel (Supplementary Figure 4a). Converting root biomass from per tree to per area is through the tree 

density(Crowther et al., 2015). We assumed the coefficient of variation (CV, i.e., the ratio of the standard deviation to the 230 

mean) in tree density mapping caused the same relative uncertainty in our per unit area root biomass. CV in tree density 

mapping at the biome scale was derived from Ref(Crowther et al., 2015) through dividing uncertainties in quantifying total 
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tree numbers by the total tree numbers. ƞcon in terms of standard deviation is therefore equal to the product of CV and the 

mean root biomass at each pixel (Supplementary Figure 4b). At last we propagated these two sources of uncertainty 

assuming these errors were random and independent. Note that we did not account for uncertainties in in-situ root biomass 235 

measurements used in training the RF model. The overall uncertainty (standard deviation) at the pixel level was calculated 

through, 

ƞ𝑟𝑜𝑜𝑡 = √ƞ𝑝𝑟𝑒𝑑
2 + ƞ𝑐𝑜𝑛

2                (1) 

At the biome and global scales, we obtained total root biomass for each of the 36 predictions and estimated the standard 

deviations of the total root biomass. ƞcon was estimated by multiplying CV by biome or global-level root biomass. We 240 

propagated these two sources of uncertainty through Equation 1. Note that the semivariogram of the random forest prediction 

errors do not show a clear autocorrelation pattern (Supplementary Figure 10).  

  

2.7 Relative importance of predictor variables  

The impact of predictors on predicting R:S was estimated through the Spearman's rank-order correlation at both the 245 

global and biome scales. We log-transformed the R:S and shoot biomass before standardizing these datasets. Partial 

dependence plots(Hastie et al., 2009) show the marginal effect that one predictor has on root biomass from a machine 

learning model, and serves as a supplement to the Spearman correlation.   

3 Results  

We estimated a global total root biomass of 142±25 (95% CI) Pg (see Methods for uncertainty estimation and 250 

Supplementary Figures 3, 4) for forests when forest is defined as all areas with tree cover larger than 15% from the Hansen 

et al. (2013) tree cover map. Note here we reported values in unit of Pg of dry biomass instead of Pg C. The corresponding 

global weighted mean R:S is 0.25 ± 0.10. The root biomass spatial distribution generally follows the pattern of shoot 

biomass, but there are significant local and regional deviations as shown by Figure 1. 51% of the global tree root biomass 

comes from tropical moist forest, 14% from boreal forest, 12% from temperate broadleaf forest and 10% from woody plants 255 

in tropical and subtropical grasslands, savanna and shrublands (Supplementary Table 3). Given our use of a tree cover 

threshold of 15% at 100m resolution, our estimate ignores the roots of isolated woody plants present in arid or cold regions 

(Staver et al., 2011), as well as heterogeneous (e.g. urban or agriculture) landscapes and is possibly an under-estimate. Total 

root biomass decreases from 151 to 134 Pg when the canopy cover threshold used to define forest land is increased from 0% 

to 30%. The root biomass density per unit of forest area is highest in tropical moist forest, followed by temperate coniferous 260 

and Mediterranean forest (Figure 1, Supplementary Table 3). Cross validation showed a good match between predictions 

from our RF model and in-situ observations (Figures 2e, all data; Supplementary Figure 7, for each biome; Supplementary 

Figure 8, for three tree size classes; Supplementary Figure 9, for each continent), with an overall coefficient of determination 

R2 of 0.85, a mean absolute error (MAE) of 2.18 kg and a median R:S similar to validation samples (0.35 from in-situ 

observation vs. 0.38 from prediction). RF shows better performance than the other two machine learning algorithms and the 265 
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allometric fitting, as shown in Supplementary Table 8. By continents, the performance of RF is worst in Africa (R2 = 0.6; 

MAE = 44 kg) partly due to limited observations (Supplementary Figure 9). Root biomass of tropical, temperate and boreal 

forests together is 44-226% lower compared to earlier studies (Table 1, Supplementary Table 5, see Supplementary 

Information Comparison with published results). 

 270 

Figure 1. Global maps of forest root biomass generated through the random forest model (a), shoot biomass from 

GlobBiomass-AGB(Santoro, 2018b) (b) and R:S (c). Forest is defined as an area with canopy cover > 15% from the Hansen 

et al. (2013) tree cover map.   

 

We then analysed the dominant factors explaining spatial variations of root biomass and R:S (see Methods). 275 



10 

 

Broadly speaking, locations with small trees, low precipitation, strong aridity, deep water table depth, high acidity, low bulk 

density, low base saturation and low cation exchange capacity are more likely to have higher fractional root biomass (Figure 

3). In line with the allometric theory, shoot biomass emerged as the most important predictor of R:S and root biomass, as 

given by the Spearman correlation analysis shown in Figure 3, and partial importance plots (Supplementary Figures 11, 12, 

13). Water related variables (precipitation, water table depth, aridity and vapor pressure) also emerged as important 280 

predictors in explaining R:S patterns (Figure 3)(Ledo et al., 2018), with trees and woody plants in dry regions generally 

having higher R:S (Supplementary Tables 3, 4), and with stronger dependence on precipitation especially when precipitation 

is low and on water table depth when the water table is deep. Temperature is slightly negatively correlated with R:S at the 

global scale, in line with Reich et al. (2014). However, the relationship between temperature and below-ground biomass is 

not consistent among biomes (Figure 3) and biomass size groups (Supplementary Figures 11, 12, 13).  285 

The relationship between total soil nitrogen and root biomass is negative when soil nitrogen content is below 0.1-

0.2 % (Supplementary Figure 11, 12, 13). Root biomass and R:S generally increases with soil alkalinity (Figure 3, 

Supplementary Figures 11, 12, 13). Low pH is toxic to biological activities and roots, especially as fine roots are sensitive to 

soil acidification, as revealed by a recent meta-analysis(Cheng Meng et al., 2019). Our results also indicate overall positive 

correlations between CEC, BS and R:S, but the processes that may account for these correlations are less clear from 290 

literature. Age has been shown to be important for R:S(Schepaschenko et al., 2018). How age regulates R:S remains elusive, 

with studies showing both positive(Waring and Powers, 2017) and slightly negative(Mokany et al., 2006) relationship 

between R:S and age. Including forest age (see Methods: Preparing predictor variables) as a predictor only marginally 

improved our model prediction (see Supplementary Information for details). It is likely that shoot biomass partially accounts 

for age information and the quality of the global forest age data might also affect the power of this variable in improving root 295 

biomass predictions. 

 

Table 1. Comparison between studies quantifying root biomass in tropical, temperate and boreal forests.  

 This 

studyS1 

This 

studyS2 

Jackson(Jackso

n et al., 1997) 

Saugier(Saugier et 

al., 2001) 

Robinson(Robin

son, 2007) 

Spawn (Spawn et al., 

2020) 

This study S3 

Method Machine 

learning 

Machine 

learning 

Biome average 

root biomass 

density 

Biome average 

R:S, shoot 

biomass density 

Biome average 

R:S, shoot 

biomass density 

Relationships between 

root/total biomass and 

temperature  

Allometric 

equations 

Tropical (Tr, Pg) 92 76 114 147 246   

Temperate(Te, Pg) 26 25 51 59 98   

Boreal (Bo, Pg) 21 20 35 30 50   

Tr + Te + Bo (Pg) 139 121 200 236 394   

Globe (Pg) 142 142    188# 155-210 

RDS1
* 0%  44% 70% 183% 32%  

RDS2
&  0% 65% 95% 226% 32%  

S1, Tropical moist forest (Biome 1), tropical dry forest (Biome 6), tropical/subtropical coniferous forest (Biome 11) and 
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forest in tropical/subtropical grasslands/savannas and shrublands (Biome 3) are aggregated to represent tropical systems (Tr). 300 

Temperate broadleaf/mixed forest (Biome 4), temperate coniferous forest (Biome 5) and forest in temperate 

grasslands/savannas and shrublands (Biome 8) are merged together as temperate systems (Te). Boreal forest (Biome 2) and 

woody plants in tundra region (Biome 7) are aggregated as boreal forest (Bo). Biome classification is from The Nature 

Conservancy(Olson and Dinerstein, 2002) and is shown in Supplementary Figure 2. 

S2, Tropical systems (Tr): Biomes 1,6,11; Temperate systems (Te): Biomes 4,5; Boreal systems (Bo): Biome 2. 305 

S3, Estimation based on allometric equations and the global above-ground biomass dataset from ref(Santoro, 2018b). See 

Supplementary Table 7 for details.  

# This value is converted from 94 Pg C to 188 Pg biomass assuming a 50% carbon content of tree biomass.   

* RDS1, the relative difference of Tr + Te + Bo between this study (S1) and previous quantifications. RDS1 = (previous study – 

this study)/this study x 100%. For example, in the column with the head Jackson, RDS1 =  (200-139)/139*100% = 44%. 310 

& RDS2, the same as RDS1, but with the S2 definition of tropical, temperate and boreal systems.     
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Figure 2. Root biomass and root shoot ratio (R:S).  (a) and (b) show as violin plots the distribution of root and shoot biomass 

(in unit of kg/plant) and R:S ratios in the raw data used for upscaling.  (c) and (d) are the distributions of model-predicted 315 

root biomass from this study, of above-ground biomass used for the prediction, and of modelled R:S ratios at the global and 

biome scales. (e) is a heat plot of observed vs. predicted root biomass in kg of root per individual woody plant (see 

Supplementary Figures 7, 8, 9 for cross-validation at biome, tree size class and continental scales). (f) shows the mean 

(purple) and median (grey) R:S as a function of shoot biomass from observations. A shift of the shoot biomass towards a 

larger size ((a), (c)) results in a smaller predicted mean R:S at the global scale ((b),(d)) (see Supplementary Table 4 for exact 320 

values) as the mean R:S is size dependent. R2 is the coefficient of determination, MAE is the mean absolute error and N is the 

number of samples. TropMoist: tropical moist forest; Boreal: boreal forest/taiga; TempBroad: temperate broadleaf and 

mixed forest; TempConif: temperate coniferous forest; Mediterran: Mediterranean forests, woodlands and scrub; TropConif: 
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tropical and subtropical coniferous forest; and Mangrove forest: mangrove forest. Note that the scales of y-axis are different 

between (a) and (c), (b) and (d). Model training and prediction were conducted on filtered data with R:S falling between the 325 

1st and 99th percentiles and shoot biomass matching the range derived from GlobBiomass-AGB(Santoro, 2018b) to reduce 

impacts from outliers.  

 

 

  330 

 

Figure 3. Spearman rank correlations between predictor variables and log-transferred R:S. Spearman coefficients are shown 

at both the global and biome scales for LogAGB: the logarithm of shoot biomass with base 10; HEIGHT: plant height; 

MAT: mean annual temperature; MAP: mean annual precipitation; WT: water table depth; ARIDITY: the aridity index; 

VAPR: water vapor pressure; N: soil nitrogen content; BD: soil bulk density; BS: soil base saturation; CEC, soil cation 335 

exchange capacity; CLAY: soil clay content; SAND: soil sand content; and pH: soil pH. From left to right, biomes are 

ordered by decreasing forest areas (Supplementary Figure 2).  

4 Discussion  
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Our lower estimation of root biomass compared to earlier studies is attributable to differences in forest area (Supplementary 

Table 5), above-ground biomass density (Supplementary Table 5), root biomass measurement and upscaling methodology. 340 

For example, the forest area in temperate zones used in Jackson et al. (1997) was about one third higher than in this study. 

Using the root biomass density (Supplementary Table 5) and estimation method from Jackson et al. (1997), but using the 

updated forest area map from this study, we estimated total root biomass of tropical, temperate and boreal forests to be 147 

Pg (or 184 Pg if sparse forests in tropical/subtropical/temperate grasslands/savannas and shrublands and tundra region are 

accounted, S1 biome definition in Table 1). This value is smaller than the 200 Pg from Jackson et al. (1997), but still larger 345 

than the 121 Pg (or 139 Pg ) (Table 1) from our machine learning approach. Our lower values of root biomass compared to 

Saugier et al. (2001), Mokany et al. (2006) and Robinson (2007) are caused mainly by our lower above-ground biomass 

density and R:S (Supplementary Table 5). Shoot or above-ground biomass density (AGB) of tropical zones is 70% lower in 

our study than in Robinson (2007) who used sparse plot data collected more than a decade ago  (Supplementary Table 5, 

case S2), and this lower AGB explains 27-46% of our lower root biomass (Supplementary Tables 5, 6). On the other hand, 350 

lower biome average R:S explains 41-48% of our underestimation compared to Robinson (2007). To elucidate this 

difference, we calculated weighted biome average R:S ratios through dividing total biome-level shoot biomass by root 

biomass (i.e., weighted mean R:S). These weighted mean R:S, ranging between 0.19 and 0.31 across biomes (Supplementary 

Table 3), are generally smaller than the R:S values reported in previous studies, which were based on average ratios obtained 

from sparser data (Supplementary Table 5). Note that the arithmetic means R:S (without weighting by biomass) from woody 355 

plants located in tropical, temperate and boreal zones (Supplementary Table 4) from our database are close to those from 

Robinson (2007) (Supplementary Table 5). And our predicted patterns of relatively large R:S in regions such as dry forests, 

savannas and boreal tundra woodlands (Figure 1c) are in line with data compiled from Mokany et al. (2006) and the 2019 

IPCC refinement (IPCC2019, 2019). Spawn et al. (2020) estimated root biomass from shoot biomass and the correlation 

between root/total biomass and temperature. Among previous studies, the recent study from Spawn et al. (2020) shows the 360 

smallest difference from our study. After accounting for sparse forests, the 32% smaller estimation from our study is likely 

linked to differences in the definition of forests and upscaling methodology.  

The common practice of estimating root biomass through an average R:S without considering the spatial variability 

of biomass and this ratio4 is a source of systematic error, leading to overestimating the global root biomass for two reasons. 

Firstly, upscaling ratios through arithmetic averages (possibly weighted by the number of trees or area, but not accounting 365 

for the fine-grained distribution of biomass) systematically overestimates the true mean R:S  because R:S is a convex 

negative function of S given by 𝑅: 𝑆 ∝ 𝑆𝛽−1 with 𝛽 taking typical values of about 0.9 (Mokany et al., 2006; West et al., 

1997, 1999) (see also Supplementary Information: Arithmetic mean R:S section). This explains why high-resolution S data 

used to diagnose weighted mean R:S ratios in our approach give generally smaller values than using arithmetic means across 

grid cells at the biome level (Weighted R:S Ratio in Supplementary Table 3 vs. Mean (Gridded) in Supplementary Table 4). 370 

Multiplying this biome-level arithmetic mean R:S by the average biome-level shoot biomass (Supplementary Table 3) 

yielded a global forest root biomass of 155 Pg, larger than 142 Pg. Secondly, available measurements tend to sample more 
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small woody plants than big trees compared to real world distributions, because small plants are easier to excavate for 

measuring roots (see Figure 2a, 2c) but smaller plants tend to have larger R:S (Figure 2e, see also Refs(Enquist and Niklas, 

2002) (Zens and Webb, 2002)). This sampling bias shifts the R:S towards larger values. If we use the biome-level mean R:S 375 

from our in-situ database (Mean (Obs) in Supplementary Table 4), multiplying the shoot biomass (Supplementary Table 3) 

yielded a global value of 233 Pg, larger than using the mean R:S across grid cells through RF (155 Pg). Our RF approach 

uses in-situ data for training but in the upscaling, it accounts for realistic distributions of plant size (Supplementary Figure 5; 

Supplementary Table 4). We further verified that our upscaled R:S ratios are robust to sub-sampling the training data in 

observed distributions, so that the bias of training data towards small plants does not translate into a bias of upscaled results 380 

(see Method, Supplementary Figure 8). 

The upscaling approach using allometric equations should also tend to overestimate (see Supplementary 

Information: Allometric upscaling section) the global root biomass due to the curvature of these allometric functions(Enquist 

and Niklas, 2002; Zens and Webb, 2002). The global forest root biomass ranges between 154 – 210 Pg when root biomass 

was upscaled through different allometric equations collected from literature and fitted to our database (Supplementary 385 

Table 7), generally larger than from the RF mapping. The global root biomass is likely to be smaller than when applying the 

allometric equation to the spatial average of shoot biomass (Supplementary Figures 14,15,16,17). Thus, future in-situ 

characterization of the distribution of tree sizes across the world’s forests (see Supplementary Information: Allometric 

upscaling section) would greatly improve root biomass quantification. Note that how well our global estimate reflects the 

real root biomass is conditioned upon the accuracy of in-situ root measurement database used to train our RF model. Under-390 

sampling is a common issue in many root studies due the fractal distribution of root systems in soils and the difficulty of 

implementing an efficient sampling strategy(Taylor et al., 2013), especially for large trees. We did not quantify the 

uncertainty of our estimates associated with in-situ root measurements due to lack of reliable information.        

An accurate spatially explicit global map of root biomass helps to improve our understanding of the Earth system 

dynamics by facilitating fundamental studies on resource allocation, carbon storage, plant water uptake, nutrient acquisition 395 

and other aspects of biogeochemical cycles. For example, the close correlation (correlation coefficient: 0.8) between root 

biomass and rooting depth(Fan et al., 2017) at the global scale and the importance of roots for plant water uptake and 

transpiration reflect close interactions between vegetation and hydrological cycles. The quest for drivers that affect allocation 

and consumption of photosynthetic production is a major focus of comparative plant ecology and evolution, as well as the 

basis of plant life history, ecological dynamics and global changes(McCarthy and Enquist, 2007). Turnover time and 400 

allocation are two key aspects that contribute to large uncertainties in current terrestrial biosphere model predictions(Bloom 

et al., 2016; Friend et al., 2014). Our root biomass map does not provide data on turnover or allocation, but an outcome on 

their aggregated effects. Future studies combining the root biomass map with upscaled root turnover data could shed light on 

the allocation puzzle. The growth of the fast turnover part of roots, mostly fine roots, and leaves are highly linked. If we 

assume an annual turnover of leaves and fine roots, a preliminary estimation of average forest fine root biomass (from leaf 405 

biomass) reaches 6.7-7.7 Pg (see Supplementary Information: Preliminary estimation of fine root biomass). Despite being a 
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small portion of total plant biomass and highly uncertain, fine roots are temporally variable and functionally critical in 

ecosystem dynamics. Future studies on global distribution and temporal dynamics of fine roots are valuable. Considering 

specific biomes, tropical savannas would benefit from better root biomass estimation due to its large land area, and in 

tropical dry forests, field measurements of root and shoot biomass are needed to refine root biomass quantifications.   410 
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