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Abstract. Water clarity serves as a sensitive tool for understanding the spatial pattern and historical trend in lakes trophic 15 

status. Despite the wide availability of remotely-sensed data, this metric has not been fully explored for long-term 

environmental monitoring. To this end, we utilized Landsat top of atmosphere reflectance products within the Google Earth 

Engine in the period 1984-2018 to retrieve the average SDD for each lake in each year. Three Secchi disk depth (SDD) 

datasets were used for model calibration and validation from different field campaigns mainly conducted during 2004-2018. 

The red/blue band ratio algorithm was applied to map SDD for lakes (> 0.01 km²) based on the first SDD dataset, where R2 = 20 

0.79, rRMSE = 61.9%. The other two datasets were used to validate the temporal transferability of the SDD estimation 

model, which confirmed the stable performance of the model. The spatiotemporal dynamics of SDD were analysed at the 

five lake regions and individual lake scales, and the average, changing trend, lake number and area, and spatial distribution 

of lake SDDs across China were presented. In 2018, we found the number of lakes with SDD < 2 m accounted for the largest 

proportion (80.93%) of the total lakes, but the total area of lakes with SDD of <0.5 m and > 4 m were the largest, both 25 

accounting for about 24.00% of the total lakes, respectively. During 1984-2018, lakes in the Tibetan-Qinghai Plateau region 

(TQR) had the clearest water with an average value of 3.32±0.38 m, while that in the Northeastern region (NLR) exhibited 

the lowest SDD (mean: 0.60±0.09 m). Among the 10,814 lakes with SDD results more than 10 years, 55.42% and 3.49% of 

lakes experienced significant increasing and decreasing trends, respectively. At the five lake regions, except for the Inner 

Mongolia-Xinjiang region (MXR), more than half of the total lakes in every other region exhibited significant increasing 30 

trends. In the Eastern region (ELR), NLR and Yungui Plateau region (YGR), almost more than 50% of the lakes that 

displayed increase or decrease in SDD were mainly distributed in the area range of 0.01-1 km2, whereas that in the TQR and 

MXR were primarily concentrated in large lakes (> 10 km2). Spatially, lakes located in the plateau regions generally 
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exhibited higher SDD than those situated in the flat plain regions. The dataset can now be accessed through the website of 

the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn): DOI: 10.11888/Hydro.tpdc.271571. 35 

1 Introduction 

Lakes and reservoirs are important aquatic habitats and serve as freshwater water sources for drinking, industrial and 

agricultural uses (Pekel et al., 2016; Tranvik et al., 2009; Wetzel, 2001). More than 26,000 lakes (with area > 0.01 km²) and 

78,000 reservoirs are distributed across China (Song et al., 2018), providing multiple ecosystem services (Feng et al., 2019b; 

Lehner and Doll, 2004; Tranvik et al., 2009; Yang and Lu, 2014). Over the last four decades, China has made considerable 40 

achievements with respect to socio-economic development but has also faced increasing water pollution challenges due to, 

among other contributing factors, agricultural nonpoint pollution, wastewater discharge, urban expansion, and increased 

water consumption (Han et al., 2016; Qin et al., 2010; Tong et al., 2017). Eutrophication and algal blooms proliferation are 

the clearest manifestations of these water quality problems, and major efforts have been made (afforestation, conversion of 

cropland to grassland or wetland) to mitigate these impacts and restore the ecological integrity of inland water systems 45 

(Huang et al., 2016; Ma et al., 2020; Tong et al., 2020).  

Across the country, the number of stations dedicated to the monitoring of water quality in lakes (59) and reservoirs (52) is 

very limited in comparison to the national inventory of lakes and reservoirs (SOEE, 2018). Water resource managers in 

China clearly need better assessment tools to monitor inland water quality (Rosenzweig et al., 2011). Commonly expressed 

as Secchi disk depth (SDD) (Carlson, 1977), water clarity provides both a practical and comprehensive measure of the 50 

trophic state of aquatic ecosystems (Olmanson et al., 2008; Richardson et al., 2010). However, traditional SDD 

measurements are limited in terms of their suitability for monitoring large water bodies exhibiting strong spatiotemporal 

dynamics (Kloiber et al., 2002; Song et al., 2020). Although a Secchi disk apparatus is easy to operate in the field, water 

clarity monitoring in lakes or reservoirs (herein lakes) located in remote areas could be nearly impossible without aquatic 

vehicles and may not yield data with sufficient spatial and temporal frequency necessary for trend analysis (Kloiber et al., 55 

2002; Olmanson et al., 2008).  

The abundance of optically-active constituents (OACs; phytoplankton, non-algal particles and CDOM) is related to the 

trophic status of aquatic ecosystems, and also contributes to water clarity and water surface reflectance which can be 

captured by space-borne sensors (Gordon et al., 1983; Lee et al., 2015). Remote sensing has been widely used for monitoring 

the spatiotemporal dynamics of SDD at regional and national scales. Available methods for SDD estimation using remote 60 

sensing data can be grouped into three categories: analytical, semi-analytical, and empirical algorithms (Doron et al., 2007; 

Lee et al., 2015; Liu et al., 2020b; McCullough et al., 2013; Olmanson et al., 2008; Olmanson et al., 2011). The first two 

methods are difficult to apply to large-scale studies (provincial and national scales) due to the complex theoretical models 

and parameterization processes, and expensive equipment required (Cao et al., 2017; Giardino et al., 2007). The last group of 
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methods is widely used to retrieve SDD at multiple scales due to its simplicity and operability (Duan et al., 2009; Feng et al., 65 

2019a; McCullough et al., 2012; Olmanson et al., 2011; Shen et al., 2020).  

In the past, we faced the challenge of how to handle and analyse big data at national or global scales, like remote sensing 

datasets from different satellites. Since 2010, Google has launched the big geo data platform based on cloud computing, 

named Google Earth Engine (GEE), which is time-saving for users to do some scientific researches online (such as 

vegetation, agriculture, hydrology, land cover and other applications) without downloading these satellite images (Amani et 70 

al., 2020). The GEE platform mainly comprises datasets of remote sensing, geophysics and meteorology. The remote sensing 

datasets contain Landsat (1972-present), Moderate Resolution Imaging Spectrometer (MODIS; 2000-present) and Sentinel 

(2014-present) (https://code.earthengine.google.com/). Remote sensing images are selectively used to estimate SDD for 

specific regions according to their spatial and temporal resolutions, among which the Landsat images can not only be used to 

examine the long-term (3-4 decades) spatiotemporal variation of SDD but also monitor lakes ranging from the small to the 75 

large with its higher spatial resolution (30 m). Therefore, the GEE platform is an optimal choice to quickly map SDD long 

time-series dynamics based on Landsat observation across China. 

 In recent years, a few studies have examined the spatiotemporal dynamics of SDD in lakes across China, but they mainly 

focused on the large lakes and reservoirs (area >10 km2) (Liu et al. 2020a; Wang et al. 2020a; Zhang et al. 2021). Smaller 

lakes (area < 10 km2) are widely distributed across the country, but our understanding of their ecological status remains 80 

limited. For example, Liu et al. (2020a) used an empirical model and the MODIS red and green bands (2000-2018) within 

GEE to study SDD variation in 412 large lakes (area > 20 km2) across China. Wang et al. (2020a) applied water color 

parameters (Forel-Ule Index and hue angle) to MODIS data (2000-2017) and obtained SDD data for 153 lakes (> 25 km2) 

across China. Zhang et al. (2021) built a simple power function model based on Landsat red band (2016-2018) to 

investigate the spatial distribution of SDD in 641 lakes (≥10 km2) across China. In addition, other investigations of the 85 

spatio-temporal variations of SDD have been made using MODIS data for lakes in the Yangtze Plains (50 lakes, >10 km2; 

Feng et al., 2019a) and in the Tibetan Plateau (64 lakes, >50 km2; Pi et al., 2020). In these studies, the empirical models 

exhibited better ability than other models to estimate SDD at large-scales.  

In this study, we tuned a recently-developed SDD empirical model which has been demonstrated as effective to map the 

spatial-temporal dynamics of SDD in surface waters based on atmospherically-corrected Landsat reflectance products in 90 

GEE (Song et al., 2020). The overall purpose of this study was to map the spatiotemporal variation of SDD in lakes (> 0.01 

km²) across China from 1984 to 2018. Specifically, the objectives were to: (1) built a lake SDD estimation model across 

China based on extensive in-situ measurements; (2) derive SDD of lakes across China using Landsat data embedded in GEE; 

(3) analyse the inter-annual variability of SDD at the lake regions scale and the individual lake scale. Such a research would 

provide valuable information regarding water quality conditions and inform future water resources planning and 95 

management.  
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2 Study area  

China is a vast and physiographically-diverse country endowed with a large number of lakes. Based on broad regional 

variations of landforms and climate characteristics, the lakes in China have been grouped into five regions (Ma et al., 2011) 

(Fig. 1a). The Inner Mongolia-Xinjiang lake region (MXR) and Tibetan-Qinghai Plateau lake region (TQR) are located in 100 

arid or semiarid climates, while the Northeastern lake region (NLR), Yungui Plateau lake region (YGR) and Eastern lake 

region (ELR) are situated in the Asian monsoon climate zone. The MXR and TQR regions have lower annual precipitation, 

lower temperature and higher evaporation level than other three lake regions. Regionally, lakes distribution sourced from 

Song et al. (2020) is as follows (in decreasing order): 49% in ELR, 22% in NLR, 18% in YGR, 8% in MXR and 4% in TQR 

(Fig. 1b). However, on the basis of lake surface area, regional distribution is slightly different and is in the order: TQR 105 

(41%) > ELR (30%) > MXR (14%) > NLR (10%) > ELR (6%) (Fig. 1b). The lakes in the plateau region with higher 

elevation are less affected by human activities, and generally exhibit better ecological condition than lakes in the other 

regions (Zhang et al., 2019). In contrast, the lakes in the plain regions are frequently influenced by anthropogenic activities, 

such as urbanization, population growth, agricultural fertilizer and wastewater discharge (Feng et al., 2019a; Tong et al., 

2020). 110 

 

Figure 1: The geographical distribution of lakes with water clarity (SDD) records of more than 10 years (lake area > 0.01 km2; 

N=11336) in different lake regions across China (a). The percentage distribution of lakes, based on the number of lakes and lakes 

surface area in the five lake regions is shown in the pie charts. The left one (green box) shows about all lakes extracted from 

Landsat images (b), while the lower left corner one (red box) displays about lakes with SDD records more than 10 years (c). 115 



5 

 

3 Methods 

3.1 Waterbody mask 

Following Song et al. (2020), the lake boundaries (lakes and reservoirs) with area > 0.01 km2 across China were derived 

from Landsat 8 OLI images mainly acquired in 2016, and detailed description on boundary extraction is available in that 

study. However, some lakes in China have changed substantially over time. These lakes were dealt with separately to obtain 120 

their boundaries in each year during the period 1984-2018. To obtain the information of lake area variation (e.g., size and 

year), we referred to an analysis on multi-decadal lake area (≥1 km2 in size) changes in China during 1960s–2015 (Zhang et 

al., 2019) (Fig. S1). The datasets of lake boundaries (1960s-2020) have been released by the National Tibetan Plateau Data 

Centre. As for the reservoirs, we mainly viewed and compared the Landsat natural color images on the website of Earthdata 

Search (https://search.earthdata.nasa.gov/) and historical images embedded in Google Earth to confirm the changing region, 125 

respectively. For the small lakes with area < 1 km2 obtained from the study of Song et al. (2020) we assumed their 

boundaries to remain unchanged during the study period. 

We extracted the boundaries of these changing lakes using Landsat images during 1984-2018. The cloudless TOA image 

of each path and row was downloaded from the GEE platform, and processed to obtain the Modified Normalized Difference 

Water Index (MNDWI) as follows: 130 

MNDWI= (Rrc,Green-Rrc,SWIR) (Rrc,Green-Rrc,SWIR)⁄                                                                                                     (1) 

where Rrc,Green and  Rrc,SWIR are the Rayleigh scattering reflectance in the green band and short-wave infrared (SWIR) 

band, respectively. First, we used the MNDWI, combined with Tasseled Cap Transformation (TC) and a density slicing with 

multi-threshold approach, to build a decision tree for extracting water body boundaries using the ENVI software package 

(Rokni et al., 2014; Xu et al., 2006). Then, Landsat images acquired during 1984-2018 were classified into water and non-135 

water areas (Feyisa et al., 2014; Wang et al., 2020b). The extracted water bodies were subsequently converted into polygons 

with contiguous pixels and stored in shape file format using the ArcGIS10.4 (ESRI Inc. Redlands, CA, USA). According to 

the shoreline features, we divided water bodies into lakes, reservoirs and rivers. By referring to the Global Reservoirs and 

Dams database (Lehner et al., 2011), Chinese Reservoirs and Dams database and high-resolution images from Google Earth, 

we distinguished rivers and reservoirs from water bodies mainly by visual interpretation. The shape file of lakes and 140 

reservoirs (herein lakes) was used as a water mask to extract the SDD map derived from the Landsat imageries (Fig. 1a). 

The impact of land contamination on water remains a challenge in accurately retrieving water quality parameters (Jensen. 

2006; Hou et al., 2018; Liu et al., 2020a; Wang et al., 2020a). Jensen. (2006) pointed out that the different surface objects 

have different reflectance to NIR band. For instance, land and vegetation can largely reflect the NIR band strongly absorbed 

by water, especially for the shallow lakes or reservoirs. In our study, one pixel (two pixels) buffer inward of water boundary 145 

was removed for lakes with area ≤ 1 km² (> 1 km²) in order to avoid the influence of adjacent land on water bodies that can 

result in mixed land-water pixels. The determination of the number of pixel buffered was referenced to the method proposed 

in the study of Wang et al. (2018) who made a comparison of water-leaving reflectance in the transects selected from the 
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land-water boundaries to identify a suitable buffer distance. This method has been demonstrated to be effective in other 

studies related to SDD estimation (Liu et al., 2020a; Wang et al., 2020a). 150 

3.2 SDD in-situ data collection across China 

We used three SDD datasets for model calibration and validation (Fig.2a). To assemble the first dataset (IGA-04-19), we 

conducted 37 field campaigns from April 2004 to September 2018, surveyed 361 water bodies and collected 2,293 samples 

from lakes and reservoirs across China (Table S1), most of which were collected in late summer and early autumn. The 

second dataset was assembled from field campaigns (2007-2009) conducted by researchers from the Nanjing Institute of 155 

Geography and Limnology, Chinese Academy of Sciences. The third dataset (229 samples) was collected by different 

research groups during 1980s-1990s, and included records for which data collection date was not available. The spatial 

distribution of these three groups samples is shown in Fig. 2a. At each station, Secchi disk depth (SDD, in cm) was 

determined to represent water clarity, and was taken as the depth from water surface where a black-white Secchi disk can no 

longer be seen under water. For the first two datasets, SDD data derived from field surveys (2004-2018) were matched with 160 

the top of atmosphere reflectance (TOA) data collected by Landsat satellites overpassing a lake/reservoir within 7 days of 

field site visit, and the average reflectance of pixels within a 3×3 window matching a sampling point was extracted for bands 

1-5 (Kloiber et al., 2002). After matching the in-situ SDD with images, altogether, 1,301 and 340 pairs of data were obtained 

based on the first and second SDD datasets, respectively. For the third dataset, the cloud-free TOA images whose dates were 

closest to time recorded on the lake survey reports were selected to match the measured SDD, which were between May and 165 

October during the period of field survey. Finally, 229 match-ups were found by expanding the time window between the 

third dataset of SDD and images. 

3.3 Acquisition and processing of Landsat imagery data 

To track the dynamics of lakes SDD in the past 35 years, all available Landsat TM/ETM+/OLI images of TOA across China 

were used in this study (∼82,000 images, >60 terabytes of data) via GEE platform. The number of images used for SDD 170 

estimate in a specific year spanned a large range, from 371 in 1984 to 4,784 in 2018 (Fig. 2b), with more images available 

when two satellites operated simultaneously in space to acquire Landsat imagery. In this study, based on the GEE platform, 

the TOA images were mainly collected during the ice-free season (May to October) from 1984 to 2018 in the TQR, MXR, 

NLR, and ELR, except for YGR (from January to December) due to lack of good-quality images. The pixel_qa band, as a 

pixel quality control band generated from the CFMASK algorithm, was selected to mask out the land and snow/ice, and to 175 

remove cloud contamination (cloud cover >60%) in the GEE platform, thus minimizing the potential impact of cloud on 

SDD estimation accuracy. Landsat imagery atmospheric correction is a key step for water quality inversion (Wang et al., 

2009), particularly for monitoring of temporal variation at large scale. The TOA products within GEE were produced using 

the equations developed by Chander et al. (2009), and the function of these equations was to convert calibrated digital 

numbers to absolute units of TOA reflectance. The description of Landsat TOA products is available on the GEE platform 180 
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(https://developers.google.com/earth-engine/datasets/catalog/landsat). More than 98.35 % of the pixels within China had a 

total of qualified observations > 35 in the past 35 years, and the majority of images had more than three scenes of good 

observations for each year. 

3.4 Model for SDD estimation and mapping in GEE 

Model development was a key step in this study. For the first match-ups dataset, i.e., 1,301 pairs of in-situ SDD and TOA, 185 

we divided the valid data into four groups, with three groups used to calibrate the model (N= 976) and one group (N = 325) 

used for model validation. Based on a previous investigation, the red and blue (or green) band ratio was found to improve the 

performance of reflectance-based water quality models both in terms of their spatial and temporal transferability (Kloiber et 

al., 2002; Olmanson et al., 2008; Song et al., 2020). Thus, by trying the band combination, the red/blue band ratio algorithm 

using the first matched dataset was employed in this study to map SDD of water bodies, and was mathematically expressed 190 

as: 

 Ln (SDD) = -5.6828×(Red/Blue) + 7.8413,                                                                                                                               (2) 

Then, combining the aforementioned image-processing methods, Eq. (1) was applied to the TOA images from 1984 to 2018 

to estimate the SDD in the lakes with an area > 0.01 km² over China via the GEE platform. The annual mean SDDs at the 

pixel scale were obtained by averaging all available estimated results, and then the lake-based annual mean SDDs had been 195 

further worked out. During the calculations, we only took into consideration lakes with SDD results of more than 10 years. 

At last, 10,814 lakes (size > 0.01 km²) were examined for the interannual dynamics of SDD (Fig.1c). 
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Figure 2: Location of the sampled waterbodies (lakes or reservoirs) and Landsat Worldwide Reference System 2 (WRS-2) 200 
path/row across China (a). Number of Landsat scenes used in ice-free season from 1984 to 2018 (b). 
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3.5 Statistical analysis 

The SDD estimation model performance was assessed using determination coefficient (R2), RMSE, relative RMSE (rRMSE), 

and mean absolute error (MAE).  

𝑅𝑀𝑆𝐸 =  √∑ (𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖−𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖)
2𝑁

𝑖=1

𝑁
,                                                                                                                                    (3) 205 

𝑟𝑅𝑀𝑆𝐸 = 100 ×
𝑅𝑀𝑆𝐸

𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
,                                                                                                                                                       (4) 

𝑀𝐴𝐸 =  
∑ |𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖−𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖|𝑁

𝑖=1

𝑁
,                                                                                                                                           (5) 

where N refers to the number of water samples, i refers to the current water sample number, 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 refers to the in situ 

SDD measurements, 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  refers to the average of observed Y, and 𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 refers to the estimated SDD from the 

Landsat data. 210 

Once the annual mean SDD maps were generated, the average of SDD for each pixel within a lake was calculated for the 

observation period (1984-2018). For each lake region and individual lake, the spatiotemporal dynamics in SDD were 

analysed, including the variations of the average, changing trend, number of lakes, and lake surface area. The interannual 

changing trend was assessed at the 5% significance level, and the slope from linear regression analysis between SDD values 

and years. These analyses were conducted with the IBM SPSS software. Based on the analysis of interannual change trend in 215 

SDD, the lakes in China were divided into three types - lakes with SDD showing significantly increasing (Type I: p < 0.05 

and slope > 0), decreasing (Type II: p < 0.05 and slope < 0) and non-significant (Type III: p > 0.05) trends from 1984-2018. 

4 Validation of SDD estimation model 

The estimation model of lake SDD across China was built using 3/4 of the first matched dataset (976 samples), for which the 

R2, RMSE, rRMSE, and MAE were 0.79, 100.3 cm, 61.9%, 57.7cm, respectively (Fig.3a). Then, we used 325 samples (1/4 220 

of the first matched dataset) to validate the model, and the validation results indicated stable performance by showing 

comparative errors (R2=0.80, RMSE = 92.7 cm, RMSE% = 57.6%, MAE= 54.9 cm; Fig.3b). Further, the second and the 

third datasets were both used to validate model performance with a major focus on testing the temporal transferability of the 

model (Fig.3c, d). The second dataset (340 samples), collected as part of the Chinese lakes survey conducted by Nanjing 

Institute of Geography and Limnology, also indicated a good model performance (R2=0.78, RMSE = 74.7 cm, RMSE% = 225 

59.1%, MAE= 42.6 cm; Fig.3c). The third dataset (229 samples) was assembled by the first lake surveys conducted in the 

1980s, and was used to validate the model performance for SDD derived from historical remotely sensed data. Our results 

also demonstrated a stable performance for lake SDD before 1990s (R2=0.81, RMSE = 61.8 cm, RMSE% = 50.6%, MAE= 

40.3 cm; Fig.3d). Comparison of validation results for these different periods and datasets demonstrated the stable 

performance of the SDD model (Fig. 3). Therefore, the estimation of SDD using images acquired by Landsat series of 230 

sensors provides a reliable method to examine historical trend in SDD through time series analysis. 
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Figure 3: Model calibration and validation for SDD estimation with Landsat TOA reflectance product acquired by different 

Landsat sensors, (a) model calibration with 3/4 of the total number of samples from the first dataset, (b) model validated with 1/4 

of the total number of samples from the first dataset, (c) model validated with the second dataset independently collected during 235 
the limnological survey (2007-2009), and (d) model validated with the third dataset collected in the first lake environmental survey 

during 1985-1990. 

5 Spatial distribution of SDD in lakes in 2018   

Fig. 4a shows the spatial distribution of annual mean SDD of lakes across China in 2018, demonstrating remarkable 

spatial variation, with lakes in the plateau regions generally exhibiting higher SDD than those situated in the flat plain 240 

regions. Based on their mean SDD, all lakes across China in 2018 were divided into six levels, i.e., <0.5 m, 0.5-1 m, 1-2 m, 

2-3 m, 3-4 m, and >4 m, with 26.4%, 25.7%, 28.8%, 12.5%, 4.3%, and 2.3% of lakes in each SDD level, respectively (Fig. 

4b). Although the number of lakes with SDD < 2 m was more numerous (80.9% of lakes), the total area of lakes with SDD 

of <0.5 m and > 4 m was the largest, accounting for 24% and 24.3% of the total area in each category, respectively (Fig. 4c). 

Regarding the annual mean SDD in the five lake regions, the top three regions were TQR (3.37 m), YGR (2.35 m), MXR 245 

(1.92 m), followed by ELR (1.50 m) and NLR (0.69 m) (Fig. 4d). Except for the YGR region, lakes with SDD <2 m were 

most common accounting for 96% (NLR), 82.8% (ELR), 80.5% (MXR) and 77.6% (TQR) of all lakes in the other regions, 
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respectively (Fig. 4e). In the YGR, the lakes with SDD in 1-3 m range had a wide distribution, and the total proportion of 

lakes with SDD < 3 m was 85.4% in this region (Fig. 4e). Spatially, the lakes were widely scattered over the ELR, except for 

the northern and western sections of that region (i.e., northern and southern of Hebei province, northeast of Henan province, 250 

northwest of Shandong province and western of Hubei and Hunan provinces). The lakes in the NLR were located in the 

northwest and southwest of the region. In the YGR, the lakes were clustered in the southern and northeast of the region (i.e., 

mid-east of Sichuan province and most of Yunnan and Guangxi province). A large number of lakes were inventoried in the 

TQR, including a collection of large lakes situated in the mid-west and eastern sections of the region, particularly in 

northwest Tibet and in the western and eastern sections of Qinghai province. In the MXR, the lakes were mainly distributed 255 

in the mid-east and mid-west of Inner Mongolia and parts of western and northern of Xinjiang Uygur Autonomous Region. 

 

Figure 4: Annual mean SDD of lakes (>0.01 km²) across China in 2018. (a) Spatial distribution of lakes with SDD values. (b) 

Proportion of lake number with SDD values for six levels (i.e., <0.5 m, 0.5-1 m, 1-2 m, 2-3 m, 3-4 m, and >4 m). (c) Proportion of 

lake area for six SDD levels. (d) Annual mean SDDs in the five lake regions. (e) Proportion of lake number at different SDD levels 260 
in the five lake regions. 
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6 Interannual dynamics of lake SDD during 1984-2018 

6.1 Temporal average and trend in lake SDD 

Similar to the spatial pattern of SDD estimates obtained in 2018, the multi-year average SDD values in each lake region 

also revealed similar trends, i.e., the lakes located in the plateau region were more transparent than lakes from other 265 

physiographic regions (Fig. 5a). During 1984-2018, the lakes in the NLR exhibited the lowest SDD (mean: 0.60±0.09 m), 

followed by the ELR (mean: 1.23±0.17 m). The MXR showed intermediate SDD values (mean: 1.63±0.38 m), and the YGR 

exhibited relatively higher SDD (mean: 2.35±0.21 m). Lakes in the TQP had the clearest water (mean SDD: 3.32±0.38 m; 

Fig. 5a). As shown in Fig. 5a, mean annual SDD estimates in the five lake regions were in agreement with in-situ measured 

SDD.  270 

Regarding the interannual change trend, with the exception of the TQR, results for the other four lake regions indicated a 

significant (p<0.05) increasing trend in SDD during the study period (Fig. 5b). At the scale of individual lakes, 55.4% (5,993 

out of 10,814) and 3.5% (377 out of 10,814) of lakes experienced statistically significant (p<0.05) increasing and decreasing 

trends, respectively, and the remaining lakes (41.1%, 4,444 out of 10,814) displayed no significant change (Fig. 5c). Among 

the five lake regions, except for the MXR, more than half of all lakes exhibited significant increasing trends (Fig. 5c). 275 

Ranked by the total number of lakes exhibiting significant increase in SDD, the lake regions can be ordered as follows: TQR 

(61.7%, 618 out of 1,002), ELR (57.1%, 3,396 out of 5,943), YGR (54.6%, 829 out of 1,517) and NLR (51.3%, 784 out of 

1,528). As for the lakes with decreasing SDD values, the NLR had the highest number of such lakes (8.4%, 128 out of 1,528) 

followed by the MXR (7%, 58 out of 824) (Fig. 5c). 

Among the three types of lakes — lakes with SDD showing significant increasing (Type I), decreasing (Type II) and 280 

nonsignificant (Type III) trends from 1984 to 2018, the lake SDDs in the Type I, Type II and Type III were mainly 

concentrated in 0.5-3 m, 0-2 m and 0-3 m, respectively; the corresponding proportions were 81.11% (4,861 out of 5,993), 

80.11% (302 out of 377) and 85.13% (3,783 out of 4,444) of the total number of lakes, respectively (Fig. 5d-f). At the five 

lake regions scale, regardless of the lake type, the distribution of lake SDDs in the NLR, TQR and MXR appeared similar, 

while those in the ELR and YGR differed from these three lake regions. The former was mainly distributed in 0-2 m, the 285 

latter ranged 0.5-3 m (ELR) and 1-4 m (YGR), respectively (Fig. 5d-f).  
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Figure 5: The interannual dynamics of lake SDDs in China during 1984-2018. (a) Multi-year average SDD values of the modelled 290 
and in-situ SDDs in the five lake regions. (b) Interannual trends of mean lake SDDs in five lake regions based on the 5% 

significant level and slope representing the coefficient of simple linear regression. (c) Number of lakes with SDD showing 

statistically significant (p < 0.05) increasing (Type I), decreasing (Type II) and nonsignificant (Type III) trends. Proportions of lake 

numbers with different SDD values (<0.5 m, 0.5-1 m, 1-2 m, 2-3 m, 3-4 m, and >4 m) for: (d) lakes with SDD showing significant 

increasing trend; (e) lakes with SDD showing significant decreasing trend; and (f) lakes with SDD showing no significant trend. 295 
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6.2 Lake SDDs versus lake sizes in China 

The annual mean SDD and lake area were both separated into six levels, and the proportions of lakes with different areas in 

each SDD category are shown in Fig. 6. In terms of the number of different lake areas in the five lake regions, the lakes with 

annual mean SDD values in the ELR, NLR and YGR were dominated by the area range of 0.01-1 km2, followed by that of 1-

10 km2. In the MXR, the lakes were mainly dominated by the area range of 1-10 km2, followed by that of 0.01-1 km2 (Fig. 300 

6a-f). In the TQR, when the SDDs < 2 m, the lakes covering the area range of 1-10 km2 were in the majority (Fig. 6a-c); 

when the SDDs > 2 m, the lakes with the area range >10 km2 occupied a dominant position, especially for lakes with the area 

range of 10-50 km2 and 100-500 km2 (Fig. 6d-f).  

Among the three types of lakes in each SDD category, there is a similarity in the distribution of lakes with different sizes 

between the Type I and Type III, while that of Type II differentiated from these two types of lakes (Fig. 6). In the ELR, NLR 305 

and YGR, almost more than 50% of the lakes ranged 0.01-1 km2 among the lakes of Type I and Type III. The lakes of Type 

II, located in the three lake regions, with SDD values of 0.5-1 m in the ELR, and of <0.5 m and 2-3 m in the NLR were 

dominated by the area size of 1-10 km2, while the remaining lakes were mostly with the area range of 0.01-1 km2 (Fig. 6a-f). 

In the MXR, the number of lakes covering the area range of 1-10 km2 in the three types of lakes was much larger than that of 

other sizes among the lakes with SDDs in the range 0-3 m (Fig. 6a-d). When the lake SDDs were > 3 m in this lake region, 310 

most of the three types of lakes were dominated by the lakes covering the area range of 0.01-1 km2, apart from the lakes of 

Type III with SDD values > 4 m that the proportion of lakes with the area range of 1-10 km2 was slightly higher than that 

with the area range of 0.01-1 km2, (Fig. 6e-f). 

The distribution of the three types of lakes with different lake sizes in the TQR differed from those in the other four lake 

regions. For the lakes of Type I and Type III in the TQR, when the SDDs ranged 0-2 m, the proportions of lakes covering the 315 

area range of 1-10 km2 were the largest, somewhere between 49.64% and 81.12% (Fig. 6a-c). When the SDDs ranged 2-3 m, 

the lakes with the area range of 10-50 km2 in the Type I and that of 100-500 km2 in the Type III had the largest proportions 

of numbers, accounting for 40.43% and 35.00%, respectively (Fig. 6d). When the SDDs exceeded 3 m, the lakes covering 

the area range of 100-500 km2 were dominant in the two types of lakes, followed by the area range of 10-50 km2 (Fig. 6e-f). 

For the lakes of Type II in the TQR, the lakes with SDDs in the <0.5 m category were distributed in the area range of 10-50 320 

km2, followed by that of 50-100 km2 (Fig. 6a). When SDDs were in the 0.5-1 m category, the numbers of lakes with the area 

range of 1-10 km2 and 10-50 km2 were the largest, where the corresponding percentages were 40.00% (Fig. 6b). When SDDs 

were in the 1-2 m category, there were two kinds of lakes whose areas were in the range of 0.01-1 km2 and 50-100 km2, and 

their numbers were the same (Fig. 6c). When SDDs were in the 3-4 m category, only the lakes with the area range of 1-10 

km2 existed (Fig. 6e).  325 
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Figure 6: Proportions of lake numbers in different areas in the six SDD categories. The six SDD categories are: (a) <0.5 m; (b) 0.5-

1 m; (c) 1-2 m; (d) 2-3 m; (e) 3-4 m; (f) >4 m. The SDD values are the average of estimated results in each lake during 1984-2018. 

In the five lake regions, the lakes are further divided into three types — lakes with SDD showing significant increasing (Type I), 330 
decreasing (Type II) and nonsignificant (Type III) trends during 1984-2018. 
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6.3 Spatial distribution of lakes with different SDD values 

The spatial distributions of lakes and their number of lakes and areas of the three types of lakes in five lake regions are 

presented in the Fig.7. In the SDD of <0.5 m category (Fig.7a), the NLR had the largest lake numbers and areas in the three 

types of lakes, accounting for 34.51% and 33.20% in Type I, 63.19% and 48.17% in Type II and 44.46% and 34.38% in 335 

Type III of the number of lakes and areas in the lake region, respectively. Spatially, the lakes in Type I and Type III were 

mainly distributed in the central section of the ELR, the western section of the NLR, the mid-west of the TQR and the mid-

east of the MXR, while those in Type II were concentrated on the western section of the NLR and eastern section of the 

MXR. 

In the SDD of 0.5-3 m categories (Fig.7b-d), the lakes of Type I and Type III were the most in the ELR, but the largest total 340 

lake areas of the five lake regions were different from these two types of lakes. Specifically, in the lakes of Type I, the total 

lake areas in the TQR were the largest, with the percentages of 36.38% (SDD: 0.5-1m), 44.14% (SDD: 1-2 m) and 61.03% 

(SDD: 2-3 m), respectively (Fig.7b-d). Regarding the lakes of Type III, the ELR (TQR) had the largest proportion of lake 

area when SDD was 0.5-2 m (2-3 m). The percentages of lake area when SDD was 0.5-2 m in the ELR were 76.80% (SDD: 

0.5-1m) and 46.90% (SDD: 1-2 m), while that in the TQR was 46.65% (SDD: 2-3 m) (Fig.7b-d). For the lakes of Type II, 345 

the region that had the largest proportions of lake number and area was inconsistent in each SDD category (0.5-3) m. When 

the SDDs were in the range of 0.5-1 m, the NLR had the largest lake number, while the MXR had the highest percentage of 

lake area (Fig.7b). When the SDDs ranged from 1-2 m, the number of lakes and area in the ELR were the largest (Fig.7c). 

When the SDDs were around 2-3 m, the lake number in the NLR was the largest and the total lake area in the ELR was the 

largest (Fig.7d). Spatially, lake distributions of the Type I and Type III with SDD range of 0.5-2 m were concentrated on the 350 

most places of the ELR, the northwest and southeast of the NLR, the southern section of the YGR, the mid-west of the TQR, 

and the mid-east and the northern section of the MXR (Fig.7b-c). When these two types of lakes SDD were in the range of 2-

3 m, they were distributed in the central and southeast coast of the ELR, the central and southwest of the YGR, and the 

western section of the TQR (Fig.7d). For the Type II of lakes with SDD falling in the range 0.5-3 m, their distributions were 

scattered over part of the central and southeast coast of the ELR, and southwest of the YGR (Fig.7b-d). 355 

In the SDD of 3-4 m category (Fig.7e), the regions that had the most lakes in the three types of lakes were the YGR (Type I: 

53.56%), ELR (Type II: 48.00%), and ELR (Type III: 53.19%), respectively. The regions that had the largest lake area were 

the TQR (Type I: 63.51%), YGR (Type II: 90.06%), and TQR (Type III: 75.22%), respectively. Spatially, the lakes of Type I 

and Type III were concentrated at the junction of the ELR, YGR and MXR; the southeast coast of the ELR; the southern 

section of the YGR; and the western section of the TQR. The lakes of Type III were mainly distributed in the part of the 360 

southeast coast of the ELR and the southern section of the YGR. 

Regarding the SDD of >4 m category (Fig.7f), the TQR had the largest lake number and area in the lakes of Type I, 

accounting for 39.19% of the number of lakes and 87.34% of the total lake area. For the lakes of Type II, a few lakes existed 

in the MXR and YGR. For the lakes of Type III, the YGR had the most lakes and the TQR had the largest total lake area, 
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accounting for 40.28% of the number of lakes and 87.00% of the total lake area, respectively. Spatially, the distributions of 365 

these lakes were similar to the lakes with SDD range of 3-4 m range. 
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Figure 7: Spatial distribution of lakes with multi-year average SDD values during 1984-2018. The SDD values were divided into six 

levels: (a) <0.5 m; (b) 0.5-1 m; (c) 1-2 m; (d) 2-3 m; (e) 3-4 m; (f) >4 m. The lakes were separated into three types of lakes—lakes 

with SDD showing significant increasing (Type I), decreasing (Type II) and nonsignificant (Type III) trends during 1984-370 
2018.Proportions of total lake area and lake number in each lake region are shown in the pie charts and histogram, respectively. 

7 Comparison with past studies and uncertainties 

Several past studies have examined the spatiotemporal variation of SDD in lakes across China (or parts of China), but 

these investigations were mainly based on MODIS images to estimate SDD in large lakes (>10 km2) and primarily focused 

on the period after 2000 (Feng et al., 2019a; Liu et al., 2020a; Pi et al., 2020; Wang et al., 2020a). Therefore, it becomes a 375 

challenge to compare these past results with the results of the present study due to difference in the period of interest, 

resolution of the satellite images and lake size (> 0.01 km² in our study). Zhang et al. (2021) adopted an empirical model to 

retrieve SDD of lakes (>10 km2) across China based on Landsat surface reflectance products (2016 - 2018) within GEE. 

Because of the similarity of methods and images used in Zhang et al. (2021) and the present study, it provides a unique 

opportunity to compare lake SDD estimation models across China proposed by these two researches. To that end, we used 380 

available in-situ SDD data (2019 – 2020) collected at monitoring stations in Lake Taihu and Lake Dianchi to assess the 

accuracy of the two models. As shown in Fig. 8 and demonstrated by statistical parameters (higher R2, lower RMSE, rRMSE 

and MAE), the estimation model proposed by our study exhibited better performance to retrieve SDD in both Lake Taihu 

(Fig.8c) and Lake Dianchi (Fig. 8d).   

Whilst previous studies have demonstrated the application of Landsat series data (5 TM/ 7 ETM+/ 8 OLI) with the 385 

proposed model can provide accurate long-term coverage of SDD of lakes in China (Zhang et al., 2021; Song et al., 2020; 

Deutsch et al., 2018; Bonansea et al., 2015; Mccullough et al., 2013), several systemic errors on SDD results could not be 

avoided. On the one hand, the SDD estimation model proposed in this study contained some errors, where the model 

validation yielded these results: R2=0.80, RMSE = 92.7 cm, RMSE% = 57.6%, MAE= 54.9 cm. On the other hand, different 

atmospheric correction methods can cause diverse effects on the Landsat images (Bonansea et al., 2015; Lee et al., 2016). 390 

The calibrated TOA reflectance products within the GEE were produced using the equations developed by Chander et al. 

(2009). Nevertheless, these systemic errors do not significantly affect the overall trends of SDD of lakes in China (Bonansea 

et al., 2015; Deutsch et al., 2018; Zhang et al., 2021). In addition, under the influence of climate change or human activities, 

such as floods and droughts, urbanization, and farmland reclamation, the boundaries for some small lakes (< 1 km2) may 

vary greatly, which could cause the uncertainty of SDD estimation (Yang et al., 2021; Zhang et al., 2019). This is a 395 

limitation of the assumption for small lakes with static boundaries. In the future, further research on the relationship between 

the area of small lakes and the accuracy of SDD simulation would aid in addressing this limitation. 
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8 Data availability 

The dataset of water clarity of lakes developed in this study consists of one shapefile file document containing the annual 

mean values of water clarity in each lake (size > 0.01 km²) during 1990-2018, with a temporal resolution of 5-year. The 400 

dataset can now be accessed through the website of the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn): DOI: 

10.11888/Hydro.tpdc.271571. 

 

Figure 8: Comparison of different SDD estimation models based on Landsat images within the GEE. (a and b) Spatial distribution 

of monitoring stations located in lake Taihu and lake Dianchi, respectively. (c – f) The regression line between the measured SDD 405 
in lake Taihu (N = 136) and lake Dianchi (N = 84) during 2019 – 2020 and estimated SDD values that were obtained from the 

estimation models developed in this study and Zhang et al. (2021), respectively. 
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9 Conclusions 

As a comprehensive indicator of water eutrophication, encompassing nutrient enrichment, algal abundance and suspended 

sediment, water clarity can serve as a valuable index for tracking the ecological health of aquatic ecosystems and guiding the 410 

actions of water resources managers. Although field measurement of water clarity can easily be made with a Secchi disk 

apparatus, this approach is not suitable for long-term time series measurements of lake water clarity at regional and national 

scales. This information is highly valuable, and can be extracted from archived satellite data. In-situ water clarity data 

collected in lakes across China during 2004-2018 was used to calibrate and validate SDD models that incorporate top of 

atmosphere reflectance product and Google Earth Engine to map the spatiotemporal dynamics of SDD over a 35-year time 415 

span (1984-2018). The SDD model was validated using different datasets, and results confirmed the stable performance and 

temporal transferability of the SDD estimation model. Derived SDD estimates were analysed at the lake region and at the 

individual lake scales. During the study period (1984-2018), annual mean SDD values in the TQR, YGR, MXR, ELR and 

NLR regions were 3.32±0.38 m, 2.35±0.21 m, 1.63±0.38 m, 1.23±0.17 m and 0.60±0.09 m, respectively. Among the 10,814 

lakes with >10 years of SDD results, 55.4% and 3.5% experienced statistically significant (p<0.05) increasing and 420 

decreasing trends of water clarity, respectively. The remaining lakes (41.1%) displayed no significant trends. With the 

exception of the MXR, more than half of lakes in all the other regions exhibited a significant trend of increasing water clarity. 

In the ELR, NLR and YGR regions, most of the lakes displaying either an increase or decrease in SDD tended to be of 0.01-

1 km2 in size whereas in the TQR and MXR lakes exhibiting clear trends in SDD were mostly large lakes (>10 km2). 

Spatially, the lakes in the plateau regions (TQR, YGR) generally exhibited higher SDD than those situated in the flat plain 425 

region. The time series of water clarity information presented in this study could aid local, regional and national decision-

making on policies and management for protecting/improving inland water quality in China. The research approach 

implemented also could potentially be used to map water clarity in lakes at the global scale, an effort that can provide useful 

information for evaluating decadal trends in surface water quality resulting from adoption of pollution control policies. 

Author contributions. KS, HT, GL, and HD designed the study; KS, GL, and HT performed the research; KS, HT, GL, QW, ZW, CF, 430 
YD, ZW, DL, KS, BZ, and XW collected and analysed the data; and KS, HT, GL, TK, PJ, and HD wrote the paper. All authors 

contributed to the interpretation of findings, helped revise the manuscript, and approved the final manuscript for submission. 

Competing interests. The authors declare that they have no conflict of interest. 

Acknowledgements. This research was jointly supported by the Natural Science Foundation of China (41730104, 42001311, 42171385), 

China postdoctoral science foundation (2020M681056), Strategic Priority Research Program of the Chinese Academy of Sciences 435 
(XDA19070501), Research instrument and equipment development project of Chinese Academy of Sciences (YJKYYQ20190044), and 

National Earth System Science Data Center, China (www.geodata.cn). The authors wish to thank Dr. Ying Zhao, Jianhang Ma, and Ming 

Wang for their capable assistance in the field sampling and laboratory measurements. 

 

 440 



21 

 

References 

Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., 

Ghahremanloo, M., Parsian, S., Wu, Q.,Brisco, B.: Google Earth Engine Cloud Computing Platform for Remote Sensing Big 

Data Applications: A Comprehensive Review, IEEE J. Sel. Top. Appl. Earth Observ., 13, 5326-5350, 

doi:10.1109/jstars.2020.3021052, 2020. 445 
Bonansea, M., Ledesma, C., Rodriguez, C., Pinotti, L.,Antunes, M. H.: Effects of atmospheric correction of Landsat imagery on lake water 

clarity assessment, Adv. Space Res., 56, 2345-2355, doi:10.1016/j.asr.2015.09.018, 2015. 

Cao, Z., Duan, H., Feng, L., Ma, R.,Xue, K.: Climate- and human-induced changes in suspended particulate matter over Lake Hongze on 

short and long timescales, Remote Sens. Environ., 192, 98-113, doi:10.1016/j.rse.2017.02.007, 2017. 

Carlson, R. E.: A Trophic State Index for Lakes, Limnol. Oceanogr., 22, 361-369, doi:10.2307/2834910, 1977. 450 
Deutsch, E. S., Alameddine, I.,El-Fadel, M.: Monitoring water quality in a hypereutrophic reservoir using Landsat ETM plus and OLI 

sensors: how transferable are the water quality algorithms?, Environ. Monit. Assess., 190, doi:10.1007/s10661-018-6506-9, 2018. 

Doron, M., Babin, M., Mangin, A.,Hembise, O.: Estimation of light penetration, and horizontal and vertical visibility in oceanic and 

coastal waters from surface reflectance, Journal of Geophysical Research-Oceans, 112, doi:10.1029/2006jc004007, 2007. 

Duan, H., Ma, R., Zhang, Y.,Zhang, B.: Remote-sensing assessment of regional inland lake water clarity in northeast China, Limnology, 10, 455 
135-141, doi:10.1007/s10201-009-0263-y, 2009. 

Feng, L., Hou, X. J.,Zheng, Y.: Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain 

based on long-term MODIS observations, Remote Sens. Environ., 221, 675-686, doi:10.1016/j.rse.2018.12.007, 2019a. 

Feng, S. L., Liu, S. G., Huang, Z. H., Jing, L., Zhao, M. F., Peng, X., Yan, W. D., Wu, Y. P., Lv, Y. H., Smith, A. R., McDonald, M. A., 

Patil, S. D., Sarkissian, A. J., Shi, Z. H., Xia, J.,Ogbodo, U. S.: Inland water bodies in China: Features discovered in the long-460 
term satellite data, Proc. Natl. Acad. Sci. U. S. A., 116, 25491-25496, doi:10.1073/pnas.1910872116, 2019b. 

Feyisa, G. L., Meilby, H., Fensholt, R.,Proud, S. R.: Automated Water Extraction Index: A new technique for surface water mapping using 

Landsat imagery, Remote Sens. Environ., 140, 23-35, doi:10.1016/j.rse.2013.08.029, 2014. 

Giardino, C., Brando, V. E., Dekker, A. G., Strombeck, N.,Candiani, G.: Assessment of water quality in Lake Garda (Italy) using 

Hyperion, Remote Sens. Environ., 109, 183-195, doi:10.1016/j.rse.2006.12.017, 2007. 465 
Gordon, H. R., Clark, D. K., Brown, J. W., Brown, O. B., Evans, R. H.,Broenkow, W. W.: Phytoplankton pigment concentrations in the 

middle Atlantic Bight—comparison of ship determinations and CZCS estimates, Appl. Opt., 22, 20-36, 

doi:10.1364/ao.22.000020, 1983. 

Han, D., Currell, M. J.,Cao, G.: Deep challenges for China's war on water pollution, Environ. Pollut., 218, 1222-1233, 

doi:10.1016/j.envpol.2016.08.078, 2016. 470 
Hou, X., Feng, L., Duan, H., Chen, X., Sun, D.,Shi, K.: Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in 

the middle and lower basin of the Yangtze River, China, Remote Sens. Environ., 190, 107-121, doi:10.1016/j.rse.2016.12.006, 

2017. 

Huang, J. C., Gao, J. F.,Zhang, Y. J.: Eutrophication Prediction Using a Markov Chain Model: Application to Lakes in the Yangtze River 

Basin, China, Environmental Modeling & Assessment, 21, 233-246, doi:10.1007/s10666-015-9472-4, 2016. 475 
Jensen, J.: Remote Sensing of the Environment: An Earth Resource Perspective. Prentice Hall, Upper Saddle River, New Jersey, 2006. 

Kloiber, S. N., Brezonik, P. L., Olmanson, L. G.,Bauer, M. E.: A procedure for regional lake water clarity assessment using Landsat 

multispectral data, Remote Sens. Environ., 82, 38-47, doi:10.1016/s0034-4257(02)00022-6, 2002. 

Lee, Z., Shang, S., Hu, C., Du, K., Weidemann, A., Hou, W., Lin, J.,Lin, G.: Secchi disk depth: A new theory and mechanistic model for 

underwater visibility, Remote Sens. Environ., 169, 139-149, doi:10.1016/j.rse.2015.08.002, 2015. 480 
Lee, Z., Shang, S. L., Qi, L., Yan, J.,Lin, G.: A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements, 

Remote Sens. Environ., 177, 101-106, doi:10.1016/j.rse.2016.02.033, 2016. 

Lehner, B.,Doll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol. , 296, 1-22, 

doi:10.1016/j.jhydrol.2004.03.028, 2004. 

Lehner, B., Liermann, C. R., Revenga, C., Voeroesmarty, C., Fekete, B., Crouzet, P., Doell, P., Endejan, M., Frenken, K., Magome, J., 485 
Nilsson, C., Robertson, J. C., Roedel, R., Sindorf, N.,Wisser, D.: High-resolution mapping of the world's reservoirs and dams for 

sustainable river-flow management, Front. Ecol. Environ., 9, 494-502, doi:10.1890/100125, 2011. 

Liu, D., Duan, H., Loiselle, S., Hu, C., Zhang, G., Li, J., Yang, H., Thompson, J. R., Cao, Z., Shen, M., Ma, R., Zhang, M.,Han, W.: 

Observations of water transparency in China’s lakes from space, Int. J. Appl. Earth Obs. Geoinf. , 92, 102187, 

doi:10.1016/j.jag.2020.102187, 2020a. 490 
Liu, G., Li, L., Song, K., Li, Y., Lyu, H., Wen, Z., Fang, C., Bi, S., Sun, X., Wang, Z., Cao, Z., Shang, Y., Yu, G., Zheng, Z., Huang, C., 

Xu, Y.,Shi, K.: An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a 

concentration in various turbid case-2 waters, Remote Sens. Environ., 239, 111648, doi:10.1016/j.rse.2020.111648, 2020b. 

Ma, R., Yang, G., Duan, H., Jiang, J., Wang, S., Feng, X., Li, A., Kong, F., Xue, B., Wu, J.,Li, S.: China's lakes at present: Number, area 

and spatial distribution, Sci. China-Earth Sci., 54, 283-289, doi:10.1007/s11430-010-4052-6, 2011. 495 



22 

 

Ma, T., Zhao, N., Ni, Y., Yi, J. W., Wilson, J. P., He, L. H., Du, Y. Y., Pei, T., Zhou, C. H., Song, C.,Cheng, W. M.: China's improving 

inland surface water quality since 2003, Sci. Adv., 6, doi:10.1126/sciadv.aau3798, 2020. 

McCullough, I. M., Loftin, C. S.,Sader, S. A.: Combining lake and watershed characteristics with Landsat TM data for remote estimation 

of regional lake clarity, Remote Sens. Environ., 123, 109-115, doi:10.1016/j.rse.2012.03.006, 2012. 

McCullough, I. M., Loftin, C. S.,Sader, S. A.: Landsat imagery reveals declining clarity of Maine's lakes during 1995-2010, Freshw. Sci., 500 
32, 741-752, doi:10.1899/12-070.1, 2013. 

Olmanson, L. G., Bauer, M. E.,Brezonik, P. L.: A 20-year Landsat water clarity census of Minnesota's 10,000 lakes, Remote Sens. 

Environ., 112, 4086-4097, doi:10.1016/j.rse.2007.12.013, 2008. 

Olmanson, L. G., Brezonik, P. L.,Bauer, M. E.: Evaluation of medium to low resolution satellite imagery for regional lake water quality 

assessments, Water Resour. Res., 47, doi:10.1029/2011wr011005, 2011. 505 
Pekel, J.-F., Cottam, A., Gorelick, N.,Belward, A. S.: High-resolution mapping of global surface water and its long-term changes, Nature, 

540, 418-422, doi:10.1038/nature20584, 2016. 

Pi, X., Feng, L., Li, W., Zhao, D., Kuang, X.,Li, J.: Water clarity changes in 64 large alpine lakes on the Tibetan Plateau and the potential 

responses to lake expansion, ISPRS J. Photogramm. Remote Sens. , 170, 192-204, doi:10.1016/j.isprsjprs.2020.10.014, 2020. 

Qin, B., Zhu, G., Gao, G., Zhang, Y., Li, W., Paerl, H. W.,Carmichael, W. W.: A Drinking Water Crisis in Lake Taihu, China: Linkage to 510 
Climatic Variability and Lake Management, Environmental Management, 45, 105-112, doi:10.1007/s00267-009-9393-6, 2010. 

Richardson, T. L., Lawrenz, E., Pinckney, J. L., Guajardo, R. C., Walker, E. A., Paerl, H. W.,MacIntyre, H. L.: Spectral fluorometric 

characterization of phytoplankton community composition using the Algae Online Analyser (R), Water Res., 44, 2461-2472, 

doi:10.1016/j.watres.2010.01.012, 2010. 

Rokni, K., Ahmad, A., Selamat, A.,Hazini, S.: Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery, 515 
Remote Sens., 6, 4173-4189, doi:10.3390/rs6054173, 2014. 

Rosenzweig, B. R., Smith, J. A., Baeck, M. L.,Jaffe, P. R.: Monitoring Nitrogen Loading and Retention in an Urban Stormwater Detention 

Pond, Journal of environmental quality, 40, 598-609, doi:10.2134/jeq2010.0300, 2011. 

Shen, M., Duan, H., Cao, Z., Xue, K., Qi, T., Ma, J., Liu, D., Song, K., Huang, C.,Song, X.: Sentinel-3 OLCI observations of water clarity 

in large lakes in eastern China: Implications for SDG 6.3.2 evaluation, Remote Sens. Environ., 247, 111950, 520 
doi:10.1016/j.rse.2020.111950, 2020. 

SOEE. Report on the State of the Ecology and Environment of China in 2018, Environmental Publishing House, Beijing, pp.13, 2018. 

Song, K., Liu, G., Wang, Q., Wen, Z., Lyu, L., Du, Y., Sha, L.,Fang, C.: Quantification of lake clarity in China using Landsat OLI imagery 

data, Remote Sens. Environ., 243, 111800, doi:10.1016/j.rse.2020.111800, 2020. 

Song, K., Wen, Z., Shang, Y., Yang, H., Lyu, L., Liu, G., Fang, C., Du, J.,Zhao, Y.: Quantification of dissolved organic carbon (DOC) 525 
storage in lakes and reservoirs of mainland China, J. Environ. Manage., 217, 391, 2018. 

Tong, Y., Wang, M., Penuelas, J., Liu, X., Paerl, H. W., Elser, J. J., Sardans, J., Couture, R. M., Larssen, T., Hu, H., Dong, X., He, W., 

Zhang, W., Wang, X., Zhang, Y., Liu, Y., Zeng, S., Kong, X., Janssen, A. B. G.,Lin, Y.: Improvement in municipal wastewater 

treatment alters lake nitrogen to phosphorus ratios in populated regions, Proc. Natl. Acad. Sci. U. S. A., 117, 11566-11572, 

doi:10.1073/pnas.1920759117, 2020. 530 
Tong, Y., Zhang, W., Wang, X., Couture, R.-M., Larssen, T., Zhao, Y., Li, J., Liang, H., Liu, X., Bu, X., He, W., Zhang, Q.,Lin, Y.: 

Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006, Nat. Geosci. , 10, 507-+, 

doi:10.1038/ngeo2967, 2017. 

Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., 

Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., 535 
Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay, A., 

Vanni, M. J., Verschoor, A. M., von Wachenfeldt, E.,Weyhenmeyer, G. A.: Lakes and reservoirs as regulators of carbon cycling 

and climate, Limnol. Oceanogr., 54, 2298-2314, doi:DOI 10.4319/lo.2009.54.6_part_2.2298, 2009. 

Wang, M., Son, S.,Shi, W.: Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data, Remote 

Sens. Environ., 113, 635-644, doi:10.1016/j.rse.2008.11.005, 2009. 540 
Wang, S., Li, J., Zhang, B., Lee, Z., Spyrakos, E., Feng, L., Liu, C., Zhao, H., Wu, Y., Zhu, L., Jia, L., Wan, W., Zhang, F., Shen, Q., 

Tyler, A. N.,Zhang, X.: Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS, 

Remote Sens. Environ., 247, doi:10.1016/j.rse.2020.111949, 2020a. 

Wang, S. L., Li, J. S., Zhang, B., Spyrakos, E., Tyler, A. N., Shen, Q., Zhang, F. F., Kutser, T., Lehmann, M. K., Wu, Y. H.,Peng, D. L.: 

Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index, Remote Sens. Environ., 217, 444-460, 545 
doi:10.1016/j.rse.2018.08.026, 2018. 

Wang, X., Guo, X., Yang, C., Liu, Q., Wei, J., Zhang, Y., Liu, S., Zhang, Y., Jiang, Z.,Tang, Z.: Glacial lake inventory of high-mountain 

Asia in 1990 and 2018 derived from Landsat images, Earth Syst. Sci. Data, 12, 2169-2182, doi:10.5194/essd-12-2169-2020, 

2020b. 

Wetzel, R. G.: Limnology: Lake and River Ecosystems, Eos Transactions American Geophysical Union, 21, 1–9, 550 
doi:10.1029/TR021i002p00433-1, 2001. 



23 

 

Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Int. J. 

Remote Sens., 27, 3025-3033, doi:10.1080/01431160600589179, 2006. 

Yang, J.,Huang, X.: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019, Earth Syst. Sci. Data, 13, 3907-

3925, doi:10.5194/essd-13-3907-2021, 2021. 555 
Yang, X.,Lu, X.: Drastic change in China's lakes and reservoirs over the past decades, Sci Rep-Uk, 4, doi:10.1038/srep06041, 2014. 

Zhang, G., Yao, T., Chen, W., Zheng, G., Shum, C. K., Yang, K., Piao, S., Sheng, Y., Yi, S., Li, J., O'Reilly, C. M., Qi, S.,  Shen, S. S. P., 

Zhang, H.,Jia, Y.: Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic 

causes, Remote Sens. Environ., 221, 386-404, doi:10.1016/j.rse.2018.11.038, 2019. 

Zhang, Y., Zhang, Y., Shi, K., Zhou, Y.,Li, N.: Remote sensing estimation of water clarity for various lakes in China, Water Res., 192, 560 
116844-116844, doi:10.1016/j.watres.2021.116844, 2021. 

 

 


