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Abstract.

High quality stratospheric ozone profile data sets are a key requirement for accurate quantification and attribution of long-

term ozone changes. Satellite instruments provide stratospheric ozone profile measurements over typical mission durations of

5-15 years. Various methodologies have then been applied to merge and homogenise the different satellite data in order to

create longer term observation-based ozone profile data sets with minimal data gaps. However, individual satellite instruments5

use different measurement methods, sampling patterns and retrieval algorithms which complicate the merging of these different

data sets. In contrast, atmospheric chemical models can produce chemically consistent long-term ozone simulations based on

specified changes in external forcings, but they are subject to the deficiencies associated with incomplete understanding of

complex atmospheric processes and uncertain photochemical parameters.

Here, we use chemically self-consistent output from the TOMCAT 3-D chemical transport model (CTM) and a Random-10

Forest (RF) ensemble learning method to create a merged 42-year (1979-2020) stratospheric ozone profile data set (ML-

TOMCAT V1.0). The underlying CTM simulation was forced by meteorological reanalyses, specified trends in long-lived

source gases, solar flux and aerosol variations. The RF is trained using the Stratospheric Water and OzOne Satellite Homoge-

nized (SWOOSH) data set over the time periods of the Microwave Limb Sounder (MLS) from the Upper Atmosphere Research

Satellite (UARS) (1991-1998) and Aura (2005-2016) missions. We find that ML-TOMCAT shows excellent agreement with15

available independent satellite-based data sets which use pressure as vertical coordinate (e.g. GOZCARDS, SWOOSH for

non-MLS periods) but weaker agreement with the data sets which are altitude-based (e.g. SAGE–CCI–OMPS, SCIAMACHY-

OMPS). We find that at almost all stratospheric levels ML-TOMCAT ozone concentrations are well within uncertainties of the

observational data sets. The ML-TOMCAT (V1.0) data set is ideally suited for the evaluation of chemical model ozone profiles

from the tropopause to 0.1 hPa and is freely available via (Dhomse et al., 2021) .20

https://doi.org/10.5281/zenodo.5651194
::::::::::::::::::
(Dhomse et al., 2021) .

:
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1 Introduction

With the successful implementation of the Montreal Protocol, various observations confirm reductions in the concentrations

of halogenated ozone-depleting substances (ODSs) in the atmosphere (WMO, 2014, 2018). Satellite data records also confirm

a peak in upper stratospheric HCl (the main chlorine reservoir) around 1997, followed by a steady decline (Anderson et al.,25

2000; Froidevaux et al., 2006a; Hossaini et al., 2019). Hence, attention has turned towards the detection and attribution of

ozone recovery (e.g. Dhomse et al., 2006; Solomon et al., 2016; Chipperfield et al., 2017; Steinbrecht et al., 2017; Dhomse

et al., 2018; Szeląg et al., 2020). However, the accurate quantification of ozone changes is challenging because of the quality of

long-term ozone profile data sets, where measurement errors are of similar or larger magnitude than the long-term ozone trends.

In addition, complex coupling between various physical and chemical processes controlling stratospheric ozone concentrations30

cause large short-term ozone changes. Complications also arise because there are some non-linear changes in stratospheric

dynamics as well as chemical constituents. For example, between 2018 and 2021, some of the largest and smallest ozone losses

of the recent decades were recorded in both the Arctic and Antarctic polar stratospheres (e.g. Wargan et al., 2020; Wohltmann

et al., 2020; Bognar et al., 2021; Weber et al., 2021). Some observational data suggest that there has been a continuous decline

in lower stratospheric ozone (Ball et al., 2018, 2020), which could be attributed to changes in stratospheric dynamics (e.g.35

Chipperfield et al., 2018; Wargan et al., 2018; Orbe et al., 2020; Abalos and de la Cámara, 2020). Atmospheric concentrations

of ODSs such as CFC-11 are decreasing at uneven rates (Montzka et al., 2018, 2021) which could induce variability in ozone

trends. Additionally, significant positive trends have been detected in very short-lived substances (VSLS) containing chlorine

and bromine that are not controlled by the Montreal Protocol (e.g. Hossaini et al., 2015, 2019).

As there are no long-term ozone profile data from a single satellite instrument, various attempts have been made to merge40

such data from different instruments. However, individual satellite instruments have different temporal and spatial resolution

depending on the measurement techniques and retrieval algorithms (e.g. Sofieva et al., 2014; Damadeo et al., 2018). For

example, solar occultation instruments (e.g. Stratospheric Aerosol and Gas Experiment (SAGE, McCormick et al., 1989),

Halogen Occultation Experiment (HALOE, Russell III et al., 1993)) provide high quality measurements but are constrained by

limited spatial coverage. Limb-scanning instruments such as the Microwave Limb Sounder (MLS, Froidevaux et al., 2006b),45

Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY, Bovensmann et al., 1999), Optical

Spectrograph and InfraRed Imager System (OSIRIS, Murtagh et al., 2002 ) provide better spatial coverage but have coarser

vertical resolution. A key constraining factor is that only few satellite data sets cover enough overlapping years to remove

inter-instrument biases with minimal uncertainty.

Hence, Randel and Wu (2007) adopted a novel approach to create a gap-free stratospheric ozone profile data for the50

1979–2005 time period. They used SAGE (I and II) satellite profile measurements and polar ozonesondes, together with a

seasonally varying ozone climatology from Paul et al. (1998) to fill the gaps, to generate multi-variate regression-based gap-

free ozone anomalies. Later, Cionni et al. (2011) used a similar methodology along with climate model simulations to extend

the time series backwards to 1850. The Cionni et al. (2011) data were recommended for the historical CMIP5 simulations for

the climate models that did not include stratospheric chemistry, in order to enforce time-dependent ozone variations. Hassler55
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et al. (2008) used a different methodology to create a satellite-based long-term ozone profile data set. Along with SAGE I and

II measurements, they used HALOE and POAM (Polar Ozone and Aerosol Measurement) II and III satellite measurements,

as well as ozonesonde data from 130 stations, to create a collection of binary data files; also known as the "Binary DataBase

of Profiles" (BDBP) version 1.0. Bodeker et al. (2013) updated the BDBP data set to construct “Bodeker Scientific” or “BS”

data. They updated BDBP data by including measurements from the Limb Infrared Monitor of the Stratosphere (LIMS), the60

Improved Limb Array Spectrometer (ILAS), and ILAS II. They used a multivariate regression model to create different ver-

sions of the ozone profile data set ranging from the surface to 70 km for the 1979-2008 time period. Hassler et al. (2018a)

revised and extended (1979–2016) the "BS" data set by using the TOMCAT chemical transport model (CTM) ozone profiles

as a transfer function to capture ozone variability for the period without satellite observations.

Another widely used merged data set is the Global OZone Chemistry And Related trace gas Data records for the Stratosphere65

(GOZCARDS, Froidevaux et al., 2015). These are monthly mean zonally averaged time series constructed using ozone pro-

file measurements from several NASA satellite instruments and the Atmospheric Chemistry Experiment - Fourier Transform

Spectrometer (ACE-FTS, Bernath et al., 2005). Merging is done primarily by removing average biases between SAGE II and

individual data records for overlap periods (Froidevaux et al., 2015). The GOZCARDS data files contain mixing ratios on a

pressure–latitude grid (300
:::
316

:
hPa to 0.1 hPa), updated later to GOZCARDS v2.2 (Froidevaux et al., 2019).70

Davis et al. (2016) adopted a slightly different approach to construct the Stratospheric Water and Ozone Satellite Homoge-

nized (SWOOSH) data set. SWOOSH merges stratospheric ozone profile data from solar occultation instruments (SAGE-II/III,

HALOE, ACE-FTS) as well as limb-scanning instruments (UARS-MLS, and Aura-MLS). The measurements are homogenized

by applying corrections that are calculated from data taken during time periods of instrument overlap. The primary SWOOSH

data product consists of monthly mean zonal-mean values on a pressure grid at 2.5, 5 and 10 degree resolution. One of the major75

characteristics of SWOOSH data is that when merging greater weight is given to the instruments that sample more frequently

(e.g. Aura-MLS). Filled and unfilled versions of the data set exist on both geographical and equivalent latitude coordinates.

Several additional attempts have been made to merge satellite time series from limb and occultation instruments. For ex-

ample, the SAGE–CCI–OMPS data set, described in Sofieva et al. (2017) includes SAGE II time series and several limb data

sets. The OMPS-LP data set used is produced at the University of Saskatoon (Zawada et al., 2018). First, they screened and80

homogenized CCI data sets in the HARMOZ format before merging them in terms of ozone anomalies. Recently, Arosio et al.

(2019) created a merged SCIAMACHY-OMPS limb data set (SCIA-OMPS), which combines these two time series produced

at the University of Bremen. They used MLS data series as a transfer function to merge SCIAMACHY with OMPS-LP as

these instruments share only two months of overlap, but MLS was not included in the merged data set. This time series is

monthly averaged, covers the period 2002-present and is longitudinally resolved, with a 5◦ latitude × 20◦ longitude grid. Due85

to the similarities in the measurement geometries and techniques, and in the retrieval approaches, they implemented a plain

de-biasing approach for the merging, directly obtaining a long-term ozone time series in appropriate units.

Another widely accepted approach is using data assimilation techniques to create observation-based data (e.g. Feng et al.,

2008; Skachko et al., 2014; Errera et al., 2019; Wargan et al., 2020). However, only a few instruments such as MLS provide

relatively long-term ozone profile measurements. For the pre-MLS time period, very few observations are available that can90
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provide good constraint on the assimilation system. Also, the forward model is generally forced with available (re)analysis

dynamical fields so reanalysis data sets are also prone to the inhomogenities in the forcing fields along with any discrepancies

in chemical scheme.

In this paper we present a new data-model method for producing a long-term data set of stratospheric ozone. We use ozone

profile output from a CTM to create a machine-learning-based satellite-corrected long-term chemically (and dynamically)95

consistent ozone profile data set (hereafter, ML-TOMCAT) for the 1979 – 2020 time period. The CTM setup is described in

Section 2, followed by our methodology in Section 3. Comparisons of ML-TOMCAT with some of the other available merged

ozone profile data sets are presented in Section 4, with a summary of our key results in Section 5.

2 Model Setup

We use chemically consistent monthly mean zonal mean ozone profiles from the TOMCAT CTM as the basis data set. TOM-100

CAT is an off-line three-dimensional (3D) CTM that includes a comprehensive stratospheric chemistry scheme (Chipperfield,

2006). For the present study, the CTM setup is similar to the control simulations used in our recent studies such as Feng et al.

(2021); Bognar et al. (2021) and Weber et al. (2021). Briefly, TOMCAT is forced with meteorological fields from ERA-5

reanalyses (Hersbach et al., 2020), starting from 1979. Simulations are performed at a 2.8 × 2.8 degree horizontal resolution

with 32 hybrid sigma-pressure levels extending from the surface to about 60 km. For major ODSs and GHGs the model uses105

time-dependent observed global mean surface mixing ratios (Carpenter et al., 2018) that are treated as well-mixed throughout

the troposphere. The model also includes the effects of solar flux variability and heterogeneous chemistry on volcanically en-

hanced stratospheric aerosol as described in Dhomse et al. (2015, 2016). Solar irradiance data are from the NRL2 (Coddington

et al., 2016) empirical model and the sulfate aerosol surface area density (SAD) from Luo (2016). TOMCAT also includes

chlorine and bromine contributions from VSLS as described in Hossaini et al. (2019). A passive ozone tracer (no chemical110

ozone loss), generally used to diagnose chemical ozone loss, is initialised every six months from the chemical ozone tracer (1st

June and 1st December). TOMCAT has been regularly used to study long-term changes in stratospheric trace gases, showing

good agreement with various ground-based and satellite data sets (e.g. Mahieu et al., 2014; Chipperfield et al., 2015; Wales

et al., 2018; Harrison et al., 2021; Prignon et al., 2021).

3 Methodology115

We use the Random Forest (RF) regression analysis to generate a long-term chemically consistent data set. The RF is a

supervised machine learning (ML) algorithm that uses an ensemble of decision trees (e.g. Breiman, 2001; Svetnik et al., 2003).

A decision tree can be considered as a flow chart used in computer programming (a tree-shaped schematic) that is generally

used to show a statistical probability or path of action. A single decision tree in a RF can be considered as a random tree in a

forest of decision trees. Each decision tree consists of three components: decision nodes, leaf nodes , and a root node. The root120
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node and decision nodes of the decision tree represent the explanatory variables. The leaf node represents
:::::
nodes

::::::::
represent the

final output. The explanatory variables used in our analysis are explained at end of this section.

A decision tree algorithm divides the data set into branches (using true and false criterion
::::::
criteria), which further segregate

into other branches until a leaf node (or result node) is reached. Multiple trees are constructed by randomly sampling data

points multiple times (e.g. bootstrap method). Hence, an individual tree can be considered as
:
a unique tree (hence unique125

output). RF uses a bagging technique, that means the RF model consists of many individual decision trees and aggregated

predictions are used for the final prognosis. A distinct advantage of RF regression is that it is relatively accurate and very easy

to set up. RF can also behave like a non-linear regression method. As RF adds randomness to the decision procedure, instead

of relying on the most important explanatory variables, it searches for the best variable among random subsets. This ensures

that the final output does not rely heavily on a single explanatory variable, thereby avoiding over-fitting (e.g. Kotsiantis, 2013).130

We use RF Regression from the Python package Sci-kit learn (Pedregosa et al., 2011) with two options: random_state=0, and

bootstrap=True.

Initially, TOMCAT zonal mean ozone profiles are linearly interpolated in log-pressure space on to 43 equidistant (12 per

decade) pressure levels (1000–0.1 hPa, MLS pressure levels), followed by spatial interpolation onto 72 SWOOSH latitude

bins at 2.5◦ resolution. SWOOSH data are obtained via https://csl.noaa.gov/groups/csl8/swoosh/. Then, we calculate the ozone135

difference (dO3) between SWOOSH and model ozone profiles for the 1991-1998 and 2005-2016 time periods (total 20 years).

For the calculation of dO3 values, we use the gap-filled SWOOSH data product. SWOOSH data ranges from 316 to 1 hPa (31

pressure levels), hence dO3 for pressure levels below 316 hPa are linearly extrapolated by approximating dO3 at 1000 hPa to

be about 0.01 ppm. Similarly, for levels above 1 hPa, we use linear interpolation assuming that dO3 at 0.1 hPa is about -0.1

ppm, based on bias seen with respect to Aura MLS measurements (Livesey et al., 2020) .
::
the

:::::::::::::
ML-TOMCAT

::::::
values

:::
are

:::
set140

::
to

::::::::::
latitudinally

:::
and

:::::::
monthly

:::::::
varying

::::::::::::
climatological

::::::
values

::::
from

:::::::::::::::::
Logan (1999) which

:::
are

::::
also

::::
used

::
in

:::::::::::
stratospheric

:::::::::
TOMCAT

::::::::::
simulations.

For the regression analysis, a 20-year (largely MLS covering) time period is selected in order to avoid heteroscedasticity (i.e.

effect of different sampling frequencies/methodologies (e.g. Sofieva et al., 2014; Millán et al., 2016) between different types

of satellite data sets) as SWOOSH relies heavily on MLS (UARS and Aura) data records. Additionally, it also covers a period145

when the stratospheric chlorine loading was increasing (1991-1998) and decreasing (2005-2016) and RF has enough sample to

include different characteristics of ozone variability. The regression model has 5 terms: Passive ozone (PO3), HCl mixing ratio

(HCl), methane mixing ratio (CH4) as well as observation-model total column difference (dTCO) and Mg II solar flux term

(MgII). The PO3,HCl and CH4 terms account for possible biases in CTM profiles due to transport in different stratospheric

regions (e.g. Strahan et al., 2011; Feng et al., 2021). dTCO is an ideal learner for the lower stratospheric ozone transport as150

total column ozone measurements have much smaller retrieval errors (e.g. Petropavlovskikh et al., 2019), hence they provide a

good constraint for the possible biases in ERA-5 stratospheric transport (e.g. Ploeger et al., 2021). TOMCAT has 203 spectral

bins in the photolysis scheme (e.g. Dhomse et al., 2016). Hence, the MgII solar flux term is included to account for possible

biases in the representation of the 11-year solar flux variability (e.g. Haigh et al., 2010; Dhomse et al., 2013) or the use of

coarse spectral bins (e.g. Sukhodolov et al., 2016).155
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Overall, there are five explanatory variables in the regression model for individual grid points and these are taken from

TOMCAT output fields. The regression model can be represented as:

dO3 = β1PO3 +β2HCl+β3CH4 +β4dTCO+β5MgII + residuals (1)

where β1, β2, β3, β4 and β5 can be considered as the contribution coefficient for a given explanatory variable and PO3, HCl,

CH4 are TOMCAT monthly mean zonal mean tracers. For the calculation of dTCO we use Copernicus Climate Change160

Service (C3S) total ozone data (1979–2018). The C3S total column product is a combination of total column data from

15 sensors using gap-filling assimilation methods and is obtained via https://cds.climate.copernicus.eu/cdsapp{#!}/dataset/

satellite-ozone?tab=overview (last access: 1 May 2021). For the years 2019 and 2020, we use level 3 total column data from

the Ozone Monitoring instrument (OMI) V3 that is obtained via https://search.earthdata.nasa.gov (last access: 1 May 2021).

The Mg II index is obtained from http://www.iup.uni-bremen.de/UVSAT/datasets/mgii (last access: 1 May 2021). We assume165

long-term chemical ozone changes are realistically represented by TOMCAT chemistry (e.g. Feng et al., 2007; Chipperfield

et al., 2017; Dhomse et al., 2019), hence all the predictor time series are detrended and normalised between 0 to 1.

4 Results

Atmospheric chemical models are ideal tools for understanding/simulating past (and future) ozone changes, as they combine

up-to-date knowledge about various physical and chemical processes using a mathematically consistent framework. Different170

models use different combinations of chemical and dynamical schemes to represent important processes in the atmosphere.

However, some of these processes are computationally expensive, hence they are represented by somewhat simplified param-

eterisations. For example, many chemical models prescribe observation-based sulfate surface area density (SAD) to represent

the effects of volcanically enhanced stratospheric aerosol for simulating heterogeneous chemistry which leads to ozone loss

(Dhomse et al., 2015). Many models also prescribe surface concentrations of greenhouse gases (GHGs) and ODSs rather than175

emission fluxes. CTMs such as TOMCAT use dynamical forcing fields from (re)analyses data sets such as ERA-Interim or

ERA-5. Hence CTMs are subject to possible inhomogeneities due to changes in the number of assimilated observations, as

well as other deficiencies (e.g. missing processes) in the forward model used in the assimilation system. On the other hand,

observational data sets are also subject to errors associated with the measurement techniques, instrument degradation and

retrieval algorithms. Hence, almost all chemical models may be expected to show a bias against observational data records,180

either because of model deficiencies or errors in the observations. However, chemical models do use a consistent chemical

scheme, so we can assume that chemical model-observation ozone differences are largely due to uncertainties in the forcing

fields such as meteorology (e.g. winds, temperature) and chemical parameterisations (e.g. reaction rates, solar fluxes, photolysis

schemes). CTMs have the distinct advantage in terms of dynamics as they are forced with up-to-date reanalysis data, although

with the above-noted caveat of possible inhomogeneities in observations used in the assimilation systems. Hence, recently185

initiated SPARC Reanalysis Intercomparison project (S-RIP) is aimed at providing guidance on future reanalysis activity. S-

RIP also plans to perform comprehensive evaluation and intercomparison of different reanalysis data products; for details see
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https://www.sparc-climate.org/sparc-report-no-10. Here, we train the ML algorithm on the model-observation differences for

the period that has relatively good temporal sampling. Estimated parameters are then used to simulate differences for the en-

tire (1979–2020) time period. In this section, we analyse model-observation biases associated with individual predictors and190

compare the ML-corrected data against a variety of observation-based data sets.

4.1 Model biases

Figure 1 shows climatological (2006–2020) monthly zonal mean differences between TOMCAT and SWOOSH ozone profiles

(TOMCAT minus SWOOSH). TOMCAT profiles show an almost symmetrically structured negative biases in the upper strato-

sphere and positive biases in the lower stratosphere. The largest negative biases (up to 0.8 ppm) occur in the tropical upper195

stratosphere (around 3 hPa) and they remain negative throughout the year. The ozone lifetime at these altitudes is less than a

day, hence the observed biases might be associated with deficiencies in the photochemical reactions in the model. At this alti-

tude, ozone production is largely controlled by solar fluxes below 240 nm while longer wavelengths control ozone destruction

(e.g. Haigh et al., 2010). Therefore, negative ozone biases in the upper stratosphere are most probably due to uncertainties in

the solar irradiances and/or photolysis cross sections that control ozone production (e.g. Brasseur and Solomon, 2006). Further-200

more, in this region of the atmosphere, ozone chemistry is mostly temperature dependent (e.g. Stolarski et al., 2010; Dhomse

et al., 2013, 2016), hence the model ozone biases could be due to uncertainties in temperature-dependent reaction rates (e.g.

Ghosh et al., 1997).

In the lower stratosphere the ozone lifetime ranges from months to years, hence positive biases in the TOMCAT ozone could

be due to a combination of both dynamics and chemistry. First, reduced overhead ozone could increase lower stratospheric205

ozone via the self-healing effect, i.e. increased ultra-violet radiation increases ozone production at lower altitudes (e.g. Haigh,

1994). Second, ozone is primarily produced in the tropical stratosphere, and its downward transport is controlled by the quasi-

biennial oscillation (QBO) (e.g. Tian et al., 2006), whereas transport towards mid-high latitudes is determined by the strength

of the Brewer-Dobson (BD) circulation (e.g. Holton et al., 1995; Weber et al., 2003; Dhomse et al., 2006; Weber et al.,

2011) which increases its lifetime considerably. Hence, ozone biases in the lower stratosphere are likely due to the incomplete210

representation of various circulation pathways in TOMCAT either due to model resolution or missing representation of key

physical process in the ERA-5 reanalysis scheme (e.g. Mitchell et al., 2020) which impacts the meteorology used in the CTM.

4.2 Contribution from explanatory variables

As the exact causes of TOMCAT ozone biases are still not well understood, we use the RF model to remove them. The

RF regression model coefficients are derived using 20 years (1991–1998, 2006–2018) for which SWOOSH data includes a215

large number of observational profiles especially from MLS on the UARS and Aura satellite platforms. The RF regression

model uses 20 years of monthly data with 80% and 20% of data points being used for training and testing, respectively. The

estimated RF regression coefficients are then used to calculate model biases for the entire 42-year time period (1979–2020).

RF-calculated ozone biases are then added to the TOMCAT time series to create the long-term gap-free data set, hereafter

labelled ML-TOMCAT.220
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Figure 2 shows how much variance (or R2) of the data the RF regression model is able to explain, along with regression

coefficients for individual explanatory variables. For example, R2 value of 0.8 indicates that the RF regression model is able to

explain 80% of the biases in TOMCAT ozone relative to SWOOSH data for the 20 years of the training period. R2 also repre-

sents sum of the regression coefficients from individual explanatory variables. Overall, the RF regression model performance

is consistently high (R2 > 0.8) throughout the stratosphere, except for the mid-stratosphere which is a transition region where225

the TOMCAT ozone biases change from positive to negative. At high northern latitudes, mid-stratospheric R2 values decrease

to 0.6. However, since TOMCAT – SWOOSH differences are much smaller here, a RF-based correction has a minimal impact

on the quality of ML-TOMCAT ozone profiles.

Additionally, as expected, the RF regression coefficients are significant in different regions of the stratosphere for various

explanatory variables. The passive ozone tracer seems to show the largest coefficients in the tropical mid-stratosphere, as well230

as varying contributions in different regions of the stratosphere. The passive ozone contribution in the tropical mid-stratospheric

could be linked to the incomplete representation of NOx-related chemical changes in TOMCAT and/or seasonal changes in

the stratospheric transport in the re-analysis (e.g. Galytska et al., 2019). The HCl tracer shows significant coefficients in the

upper stratosphere, where the ClO ozone loss cycle is important. It also shows significant contribution at low-mid-latitude

lower stratosphere. HCl can be considered as both a dynamical and chemical proxy, as in the upper stratospheric HCl is235

primarily produced via degradation of ozone-depleting substances and is transported downwards at high latitudes via the BD

circulation (e.g. Mahieu et al., 2014). Therefore, HCl variations in this region can be considered as a proxy for the changes in

the strength of the BD circulation as well as horizontal isentropic transport, especially between tropics and mid-latitudes. The

CH4 tracer term seems to show significant coefficients in the lowermost stratosphere (just above the tropopause) as well as a

significant contribution around the mid-latitude sub-tropics. The CH4 tracer contribution resembles a QBO-induced secondary240

circulation pattern. Interestingly, the solar term shows the largest coefficients in the mid-latitude upper stratosphere rather than

in the tropical upper stratosphere, suggesting solar flux variability has only a minor contribution to the TOMCAT-observation

biases. As expected the dTCO term shows the largest contribution in the lowermost stratosphere, especially in the tropical

and polar regions. Interestingly, ozone anomalies in these regions show good agreement with various satellite-based data sets

(e.g. Chipperfield et al., 2017, 2018; Li et al., 2020; Feng et al., 2021), and TOMCAT biases are much smaller. This means245

that although dTCO coefficients are largest in the lowermost stratosphere, the overall bias correction contribution remains

relatively small.

4.3 Comparison against merged data sets

After analysing the regression coefficients, we now present a comparison between ML-TOMCAT and available satellite-based

long-term data sets. Due to key differences between satellite measurement techniques, ozone profiles are retrieved either at250

altitude or pressure levels and either in units of mixing ratio or number density. For example, MLS retrieves profiles of ozone

mixing ratio on pressure levels whereas SAGE retrieves profiles of number density on altitude levels. Hence, merging these

different data sets needs pressure, temperature or altitude information at a given co-location from an external source such as

reanalysis data. The GOZCARDS and SWOOSH data sets use MERRA2 reanalysis data to convert SAGE II ozone number
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density profiles on fixed pressure levels (Damadeo et al., 2013). ML-TOMCAT is based on modelled ozone profiles as a255

function of pressure, although conversion to altitude (geopotential height) coordinates is straightforward. In particular, ML-

TOMCAT data were processed on corresponding grids/units using ERA-5 geopotential height, temperature and pressure fields

that are used to drive TOMCAT.

This subsection consists of two parts. First we compare ML-TOMCAT profiles with data sets using pressure co-ordinate

systems (e.g. SWOOSH, GOZCARDS), followed by comparisons with altitude-based data sets (SAGE–CCI–OMPS, SCIA-260

OMPS, BSVert).

4.3.1 Comparison with pressure level data

As noted earlier, we used only 20 years of SWOOSH data to train the RF model. Hence, the next obvious step is to compare

ML-TOMCAT ozone with SWOOSH over the full time period. Figure 3 compares relative differences (in percent) of ML-

TOMCAT with GOZCARDS and SWOOSH, respectively, as a function of latitude and pressure. ML-TOMCAT shows slightly265

positive biases in the middle stratosphere and somewhat negative biases in the upper and lower stratosphere with respect to both

SWOOSH and GOZCARDS data. The largest biases (up to 10%) are observed in the tropical lowermost stratosphere as well

as polar latitudes. However, these largest differences in the tropical lowermost stratosphere (and upper troposphere) cannot be

correctly validated as most satellite retrievals show largest their uncertainties in this region (Rahpoe et al., 2015; Steinbrecht

et al., 2017; Sofieva et al., 2021). Similarly, for the non-MLS period, the biases in the polar stratosphere could be due to the270

lack of observational ozone profiles during polar night.

Figure 4 shows TOMCAT, ML-TOMCAT, SWOOSH and GOZCARDS ozone time series over the equator (0◦ lat) at 3

pressure levels (1, 10 and 50 hPa). Supplementary Figures S1 to S10 show similar comparisons at 15◦N, 15◦S, 30◦N, 30◦S,

45◦N, 45◦S, 60◦N, 60◦S, 75◦N, and 75◦S latitude bins. The grey shaded area indicates the standard deviation of the ozone

values within each bin for the GOZCARDS time series. The green shaded areas indicates the root mean square uncertainty275

of the combined data sets for each bin in SWOOSH data (σrmss in Davis et al. (2016)). Overall, there is a good agreement

between the ML-TOMCAT, GOZCARDS and SWOOSH time series. As seen in Figure 1, ML-TOMCAT shows significant

improvements in the tropical stratosphere compared to TOMCAT.

A peculiar detail of Figure 4 is that the standard deviation in the SWOOSH time series is largest during the 1991-1999 time

period, which could be due to a combination of various factors. First, UARS MLS ozone profiles are retrieved at only six280

levels per pressure decade (Livesey et al., 2003) instead of 12 levels per decade for Aura MLS (see https://mls.jpl.nasa.gov/

data/v5-0_data_quality_document.pdf). Second, significant enhancement in the stratospheric aerosol loading following the Mt.

Pinatubo eruption in June 1991 led to larger retrieval errors. Even with those uncertainties in SWOOSH (and GOZCARDS),

ML-TOMCAT is generally close to the satellite-based data sets for the entire time period and the agreement with satellite

data is greatly improved in comparison to the original TOMCAT profile data. Supplementary Figures S1 to S10 also show an285

excellent agreement between ML-TOMCAT and the GOZCARDS/SWOOSH data sets for other latitude bands.

Next we scrutinise percentage differences between GOZCARDS and ML-TOMCAT on the same pressure levels. Figure 5

shows relative differences between TOMCAT, ML-TOMCAT and SWOOSH ozone time series with respect to GOZCARDS.
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As seen earlier, TOMCAT ozone shows up to 40% positive biases in the lower stratosphere and 10% negative biases in the upper

stratosphere (also seen in Figure 1). In contrast, ML-TOMCAT biases are well below 5% at all levels. At 50 hPa, TOMCAT290

biases seems to follow QBO-type oscillations that are correctly removed in ML-TOMCAT. Similarly, at 1 hPa TOMCAT

differences show some uneven variations that could be linked to the inhomogeneities in the ERA-5 dynamical fields that are

used to force TOMCAT. Furthermore, ML-TOMCAT differences show much smaller and almost linear biases at 1 hPa and lie

well within the spread of GOZCARDS data.

Interestingly, although both GOZCARDS and SWOOSH are created by merging nearly identical data sets, there are differ-295

ences between them which are largest for the 1984 to 2004 time period. This indicates that even slight differences in merging

methodology leads to large differences in the merged data set. Although we use completely independent output from a CTM

as a basis data set, GOZCARDS-ML-TOMCAT differences are within the expected discrepancy between GOZCARDS and

SWOOSH data sets, especially at 10 and 50 hPa.

Another notable feature in Figure 5 is that at 50 hPa ML-TOMCAT shows largest differences during 2020, which could be300

associated with the biases in ERA-5 dynamics during that period. A TOMCAT sensitivity simulation forced with ECMWF

operational analysis data shows better agreement with MLS ozone variation during this period (e.g. Chrysanthou et al., 2021).

In addition, larger differences seen during 1984 (50 hPa), 1988 (10 hPa) and 1996-1999 (1 hPa) are most probably associated

with SAGE II sampling issues and/or inhomogeneities in ERA-5 dynamical fields. However, a detailed analysis of these biases

is out of scope of this study and it needs further investigation.305

4.3.2 Comparison with altitude level data

We now compare ML-TOMCAT ozone profiles against altitude-based merged satellite data sets. Figure 6 shows the relative

differences between TOMCAT/ML-TOMCAT vs SAGE-CCI-OMPS (Sofieva et al., 2017), BSVert (Hassler et al., 2018a) as

well as SCIA-OMPS (Arosio et al., 2019) data sets as a function of altitude and latitude. The top panels (a and b) compare the

mean relative differences between the SAGE-CCI-OMPS data set, TOMCAT and ML-TOMCAT, respectively. Here TOMCAT310

shows large positive biases (up to 20%) in the lowermost stratosphere and negative biases (up to 15%) in the upper strato-

sphere. On the other hand, ML-TOMCAT shows only ±10% biases throughout the stratosphere. Larger biases are seen in the

Antarctic stratosphere that could be attributed to the limited observational ozone profiles used to construct the altitude-based

merged satellite data products. Interestingly, ML-TOMCAT shows largest biases (up to 30%) w.r.t. the BSVert data set, though

TOMCAT profiles (forced with ERA-Interim) are used as transfer function while constructing BSVert (Hassler et al., 2018a). In315

addition, in the lowermost stratosphere, biases are negative in the tropics and SH mid-latitudes and positive in the NH mid-high

latitudes. Hence, a contributing factor for these hemispherically asymmetric biases with respect to BSVert ozone profiles might

be differences between ERA-Interim and ERA-5 reanalysis data (e.g. Ploeger et al., 2021) that are used to force these two

data sets. The negative values in relative differences in the lower tropical stratosphere shown with respect to the SCIA-OMPS

data set in the fourth panel is systematic throughout the time series and is thought to be related to two factors. The first one is320

the rather coarse vertical grid (corresponding to SCIAMACHY vertical resolution of 3.3 km) which makes it sensitive to the

interpolation onto the TOMCAT grid. The second is the difference in use of merging procedure implemented for SCIA-OMPS
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and SWOOSH, so that ML-TOMCAT, trained over the MLS period using SWOOSH, shows a negative bias w.r.t. SCIA-OMPS,

which however does not show such bias w.r.t. MLS (Arosio et al., 2019).

Figure 7 compares TOMCAT and ML-TOMCAT profiles with the three altitude-based ozone data sets with a focus on the325

equator (0◦ latitude). Supplementary Figures S11 to S20 show similar comparisons for 15◦N, 15◦S, 30◦N, 30◦S, 45◦N, 45◦S,

60◦N, 60◦S, 75◦N, and 75◦S latitude bins. Figure 8 displays the respective relative differences with respect to the SAGE-CCI-

OMPS data set which in this case is taken as a reference. In this way it is possible to evaluate the improvement introduced

by applying the ML algorithm but also have an estimation of the discrepancies between different merged data sets, which is

expected to be on the order of 5-10%. With respect to the comparison with the data sets on pressure vertical coordinate, the330

scatter between the time series is larger here, due to the larger variety of different satellites available to produce the merged

products and the fact that they have not been used in the ML training.

At about 45km in the tropics the ML algorithm seems to over-correct the negative bias shown by TOMCAT, leading to

generally higher ozone values with respect to the other data sets, especially in the first half of the time series. In the middle

stratosphere we find the best agreement between SAGE-CCI-OMPS and ML-TOMCAT; here the expected discrepancies among335

the merged data sets are comparable to the differences observed between ML-TOMCAT and SAGE-CCI-OMPS. At the peak

of the ozone number profile around 25 km, we notice generally lower values for ML-TOMCAT, on average by 5%. Similar

biases are observed at mid-high latitude as well as seen in Supplementary Figures S11 to S20. The strong seasonal cycle seen

in the TOMCAT difference with respect to the merged data sets is largely reduced by ML-TOMCAT at this altitude.

4.3.3 Polar regions340

The use of ML-TOMCAT helps to fill the observational gaps especially in atmospheric regions with lack of observations and

before the beginning of the 21st century, when satellite measurements were sparser. For example, polar regions during local

winter cannot be observed by limb observations based on scattered sunlight. Instruments such as Aura MLS and the Sounding

of the Atmosphere using Broadband Emission Radiometry (SABER, Rong et al., 2008) have generally been used to fill this

gap over the last two decades. For chemical models, complexities are also associated with the denitrification and dehydration345

(or chlorine activation) schemes that determine heterogeneous ozone losses (Grooß et al., 2018). Though most of our earlier

studies showed that TOMCAT is able simulate to polar ozone losses quite realistically (e.g. Feng et al., 2007; Chipperfield et al.,

2015, 2017; Dhomse et al., 2019), some systematic biases in polar stratosphere were noted in Feng et al. (2021) and Weber

et al. (2021). Figure 9 compares ozone at 18 km over the Arctic demonstrating the good agreement between ML-TOMCAT

and MLS in this region for both local summer and winter seasons. The bottom panel shows the ozone sub-column over the350

Antarctic (poleward of 70◦S latitude) integrated between 12 and 20 km for TOMCAT, ML-TOMCAT and MLS averaged over

September-October months. The good agreement between MLS and ML-TOMCAT during the ozone hole period is observed

for most of the years. ML-TOMCAT enables the reconstruction of the large ozone losses which occurred in the 1980s during

a phase when ozone depleting substances were on a rapid rise before the implementation of the Montreal Protocol and their

phase out.355
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4.3.4
::::
Total

:::::::
column

:::::::::::
comparison

::
As

:::::
noted

::::::
above,

::::
total

::::::
column

::::::::::::
measurements

::::
have

::::::::
relatively

:::::
small

:::::::
retrieval

:::::
errors

:::
and

::::
high

::::::::
temporal

::::::::
resolution

:::
and

::::
thus

:::::::
provide

::
an

::::::::
important

:::::
data

:::
set

:::
for

::::::::
assessing

::::::
model

:::::::::::
performance.

::::::
Hence,

:::
we

::::::::
compare

::::
total

:::::::
column

::::::
ozone

::::
from

:::::::::::::
ML-TOMCAT

::::
and

::::::::
TOMCAT

::::
with

:::
the

::::::
SBUV

:::::::
merged

:::::
ozone

:::::::
(MOD)

::::
data

:::
set

:::
(url

::::::::::::::::::::::::::::
https://acd-ext.gsfc.nasa.gov/Data_services

:::::::
/merged/

:
).
::::::::
Monthly

::::
mean

::::
total

::::::
ozone

:::::::
columns,

::::::
which

:::
are

::::::::
calculated

:::
by

:::::::::
integrating

:::::::
number

::::::
density

:::::::
profiles,

:::
are

:::::
shown

::
in
::::::
Figure

:::
10

::
for

:::
six

:::::::
latitude360

:::::
bands.

:::::::::::::
Supplementary

::::::
Figure

:::
S22

:::::::::
compares

::::::::::
tropospheric

::::::::
columns

:::::::
obtained

:::
by

:::::::::
integrating

:::::::
profiles

:::
for

:::::
ozone

::::::
volume

:::::::
mixing

::::
ratios

::::::
below

:::
150

::::
parts

:::
per

::::::
billion

:::::
(ppb).

:::
As

::::::::
expected,

::::::::
TOMCAT

:::::::::::
tropospheric

:::::::
columns

::::
show

::
a

:::::::
constant,

::::::::
repeating

:::::::
seasonal

:::::
cycle

::::
with

:::::::
smallest

::::
mean

:::::
value

::::
(and

:::::::::
amplitude)

::
in

:::
the

::::::
tropics

:::
(up

::
to

::
13

::::
DU)

:::
and

::::::
largest

:::::
mean

:::::
values

::
in

:::
the

:::
NH

:::::::::::
mid-latitudes

:::
(up

::
to

:::
23

::::
DU).

::
In

::::::::
contrast,

::::::::::::
ML-TOMCAT

:::::::::::
tropospheric

:::::::
columns

:::::
shows

:::::
much

::::::
larger

::::
mean

::::
and

::::::::
amplitude

:::
for

:::
all

:::
the

::::::
latitude

::::
bins

::::::
(mean

::::::
column

::
of

:::::
about

:::
35

:::
DU

::
in

:::
the

::::
NH

::::::::::::
mid-latitudes).

:::::::::::::
ML-TOMCAT

::::::::::
tropospheric

:::::::
columns

::::
also

:::::
show

::::
large

:::::::::
short-term

:::::::::
variations365

::::
(e.g.

::::
year

::::
1991

::::::::
following

::::::::
Pinatubo

::::::::
eruption),

::::::::::
suggesting

:::
that

:::
the

:::::::::::::
ML-TOMCAT

:::::::
pressure

:::::
range

::::
(316

:::
hPa

::
-
:
1
::::
hPa)

:::::
does

:::::
affect

:::::::::
calculation

::
of

:::
the

::::::::::
tropospheric

:::::::
column

::::::
through

::::::::
inclusion

::
of

:::::
levels

:::
that

::::::
extend

:::::
above

::::
316

:::
hPa.

:::::
Note

:::
that

:::::
below

:::
the

::::
316

:::
hPa

:::::
level,

::::
both

::::::::
TOMCAT

:::
and

:::::::::::::
ML-TOMCAT

::::::
profiles

::::::
include

:::::::
monthly

::::::::::::
climatological

::::::
values

::::
from

::::::::::::
Logan (1999) .

::::::
Hence,

::
it

::
is

::::::::
important

::
to

:::
note

::::
that

::::::::::::
ML-TOMCAT

:::::::::
lower-mid

::::::::::
tropospheric

::::::
values

:::
are

:::
not

::::::::::::
recommended

:::
for

:::::::
scientific

:::::::
studies.

::::::::::::
Supplementary

::::::
Figure

::::
S23

:::::
shows

:::::::::::::
latitude-altitude

:::::
cross

::::::
section

::
of

::::::::::::
climatological

:::::::::::
(1979–2020)

::::::
ozone

:::::::::
differences

:::::::
between

:::::::::::::
ML-TOMCAT

:::
and

:::::::::
TOMCAT370

::
in

::::::
Dobson

::::::
Units.

:::::
Figure

::::
S23

::::::
clearly

:::::
shows

::::
that

::::::
largest

:::::::::
differences

:::
are

::
in

:::
the

:::::
upper

:::::::::::::::
troposphere/lower

:::::::::::
stratosphere.

::
As

:::::
noted

::::::
earlier,

:::::::::
TOMCAT

::::
total

:::::::
column

:::::::::
differences

:::
are

::::::::
relatively

:::::
small

:::
for

::::
both

:::::
Arctic

::::::::::::
(60◦N–90◦N)

:::
and

::::::::
Antarctic

::::::
(60◦S

:
–
:::::
90◦S)

:::::::
regions

:::
and

::::::
Figure

::
10

::::::
clearly

::::::
shows

::::
that

:::
the

::::
same

::
is

::::
true

:::
for

::::::::::::
ML-TOMCAT

::::
total

::::::::
columns

::
as

::::
well.

::::
For

:::::::::::
mid-latitudes

::::
(35◦

:
–
:::::
60◦),

::::::::
TOMCAT

::::::
shows

:::::
biases

::
of

:::
up

::
to

:::
+20

::::
DU

:::::
biases

:::::::::
(especially

::
in
:::
the

::::
NH

:::::::
mid-lat)

::::::::
compared

::
to

:::::::::::
observations

:::::::
whereas

::::::::::::
ML-TOMCAT

:::::
shows

::::::::::
differences

::
of

::::
less

::::
than

::
10

::::
DU.

:::::::::::
Interestingly,

:::
for

:::
the

::::::
tropics

:::::
(20◦S

::
–
::::::
20◦N),

:::::::::
TOMCAT

:::::
shows

::::::::
negative375

:::::
biases

::::
until

:::::
2000

:::
and

:::::::
slightly

::::::
positive

::::::
biases

:::::::::
afterwards

:::
that

:::
are

::::::
almost

:::::::::
negligible

::
in

::::::::::::
ML-TOMCAT

::::
time

::::::
series.

:::
On

:::
the

:::::
other

::::
hand,

:::
for

:::
the

::::::::::
near-global

:::::::
average

:::::
(60◦S

:
–
::::::
60◦N),

:::::::::::::
ML-TOMCAT

:::::
biases

::::::
remain

:::::::
positive

::::
until

:::::
1990

:::
and

:::
are

:::::
close

::
to

:::::::::
TOMCAT

:::::
biases.

:::::
After

:::::
2000

:::::::::
TOMCAT

::::::
seems

::
to

:::::
show

::::::
slightly

:::::::::
increasing

:::::::
positive

::::::
biases

::::
w.r.t.

:::::::
SBUV

:::::
MOD

::::
data

:::
but

:::::::::::::
ML-TOMCAT

:::::
seems

::
to

:::::
show

:::::
almost

:::::::::
negligible

:::::
biases

:::::::
without

:::
any

::::::::
apparent

:::::
trend.

::::::
Overall

::::::::::::
ML-TOMCAT

::::::
ozone

::::::
profiles

:::::::
outside

:::
the

:::
316

::
–

:
1
::::
hPa

:::::
range

::::::
should

::
be

:::::::::
considered

::
as

::::::::
(slightly

::::::::
modified)

:::::::::
TOMCAT380

:::::
model

:::::::
profiles.

::::::::
However,

:::::
total

::::::
column

::::
(and

:::::::::::
tropospheric

:::::::
column

:::::
shown

::
in
:::::::::::::

Supplementary
::::::
Figure

::::
S22)

:::::::::::
comparisons

:::::::
suggest

:::
that

::::::::
vertically

:::::::::
integrated

::::::
(1000

:::
hPa

::
–
:::
0.1

:::::
hPa)

::::::::::::
ML-TOMCAT

:::::::
profiles

::::
can

:::::::
provide

:
a
::::::

useful
:::::::
estimate

::::::
which

::
is
:::::
better

:::::
than

::::::::
TOMCAT

::::
and

:::
also

::::::
better

::::
than

:::::::::
combining

::::::::::::
ML-TOMCAT

:::::::::::
stratospheric

:::::::
column

::::
with

::::::::::
tropospheric

:::::::
column

::::
from

:::::
other

:::::::
sources

::::::
(noting

::::
that

:::::
levels

::::::
above

::
1

:::
hPa

:::::
have

::
a
:::::::::
negligible

::::::::::
contribution

:::
to

:::
the

::::::::
column).

::::::
Hence,

::::
for

::::::::::
convenience

::::
we

::::::
include

:::::
both

::::::::::
tropospheric

:::
and

:::::
lower

:::::::::::
mesospheric

:::::
ozone

::::::
values

::
in

::::::::::::
ML-TOMCAT

::::
data

::::
files

:::::
(1000

::::
hPa

:
–
:::
0.1

::::
hPa)

:::::
even

::::::
though

::::
they

:::
are

::::
only385

:::::
based

::
on

::::::
values

::::
from

:::
the

:::::::::
TOMCAT

:::::
model

::::::
outside

::
of

:::
the

::::::::
pressure

::::
range

::::
316

:
–
::
1
::::
hPa.

:::
For

:::::
future

:::::::
versions

:::
of

::::::::::::
ML-TOMCAT

:::
we

:::
aim

::
to

::::
also

::::::
correct

::::::::::
tropospheric

:::::
ozone

::::::
profile

::::::
biases

::::
using

:::::::
merged

::::::::::
tropospheric

::::::
ozone

:::::
profile

::::
data

::::
sets

::::::::
described,

:::
for

::::::::
example,

::
in

:::
the

::::::::::::
Tropospheric

:::::
Ozone

::::::::::
Assessment

::::::
Report

::::::::
(TOAR).
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5 Summary and Conclusions

Stratospheric ozone concentrations are affected by many short- and long-term processes, hence high quality ozone profile data390

sets are needed for accurate attribution studies. Though satellite instruments provide global measurements, due to their short

mission durations various merging methodologies have been adopted to create homogeneous and gap-free long-term ozone

profile data sets. Individual merging methodologies have distinct advantages and disadvantages. Atmospheric chemical models

are also able to simulate chemically consistent long-term data sets, but they are prone to the deficiencies associated with the

simplified parameterisations and uncertain parameters.395

Here we have used TOMCAT CTM ozone profiles and a Random Forest (RF) regression model to create gap-free ozone

profile data set (ML-TOMCAT) for 1979-2020. The RF is applied to the ozone difference between the SWOOSH and TOM-

CAT ozone profiles by selecting 20 years of MLS measurements (UARS-MLS and AURA-MLS) as a training period. RF show

consistent performance throughout the stratosphere, except at high latitudes and the mid-latitude mid-stratosphere. Overall,

ML-TOMCAT shows excellent agreement with SWOOSH for the entire time period (1984–2020), though somewhat larger400

differences are apparent for the period where limited ozone measurements are available for SWOOSH construction. We also

find that ML-TOMCAT shows better agreement with satellite-based merged data sets which use pressure as the vertical coor-

dinate (e.g. SWOOSH, GOZCARDS) but weaker agreement with the data sets which use altitude (e.g. SAGE–CCI–OMPS,

SCIA-OMPS). We find that at almost all stratospheric levels ML-TOMCAT ozone concentrations are well within uncertain-

ties of the observational data sets. TOMCAT ozone profiles outside the 316 – 1 hPa range can be considered as (slightly405

modified) TOMCAT profiles. For the next version of ML-TOMCAT, we aim at correcting tropospheric ozone profile biases

using merged tropospheric ozone profile data sets described in Tropospheric Ozone Assessment Report (TOAR). Presently,

the ML-TOMCAT V1.0 data set is ideally suited for the evaluation of chemical model ozone profiles from the tropopause to

0.1 hPa. ML-TOMCAT V1.0 ozone profile data on pressure and altitude levels in mixing ratios and number density units is

publicly available via.
:
. https://doi.org/10.5281/zenodo.5651194

:
.410
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Figure 1. Latitude-pressure cross sections of the climatological (2006-2020) monthly mean difference (ppm) between TOMCAT and

SWOOSH (Davis et al., 2016) ozone profiles.
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Figure 2. Latitude-pressure cross sections of the variance (R2) and regression coefficients from passive ozone, HCl, CH4, solar and total

column ozone anomaly (see main text equation 1).
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Figure 3. Relative differences (in percent) as a function of pressure and latitude between ML-TOMCAT and (a) GOZCARDS V2 (Froidevaux

et al., 2019) and (b) SWOOSH (Davis et al., 2016). Stippling indicates regions where differences are statistically insignificant
:::::
smaller

::::
than

:::
one

::::::
standard

:::::::
deviation.
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Figure 4. Comparison between TOMCAT (blue lines) and ML-TOMCAT (red lines) ozone mixing ratios over the equator (0◦) at (a, top)

1 hPa, (b, middle) 10 hPa and (c, bottom) 50 hPa. Satellite-based ozone mixing ratios from GOZCARDS (Froidevaux et al., 2019) and

SWOOSH (Davis et al., 2016) data sets along with their uncertainty estimates (shaded) are shown with black and green coloured lines,

respectively.
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Figure 5. As Figure 4 but for the residuals, i.e. relative differences between SWOOSH (green), TOMCAT (blue) and ML-TOMCAT (red)

ozone with respect to GOZCARDS ozone.
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Figure 6. Relative difference (%) as a function of latitude and altitude between (a) TOMCAT versus SAGE-CCI-OMPS (1985-2019) and

ML-TOMCAT versus (b) SAGE-CCI-OMPS (1985-2019), (c) BSVert (1985-2017) and (d) SCIA-OMPS (2002-2019), averaged over the

respective time series. Stippling indicates regions where differences are statistically insignificant
::::::
smaller

:::
than

:::
one

:::::::
standard

:::::::
deviation.
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Figure 7. Comparison between TOMCAT (blue lines) and ML-TOMCAT (red lines) ozone mixing ratios over the equator (0◦) at (a, top)

45 km, (b, middle) 35 km and (c, bottom) 25 km. Satellite-based ozone mixing ratios from SAGE–CCI–OMPS, BSVert (Hassler et al., 2018a)

and SCIA-OMPS (Arosio et al., 2019) data sets are shown with black, green and cyan-coloured lines, respectively.
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Figure 8. Same as Figure 7 but for the residuals, i.e. relative differences between TOMCAT (blue), ML-TOMCAT (red), BSVert (green) and

SCIA-OMPS (cyan) ozone with respect to SAGE–CCI–OMPS.
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Figure 9. (a) Ozone concentration time series (molecules cm−3) at 18 km over the Arctic region (latitudes poleward of 70◦N). Aura-MLS and

the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, Rong et al., 2008) data are superimposed on TOMCAT

and ML-TOMCAT time series. (b) Mean ozone sub-column (DU) between 12-20 km for September and October each year over the Antarctic

region (latitudes poleward of 70◦S).
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Figure 10.
::::::::::
ML-TOMCAT

::::
(red

::::
line)

:::
and

::::::::
TOMCAT

:::::
(blue

::::
line)

::::
total

::::::
column

:::::
ozone

:::::::::
comparison

::::
with

:::::
SBUV

::::::
merged

:::::
ozone

::::
data

::::::
(MOD,

::::
black

::::
line)

::::::
obtained

::::
from

:
https://acd-ext.gsfc.nasa.gov/Data_services/merged/index.html.

:::::::
Monthly

::::
mean

::::
total

::::::
column

:::
time

:::::
series

:::
are

:::::
shown

::
for

:::
six

::::::
latitude

::::
bins:

:::::
Arctic

:::::::::::
(60◦N-90◦N),

:::::::
Antarctic

::::::::::
(60◦S-90◦S),

:::
NH

::::::::::
mid-latitudes

:::::::::::
(35◦N-60◦N),

:::
SH

::::::::::
mid-latitudes

::::::::::
(35◦S-60◦S),

::::::
tropics

::::::::::
(20◦S-20◦N),

:::
and

:::
near

:::::
global

:::::::::::
(60◦S-60◦N).
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