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Abstract.

High quality stratospheric ozone profile datasets
:::
data

::::
sets are a key requirement for accurate quantification and attribution of

long-term ozone changes. Satellite instruments obtain
::::::
provide

:
stratospheric ozone profile measurements over typical mission

durations of 5-15 years. Various methodologies have then been applied to merge and homogenise the different satellite data

in order to create longer term observation-based ozone profile datasets
::::
data

:::
sets

:
with minimal data gaps. However, individual5

satellite instruments use different measurement methods, sampling patterns and retrieval algorithms which complicate the

merging of these different datasets
::::
data

:::
sets. In contrast, atmospheric chemical models can produce chemically consistent long-

term ozone simulations based on specified changes in external forcings, but they are subject to the deficiencies associated with

incomplete understanding of complex atmospheric processes and uncertain photochemical parameters.

Here, we use chemically self-consistent output from the TOMCAT 3-D chemical transport model (CTM) and a Random-10

Forest (RF) ensemble learning method to create a merged 42-year (1979-2020) stratospheric ozone profile dataset
::::
data

:::
set

(ML-TOMCAT V1.0). The underlying CTM simulation was forced by meteorological reanalyses, specified trends in long-

lived source gas
::::
gases, solar flux and aerosol variations. The RF is trained using the Stratospheric Water and OzOne Satellite

Homogenized (SWOOSH) dataset
:::
data

:::
set

:
over the time periods of the Microwave Limb Sounder (MLS) from the Upper

Atmosphere Research Satellite (UARS) (1991-1998) and Aura (2005-2016) missions. We find that ML-TOMCAT shows ex-15

cellent agreement with available independent satellite-based datasets
::::
data

:::
sets

:
which use pressure as the vertical coordinate

(e.g. GOZCARDS, SWOOSH for non-MLS periods) but weaker agreement with the datasets which are height-based
::::
data

:::
sets

:::::
which

:::
are

::::::::::::
altitude-based

:
(e.g. SAGE–CCI–OMPS, SCIAMACHY-OMPS). We find that at almost all stratospheric levels

ML-TOMCAT ozone concentrations are well within uncertainties in the observational datasets
:
of

:::
the

::::::::::::
observational

::::
data

:::
sets.

The ML-TOMCAT dataset is thus
::::::
(V1.0)

:::
data

:::
set

::
is
:
ideally suited for the evaluation of

::::::::
chemical model ozone profiles from20

the tropopause to 0.1 hPa . ML-TOMCAT data
::
and

:
is freely available via https://zenodo.org/record/4997959#.YNzleUlKiUk

::::::::::::::::::
(Dhomse et al., 2021) .
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1 Introduction

With the successful implementation of the Montreal Protocol, various observations confirm reductions in the concentrations of

ozone depleting
::::::::::
halogenated

:::::::::::::
ozone-depleting

:
substances (ODSs) in the atmosphere (WMO, 2014, 2018). Satellite data records25

also confirm a peak in upper stratospheric HCl
:::
(the

:::::
main

:::::::
chlorine

::::::::
reservoir) around 1997, followed by a steady decline (Ander-

son et al., 2000; Froidevaux et al., 2006a; Hossaini et al., 2019). Hence, attention has turned towards the detection and attribu-

tion of ozone recovery (e.g. Dhomse et al., 2006; Solomon et al., 2016; Chipperfield et al., 2017; Dhomse et al., 2018)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Dhomse et al., 2006; Solomon et al., 2016; Chipperfield et al., 2017; Steinbrecht et al., 2017; Dhomse et al., 2018; Szeląg et al., 2020) .

However,
:::
the

:
accurate quantification of ozone changes is challenging because of the quality of long-term ozone profile

datasets
::::
data

:::
sets, where measurement errors are of similar magnitude or larger

::
or

:::::
larger

:::::::::
magnitude than the long-term ozone30

trends. In addition, complex coupling between various physical and chemical processes controlling stratospheric ozone con-

centrations cause large short-term ozone changes. Complications also arise because there are some non-linear changes in

stratospheric dynamics as well as chemical constituents. For example, between 2018 and 2021, some of the largest and small-

est ozone losses of the recent decades were recorded in both the Arctic and Antarctic polar stratospheres (e.g. Wargan et al.,

2020; Wohltmann et al., 2020; Bognar et al., 2021; Weber et al., 2021). Some observational data suggest that there has been a35

continuous decline in lower stratospheric ozone (Ball et al., 2018, 2020), which could be attributed to changes in stratospheric

dynamics (e.g. Chipperfield et al., 2018; Wargan et al., 2018; Orbe et al., 2020; Abalos and de la Cámara, 2020). Atmospheric

concentrations of ODSs such as CFC-11 are decreasing at uneven rates (Montzka et al., 2018, 2021) which could
::::::
induce

variability in ozone trends. Additionally, significant positive trends have been detected in very short-lived substances (VSLS)

containing chlorine and bromine that are not controlled by the Montreal Protocol (e.g. Hossaini et al., 2015, 2019).40

As there is
::
are

:
no long-term ozone profile data from a single satellite instrument, various attempts have been made to merge

such data from different instruments. However, individual satellite instruments have different temporal and spatial resolution

depending on the measurement techniques and retrieval algorithms (e.g. Damadeo et al., 2018)
:::::::::::::::::::::::::::::::::::::::
(e.g. Sofieva et al., 2014; Damadeo et al., 2018) .

For example, solar occultation instruments (e.g. Stratospheric Aerosol and Gas Experiment (SAGE, McCormick et al., 1989),

Halogen Occultation Experiment (HALOE, Russell III et al., 1993)) provide high quality measurements but are constrained by45

limited spatial coverage. Limb-scanning instruments such as the Microwave Limb Sounder (MLS, Froidevaux et al., 2006b),

Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY, Bovensmann et al., 1999), Optical

Spectrograph and InfraRed Imager System (OSIRIS, Murtagh et al., 2002 ) provide better spatial coverage but have coarser

vertical resolution. A key constraining factor is that only few satellite datasets
:::
data

::::
sets cover enough overlapping years to

remove inter-instrument biases with minimal uncertainty.50

Hence, Randel and Wu (2007) adopted a novel approach to create a gap-free stratospheric ozone profile data for the

1979–2005 time period. They used SAGE (I and II) satellite profile measurements and polar ozonesondes, together with

:
a
:
seasonally varying ozone climatology from Paul et al. (1998) to fill the gaps, to generate multi-variate regression based

:::::::::::::
regression-based

:
gap-free ozone anomalies. Later, Cionni et al. (2011) used a similar methodology along with climate model

simulations to extend the time series backwards to 1850. The Cionni et al. (2011) data was
::::
were

:
recommended for the his-55

torical CMIP5 simulations , in order to enforce time-dependent ozone variations, for the
:::
for

:::
the

::::::
climate

:
models that did not
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include stratospheric chemistry
:
,
::
in

:::::
order

::
to

:::::::
enforce

:::::::::::::
time-dependent

::::::
ozone

::::::::
variations. Hassler et al. (2008) used a different

methodology to create a satellite-based long-term ozone profile dataset
::::
data

::
set. Along with SAGE I and II measurements, they

used HALOE and POAM
:::::
(Polar

::::::
Ozone

::::
and

:::::::
Aerosol

::::::::::::
Measurement) II and III satellite measurements, as well as ozonesonde

data from 130 stations, to create a collection of binary data files; also known as the "Binary DataBase of Profiles" (BDBP)60

version 1.0. Bodeker et al. (2013) , updated the BDBP dataset
:::
data

:::
set

:
to construct “Bodeker Scientific” or “BS” data. They

updated BDBP data by including measurements from the Limb Infrared Monitor of the Stratosphere (LIMS), the Improved

Limb Array Spectrometer (ILAS), and ILAS II. They used a multivariate regression model to create different versions of the

ozone profile dataset
::::
data

::
set

:
ranging from the surface to 70 km for the 1979-2008 time period. Hassler et al. (2018a) revised

the Bodeker et al. (2013) dataset
:::
and

::::::::
extended

:::::::::::
(1979–2016)

::
the

:::::
"BS"

::::
data

::
set

:
by using the TOMCAT chemical transport model65

(CTM) ozone profiles as a transfer function to capture ozone variability for the period without satellite observations.

Another widely used merged data
::
set

:
is the Global OZone Chemistry And Related trace gas Data records for the Stratosphere

(GOZCARDS, Froidevaux et al., 2015). These are monthly mean zonal mean
::::::
zonally

::::::::
averaged time series constructed using

ozone profiles
:::::
profile

:
measurements from several NASA satellite instruments and the Atmospheric Chemistry Experiment -

Fourier Transform Spectrometer (ACE-FTS, Bernath et al., 2005). Merging is done primarily by removing average biases70

between SAGE II and individual data records for overlap periods (Froidevaux et al., 2015). The GOZCARDS data files contain

mixing ratios on a pressure–latitude grid (300 hPa to 0.1 hPa), updated later to GOZCARDS v2.2 (Froidevaux et al., 2019).

Davis et al. (2016) adopted a slightly different approach to construct the Stratospheric Water and Ozone Satellite Homoge-

nized (SWOOSH) data
::
set. SWOOSH merges stratospheric ozone profile data from solar occultation instruments (SAGE-II/III,

HALOE, ACE-FTS) as well as limb-scanning instruments (UARS-MLS, and Aura-MLS). The measurements are homogenized75

by applying corrections that are calculated from data taken during time periods of instrument overlap. The primary SWOOSH

data product consists of monthly mean zonal-mean values on a pressure grid at 2.5, 5 and 10 degree resolution. One of
:::
the

major characteristics of SWOOSH data is that when merging greater weight is given to the instruments that sample more fre-

quently (e.g. Aura-MLS). Filled and unfilled versions of the dataset
::::
data

::
set

:
exist on both geographical and equivalent latitude

coordinates.80

Several other
::::::::
additional

:
attempts have been made to merge satellite time series from limb and occultation instruments. In

this study we consider
:::
For

::::::::
example, the SAGE–CCI–OMPS dataset

:::
data

:::
set, described in Sofieva et al. (2017) , which includes

SAGE II time series and several limb datasets
:::
data

::::
sets. The OMPS-LP dataset

:::
data

:::
set used is produced at the University

of Saskatoon (Zawada et al., 2018). The CCI data sets were firstly
::::
First,

::::
they

:
screened and homogenized

::::
CCI

::::
data

:::
sets

:
in

the HARMOZ format and then merged
:::::
before

:::::::
merging

:::::
them in terms of ozone anomalieswith the SAGE II and OMPS-LP85

observations.

Arosio et al. (2019) also
:
.
::::::::
Recently,

::::::::::::::::
Arosio et al. (2019) created a merged SCIAMACHY-OMPS limb merged dataset

::::
data

::
set

:
(SCIA-OMPS), which combines these two time series produced at the University of Bremen. They use

::::
used

:
MLS data

series as a transfer function to merge SCIAMACHY with OMPS-LP as these instruments share only two months of overlap,

but MLS was not included in the merged dataset
:::
data

:::
set. This time series is monthly averaged, covers the period 2002-present90

and is longitudinally resolved, with a 5°
::
5◦

:
latitude × 20°

:::
20◦

:
longitude grid. Due to the similarities in the measurement
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geometries and techniques, and in the retrieval approaches, a plain debiasing approach was implemented
:::
they

:::::::::::
implemented

::
a

::::
plain

::::::::::
de-biasing

::::::::
approach

::
for

:::
the

::::::::
merging, directly obtaining a long-term ozone time series in appropriate units.

:::::::
Another

:::::
widely

::::::::
accepted

:::::::
approach

::
is
:::::
using

::::
data

::::::::::
assimilation

:::::::::
techniques

::
to

:::::
create

:::::::::::::::
observation-based

:::
data

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Feng et al., 2008; Skachko et al., 2014; Errera et al., 2019; Wargan et al., 2020) .

::::::::
However,

::::
only

:
a
:::
few

::::::::::
instruments

::::
such

::
as

:::::
MLS

::::::
provide

::::::::
relatively

:::::::::
long-term

:::::
ozone

::::::
profile

::::::::::::
measurements.

:::
For

:::
the

::::::::
pre-MLS

::::
time95

::::::
period,

::::
very

:::
few

::::::::::
observations

:::
are

::::::::
available

:::
that

:::
can

:::::::
provide

::::
good

::::::::
constraint

:::
on

:::
the

::::::::::
assimilation

::::::
system.

:::::
Also,

:::
the

::::::
forward

::::::
model

:
is
::::::::
generally

::::::
forced

::::
with

::::::::
available

::::::::::
(re)analysis

:::::::::
dynamical

::::
fields

:::
so

::::::::
reanalysis

::::
data

::::
sets

:::
are

::::
also

:::::
prone

::
to

:::
the

:::::::::::::
inhomogenities

::
in

::
the

:::::::
forcing

:::::
fields

::::
along

:::::
with

:::
any

:::::::::::
discrepancies

::
in

::::::::
chemical

:::::::
scheme.

In this paper we present a new data-model method for producing a long-term dataset
:::
data

:::
set

:
of stratospheric ozone. We

use ozone profile output from a CTM to create a machine-learning-based satellite-corrected long-term chemically (and dynam-100

ically) consistent ozone profile dataset
:::
data

:::
set

:
(hereafter, ML-TOMCAT) for the 1979–2020

::::
1979

::
–
:::::
2020 time period. The

CTM setup is described in Section 2, followed by our methodology in Section 3. Comparisons of ML-TOMCAT with some

of the other available merged ozone profile datasets
:::
data

::::
sets are presented in Section 4, with a summary of our key results in

Section 5.

2 Model Setup105

We use chemically consistent monthly mean zonal mean ozone profiles from the TOMCAT chemical transport model (CTM

)
:::::
CTM

:
as the basis dataset

:::
data

:::
set. TOMCAT is an off-line three-dimensional (3D) CTM that includes a comprehensive

stratospheric chemistry scheme (Chipperfield, 2006). For the present study, the CTM setup is similar to the control simula-

tions used in our recent studies such as Feng et al. (2021); Bognar et al. (2021) and Weber et al. (2021). Briefly, the model

::::::::
TOMCAT

:
is forced with meteorological fields from ERA-5 reanalyses (Hersbach et al., 2020), starting from 1979. Simu-110

lations are performed at a 2.8 × 2.8 degree horizontal resolution with 32 hybrid sigma-pressure levels extending from the

surface to about 60 km. For major ODSs and GHGs the model uses time-dependent observed global mean surface mixing

ratios (Carpenter et al., 2018) that are treated as well-mixed throughout
:::
the

:
troposphere. The model also includes the ef-

fects of solar flux variability and heterogeneous chemistry on volcanically enhanced stratospheric aerosol as described in

Dhomse et al. (2015, 2016)
:::::::::::::::::::::::
Dhomse et al. (2015, 2016) . Solar irradiance data are from the NRL2 (Coddington et al., 2016)115

empirical model and the sulphate
::::::
sulfate aerosol surface area density (SAD) from Luo (2016). The model

::::::::
TOMCAT

:
also in-

cludes chlorine and bromine contributions from VSLS as described in Hossaini et al. (2019). The model
:
A
:::::::
passive

:::::
ozone

:::::
tracer

:::
(no

:::::::
chemical

::::::
ozone

:::::
loss),

::::::::
generally

::::
used

::
to

::::::::
diagnose

::::::::
chemical

:::::
ozone

::::
loss,

::
is
:::::::::

initialised
:::::
every

:::
six

::::::
months

:::::
from

:::
the

::::::::
chemical

:::::
ozone

:::::
tracer

:::
(1st

::::
June

::::
and

:::
1st

::::::::::
December).

::::::::
TOMCAT

:
has been regularly used to study long-term changes in stratospheric trace

gases, showing good agreement with various ground-based and satellite datasets (e.g. Mahieu et al., 2014; Chipperfield et al., 2015; Wales et al., 2018; Harrison et al., 2021)
::::
data120

:::
sets

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Mahieu et al., 2014; Chipperfield et al., 2015; Wales et al., 2018; Harrison et al., 2021; Prignon et al., 2021) .
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3 Methodology

We use the Random Forest (RF) regression analysis to generate a long-term chemically consistent dataset
::::
data

:::
set. The RF is

a supervised machine learning (ML) algorithm that uses an ensemble of decision trees (e.g. Breiman, 2001; Svetnik et al.,

2003). Decision treesuse a binary recursive classifying algorithm by splitting observations into two homologous groups. The125

recursive nature of the algorithm means splitting could be repeated until only two observations are left in the final split.
::
A

:::::::
decision

:::
tree

::::
can

::
be

::::::::::
considered

::
as

::
a
::::
flow

:::::
chart

::::
used

::
in
:::::::::

computer
:::::::::::
programming

:::
(a

:::::::::
tree-shaped

::::::::::
schematic)

::::
that

::
is

::::::::
generally

::::
used

::
to

::::
show

::
a
::::::::
statistical

:::::::::
probability

:::
or

::::
path

::
of

::::::
action.

::
A

:::::
single

:::::::
decision

::::
tree

::
in

:
a
:::
RF

::::
can

::
be

:::::::::
considered

:::
as

:
a
:::::::
random

:::
tree

::
in

::
a

:::::
forest

::
of

:::::::
decision

:::::
trees.

::::
Each

:::::::
decision

::::
tree

:::::::
consists

::
of

::::
three

:::::::::::
components:

:::::::
decision

::::::
nodes,

:::
leaf

::::::
nodes,

:::
and

::
a
::::
root

::::
node.

::::
The

::::
root

::::
node

:::
and

:::::::
decision

::::::
nodes

::
of

:::
the

:::::::
decision

:::
tree

::::::::
represent

:::
the

::::::::::
explanatory

::::::::
variables.

::::
The

:::
leaf

::::
node

:::::::::
represents

:::
the

::::
final

::::::
output.

::::
The130

:::::::::
explanatory

::::::::
variables

::::
used

::
in

:::
our

:::::::
analysis

:::
are

:::::::::
explained

::
at

:::
end

::
of

:::
this

:::::::
section.

:

:
A
::::::::

decision
:::
tree

:::::::::
algorithm

::::::
divides

:::
the

::::
data

:::
set

::::
into

::::::::
branches

::::::
(using

:::
true

::::
and

::::
false

:::::::::
criterion),

::::::
which

::::::
further

::::::::
segregate

::::
into

::::
other

::::::::
branches

::::
until

::
a

:::
leaf

:::::
node

:::
(or

:::::
result

:::::
node)

::
is

:::::::
reached.

:::::::
Multiple

:::::
trees

:::
are

::::::::::
constructed

::
by

::::::::
randomly

::::::::
sampling

::::
data

::::::
points

:::::::
multiple

:::::
times

::::
(e.g.

::::::::
bootstrap

:::::::
method).

:::::::
Hence,

::
an

:::::::::
individual

:::
tree

::::
can

::
be

:::::::::
considered

::
as

::::::
unique

::::
tree

::::::
(hence

::::::
unique

:::::::
output). RF

uses a bagging technique
:
, that means the

:::
RF model consists of many individual trees or learners

:::::::
decision

::::
trees

:
and aggregated135

predictions are used for the final prognosis. A distinct advantage of RF regression is that it can
:
is

::::::::
relatively

:::::::
accurate

::::
and

::::
very

::::
easy

::
to

::
set

:::
up.

:::
RF

:::
can

::::
also behave like a non-linear regression method. As RF adds randomness to the model

:::::::
decision

::::::::
procedure,

instead of relying on the most important feature
:::::::::
explanatory

::::::::
variables, it searches for the best feature

::::::
variable

:
among random

subsets. This ensures that the final output does not rely heavily on a single learner
::::::::::
explanatory

:::::::
variable, thereby avoiding

overfitting
:::::::::
over-fitting (e.g. Kotsiantis, 2013). We use Random Forest (RF )

::
RF

:
Regression from the Python package sklearn140

:::::
Sci-kit

:::::
learn (Pedregosa et al., 2011) with two options: random_state=0, and bootstrap=True.

Initially, TOMCAT zonal mean ozone profiles are
::::::
linearly

:
interpolated in log-pressure space on to 43 equidistant (12 per

decade) pressure levels (1000–0.1 hPa, MLS pressure levels), followed by spatial interpolation on to
::::
onto 72 SWOOSH latitude

bins at 2.5◦ resolution. SWOOSH data is
::
are

:
obtained via https://csl.noaa.gov/groups/csl8/swoosh/. Then, we calculate the

ozone difference (dO3) between SWOOSH and model ozone profiles for the 1991-1998 and 2005-2016 time periods (total145

20 years). For the calculation of dO3 values, we use the gap-filled SWOOSH data product. SWOOSH data ranges from 316 to

1 hPa (31 pressure levels), hence dO3 for pressure levels below 316 hPa are linearly interpolated
::::::::::
extrapolated

:
by approximating

dO3 at 1000 hPa to be about 0.01 ppm. Similarly, for levels above 1 hPa, we use linear interpolation assuming that dO3 at

0.1 hPa is about -0.1 ppm, based on bias seen with respect to Aura MLS measurements
::::::::::::::::::
(Livesey et al., 2020) .

For the regression analysis, a 20-year (largely MLS covering) time period is selected in order to avoid heteroscedasticity (i.e.150

effect of different sampling frequencies/methodologies
:::::::::::::::::::::::::::::::::::::
(e.g. Sofieva et al., 2014; Millán et al., 2016) between different types

of satellite datasets
::::
data

:::
sets) as SWOOSH relies heavily on MLS (UARS and Aura) data records.

:::::::::::
Additionally,

:
it
::::
also

::::::
covers

:
a
::::::
period

::::
when

:::
the

:::::::::::
stratospheric

:::::::
chlorine

:::::::
loading

:::
was

:::::::::
increasing

:::::::::::
(1991-1998)

:::
and

:::::::::
decreasing

:::::::::::
(2005-2016)

:::
and

:::
RF

:::
has

:::::::
enough

::::::
sample

::
to

::::::
include

::::::::
different

::::::::::::
characteristics

::
of

:::::
ozone

:::::::::
variability.

:
The regression model has 5 terms: Passive ozone (PO3), HCl

mixing ratio (HCl), methane mixing ratio (CH4) as well as observation-model total column difference (dTCO) and Mg II155

5
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solar flux term (MgII). ThePO3,HCl andCH4 terms account for possible biases in CTM profiles due to transport in different

stratospheric regions (e.g. Strahan et al., 2011; Feng et al., 2021). dTCO is an ideal learner for the lower stratospheric ozone

transport as total column ozone measurements have much smaller retrieval errors (e.g. Petropavlovskikh et al., 2019), hence

they provide a good constraint for the possible biases in ERA-5 stratospheric transport (e.g. Ploeger et al., 2021). TOMCAT has

203 spectral bins in the photolysis scheme (e.g. Dhomse et al., 2016). Hence, the MgII solar flux term is included to account160

for possible biases in the representation of the 11-year solar flux variability (e.g. Haigh et al., 2010; Dhomse et al., 2013) or

the use of coarse spectral bins (e.g. Sukhodolov et al., 2016).

Overall, there are thus five learners
::
five

:::::::::::
explanatory

:::::::
variables

:
in the regression model that

::
for

:::::::::
individual

::::
grid

:::::
points

::::
and

::::
these

:::
are

:::::
taken

::::
from

:::::::::
TOMCAT

::::::
output

:::::
fields.

:::
The

:::::::::
regression

::::::
model can be represented as:

dO3 = β1
::
PO3 +β2

::
HCl+β3

::
CH4 +β4

::
dTCO+β5

::
MgII + residuals (1)165

:::::
where

:::
β1,

:::
β2,

:::
β3,

::
β4::::

and
::
β5::::

can
::
be

:::::::::
considered

::
as

:::
the

:::::::::::
contribution

::::::::
coefficient

:::
for

::
a

:::::
given

:::::::::
explanatory

:::::::
variable

::::
and PO3, HCl,

CH4 are TOMCAT monthly mean zonal mean tracers. For the calculation of dTCO we use Copernicus Climate Change Ser-

vice (C3S) total ozone data (1979–2018). The C3S total column product is a combination of total column data from 15 sensors

using gap-filling assimilation methods and is obtained via https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-ozone?

tab=overview (last access: 1 May 2021). For the years 2019 and 2020, we use level 3 total column data from the Ozone Moni-170

toring instrument (OMI) V3 that is obtained via https://search.earthdata.nasa.gov (last access: 1 May 2021). The Mg II index is

obtained from http://www.iup.uni-bremen.de/UVSAT/datasets/mgii (last access: 1 May 2021). We assume long-term chemical

ozone changes are realistically represented by TOMCAT chemistry (e.g. Feng et al., 2007; Chipperfield et al., 2017; Dhomse

et al., 2019)and so
:
,
:::::
hence all the predictor time series are detrended and normalised between 0 to 1.

4 Results175

Atmospheric chemical models are ideal tools for understanding/simulating past (and future) ozone changes, as they combine

up-to-date knowledge about various physical and chemical processes using a mathematically consistent framework. Different

models use different combinations of chemical and dynamical schemes to represent important processes in the atmosphere.

However, some of these processes are computationally expensive, hence they are represented by somewhat simplified parame-

terisations. For example, many chemical models prescribe observation-based sulphate
:::::
sulfate

:
surface area density (SAD) to rep-180

resent the effects of volcanically enhanced stratospheric aerosol to simulate
::
for

:::::::::
simulating heterogeneous chemistry which leads

to ozone loss (Dhomse et al., 2015). Many models also prescribe surface concentrations of GHGs
:::::::::
greenhouse

:::::
gases

:::::::
(GHGs)

and ODSs rather than emission fluxes. CTMs such as TOMCAT use dynamical forcing fields from (re)analyses datasets
::::
data

:::
sets such as ERA-Interim or ERA-5. Hence CTMs are subject to the possible inhomogeneities due

:
to

:
changes in the number of

assimilated observations, as well as other deficiencies (e.g. missing processes) in the forward model used in the assimilation sys-185

tem. On the other hand, observational datasets
::::
data

:::
sets

:
are also subject to errors associated with the measurement techniques,

instrument degradation and retrieval algorithms. Hence, almost all
::::::::
chemical models may be expected to show a bias against
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observational data records, either because of model deficiencies or errors in the observational datasets
::::::::::
observations. However,

chemical models do use a consistent chemical scheme, so we can assume that model-observations
:::::::
chemical

::::::::::::::::
model-observation

:::::
ozone differences are largely due to uncertainties in the forcing fields such as meteorology (e.g. winds, temperature) and chem-190

ical parameterisations (e.g. reaction rates, solar fluxes, photolysis schemes). CTMs have the distinct advantage in terms of dy-

namics as they are forced with up-to-date reanalysis data, although with the above-noted caveat of possible inhomogeneities in

observations used in the assimilation systems. Therefore,
:::::
Hence,

:::::::
recently

:::::::
initiated

:::::::
SPARC

:::::::::
Reanalysis

::::::::::::::
Intercomparison

::::::
project

::::::
(S-RIP)

::
is
::::::
aimed

::
at

::::::::
providing

::::::::
guidance

:::
on

:::::
future

:::::::::
reanalysis

:::::::
activity.

:::::
S-RIP

::::
also

:::::
plans

::
to

:::::::
perform

:::::::::::::
comprehensive

:::::::::
evaluation

:::
and

::::::::::::::
intercomparison

::
of

:::::::
different

:::::::::
reanalysis

::::
data

::::::::
products;

:::
for

::::::
details

:::
see

:
https://www.sparc-climate.org/sparc-report-no-10

:
.195

::::
Here,

:
we train the ML algorithm on the model-observation differences for the period that has relatively good temporal sam-

pling. Estimated parameters are then used to simulate differences for the entire (1979–2020) time period. In this section, we

analyse model-observation biases associated with individual predictors and compare the ML-corrected data against a variety

of observation-based datasets
::::
data

:::
sets.

4.1 Model biases200

Figure 1 shows climatological (2006–2020) monthly zonal mean differences between SWOOSH and TOMCAT ozone profiles.

TOMCAT ozone
:::
and

:::::::::
SWOOSH

:::::
ozone

::::::
profiles

::::::::::
(TOMCAT

:::::
minus

:::::::::
SWOOSH

::
).

::::::::
TOMCAT

:
profiles show an almost symmetrical

structure with positive
:::::::::::
symmetrically

:::::::::
structured

:::::::
negative

:
biases in the upper stratosphere and negative

::::::
positive

:
biases in the

lower stratosphere. The largest positive
:::
The

::::::
largest

:::::::
negative

:
biases (up to 0.8 ppm) occur in the tropical upper stratosphere

(around 3 hPa) and they remain positive
:::::::
negative throughout the year. The ozone lifetime at these altitudes is less than a day,205

hence the observed biases might be associated with deficiencies in the photochemical reactions in the model. At this altitude,

ozone production is largely controlled by
:::
solar

:
fluxes below 240 nm while longer wavelengths control ozone destruction (e.g.

Haigh et al., 2010). Therefore, negative ozone biases in the upper stratosphere are most probably due to uncertainties in the solar

irradiances and/or photolysis cross sections that control ozone production (e.g. Brasseur and Solomon, 2006). Furthermore, in

this region of the atmosphere, ozone chemistry is very temperature-dependent
::::::
mostly

::::::::::
temperature

:::::::::
dependent (e.g. Stolarski210

et al., 2010; Dhomse et al., 2013, 2016), hence
::
the

:
model ozone biases could be due to uncertainties in temperature-dependent

reaction rates (e.g. Ghosh et al., 1997).

In the lower stratosphere the ozone lifetime ranges from months to years, hence positive biases in the modelled
::::::::
TOMCAT

ozone could be due to a combination of both dynamics and chemistry. First, reduced overhead ozone could increase lower

stratospheric ozone via the self-healing effect, i.e. increased ultra-violet radiation increases ozone production at lower altitudes215

(e.g. Haigh, 1994). Second, ozone is primarily produced in the tropical stratosphere, and its downward transport is controlled by

the QBO
:::::::::::
quasi-biennial

:::::::::
oscillation

::::::
(QBO) (e.g. Tian et al., 2006), whereas transport towards mid-high latitudes is determined

by the strength of the Brewer-Dobson (BD) circulation (e.g. Holton et al., 1995; Weber et al., 2003, 2011; Dhomse et al., 2006)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Holton et al., 1995; Weber et al., 2003; Dhomse et al., 2006; Weber et al., 2011) which

increases its lifetime considerably. Hence, ozone biases in the lower stratosphere are likely due to the incomplete representation

of various circulation pathways in TOMCAT either due to model resolution or missing representation of key physical process220

in the ERA-5 reanalysis scheme (e.g. Mitchell et al., 2020) which impacts the meteorology used in the CTM.
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4.2 Learner contributions
::::::::::::
Contribution

::::
from

:::::::::::
explanatory

::::::::
variables

As the exact causes of model
::::::::
TOMCAT

:
ozone biases are still not well understood, we use the RF model to remove these

biases in TOMCAT
::::
them. The RF regression model coefficients are derived using 20 years (1991–1998, 2006–2018) for which

SWOOSH data includes a large number of observational profiles especially from MLS on the UARS and Aura satellite plat-225

forms. The RF regression model uses 20-years
::
20

:::::
years

:
of monthly data with 80% and 20% of data points being used for

training and testing, respectively. Estimated
:::
The

::::::::
estimated

:
RF regression coefficients are then used to calculate model biases

for the entire 42-year time period (1979–2020). RF-calculated ozone biases are then added to the TOMCAT time series to

create the long-term gap-free dataset
::::
data

::
set, hereafter labelled ML-TOMCAT.

Figure 2 shows how much variance (or R2) of the data the RF regression model is able to explain, along with regression230

coefficients for individual learners
::::::::::
explanatory

:::::::
variables. For example, R2 equal to

::::
value

::
of

:
0.8 indicates that

::
the

:
RF regression

model is able to explain 80% of the biases in modelled
::::::::
TOMCAT

:
ozone relative to SWOOSH data for the 20 years of the

training period.
:::
R2

:::
also

:::::::::
represents

::::
sum

::
of

:::
the

:::::::::
regression

::::::::::
coefficients

::::
from

:::::::::
individual

::::::::::
explanatory

:::::::::
variables. Overall, the RF

regression model performance is consistently high (R2 > 0.8) throughout the stratosphere, except for the mid-stratosphere

which is a transition region where the TOMCAT ozone biases change from positive to negative. At high northern latitudes,235

mid-stratosphericR2 values decrease to 0.6. However, since TOMCAT-SWOOSH
:::::::::
TOMCAT

:
–
:::::::::
SWOOSH differences are much

smaller here, a RF-based correction has a minimal impact on the quality of ML-TOMCAT ozone profiles.

Additionally, as expected, the RF regression coefficients are significant in different regions of the stratosphere for various

learners
::::::::::
explanatory

:::::::
variables. The passive ozone tracer seems to show the largest coefficients in the tropical mid-stratosphere,

as well as varying contributions in different regions of the stratosphere. The passive ozone contribution in the tropical mid-240

stratospheric could be linked to the incomplete representation of NOx-related chemical changes in TOMCAT and/or sea-

sonal changes in the stratospheric transport in the re-analysis (e.g. Galytska et al., 2019). The HCl tracer shows significant

coefficients in the upper stratosphere, where the ClO ozone loss cycle is important.
::

It
::::

also
::::::

shows
:::::::::
significant

:::::::::::
contribution

:
at
:::::::::::::::

low-mid-latitude
:::::
lower

:::::::::::
stratosphere.

::::
HCl

::::
can

::
be

::::::::::
considered

::
as

::::
both

::
a
:::::::::
dynamical

::::
and

::::::::
chemical

:::::
proxy,

:
as well as in the

tropical lower stratosphere.
:::::
upper

:::::::::::
stratospheric

::::
HCl

::
is

::::::::
primarily

::::::::
produced

:::
via

::::::::::
degradation

::
of

:::::::::::::
ozone-depleting

:::::::::
substances

::::
and245

:
is
::::::::::
transported

:::::::::
downwards

::
at
::::
high

::::::::
latitudes

:::
via

:::
the

:::
BD

:::::::::
circulation

::::::::::::::::::::::
(e.g. Mahieu et al., 2014) .

::::::::
Therefore,

:::::
HCl

::::::::
variations

::
in

::::
this

:::::
region

::::
can

::
be

::::::::::
considered

::
as

::
a

:::::
proxy

:::
for

:::
the

:::::::
changes

:::
in

:::
the

:::::::
strength

::
of

::::
the

:::
BD

:::::::::
circulation

:::
as

::::
well

::
as

:::::::::
horizontal

:::::::::
isentropic

::::::::
transport,

::::::::
especially

::::::::
between

::::::
tropics

:::
and

::::::::::::
mid-latitudes.

:
The CH4 tracer term seems to show significant coefficients in the

lowermost stratosphere (just above the tropopause) as well as a significant contribution around
::
the

:
mid-latitude sub-tropics.

The CH4 tracer contribution resembles a QBO-induced secondary circulation pattern. Interestingly, the solar term shows the250

largest coefficients in the mid-latitude upper stratosphere rather than in the tropical upper stratosphere, suggesting solar flux

variability has only a minor contribution to the model-observation
::::::::::::::::::
TOMCAT-observation

:
biases. As expected the dTCO term

shows the largest contribution in the lowermost stratosphere, especially in the tropical and polar regions. Interestingly, ozone

anomalies in these regions show good agreement with various satellite-based data sets (e.g. Chipperfield et al., 2017, 2018; Li
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et al., 2020; Feng et al., 2021), and model
::::::::
TOMCAT biases are much smaller. This means

:::
that although dTCO coefficients are255

largest in the lowermost stratosphere, the overall bias correction contribution remains relatively small.

4.3 Comparison against merged datasets
::::
data

:::
sets

After analysing the regression coefficients, we now present a comparison between ML-TOMCAT and available satellite-based

long-term datasets.
:::
data

:::::
sets. Due to key differences between satellite measurement techniques, ozone profiles are retrieved

either at height
::::::
altitude or pressure levels and either in units of mixing ratio or number density. For example, MLS retrieves260

profiles of ozone mixing ratio on pressure levels whereas SAGE retrieves profiles of number density on height
::::::
altitude

:
levels.

Hence, merging these different datasets
:::
data

::::
sets

:
needs pressure, temperature or height

::::::
altitude

:
information at a given co-

location from an external source such as reanalysis data.
:::
The

:
GOZCARDS and SWOOSH datasets

:::
data

::::
sets use MERRA2

reanalysis data to convert SAGE II ozone number density profiles on fixed pressure levels (Damadeo et al., 2013). Since, ML-

TOMCAT is based on modelled ozone profiles as a function of pressure, conversion to height
:::::::
although

:::::::::
conversion

::
to

:::::::
altitude265

:::::::::::
(geopotential

::::::
height) coordinates is straightforward. In particular, ML-TOMCAT data was

::::
were processed on corresponding

grids/units using ERA-5 geopotential
:::::
height, temperature and pressure fields that are used to drive TOMCAT.

This subsection consists of two parts. First we compare ML-TOMCAT profiles with datasets
::::
data

:::
sets

:
using pressure co-

ordinate systems (e.g. SWOOSH, GOZCARDS), followed by comparisons with height-based datasets
:::::::::::
altitude-based

::::
data

::::
sets

(SAGE–CCI–OMPS, SCIA-OMPS, BSVert).270

4.3.1 Comparison with pressure level data

As noted earlier, we used only 20 years of SWOOSH data to train the RF model. Hence, the next obvious step is to compare ML-

TOMCAT ozone with SWOOSH over the full time period. Figure 3 compares relative differences (in percentage
::::::
percent) of ML-

TOMCAT with GOZCARDS and SWOOSH, respectively, as a function of latitude and pressure. ML-TOMCAT shows slightly

positive biases in the middle stratosphere and somewhat negative biases in the upper and lower stratosphere with respect to both275

SWOOSH and GOZCARDS data. The largest biases (up to 10%) are observed in the tropical lowermost stratosphere as well as

polar latitudes. However, these largest differences in the tropical lowermost stratosphere (and upper troposphere) cannot be cor-

rectly validated as most satellite retrievals show largest
::::
their

:
uncertainties in this region (Rahpoe et al., 2015; Steinbrecht et al., 2017)

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rahpoe et al., 2015; Steinbrecht et al., 2017; Sofieva et al., 2021) .

Similarly, the
:::
for

::
the

:::::::::
non-MLS

::::::
period,

:::
the biases in the polar stratosphere could be due to the lack of observational ozone pro-

files during polar nights
::::
night.280

Figure 4 shows TOMCAT, ML-TOMCAT, SWOOSH and GOZCARDS ozone time series over the equator (0◦ lat) at 3

pressure levels (1, 10 and 50 hPa). Supplementary Figures S1 to S10 show similar comparisons at 15◦N, 15◦S, 30◦N, 30◦S,

45◦N, 45◦S, 60◦N, 60◦S, 75◦N, and 75◦S latitude bins. The grey shaded area indicates the standard deviation of the ozone

values within each bin for the GOZCARDS time series. The green shaded areas indicates the root mean square uncertainty of

the combined datasets
:::
data

::::
sets for each bin in SWOOSH data (σrmss in Davis et al. (2016)). Overall, there is a good agreement285

between the ML-TOMCAT, GOZCARDS and SWOOSH time series. As seen in Figure 1, ML-TOMCAT shows significant

improvements in the tropical stratosphere
::::::::
compared

::
to

::::::::
TOMCAT.
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A peculiar detail of Figure 4 is that the standard deviation in the SWOOSH time series is largest during the 1991-1999 time

period
:
, which could be due to a combination of various factors. First, for this time period, SWOOSH largely relies on UARS

MLS ozone profiles . As UARS was launched in a near-circular orbit, the MLS latitudinal coverage was either 34◦S – 80◦N290

or 34◦N – 80◦S, depending on the spacecraft yaw position which alternated every 36 days (Barath et al., 1993) . Hence, for

lower latitude ozone profiles during 1990s, SWOOSH relies on SAGE II and HALOE profiles with a low spatial sampling.

Second, UARS MLS ozone profiles are retrieved at only six levels per pressure decade (Livesey et al., 2003) instead of 12

levels per decade for Aura MLS (see https://mls.jpl.nasa.gov/data/v5-0_data_quality_document.pdf). Third
:::::
Second, significant

enhancement in the stratospheric aerosol loading following the Mt. Pinatubo eruption in June 1991 , led to larger retrieval295

errors. Even with those uncertainties in SWOOSH (and GOZCARDS), ML-TOMCAT is generally close to the satellite-based

datasets
:::
data

::::
sets

:
for the entire time period and the agreement with satellite data is greatly improved in comparison with

::
to the original TOMCAT model

:::::
profile

:
data. Supplementary Figures S1 to S10 also show an excellent agreement between

ML-TOMCAT and
::
the

:
GOZCARDS/SWOOSH datasets

::::
data

:::
sets

:::
for

:::::
other

::::::
latitude

:::::
bands.

As discussed above, the ML-TOMCAT training dataset (SWOOSH) has large uncertainties in the 1990s. Next we scruti-300

nise percentage differences between GOZCARDS and ML-TOMCAT on the same pressure levels. Figure 5 shows relative

differences between TOMCAT, ML-TOMCAT and SWOOSH ozone time series with respect to GOZCARDS. As seen earlier,

TOMCAT ozone shows up to 40% positive biases in the lower stratosphere and 10% negative biases in the upper stratosphere

(also seen in Figure 1). In contrast, ML-TOMCAT biases are well below 5% at all levels. At 50 hPa, TOMCAT biases seems

to follow QBO-type oscillations that are correctly removed in ML-TOMCAT. Similarly, at 1 hPa TOMCAT differences show305

some uneven variations that could be linked to the inhomogeneities in the ERA-5 dynamical fields that are used to force TOM-

CAT. Furthermore, ML-TOMCAT differences show much smaller and almost linear biases at 1 hPa and lie well within the

spread of GOZCARDS data.

Interestingly, although both GOZCARDS and SWOOSH are created by merging nearly identical datasets
:::
data

::::
sets, there are

differences between them which are largest for the 1984 to 2004 time period. This indicates that even slight differences in310

merging methods
:::::::::::
methodology

:
leads to large differences in the merged dataset

:::
data

:::
set. Although we use completely indepen-

dent output from a CTM as a basis dataset,
::::
data

:::
set,

::::::::::::
GOZCARDS-ML-TOMCATdifferences are not significantly different to

SWOOSH differences
:::::::::
differences

:::
are

::::::
within

:::
the

::::::::
expected

::::::::::
discrepancy

:::::::
between

:::::::::::
GOZCARDS

::::
and

:::::::::
SWOOSH

::::
data

:::
sets, espe-

cially at 10 and 50 hPa.

Another notable feature in Figure 5 is that at 50 hPa , ML-TOMCAT shows largest differences during 2020, which could be315

associated with the biases in ERA-5 dynamics during that period. A TOMCAT sensitivity simulation forced with ECMWF oper-

ational analysis data shows better agreement with MLS ozone variation during this period (not shown)
:::::::::::::::::::::::::
(e.g. Chrysanthou et al., 2021) .

In addition, larger differences seen during 1984 (50 hPa), 1988 (10 hPa) and 1996-1999 (1 hPa) are most probably associated

with SAGE II sampling issues and/or inhomogeneities in ERA-5 dynamical fields.
::::::::
However,

:
a
:::::::
detailed

:::::::
analysis

::
of

::::
these

::::::
biases

:
is
:::
out

:::
of

:::::
scope

::
of

:::
this

:::::
study

:::
and

::
it
:::::
needs

::::::
further

:::::::::::
investigation.

:
320

4.3.2 Comparison with height level data
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In this section, we

4.3.2
:::::::::::
Comparison

::::
with

:::::::
altitude

::::
level

:::::
data

:::
We

::::
now compare ML-TOMCAT ozone profiles against height-based merged satellite datasets

:::::::::::
altitude-based

:::::::
merged

:::::::
satellite

:::
data

::::
sets. Figure 6 shows relative difference

::
the

:::::::
relative

:::::::::
differences

:
between TOMCAT/ML-TOMCAT vs SAGE-CCI-OMPS325

(Sofieva et al., 2017), BSVert (Hassler et al., 2018a) as well as SCIA-OMPS (Arosio et al., 2018) datasets
::::::::::::::::::::
(Arosio et al., 2019) data

:::
sets

:
as a function of altitude and latitude. The top panels (a and b) compare the mean relative difference

::::::::
differences

:
between

the SAGE-CCI-OMPS dataset
::::
data

::
set, TOMCAT and ML-TOMCAT, respectively. Here TOMCAT shows large positive biases

(up to 20%) in the lowermost stratosphere and negative biases (up to 15%) in the upper stratosphere. On
:::
the other hand, ML-

TOMCAT shows only ±10% biases throughout the stratosphere. Larger biases are seen in the Antarctic stratosphere that could330

be attributed to the limited observational ozone profiles used to construct the height-based
::::::::::::
altitude-based merged satellite data

products. Interestingly, ML-TOMCAT shows largest biases (up to 30%) w.r.t.
:::
the BSVert data set, though TOMCAT profiles

(forced with ERA-Interim) are used to construct the BSVert data set
::
as

::::::
transfer

::::::::
function

:::::
while

::::::::::
constructing

::::::
BSVert

:
(Hassler

et al., 2018a). In addition, in the lowermost stratosphere, biases are negative in the SH latitudes and positive biases
:::::
tropics

::::
and

:::
SH

:::::::::::
mid-latitudes

:::
and

:::::::
positive

:
in the NH mid-high latitudes. Hence, a contributing factor for these hemispherically asymmet-335

ric biases with respect to BSVert ozone profiles might be differences between ERA-Interim and ERA-5 reanalysis data (e.g.

Ploeger et al., 2021) that are used to force these two datasets. The strong
:::
data

::::
sets.

::::
The

:
negative values in relative differences

in the lower tropical stratosphere shown with respect to
::
the

:
SCIA-OMPS dataset

:::
data

:::
set in the fourth panel , is systematic

throughout the time series and is thought to be related to the
:::
two

::::::
factors.

::::
The

:::
first

::::
one

::
is

:::
the

:::::
rather coarse vertical grid (corre-

sponding to SCIAMACHY vertical resolution of 3.3 km) and the merging methodology implemented. In the
:::::
which

::::::
makes

::
it340

:::::::
sensitive

::
to

:::
the

:::::::::::
interpolation

::::
onto

:::
the

:::::::::
TOMCAT

::::
grid.

::::
The

::::::
second

::
is

:::
the

::::::::
difference

::
in
::::

use
::
of

:::::::
merging

:::::::::
procedure

:::::::::::
implemented

::
for

:
SCIA-OMPS dataset, no anomalies were computed, but OMPS was adjusted to SCIAMACHY mean values in each bin by

using Aura MLS as a transfer function.
:::
and

:::::::::
SWOOSH,

::
so

::::
that

:::::::::::::
ML-TOMCAT,

::::::
trained

::::
over

:::
the

:::::
MLS

:::::
period

:::::
using

::::::::::
SWOOSH,

:::::
shows

:
a
:::::::
negative

::::
bias

:::::
w.r.t.

:::::::::::
SCIA-OMPS,

::::::
which

:::::::
however

::::
does

:::
not

:::::
show

::::
such

::::
bias

::::
w.r.t.

:::::
MLS

:::::::::::::::::
(Arosio et al., 2019) .

:

Figure 7 compares TOMCAT and ML-TOMCAT profiles with the three height-based ozone datasets
:::::::::::
altitude-based

::::::
ozone345

:::
data

::::
sets

:
with a focus on the equator (0◦ latitude). Supplementary Figures S11 to S20 show similar comparisons for 15◦N,

15◦S, 30◦N, 30◦S, 45◦N, 45◦S, 60◦N, 60◦S, 75◦N, and 75◦S latitude bins. Figure 8 displays the respective relative differences

with respect to the SAGE-CCI-OMPS dataset
:::
data

:::
set which in this case is taken as a reference. In this way it is possible to

evaluate the improvement introduced by applying the ML algorithm but also have an estimation of the discrepancies between

different merged datasets
::::
data

:::
sets, which is expected to be on the order of 5-10%. With respect to the comparison with the350

datasets
:::
data

::::
sets on pressure vertical coordinate, the scatter between the time series is larger here, due to the larger variety of

different satellites available to produce the merged products and the fact that they have not been used in the ML training.

At about 45km in the tropics the ML algorithm seems to over-correct the negative bias shown by TOMCAT, leading to gen-

erally higher ozone values with respect to the other datasets
::::
data

:::
sets, especially in the first half of the time series. In the middle

stratosphere we find the best agreement between SAGE-CCI-OMPS and ML-TOMCAT; here the expected discrepancies among355
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the merged datasets
::::
data

:::
sets

:
are comparable to the differences observed between ML-TOMCAT and SAGE-CCI-OMPS. At

the peak of the ozone number profile around 25 km, we notice generally lower values for ML-TOMCAT, on average by 5%.

Similar biases are observed at mid-high latitude as well as seen in Supplementary Figures S11 to S20. The strong seasonal

cycle seen in the TOMCAT difference with respect to the merged datasets
::::
data

:::
sets is largely reduced by ML-TOMCAT at this

altitude.360

4.3.3 Polar regions

The use of ML-TOMCAT helps to fill the observational gaps especially in atmospheric regions with lack of observations

and before the beginning of the 21st century, when satellite measurements were sparser. For example, polar regions during

local winter cannot be observed by limb observations based on scattered sunlight. Instruments such as Aura MLS and the

Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, Rong et al., 2008) are generally
::::
have

::::::::
generally365

::::
been used to fill this gap over the last two decades. Also for

::
For

:
chemical models, complexities are also associated with the

denitrification and dehydration (or chlorine activation) schemes that determine heterogeneous ozone losses (Grooß et al., 2018).

Though most of our earlier studies showed that TOMCAT is able
:::::::
simulate

:
to polar ozone losses quite realistically (e.g. Feng

et al., 2007; Chipperfield et al., 2015, 2017; Dhomse et al., 2019), some systematic biases in polar stratosphere were noted in

Feng et al. (2021); Weber et al. (2021)
::::::::::::::::::
Feng et al. (2021) and

::::::::::::::::
Weber et al. (2021) . Figure 9 compares ozone at 18 km over the370

North Pole which also demonstrates
:::::
Arctic

::::::::::::
demonstrating

:
the good agreement between ML-TOMCAT and MLS in this region

, both during
::
for

::::
both

:
local summer and winter . In the bottom panel ,

:::::::
seasons.

:::
The

::::::
bottom

:::::
panel

::::::
shows the ozone sub-column

over the South Pole
::::::::
Antarctic (poleward of 70◦S latitude) intergrated

::::::::
integrated

:
between 12 and 20 km , for TOMCAT, ML-

TOMCAT and MLS averaged over September-October months. The good agreement between MLS and ML-TOMCAT during

the ozone hole period is observed for most of the years. ML-TOMCAT enables the reconstruction of the large ozone losses375

which occurred in the 1980s during a phase when ozone depleting substances were on a rapid rise before the implementation

of the Montreal Protocol and their phase out.

5 Summary and Conclusions

Stratospheric ozone concentrations are affected by many short- and long-term processes, hence high quality ozone profile

datasets
:::
data

::::
sets are needed for accurate attribution studies. Though satellite instruments provide global measurements, due to380

their short mission durations various merging methodologies have been adopted to create homogeneous and gap-free long-term

ozone profile datasets
:::
data

::::
sets. Individual merging methodologies have distinct advantages and disadvantages. Atmospheric

chemical models are also able to simulate chemically consistent long-term datasets
:::
data

::::
sets, but they are prone to the deficien-

cies associated with the simplified parameterisations and uncertain parameters.

Here we have used TOMCAT CTM ozone profiles and a RF
:::::::
Random

::::::
Forest

::::
(RF) regression model to create gap-free ozone385

profile dataset
::::
data

:::
set (ML-TOMCAT) for 1979-2020. The RF is trained for

:::::
applied

:::
to the ozone difference between the

SWOOSH and TOMCAT ozone profiles by selecting 20 years of MLS measurement time periods
::::::::::::
measurements (UARS-MLS
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and AURA-MLS)
::
as

:
a
:::::::
training

::::::
period. RF show consistent performance throughout the stratosphere, except at high latitudes

and
:::
the mid-latitude mid-stratosphere. Overall, ML-TOMCAT shows excellent agreement with SWOOSH for the entire time

period (1984–2020), though somewhat larger differences are visible
:::::::
apparent

:
for the period where limited ozone measurements390

are available for SWOOSH construction. We also find that ML-TOMCAT shows better agreement with satellite-based merged

datasets
:::
data

::::
sets

:
which use pressure as the vertical coordinate (e.g. SWOOSH, GOZCARDS) but weaker agreement with

the datasets which use height
:::
data

::::
sets

::::::
which

:::
use

:::::::
altitude (e.g. SAGE–CCI–OMPS, SCIA-OMPS). We find that at almost

all stratospheric levels ML-TOMCAT ozone concentrations are well within uncertainties in the observational datasets. The
::
of

::
the

::::::::::::
observational

::::
data

::::
sets.

:::::::::
TOMCAT

:::::
ozone

:::::::
profiles

::::::
outside

:::
the

::::
316

:
–
::
1
::::
hPa

:::::
range

:::
can

::
be

::::::::::
considered

::
as

:::::::
(slightly

:::::::::
modified)395

::::::::
TOMCAT

:::::::
profiles.

:::
For

:::
the

::::
next

::::::
version

::
of

:
ML-TOMCATdataset is thus

:
,
::
we

::::
aim

::
at

::::::::
correcting

:::::::::::
tropospheric

:::::
ozone

:::::
profile

::::::
biases

::::
using

:::::::
merged

::::::::::
tropospheric

:::::
ozone

::::::
profile

::::
data

:::
sets

::::::::
described

::
in
:::::::::::
Tropospheric

::::::
Ozone

::::::::::
Assessment

::::::
Report

::::::::
(TOAR).

::::::::
Presently,

:::
the

::::::::::::
ML-TOMCAT

::::
V1.0

::::
data

:::
set

::
is

:
ideally suited for the evaluation of

:::::::
chemical

:
model ozone profiles from the tropopause to 0.1

hPa. ML-TOMCAT V1.0 data
:::::
ozone

:::::
profile

::::
data

:::
on

:::::::
pressure

::::
and

::::::
altitude

:::::
levels

:::
in

::::::
mixing

:::::
ratios

:::
and

:::::::
number

::::::
density

:::::
units is

publicly available via https://zenodo.org/record/4997959#.YNzleUlKiUk
:
.400
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Figure 1. Latitude-pressure cross sections of the climatological (2001-2020
:::::::
2006-2020) monthly mean difference (ppm) between

::::::::
TOMCAT

:::
and SWOOSH (Davis et al., 2016) and TOMCAT ozone profiles.

o
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Figure 2. Latitude-pressure cross sections of the variance (R2) and regression coefficients from passive ozone, HCl
::::
HCl, CH4::::

CH4, solar

and total column ozone anomaly (see main text equation 1).
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Figure 3. Relative differences (in percent) as a function of pressure and latitude between ML-TOMCAT and (a) GOZCARDS V2 (Froidevaux

et al., 2019) and (b) SWOOSH (Davis et al., 2016).
:::::::
Stippling

:::::::
indicates

::::::
regions

::::
where

:::::::::
differences

::
are

:::::::::
statistically

::::::::::
insignificant.
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Figure 4. Comparison between TOMCAT (blue lines) and ML-TOMCAT (red lines) ozone mixing ratios over the equator (0◦) at (a, top)

1 hPa, (b, middle) 10 hPa and (c, bottom) 50 hPa. Satellite-based ozone mixing ratios from GOZCARDS (Froidevaux et al., 2019) and

SWOOSH (Davis et al., 2016) datasets
:::
data

:::
sets

:
along with their uncertainty estimates (shaded) are shown with black and green coloured

lines, respectively.
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Figure 5. As Figure 4 but for the residuals, i.e. relative differences between SWOOSH (green), TOMCAT (blue) and ML-TOMCAT (red)

ozone with respect to GOZCARDS ozone.
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Figure 6. Relative difference (%) as a function of latitude and altitude between
::
(a)

:
TOMCAT , ML-TOMCAT

::::
versus

:::::::::::::::
SAGE-CCI-OMPS

:::::::::
(1985-2019)

:
and the three considered datasets:

::::::::::
ML-TOMCAT

::::::
versus

::
(b)

:
SAGE-CCI-OMPS (1985-2019),

::
(c) BSVert (1985-2017) and

::
(d)

:
SCIA-OMPS (2002-2019), averaged over the respective time series.

:::::::
Stippling

:::::::
indicates

::::::
regions

:::::
where

:::::::::
differences

:::
are

:::::::::
statistically

:::::::::
insignificant.
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Figure 7. Comparison between TOMCAT (blue lines) and ML-TOMCAT (red lines) ozone mixing ratios over the equator (0◦) at (a, top)

45 km, (b, middle) 35 km and (c, bottom) 25 km. Satellite-based ozone mixing ratios from SAGE–CCI–OMPS, BSVert (Hassler et al., 2018a)

and SCIA-OMPS (Arosio et al., 2019) datasets
:::
data

:::
sets

:
are shown with black, green and cyan coloured

::::::::::
cyan-coloured

:
lines, respectively.
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Figure 8. Same as Figure 7 but for the residuals, i.e. relative differences between TOMCAT (blue), ML-TOMCAT (red), BSVert (green) and

SCIA-OMPS (cyan) ozone with respect to SAGE–CCI–OMPS.
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Figure 9. (a) Ozone concentration time series (molecules cm−3) at 18 km over the North Polar
:::::
Arctic region (latitudes poleward of 70◦N).

Aura-MLS and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, Rong et al., 2008) data are superimposed

on TOMCAT and ML-TOMCAT timeseries
:::
time

:::::
series. (b) Mean ozone sub-column (DU) between 12-20 km for September and October

each year over the South Polar
:::::::
Antarctic

:
region (latitudes poleward of 70◦S

:
).
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