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Abstract 
 

Conservation Biology faces the challenge of safeguarding the ecosystem functions and ecological 

processes (water cycle, nutrients, energy flow, and community dynamics) that sustain the multiple 

facets of biodiversity. Characterization and evaluation of these processes and functions can be carried 

20   out through functional attributes or traits related to the exchanges of matter and energy between 

vegetation and the atmosphere. Based on this principle, satellite imagery can provide integrative 

spatiotemporal characterizations of ecosystem functions at local to global scales. Here, we provide a 

multi-temporal dataset at protected area level, that characterizes the spatial patterns and temporal 

dynamics of ecosystem functioning in the Biosphere Reserve of Sierra Nevada (Spain), captured 

25     through the spectral vegetation index EVI (Enhanced Vegetation Index, product MOD13Q1.006 from 

MODIS sensor) from 2001 to 2018. The database contains, at the annual scale, a synthetic map of 

Ecosystem Functional Types (EFTs) classes from three Ecosystem Functional Attributes (EFAs): i) 

descriptors of annual primary production, ii) seasonality, and iii) phenology of carbon gains. It also 

includes two ecosystem functional diversity indices derived from the above datasets: i) EFT richness, 

30   and ii) EFT rarity. Finally, it provides inter-annual summaries for all previous variables, i.e., their long- 

term means and inter-annual variabilities. The datasets are available in two open-source sites 

(PANGAEA: https://doi.pangaea.de/10.1594/PANGAEA.924792 (Cazorla et al., 2020a) and 

http://obsnev.es/apps/efts_SN.html). This dataset brings to scientists, managers, and the general public, 

valuable information on the first characterization of ecosystem functional diversity based on primary 

35     production developed in Sierra Nevada, a biodiversity hotspot in the Mediterranean basin, and an 
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exceptional natural laboratory for ecological research within the Long-Term Social-Ecological 

Research (LTSER) network. 

 

1 Introduction 
 

A better characterization of the functional dimension of biodiversity is required to develop management 

40   approaches that ensure nature contributions to human well-being (Jax, 2010; Cabello et al., 2012a; 

Bennet et al., 2015). To achieve this goal is necessary a set of essential variables for characterizing and 

monitoring ecosystem functioning (Pereira et al., 2013). Such variables are critical to understanding the 

dynamics of ecological systems (Petchey and Gaston, 2006), the links between biological diversity and 

ecosystem services (Balvanera et al., 2006; Haines-Young and Potschin, 2010), and the mechanisms of 

45    ecological resilience (Mouchet et al., 2010). In addition, there have been calls for the use of ecosystem 

functioning variables to assess functional diversity at large scales to measure biosphere integrity (Mace 

et al., 2014; Steffen et al., 2015), one of the most challenging planetary boundaries to assess (Steffen et 

al., 2015). Despite the importance of ecosystem functioning variables and the conceptual frameworks 

developed to promote their use (Pettorelli et al., 2018), they have seldom been incorporated into 

50    ecosystem monitoring (see Alcaraz-Segura et al., 2009; Fernández et al., 2010; Cabello et al., 2016; 

Skidmore et al., 2021). 

 

Characterization and evaluation of ecosystem functioning can be carried out through functional traits 

or attributes related to the matter and energy exchanges between biota and the atmosphere (Box et al., 

1989; Running et al., 2000). Nowadays, the use of satellite imagery provides useful methods to derive 

55    such attributes, allowing for the spatially explicit characterization of ecosystem functioning and its 

heterogeneity (i.e., functional diversity) from local (Fernández et al., 2010) to regional (Alcaraz-Segura 

et al., 2006, 2013), and global scales (Ivits et al., 2013; Skidmore et al., 2021). Theoretical and empirical 

models support the relationship between spectral indices derived from satellite images (e.g., Enhanced 

Vegetation Index -EVI-) and essential functional variables of ecosystems, such as primary production, 

60      evapotranspiration, surface temperature, or albedo (Pettorelli et al., 2005; Fernández et al., 2010; Lee 

et al., 2013). Among them, primary production is one of the most integrative and essential descriptor of 

ecosystem functioning (Virginia and Wall, 2001; Pereira et al., 2013) since it has a central role in the 

carbon cycle (i.e., it is the energy input to the trophic web and therefore, the driving force behind many 

ecological processes) (Xiao et al., 2019). Moreover, primary production offers a holistic response to 

65     environmental changes and constitutes a synthetic indicator of ecosystem health (Costanza et al., 1992; 

Skidmore et al., 2015). 

 

To characterize ecosystem functioning focusing on primary production, we can use the satellite-derived 

approach based on Ecosystem Functional Types (EFTs), defined as patches of the land surface that 

share similar dynamics in the matter and energy exchanges between the biota and the physical 

70   environment (Paruelo et al., 2001; Alcaraz-Segura et al., 2006). EFTs are derived from three Ecosystem 

Functional Attributes (EFAs) that describe the seasonal dynamics of carbon gains through time-series 

of spectral vegetation indices: 1) annual mean (a surrogate of annual primary production), 2) annual 

standard deviation (a descriptor of seasonality or the differences between the growing and non-growing 

seasons), and 3) the annual date of maximum (a phenological indicator of the date within a year on 

75   which the growing period is centered). Biologically, these three metrics can be interpreted as surrogates 

of the total amount and timing of primary production (Paruelo et al., 2001; Pettorelli et al., 2005; 

Alcaraz-Segura et al., 2006), one of the most integrative indicators of ecosystem functioning (Virginia 

and Wall, 2001). Since the EFT concept appeared in 2001 (Paruelo et al., 2001), its applicability has 

exponentially grown to characterize functional heterogeneity from local to global scales (Alcaraz- 
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Segura et al., 2006; Karlsen et al., 2006; Duro et al., 2007; Fernández et al., 2010; Geerken 2009; 

Alcaraz-Segura et al., 2013; Ivits et al., 2013; Cabello et al., 2013; Pérez-Hoyos et al., 2014; Müller et 

al., 2014; Wang and Huang, 2015; Villarreal et al., 2018; Coops et al., 2018; Mucina, 2019; Cazorla et 

al. 2020b). 

 

Here, we present a dataset that describes the spatial heterogeneity and temporal variability of ecosystem 

functioning and ecosystem functional diversity patterns in a protected area. We derived the dataset from 

the analysis of the intra- and inter-annual variation of vegetation greenness captured through the EVI 

spectral vegetation index, as a surrogate of primary production, along the 2001-2018 period. As a case 

study, we used the Sierra Nevada Biosphere Reserve (SE Spain) (Fig. 1), a biodiversity hotspot in the 

Mediterranean basin and an exceptional natural laboratory for ecological research within the Long- 

Term Social-Ecological Research (LTSER) network. First, for each year, we provide three Ecosystem 

Functional Attributes (EFAs): i) annual primary production, and ii) seasonality and iii) phenology of 

carbon gains, as well as their integration into a synthetic mapping of Ecosystem Functional Types 

(EFTs) as discrete landscape functional units . Second, based on these units, we present two functional 

diversity metrics: EFT richness and EFT rarity. Finally, by considering the yearly maps, we calculated 

inter-annual summaries, i.e., inter-annual means and inter-annual variability, to show the average 

conditions and the stability of ecosystem functioning along the period (workflow in Fig. 2). The 

abundance of long-term datasets from multiple disciplines in Sierra Nevada constitutes an opportunity 

to explore the role of ecosystem functioning and functional diversity on ecohydrological and species 

distribution modeling, climate change mitigation and adaptation, ecological resilience, adaptive 

management, and ecosystem services supply. 
 

2 Data description 

 
2.1 Data acquisition and processing 
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115 

We based ecosystem functioning characterization on analyzing the temporal dynamics of the Enhanced 

Vegetation Index (EVI) from 2001 to 2018. We chose EVI instead of any other vegetation index (such 

as SAVI, ARVI, or NDVI) as an indicator of carbon gains since it is more reliable in both low and high 

vegetation cover situations (Huete et al., 1997). EVI reduces the influence of atmospheric conditions 

on vegetation index values and corrects for canopy background signals. 

 

EVI is computed following this equation (Equation 1): 

 

 
Equation 1, where NIR/RED/Blue are atmospherically-corrected (Rayleigh and ozone absorption) 

surface reflectances for near infrared, red and blue wavelengths, respectively; L is the canopy 

background adjustment that addresses the non-linear and differential transfer through a canopy of the 

NIR and red radiations; and C1, C2 are the coefficients of the aerosol resistance term, which uses the 

blue band to correct for aerosol influences in the red band. The coefficients adopted in the MODIS-EVI 

algorithm are; L=1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5. The EVI values range from -1 to +1, 

where negative values generally correspond to snow, ice, or water, and values closer to +1 represent the 

higher density of green leaves (Huete et al., 2002). 
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We obtained EVI from the MOD13Q1.006 product of the MODIS sensor (Moderate Resolution 

Imaging Spectroradiometer) onboard NASA's Terra satellite (Didan, 2015). MOD13Q1.006 EVI 

product is computed from atmospherically corrected bi-directional surface reflectances, by choosing 

the best available pixel value from all the acquisitions (4 per day) in a 16-day period based on quality, 

cloud presence, and viewing geometry (Huete et al., 1999; Didan et al., 2015). To further remove the 

potential remaining effect of snow, ice, and water in our dataset, we transformed negative EVI values 

into zeros. Thus, we obtained a maximum-value composite image every 16 days (23 images per year). 

Despite its moderate spatial resolution (232 meters spatial resolution, though the nickname is 250 meters 

pixel), we chose the MOD13Q1.006 product as the basis for our data since it offers a long time series 

(almost 20 years) every 16 days, which allows for the characterization of the temporal dynamics of 

ecosystem functioning (Anderson et al., 2018). 
 

 

 

 
135 

 
 
 

 
140 

MOD13Q1.006 images are downloadable from NASA’s LP DAAC (Land Processes Distributed Active 

Archive Center) (https://lpdaac.usgs.gov/products/mod13q1v006/) (Didan, 2015). We processed them 

through the Google Earth Engine (GEE) platform (https://developers.google.com/earth- 

engine/datasets/catalog/MODIS_006_MOD13Q1). GEE combines a multi-petabyte catalog of satellite 

imagery and geospatial datasets with planetary-scale analysis capabilities (Gorelick et al., 2017). We 

used the main Javascript programming interface to build the algorithms and requests to GEE servers. 

More information on https://earthengine.google.com/faq/ and https://developers.google.com/earth- 

engine/. EVI values are multiplied by 10,000 to store them as real numbers to occupy less disk space 

(both in the original MOD13Q1.006 product and in our dataset). 

 
 

2.2 Calculating Ecosystem Functional Attributes (EFAs) 
 

 

 
145 

 
 
 

 
150 

We calculated three EFAs known to capture most of the variance of the seasonal curve or annual 

dynamics of vegetation indices (Paruelo et al., 2001; Alcaraz-Segura et al., 2006, 2009): the EVI annual 

mean (EVI_mean; an estimator of primary production), the EVI seasonal Standard Deviation 

(EVI_sSD; a descriptor of seasonality, i.e., the differences between the growing and non-growing 

seasons), and the date of maximum EVI (EVI_DMAX; a phenological indicator of the month with 

maximum EVI) (Fig. 3). To summarize the EFAs of the 2001-2018 period, we calculated the inter- 

annual mean for each attribute (using linear statistics for EVI_mean and EVI_sSD and circular statistics 

for EVI_DMAX). 
 

 

 

 
155 

 
 
 
 
 

 
160 

To explore the robustness of these metrics in our study area, we examined their correlation with the first 

axes of a Principal Component Analysis run on the EVI annual curve of the average year (i.e., 12 EVI 

values corresponding to the inter-annual means of the 18 (one per year) maximum EVI values of each 

month. These three metrics were highly correlated with the first two PCA axes (which accumulated 

96.5% of variance ), as previously reported for many regions (Townshend et al., 1985; Paruelo and 

Lauenroth, 1998, Paruelo et al., 2001; Alcaraz-Segura et al., 2006, 2009; Ivits et al., 2013). See full 

analysis in Supplement A. 

 

 
 

2.3 Identifying Ecosystem Functional Types (EFTs) 
 

EFTs were identified by dividing the EFAs into four intervals and combining them into a potential 

number of 64 EFT classes (4 × 4 × 4), following a similar approach to Alcaraz-Segura et al., (2013) 
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(Figure 2). For EVI_DMAX, the four intervals agreed with the four seasons of the year: January to 

March = Winter, April to June = Spring, July to September = Summer, October to December = Autumn. 

For EVI_mean and EVI_sSD, we extracted the first, second, and third quartiles for each year. We 

verified that an 18-year period was long enough to stabilize the quartiles by running a sensibility 

analysis (see Supplement B). Then, for each quartile, we calculated the inter-annual mean of the 18-

year period and used them as breaks between classes (Supplement B, Table S4). These breaks were 

applied back to each year as the thresholds for EVI_Mean and EVI_sSD to set EFT classes (Table 1). 

Finally, to summarize the EFTs, we calculated the most frequent EFT (i.e., the EFT mode for each 

pixel) of the 2001–2018 period. To name EFTs, we used two letters and a number: the first capital 

letter indicates primary production (EVI_mean), increasing from A to D; the second lower case letter 

represents seasonality (EVI_sSD), decreasing from a to d; finally, the numbers are a phenological 

indicator of the growing season (EVI_DMAX), with values 1-spring, 2-summer, 3-autumn, 4-winter 

(Table 1). The EFT alphanumeric code (Aa1 to Dd4) corresponds to the numeric code (1 to 64) in the 

.TIF files, which is shown in the legend of Figure 4d. 

 

2.4 Deriving Ecosystem Functional Diversity metrics 

 
We derived two diversity metrics of ecosystem functional diversity from the EFT map: EFT richness 

and EFT rarity. EFT richness was calculated for each year by counting the number of different EFTs in 

a 4𝗑4-pixel moving window around each pixel (top-left center pixel of a 4𝗑4 kernel) (modified from 

Alcaraz-Segura et al., 2013). Each pixel received a richness value calculated by counting how many 

different EFTs there were in the surrounding 4𝗑4 pixels. We chose a 4𝗑4-pixel window since it offered 

the most acceptable spatial resolution without saturating the number of EFT classes per kernel (i.e., 

smaller kernel sizes resulted in a high proportion of moving windows saturated) (see sensitivity analysis 

on kernel size in section 3.2 and Supplement C). 
 

We calculated EFT rarity as the extension of each EFT compared to the most abundant EFT in the study 

area (Equation 1) (Cabello et al., 2013). Then, the average rarity map of all years was obtained. 
 

𝑅𝑎𝑟𝑖𝑡𝑦 𝐸𝐹𝑇𝑖 = 
𝐴𝑟𝑒𝑎 𝐸𝐹𝑇𝑚𝑎𝑥−𝐴𝑟𝑒𝑎 𝐸𝐹𝑇𝑖(Equation 2)

 

𝐴𝑟𝑒𝑎 𝐸𝐹𝑇𝑚𝑎𝑥 

 
 
 

190 

 
 
 
 
 

 
195 

where Area_EFTmax is the area occupied by the most abundant EFT, and Area_EFTi is the i EFT area 

being evaluated, with i ranging from 1 to 64. 

 

Once we haD the rarity value of each EFT (using Equation 2), we assigned to each pixel in the EFT 

map such value according to the pixel EFT class. Hence, the EFT rarity map spatial resolution was the 

same as the resolution of the EFT map (232 m). 

 

2.5 Characterizing inter-annual stability in ecosystem functioning 
 

We followed two approaches to characterize inter-annual stability of ecosystem functioning (either due 

to inter-annual fluctuations or directional trends). First, as an estimate of inter-annual variability of EFT 

occurrence at pixel level, we recorded the number of different EFTs that were observed at each pixel 

throughout the 2001-2018 period. Second, as an estimate of inter-annual dissimilarity of EFT 

200    composition at 4x4-pixel level, we started by calculating the dissimilarity (Equation 2) in the EFT 

composition of each 4𝗑4-pixel window (924 x 924 m) between all possible combinations of two years 
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Then, we obtained the mean of the indices obtained from all possible combinations of years. We 

calculated dissimilarity as follows (Equation 3): 

 

Dissimilarity = 1 - Jaccard Index (Equation 3) 
 

205 where Jaccard similarity index is calculated as (Equations 4 and 5; Jaccard, 1901): 
 

Jaccard Index = (the number of shared classes between two sets) / (the total number of classes in 

either set) * 100 (Equation 4) 

 

The same formula in notation form is (Equation 5): 

 

J(X,Y) = |X∩Y| / |X∪Y| (Equation 5) 
 

210 

 
 
 

 
215 

This way, to calculate the Jaccard Index, we proceeded as follows: for each 4x4-pixel window, we first 

counted the number of EFTs shared between the two sets, i.e., the two years; second we counted the 

total number of EFTs that occurred in either set (shared and unshared between the two years); then, we 

divided the number of shared EFTs by the total number of EFTs; and finally, we multiplied the result 

by 100. Dissimilarity values ranged from 0 to 1, being 1 the highest degree of dissimilarity in EFT 

composition throughout years, and 0 full similarity in EFT composition throughout years. 
 

We processed inter-annual variability and inter-annual dissimilarity with IDL® software (Interactive 

Data Language). IDL is commonly used for interactive processing of large amounts of data, including 

image processing. 

 

 

 

220 3 Sensitivity and uncertainty analyses 
 

3.1 Effect of the EVI inter-annual variability on the boundaries set among EFT classes 
 

 

 

 
225 

 
 
 

 
230 

To assess how inter-annual variability of EVI dynamics could affect the quartiles of EVI_Mean and 

EVI_sSD (which set the boundaries among EFT classes), we determined the minimum number of years 

needed in a study period to get stability in all quartiles (see Supplement B). For each quartile, we 

plotted (Figure B1) the maximum inter-annual coefficient of variation observed across all possible 

combinations of consecutive years from 2001 to 2018 (i.e. from the 17 separate combinations of two 

consecutive years to a single combination of all 18 years together) against the number of years 

considered. Starting with two consecutive years, we plotted the maximum of 17 coefficients of variation 

(i.e., 2001-2002, 2002-2003, … 2017-2018); for three consecutive years, the maximum of 16 

coefficients of variation (i.e., 2001-2002-2003, … 2016-2017-2018), and so on. 
 

 

 

 
235 

 
 
 

 
240 

The inter-annual Coefficient of Variation (CV) of the 2001-2018 period was around 5% for the 

EVI_mean quartiles and around 10% for the EVI_sSD quartiles (Table B1, Supplement B). The 

quartiles of EVI_Mean (our surrogate for productivity) required at least 14 years to stabilize around 

5% of CV. The quartiles of EVI_sSD (our surrogate for seasonality) required at least 17 years to 

stabilize around 10% of CV (Figure B1, Supplement B). 

 
Despite the variation observed in the quartile values across years, we did not change the limits among 

EFT classes from one year to the next but instead applied the same limits to all years so we could 

compare the classification output across years. That is, we followed a fixed-classification approach with 
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260 

fixed limits among EFT classes for the entire period to make the classification able of detecting such 

inter-annual changes. For example, if a megawildfire burns the entire protected area in the future (e.g. 

in 2022), our use of fixed limits among classes for the 2001-2018 period will allow the detection of 

such disturbance (most pixels would be classified as low productivity "A EFT class"). Contrary, if the 

limits among EFT classes were adapted to the data distribution of each year, the classification would 

not detect the effect of wildfire on EVI dynamics and would impede the 2022 classification to be 

compared to previous years. 

 
 

3.2 kernel size and borderline effect on EFT richness 

 
To assess the effect of the size of the sliding window kernel on EFT richness and rarity, we calculated 

EFT richness for different kernel sizes (2𝗑2, 3𝗑3, 4𝗑4, 5𝗑5 pixels) and compared the outputs (see 

analysis in Supplement C). The 4𝗑4-pixel kernel offered the most satisfactory spatial resolution of the 

EFT richness map without saturation of this variable (Figure C1, Supplement C). When the size of the 

sliding window kernels was 2𝗑2 or 3𝗑3 pixels, there was a high proportion of kernels that reached the 

highest possible richness value for that kernel size (i.e., 4 and 9 EFT classes per kernel, respectively), 

so the EFT richness variable was highly saturated. The 5𝗑5-pixels kernel never reached the maximum 

number of pixels in a kernel but resulted in too coarse outputs (grain size of 5𝗑5 MO13Q1 pixels, i.e., 

1150𝗑1150). Hence, the 4𝗑4-pixel kernel offered a balance between output resolution and variable 

saturation, since we observed a maximum EFT richness of 13, while the maximum potential richness 

in a 4𝗑4-pixel kernel was 16. 
 

Pixels with NoData values were not considered a distinct class to compute EFT richness along the study 

area borderline. For these reason, it is important to note that the sliding windows along the borderline 

of the study area could systematically show lower EFT richness in our dataset than in reality. 

 

4 Data structure and availability 
 

265 

 
 
 

 
270 

Overall, the collection of datasets that we present here provides a characterization of ecosystem 

functioning and ecosystem functional diversity and inter-annual dynamics in Sierra Nevada Biosphere 

Reserve (SE Spain) derived from remote sensing. To broaden the use of data, we provided the datasets 

in two institutional scientific-repositories. Datasets are available for downloading in PANGAEA: 

https://doi.pangaea.de/10.1594/PANGAEA.924792 (Cazorla et al., 2020a), and also at Sierra Nevada 

Global Change Observatory-LTER site, where we have also developed an ad-hoc visualization for the 

inter-annual summaries (http://obsnev.es/apps/efts_SN.html). 

 

 

 
275 

 
 
 

 
280 

The dataset is structured in three main subsets of variables: Ecosystem Functional Attributes (EFAs), 

Ecosystem Functional Types (EFTs), and Ecosystem Functional Diversity (see Table 2). For each subset 

of variables, there are two groups of data (two subfolders): one containing the yearly variables, and 

another one containing the summaries for the 18-year period. A Data Management Plan with our dataset 

formal metadata is also available in PANGAEA data repository. 

 
We provided the data in .TIF format and accompanied each .TIF file with a .TFW file containing its 

corresponding metadata. Additionally, we have also incorporated rendered versions of all layers as 

required by Google Earth Pro (called “filename..._forGoogleEarthVisualization.tif”) for easing their 

visualization in this commonly used software. All data are available yearly (2001-2018) and 

summarized for the period. The spatial reference system of all data is EPSG:4326 Datum WGS84. 
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285 4.1 Data attribution 
 

The MODIS database used in this work is maintained by NASA (satellite Terra, sensor MODIS, product 

MOD13Q1.006) and copied by Google into the Earth Engine servers 

(https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13Q1). The Sierra 

290 Nevada Biosphere Reserve boundaries shapefile is included in the public oficial geodatabase of the 

Andalusian regional government (REDIAM: https://descargasrediam.cica.es/ 

07_PATRIMONIO_NATURAL/01_ESPACIOS_PROTEGIDOS. 
 

5 Data usage in Ecology and Conservation 
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325 

Ecological research based on time series of spectral vegetation indices plays an essential role in 

biodiversity conservation (Cabello et al., 2012; Pettorelli, 2016, 2018) and management (Pelkey et al., 

2003; Cabello et al., 2016), and for the study of biodiversity and ecosystems responses to environmental 

changes (Alcaraz-Segura et al., 2017; Pérez-Luque et al., 2015a, Skidmore et al., 2021). Recently, the 

use of EFAs derived from spectral vegetation indices in species distribution models has made possible 

to evaluate with high spatial and temporal precision habitat suitability for plant (Arenas-Castro et al., 

2018) and animal species (Requena-Mullor et al., 2017; Regos et al., 2019) and may even anticipate 

expected changes in the distribution of threatened species as a consequence of climate change (Alcaraz- 

Segura et al., 2017). EFAs are also the basis of the monitoring program of the Spanish National Parks 

Network to identify changes and anomalies in ecosystem functioning, and to inform managers of 

ecosystem health and conservation status (Cabello et al., 2016). 

 

Datasets based on an EFT approach can be useful for different purposes: to characterize spatial and 

temporal heterogeneity of ecosystem functioning from local to global scales (Alcaraz-Segura et al., 

2006, Fernández et al., 2010, Cabello et al., 2013; Ivits et al., 2013); to evaluate the environmental and 

human controls of ecosystem functional diversity (Alcaraz-Segura et al., 2013); to identify priorities for 

Biodiversity Conservation (Cazorla et al., 2020b); to assess the representativeness of environmental 

observatory networks (Villarreal et al., 2018); to assess the effects of land-use changes on ecosystem 

functioning (Oki et al., 2013); and to improve weather forecast models (Lee et al., 2013; Müller et al., 

2014). 

 

5.1 Case study 

 
Sierra Nevada is a mountain range between 860 and 3482 m a.s.l covering more than 2000 km2 in SE 

Spain (Fig. 1). It is one of the most critical biodiversity hotspots in the Mediterranean region (Blanca 

et al., 1998; Cañadas et al., 2014), hosting 105 endemic plant species and a total of 2353 taxa of 

vascular plants (33% and 20% of Spanish and European flora, respectively; Lorite 2016). Forest cover 

in Sierra Nevada is dominated by pine plantations covering approximately 40000 ha. The primary 

native forests are dominated by the evergreen holm oak Quercus ilex subsp. ballota (Desf.) Samp. 

occupying low and medium mountain areas (8800 ha) and by the deciduous Pyrenean oak Quercus 

pyrenaica Willd. ranging from 1100 to 2000 m a.s.l. (about 2000 ha). Above the treeline, plant 

communities of the Oromediterranean and Crioromediterranean belts (above 1800-2000 m a.s.l.), 

dominated by chamaephytes and hemicryptophytes (scrublands, grasslands, and cliff and scree 

communities), are the habitat to many endemisms. 
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Sierra Nevada receives legal protection and international recognition in multiple ways: UNESCO 

Biosphere Reserve (1986), Natural Park (1989), National Park (1999), Important Bird Area (2003), 

Special Area of Conservation in Natura 2000 network (2012), and it is in the IUCN Green List of 

Protected Areas (2014), a global standard of best practice for area-based conservation. Sierra Nevada 

is also a site within the European Long Term Ecological Research (LTER) network, with many 

available ecological data records from multiple disciplines (Zamora et al., 2017, LTER_EU_ES_010). 

 

The dataset presented here provides the first characterization of functional diversity at ecosystem level 

for the Sierra Nevada Biosphere Reserve. Our dataset provides a baseline of ecosystem functioning for 

Sierra Nevada ecosystems, which opens the possibility to assess responses of ecosystem functioning to 

global change and management actions, to understand the drivers of ecosystem functioning and 

functional diversity, and to assess the supply of ecosystem services. This dataset provides valuable 

information for the Global Change Observatory of Sierra Nevada, a long-term ecological research site 

(name: ES- SNE, code: LTER_EU_ES_010) established more than a decade ago (Zamora et al., 2016, 

2017), which is also now a mountain node of the LifeWatch ERIC (European Research Infrastructure 

Consortium). Thus, our dataset provides information at the level of ecosystem functioning that can be 

combined with other available datasets on this LTER site concerning on species distributions and 

dynamics, climate, ecosystem services, hydrology, land-use changes, and management practices (Pérez- 

Luque et al., 2014, 2015b, 2015c, 2016; Ros-Candeira et al., 2019, 2020; Lorite et al., 2020). 

 

Results are briefly described in the following subsections: 

 
5.1.1 Ecosystem Functional Attributes spatial patterns 
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Functional attributes of productivity, seasonality, and phenology showed a clear altitudinal pattern. 

Productivity (EVI_mean) was much lower above the treeline, i.e. in the high mountain bioclimatic belts 

(Cryoro- and Oromediterranean belts) than in lower belts (Supra- and Mesomediterranean belts). 

Productivity also decreased from west to east (Fig. 4a). Seasonality (EVI_sSD) was the highest in the 

Supramediterranean belt(Fig. 4b). Phenology (EVI_DMAX) was characterized by a dominant summer 

peak in vegetation greenness in the Cryoro- and Oromediterranean belts, and by a late spring peak in 

the Supra- and Mesomediterranean belts. Dry and semi-arid Thermomediterranean areas of the south 

and east showed greenness peaks in early autumn and winter months (Fig. 4c). 

 

5.1.2 Ecosystem Functional Types map 

 
As a result of the combination of the three Ecosystem Functional Attributes, productivity, seasonality, 

and phenology (Fig. 4 a-c), we obtained the EFT map (Fig. 4d). This map represents a synthetic 

characterization of ecosystem functioning spatial heterogeneity based on the primary production 

dynamics. A total of 64 EFTs classes were observed. 

 

High-mountain areas (Cryoro- and Oromediterranean bioclimatic belts) showed EFTs with low and 

intermediate productivity, high seasonality, and maximum greenness in summer and spring. The 

extreme conditions of these areas, characterized by poor soils (Peinado et al., 2019), high solar radiation, 

extreme temperatures, winds, snow, and ice, constrain so much the vegetative period that they are 

known as "high-altitude cold desert" (Blanca et al., 2019). Mid-mountain areas (Supra- and 

Mesomediterranean belts) were associated with EFTs of intermediate-high productivity, medium-low 

seasonality, and maximum greenness in spring and autumn (e.g., Cc1-3) (Fig. 4d). The low dry and 

semi-arid areas (Thermomediterranean belts) of the south and east, characterized by thermophilic and 
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xerophytic species, displayed different EFTs to the rest of the park, with very low productivity, medium- 

low seasonality, and maximum greenness in spring or winter (e.g., Ac1-4). 

 

5.1.3 Functional diversity at the ecosystem level 
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The highest EFT richness was observed in the Supra- and Mesomediterranean belts (Fig. 5c). Such 

ecosystem functional diversity hotspots (i.e., EFT hotspots) could be related to two facts. First, many 

Mediterranean mountains show high beta diversity (in terms of species turnover) around 1700-1900 m 

a.s.l. (Wilson and Schmida, 1984), where there is a great structural and compositional replacement of 

vegetation. Second, for the particular case of Sierra Nevada, in the mid-mountain and especially in its 

southern face, there is a very diverse land cover mosaic, composed by different types of natural 

vegetation (Valle et al., 2003), mixed with different types of pine afforestations, traditional croplands, 

and land-uses (Camacho et al., 2002). The areas with the lowest EFT richness were located in Oro- and 

Crioromediterranean belts, and in the eastern semi-arid Thermomediterranean extreme, where the harsh 

soil and climatic conditions (Peinado et al., 2019) diminish floristic diversity (Fernández Calzado et al., 

2012). 
 

EFT rarity was highest in the peaks (above 2800 m a.s.l., Cryoromediterranean belt) and the lowest 

areas of the Eastern side of Sierra Nevada (semi-arid Thermomediterranean belt), both areas 

characterized by a high concentration of narrowly endemic species (Mota et al., 2004; Cañadas et al., 

2014; Peñas et al., 2019. The high mountain areas (Oromediterranean belt) showed the lowest EFT 

385    rarity, since their EFT composition was the most abundant and extensive in the Biosphere Reserve. 

Mid-mountain areas (Supra- and Mesomediterranean belts) (Fig. 5d) showed medium to high EFT rarity 

values . The relatively higher rarity of ecosystem functioning in these belts was associated with the 

particular phenology of coniferous forests with autumn-winter maxima, also identified in other areas 

of the Iberian Peninsula (Aragones et al., 2019). 
 

390 
 

5.1.4 Stability in the ecosystem functioning 
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The inter-annual variability ranged from 1 to 17 different EFTs over the 18-years period in the same 

pixel (Fig. 5a). The inter-annual variability and inter-annual dissimilarity (1 - Jaccard index) (Fig. 5b) 

observed was higher in the Supra- and Mesomediterranean levels, coinciding with the altitudinal range 

where inter-annual climate variability is also higher (e.g., areas above the treeline are subjected to both 

cold-snowy years and warm-dry years, Zamora et al., 2016). The eastern end of the semi-arid 

Thermomediterranean areas also displayed a high inter-annual variability. There also exists significant 

climate fluctuation in these areas, where small changes in the seasonal pattern of precipitation can 

produce large changes in primary production (Houérou et al., 1988; Cabello et al., 2012b). On the other 

hand, the most inter-annually stable areas (i.e. those that changed the least during the period) were 

located in the Meso-Oromediterranean and Crioromediterranean belts, specifically, in the oak forests 

and high-mountain meadows, ecosystems that are subjected to low human intervention. 

 

 
 

6 Conclusion 

 
We introduce a new dataset based on the processing and analysis of the temporal dynamics of the 

Enhanced Vegetation Index (EVI) data from the MODIS sensor (MOD13Q1.006). The dataset contains 
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Ecosystem Functional Attributes (EFAs), Ecosystem Functional Types (EFTs), EFT richness, and EFT 

rarity in the Sierra Nevada Biosphere Reserve (SE Spain). EFAs represent functional attributes at the 

ecosystem level related to the primary production, seasonality, and phenology of carbon gains. EFTs 

are patches of the land surface that share similar dynamics in the exchanges of matter and energy 

between the biota and the physical environment, derived from the combination of the EFAs. EFT 

richness and EFT rarity are two metrics that inform on the spatial heterogeneity of primary production 

as focal ecosystem function. We also provide an estimation of the inter-annual stability of the former 

functional variables both at the pixel and at landscape levels throughout the 2001-2018 period. For this, 

we estimated the EFT inter-annual variability at each pixel and the inter-annual dissimilarity in the 

composition of EFTs at 4x4 sliding-window resolution. Overall, these data characterize the spatial and 

temporal patterns of ecosystem functioning and ecosystem functional diversity. The EFT approach 

adopted here improves our understanding of ecosystem processes and ecosystem response through 

environmental gradients. It provides scientists and managers valuable information to identify 

conservation priorities, assess ecosystem response to environmental changes, estimate ecosystem 

services provision, and to model species distributions and ecological and hydrological processes. 
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Figures 
 

 

Figure 1. Study area: Sierra Nevada Biosphere Reserve. a) Location in the context of the Iberian Peninsula; 

b) remote view of Sierra Nevada mountain region (image from the International Space Station took in 

715 December 2014; courtesy of “Earth Science and Remote Sensing Unit, 615 NASA Johnson Space Center”); 

c) delimitation of the Biosphere Reserve and the distribution of the main ecosystems (Pérez-Luque et al., 

2019) and thermotype bioclimatic belts (Molero-Mesa and Marfil, 2015). 
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Figure 2. Workflow to characterize the ecosystem functioning and functional diversity of Sierra Nevada. 

720 MODIS (Moderate Resolution Imaging Spectroradiometer) sensor product MOD13Q1 onboard NASA's 

Terra satellite was used. This product contains maximum value composite images with 16-day temporal 

resolution (23 images per year) and 232 m spatial resolution for the Enhanced Vegetation Index (EVI) (1). 
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735 

The study period was from 2001 to 2018. Three ecosystem functional attributes (EFAs) describing 

ecosystem functioning were calculated from the EVI seasonal curve for each year (2 and 3). The range of 

values for each attribute was divided into four intervals, resulting in a potential number of 64 ecosystem 

functional types (EFTs; 4𝗑4𝗑4=64) (4). From EFTs, we derived four metrics related to ecosystem functional 

diversity (i.e., EFT richness and rarity) and ecosystem functional stability (i.e., inter-annual variability and 

dissimilarity) (5). 

 

 
Figure 3: Seasonal dynamics of Enhanced Vegetation Index (EVI) and EVI derived metrics or Ecosystem 

Functional Attributes (EFAs). The “X” axis corresponds to the months of the year and the “Y” axis to the 

EVI values. EFAs were: the annual mean of EVI, an estimator of annual primary production (EVI_mean); 

the EVI seasonal coefficient of variation, i.e. a descriptor of seasonality or the differences between the 

growing and non growing seasons (EVI_sSD), and the date of maximum EVI, a phenological indicator of 

the growing season (EVI_DMAX). We chose these three EVI metrics or EFAs since they capture most of 

the variance (96.5%) of the EVI seasonal dynamics in a Principal Component Analysis. 
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745 

Figure 4. Ecosystem Functional Attributes (EFAs; a-c) and Ecosystem Functional Types (d) describing the 

functioning of vegetation canopy based on the Enhanced Vegetation Index (EVI), derived from MOD13Q1- 

TERRA (pixel 232 m) for the period 2001-2018. EFAs were (a-c): the annual mean of EVI, an estimator of 

annual primary production (EVI_mean); the EVI seasonal coefficient of variation, i.e. a descriptor of 

seasonality or the differences between the growing and non growing seasons (EVI_sSD), and the date of 

maximum EVI, a phenological indicator of the growing season (EVI_DMAX). To name EFTs (d), we used 

two letters and a number: the first capital letter indicates primary production (EVI_mean), increasing from 

A to D; the second lower case letter represents seasonality (EVI_sSD), decreasing from a to d; finally, the 

numbers are a phenological indicator of the growing season (EVI_DMAX), with values 1-spring, 2-summer, 

3-autumn, 4-winter (Table 1). The EFT alphanumeric code (Aa1 to Dd4) corresponds to the numeric code 

(1 to 64) in the .TIF files, as shown in the panel legend (d). 
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770 

Figure 5. Functional diversity and stability patterns based on the identification of ecosystem functional 

types (EFTs) derived from Enhanced Vegetation Index (EVI) images captured byMOD13Q1-TERRA 

sensor along the 2001-2018 period. a) EFT inter-annual variability for the period, i.e., number of EFTs 

that occurred at each pixel throughout the period; b) EFT inter-annual dissimilarity (1 - Jaccard index), 

i.e., mean inter-annual dissimilarity of EFT composition in 4x4 MODOS-pixel windows between all 

possible combinations of pairs of years throughout the period; c) Spatial EFT richness patterns, i.e., 

number of different EFTs observed in a 4𝗑4 MODIS-pixel sliding window (〜232m x 4=〜1 km2); and d) 

Spatial EFT rarity patterns, i.e., a measure of the relative scarcity or abundance of each EFT in the study 

area. 

https://doi.org/10.5194/essd-2021-223

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 27 September 2021
c© Author(s) 2021. CC BY 4.0 License.



775 

 
 
 
 

780 

Table 1. Ecosystem functional attribute (EFA) ranges used for the identification of ecosystem functional 

types (EFTs) in the Sierra Nevada Biosphere Reserve. For EVI_DMAX, the four intervals agree with the 

four seasons of the year. For EVI_mean and EVI_sSD, we extracted the first, second, and third quartiles 

for each year and then calculated the inter-annual mean of each quartile (their average over the 18-year 

period). The values of both EVI_mean and EVI_sSD are multiplied by 10,000 in the .TIF files to save disk 

space. 

 

 
 

Ecosystem 

Functional 

Attribute 

EFT Character code Digit code Range 

 

EVI Mean 

(Productivity) 

 

A 
 

100 
 

0 - 0.137 

 
B 200 0.137 - 0.187 

  

C 
 

300 
 

0.187 – 0.241 

  

D 
 

400 
 

> 0.241 

 

EVI sSD 

(Seasonality) 

 

a 
 

10 
 

> 0.062 

  
b 

 
20 

 
0.043 – 0.062 

  

c 
 

30 
 

0.030 – 0.043 

  

d 
 

40 
 

0 – 0.030 

 

EVI DMAX 

(Phenology) 

 

1 
 

1 
 

Spring 

 
2 2 Summer 

  

3 
 

3 
 

Autumn 

  

4 
 

4 
 

Winter 
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Table 2. Dataset description: Ecosystem Functional Attributes (EVI_Mean, EVI_sSD and EVI_MMAX 

provided yearly and summarized for the 2001-2018 period as inter-annual mean); Ecosystem Functional 

Types (EFTs provided yearly and summarized for the period as inter-annual mode, variability and 

dissimilarity); Ecosystem Functional Diversity (EFT richness and EFT rarity, provided yearly and 

summarized for the period as inter-annual mean). Spatial resolution is ~231 in all cases except in the EFT 

dissimilarity, where it is ~232m x 4 = ~1km2. YYYY refers to year and varies from 2001 to 2018. 
 

Filename Variable Definition Biological significance Temporal resolution 

 
EVI_Mean_YYYY_ 

C006_MOD13Q1 

 

_Pixel232 

 
EVI_mean 

 
Mean of the positive 

EVI values in a year 

 
Primary production in a 

year 

 
Yearly, one image per 

year YYYY 

EVI_Mean_InterAn 

nualMean_2001- 

2018_C006_MOD1 
3Q1_Pixel232 

EVI_mean Inter-annual mean of 

the annual EVI_mean 

values of the period 

Average annual primary 

production of the period 

One image for the 

2001-2018 period 

EVI_sSD_YYYY_ 

C006_MOD13Q1_ 

Pixel232 

EVI_sSD Intra-annual standard 

deviation of the 

positive EVI values 

within a year 

Seasonality in vegetation 

greenness. 

Differences in carbon 

gains between the 

growing and non- 

growing seasons in a 

year 

Yearly, one image per 

year YYYY 

EVI_sSD_Interannu 

alMean_2001- 

2018_C006_MOD1 

3Q1   Pixel232 

EVI_sSD Inter-annual mean of 

the annual EVI_sSD 

values of a period 

Seasonality. 

Average difference in 

carbon gains between 

the growing and non- 

growing seasons 

throughout the period 

Average of the 2001- 

2018 period 

EVI_MMAX_YYY 

Y_C006_MOD13Q 

1 

_Pixel232 

EVI_ 

DMAX 

Month with 

maximum EVI in a 

year 

Phenology. 

Month of maximum 

greenness in a year 

Yearly, one image per 

year YYYY 

EVI_MMAX_Intera 

nnualMean_2001- 

2018_C006_MOD1 

3Q1_Pixel232 

EVI_ 

DMAX 

Inter-annual mean of 

the month with 

maximum EVI of the 

period 

Phenology. 

Average month with 

maximum greenness 

throughout the period 

Average of the 2001- 

2018 period 

EFTs_YYYY_C006 

_MOD13Q1_Pixel2 

32 

EFTs Range of EFA’s 

values divided into 

four intervals 4 × 4 × 

4 = 64 potential EFTs 

in a year 

Patches of land surface 

that share similar 

dynamics in matter and 

energy exchanges in a 

year 

Yearly, one image per 

year YYYY 

EFTs_InterannualM 

ode_2001- 

2018_C006_MOD1 

3Q1_Pixel232 

EFTs Mode of the range of 

EFA’s values divided 

into four intervals 4 × 

4 × 4 = 64 potential 

EFTs of the period 

Patches of land surface 

that share similar 

dynamics in matter and 

energy exchanges 

throughout the period 

Mode of the 2001- 

2018 period 
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EFT_InterannualVar 

iability_2001- 

2018_C006_MOD1 

3Q1_Pixel232 

EFT 

interannual 

variability 

Nº of different EFTs 

that occurred in the 

same pixel in the 

period 

Inter-annual changes in 

ecosystem functioning 

throughout the period at 

pixel level 

2001-2018 period 

EFT_InterannualDis 

similarity_2001- 

2018_C006_MOD1 

3Q1   Pixel232 

EFT 

interannual 

dissimilarit 

y 

1 - Jaccard Index Inter-annual changes in 

EFT composition 

throughtou the period at 

4x4 MODIS-pixel level 

2001-2018 period 

EFT_Richness_YY 

YY_C006_MOD13 

Q1 

_Pixel232 

EFT 

richness 

Nº of different EFTs 

in a 4×4-pixel 

moving window 

around each pixel in 

a year 

Spatial heterogeneity in 

EFT composition in each 

year in 4x4 MODIS- 

pixel kernels 

Yearly, one image per 

year YYYY 

EFT_Richness_Inter 

annualMean_2001- 

2018_C006_MOD1 

3Q1_Pixel232 

EFT 

richness 

Nº of different EFTs 

in a 4×4-pixel 

moving window (924 

x 924 m) around each 

pixel in a period 

Average spatial 

heterogeneity in EFT 

composition throughout 

the period in 4x4 

MODIS-pixel kernels 

Average of the 2001- 

2018 period 

EFT_Rarity_YYYY 

_C006_MOD13Q1 

_Pixel232 

EFT rarity Rarity of EFTi = 

(Area_EFTmax– 

Area_EFTi)/Area_E 

FTmax (in a year) 

EFT geographical 

scarcity or abundance in 

the study area in each 

year 

Yearly, one image per 

year YYYY 

EFT_Rarity_Interan 

nualMean_2001- 

2018_C006_MOD1 

3Q1_Pixel232 

EFT rarity Rarity of EFTi = 
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