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Abstract 11 

Biodiversity studies could strongly benefit from three-dimensional data on ecosystem structure derived from contemporary 12 

remote sensing technologies, such as Light Detection and Ranging (LiDAR). Despite the increasing availability of such data 13 

at regional and national scales, the average ecologist has been limited in accessing them due to high requirements on computing 14 

power and remote-sensing knowledge. We processed Denmark’s publicly available national Airborne Laser Scanning (ALS) 15 

data set acquired in 2014/15 together with the accompanying elevation model to compute 70 rasterized descriptors of interest 16 

for ecological studies. With a grain size of 10 m, these data products provide a snapshot of high-resolution measures including 17 

vegetation height, structure and density, as well as topographic descriptors including elevation, aspect, slope and wetness 18 

across more than forty thousand square kilometres covering almost all of Denmark’s terrestrial surface. The resulting data set 19 

is comparatively small (~87 GB, compressed 16.4 GB) and the raster data can be readily integrated into analytical workflows 20 

in software familiar to many ecologists (GIS software, R, Python). Source code and documentation for the processing workflow 21 

are openly available via a code repository, allowing for transfer to other ALS data sets, as well as modification or re-calculation 22 

of future instances of Denmark’s national ALS data set. We hope that our high-resolution ecological vegetation and terrain 23 

descriptors (EcoDes-DK15) will serve as an inspiration for the publication of further such data sets covering other countries 24 

and regions and that our rasterized data set will provide a baseline of the ecosystem structure for current and future studies of 25 

biodiversity, within Denmark and beyond. 26 
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1 Introduction 27 

Over the last decades, airborne laser scanning (ALS) has become an established data source for providing fine-resolution 28 

measures of terrain and vegetation structure in ecological research (Moeslund et al., 2019; Guo et al., 2017; Zellweger et al., 29 

2016). Despite its informative potential and the increasing number of openly available ALS data sets with regional and national 30 

extents (Vo et al., 2016), the uptake of these data sets for large-scale ecological research and applications (such as monitoring 31 

and conservation) has remained comparatively low (Bakx et al., 2019). The low uptake is likely a consequence of the 32 

considerable challenges that remain in handling these very large data sets, which require specialist expertise and software, as 33 

well as substantial amounts of data storage and processing power (Meijer et al., 2020; Vo et al., 2016; Pfeifer et al., 2014). 34 

Here, we address this issue for Denmark by providing a compact set of ecologically relevant measures of terrain characteristics 35 

and vegetation structure derived as raster outputs from the country's national ALS data set with a grain size of 10 m x 10 m. 36 

The typical output from an ALS survey is a so-called point cloud that describes the physical structure of the surveyed area in 37 

three-dimensional space (Bakx et al., 2019; Vierling et al., 2008). In brief, short laser pulses are sent out from a Light Detection 38 

and Ranging (LiDAR) sensor mounted on an airplane (or drone) and reflected by surfaces such as bare ground, plants or 39 

buildings. The return timing of the reflected signal is measured and - with the help of information on the sensor’s orientation 40 

and position - the precise location of the reflecting surface is determined in geographic space (Vierling et al., 2008). Depending 41 

on the properties of the LiDAR sensor, different surfaces will reflect the light with different strengths, allowing, for example, 42 

to separate returns from vegetation from those of bare ground (Vo et al., 2016; Wagner et al., 2006). Some surfaces may scatter 43 

large parts of the light which may result in multiple returns of different strengths, vegetation is amongst those (Wagner et al., 44 

2006). Often, the raw signal is processed by the survey provider and the resulting data is delivered to the end user in the form 45 

of a point cloud of discrete returns, where each point is associated with information on geographic location, return strength 46 

(amplitude), acquisition timing etc. (Vo et al., 2016). For ALS data sets with large extents - such as Denmark's nationwide 47 

data set “DHM/Punktsky” - outputs from many survey flights are co-registered and merged, resulting in very large point clouds 48 

with hundreds of billions of points and data volumes of multiple Terabytes (Geodatastyrelsen, 2015). For further information 49 

on ALS methodology, we recommend Vo et al. (2016), Vierling et al. (2008) and Wagner et al. (2006). 50 

Due to the ability to separate between ground and vegetation points, descriptors of terrain and vegetation structure can be 51 

derived from ALS point clouds. While early applications for ALS were focussed on generating simple digital elevation models 52 

(DEMs) for city and landscape planning, as well as canopy height estimates for commercial forestry (Bakx et al., 2019; Vo et 53 

al., 2016), recent advances in technology have allowed the calculation of more complex measures with wider applications. 54 

Terrain derived measures of ecological interests include topographic slope, aspect (i.e., slope direction), solar irradiation, 55 

wetness etc. (e.g., Moeslund et al., 2019; Zellweger et al., 2016; Ceballos et al., 2015), and vegetation structural descriptors 56 

include vegetation density, canopy height diversity, canopy roughness and many more (e.g., Bakx et al., 2019; Moeslund et 57 

al., 2019; Coops et al., 2016). It is important to note that sensor and point cloud characteristics may limit the type of measures 58 
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that can be meaningfully derived from ALS data (Bakx et al., 2019). This applies especially to the point cloud density, which 59 

needs to be high enough to meaningfully resolve the structure of understory layers in forest systems (Bakx et al., 2019) or 60 

ecosystems with vegetation of low stature such as grasslands or tundra (Boelman et al., 2016). Nonetheless, even simpler ALS 61 

derived descriptors of terrain and vegetation structure can be of high value for ecological applications, as fieldwork-derived 62 

alternatives are often too costly and difficult to collect over large extents (Vierling et al., 2008). 63 

ALS data has provided critical information for research on biodiversity and habitat characteristics over the recent years, and 64 

its importance in ecological research is likely to increase in the future. Numerous biodiversity studies have successfully 65 

deployed ALS to study organisms like plants (Mao et al., 2018; Lopatin et al., 2016; Zellweger et al., 2016; Ceballos et al., 66 

2015; Moeslund et al., 2013; Leutner et al., 2012), fungi (Peura et al., 2016; Thers et al., 2017), bryophytes, lichens (Moeslund 67 

et al., 2019), mammals (Tweedy et al., 2019; Froidevaux et al., 2016) and birds (see Bakx et al. (2019) for a comprehensive 68 

review) both in open landscapes and in forests. These studies have all emphasized the value of ALS for representing fine-scale 69 

(~ 10 m resolution) terrain or vegetation structural variation of importance to local biodiversity patterns. Furthermore, 70 

Valbuena et al. (2020) recently considered ALS data to be one of the key resources for deriving ecosystem morphological 71 

traits in the global assessment of Essential Biodiversity Variables (EBVs). Finding ways of making regional and nationwide 72 

ALS data more accessible to the average ecologist is therefore not only a critical priority for accelerating research on regional 73 

biodiversity patterns and species - habitat relationships, but also for the facilitation of global assessments such as those carried 74 

out by IPBES (2019) and alike. 75 

To open up opportunities for researchers and practitioners not familiar with ALS processing or without access to the required 76 

facilities, we present a new national ALS based data set for Denmark primarily aimed at ecological research with possible uses 77 

in other disciplines. With a grain size of 10 m, these ecological descriptor (EcoDes) rasters provide a snapshot of high-78 

resolution measures of vegetation height, structure and density, as well as topographic descriptors including elevation, aspect, 79 

slope and wetness for almost all of Denmark’s terrestrial surface between spring 2014 and summer 2015 (DK15). In this 80 

publication, we a) describe the source data and outline the processing workflow (Sect. 2.1-2.3), b) summarise the data set’s 81 

main characteristics (Sect. 3.1-3.2), c) describe each variable in detail and highlight its use and limitations (Sect. 3.3-3.4), d) 82 

provide guidance on data access and illustrate how the data could be used in an example of ecological landscape classification 83 

(Sect. 4). We finish by e) briefly discussing the general limitations of the data set and processing workflow, as well as providing 84 

perspectives on how the presented data can be complemented with other data sources (Sect. 5). We hope that ease of access 85 

and thorough documentation of the EcoDes-DK15 data set will encourage uptake and facilitate the development of future 86 

versions of similar data sets in Denmark and beyond. 87 
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2 Source data and processing workflow overview 88 

2.1 Denmark - geography and ecology 89 

Located in Northern Europe, Denmark (without Greenland and the Faroe Islands) has an approximate land area of 43 thousand 90 

square kilometres, comprising the large peninsula of Jutland and 443 named islands. The relatively flat (highest point is 171 91 

m above sea level) landscape predominantly consists of arable land and production forest with relatively small patches of 92 

natural or semi-natural areas such as heathlands, grasslands, fresh and salt meadows, bogs, dunes, lakes, streams and deciduous 93 

forests. 94 

2.2 ALS and elevation source data 95 

The Danish elevation model (DHM) is an openly available nationwide data set providing various products based on ALS data. 96 

Here, we used the DHM/Point-cloud (DHM/Punktsky), the classified georeferenced ALS point cloud product, and the 97 

DHM/Terrain (DHM/Terræn), the digital elevation model product, both based on data collected in 2014 and 2015 (Table 1, 98 

see Nord-Larsen et al., 2017 for details on acquisition time). The DHM data set is currently hosted and maintained by the 99 

Agency for Data Supply and Efficiency, Denmark (https://sdfe.dk/) and can be downloaded from https://kortforsyningen.dk/ 100 

(see guidance on GitHub code repository). The DHM/Point-cloud product is a collection of 1 x 1 km tiles of three-dimensional 101 

point clouds with attributes such as position, intensity, point source ID, or classification. Point classification includes for 102 

example ground, vegetation, and buildings. The point density is on average 4-5 points per square meter with a horizontal and 103 

vertical accuracy of 0.15 and 0.05 metres, respectively. Additional information on the data set can be found in Geodatastyrelsen 104 

(Geodatastyrelsen, 2015 - in Danish), Thers et al. (2017) and Nord-Larsen et al (2017). The DHM/Point-cloud product is 105 

provided in a LAZ-format and in the ETR89 UTM 32N horizontal (EPSG: 25832) and DVR90 vertical reference system. The 106 

DHM/Terrain product is a rasterized digital model of the terrain height above sea level in 0.4 m resolution. This product is 107 

provided in a 32-bit GeoTiff format, using the same 1 km x 1 km titling convention and spatial reference system as the 108 

DHM/Point-cloud. 109 

 110 

Table 1: Overview of the key data sources used for generating the EcoDes-DK15 data set. 111 

Data source Year Used for Data provider Available from 

DHM/Pointcloud 

(DHM/Punktsky) 

2014/15 Vegetation Descriptors Danish Agency for Data 

Supply and Efficiency 

https://download.kortforsyningen.dk 

 

DHM/Terrain 

(DHM/Terræn) 

2014/15 Terrain Descriptors Danish Agency for Data 

Supply and Efficiency 

https://download.kortforsyningen.dk 

 

 112 

The DHM/Terrain 2014/2015 and DHM/Point-cloud data sets 2014/2015 do not fully overlap in the 1 km x 1 km tiles of 113 

Denmark covered. While both data sets contain matching tile pairs for 49835 tiles, 291 tiles do not have a matching partner 114 
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tile in one of the data set (209 DHM/Point-cloud tiles have no corresponding DHM/Terrain tile and 82 DHM/Terrain tiles have 115 

no corresponding DHM/Point-cloud tile). We removed these incomplete tile pairs from the data generation prior processing.  116 

2.3 Processing 117 

We processed the source data using OPALS 2.3.2.0 (Pfeifer et al., 2014), Python 2.7 (Van Rossum and Drake Jr, 1995), pandas 118 

0.24.2 (Reback et al., 2019), SAGA GIS 2.3.2 (Conrad et al., 2015) from OSGgeo4W64 and GDAL 2.2.4 (GDAL/OGR 119 

contributors, 2018) also from OSgeo4W64. The large number of tiles and variables to be calculated, required us to develop a 120 

robust processing pipeline, which we realised as a set of Python modules. The source code is openly available via a GitHub 121 

code repository (see Sect. 6). Processing was carried out on a Dell PowerEdge R740xd computational server (Windows 2012 122 

R2 64-bit Operating System, 2x Intel Xeon Platinum 8180 Processors and 1.536TB RAM). The processing of the whole data 123 

set took approximately 45 days to complete. 124 

 125 

2.3.1 Processing workflow 126 

To facilitate the processing of the large data set, we first generated a set of compact Python modules providing a programming 127 

interface that allows for the calculation of the individual variables outlined in Sect. 3. The individual routines were then 128 

integrated into a Python script mediating the processing workflow in parallel, while carrying out error handling, logging and 129 

progress tracking. The schematic of the processing workflow and the Python modules is outlined in Fig. 1. Detailed information 130 

is available on the GitHub repository, including instructions on how to set up the processing, documentation on the functions 131 

provided by the Python modules, as well as detailed intext commentary of the code. 132 
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 133 

Figure 1: Diagram of the processing workflow, the dk_lidar Python module and helper scripts. The workflow requires two 134 

inputs: a pre-classified set of point cloud tiles and a paired set of digital terrain model (dtm) tiles. The process management is 135 

handled by the process_tiles.py script which facilitates processing of each tile pair (dtm and point cloud) in parallel and logs 136 

the progress. For each tile, process_tiles.py calls a specified set of extraction and processing functions from the dk_lidar 137 

modules. Point cloud extraction functions are specified in points.py and terrain model extraction functions are specified in 138 

dtm.py. The dk_lidar modules also contain two further files, common.py a script containing specifications of common functions 139 

used by the points.py and dtm.py, as well as settings.py which is used to set global processing options, specify file paths etc. 140 

Finally, two helper scripts are provided progress_monitor.py which facilitates progress monitoring and estimates the time 141 

remaining and debug.py a script for testing the workflow for a single tile. Together the Python scripts and modules allow to 142 

generate the ecological descriptor outputs from the two input variables. Further documentation of the dk_lidar modules and 143 

workflow scripts can be found on the GitHub repository associated with this publication: 144 

https://github.com/jakobjassmann/ecodes-dk-lidar. 145 
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3 Data set description and known limitations 146 

3.1 Extent, projection, resolution and data format 147 

EcoDes-DK15 covers the majority of Denmark's land area, including the island of Bornholm (approximate extent: 54.56 °N 148 

to 57.75 °N, 8.07 °E to 15.20 °E). The data is projected in ETR89 UTM 32 N based on the GRS80 spheroid (EPSG: 25832). 149 

The data set is available as GeoTIFFs with 10 m grain size via a data repository on Zenodo (see Sect. 6). For each variable the 150 

nation-wide data are split into 49835 raster tiles of 1 km x 1 km with a 10 m grain size based on 25-fold aggregations of the 151 

0.4 m national grid of Denmark. A virtual raster mosaic (VRT) file is provided for each variable, and a file containing the tile 152 

footprint geometries can be used for geographical sub-setting of the data. We also provide masks for inland water and the sea. 153 

 154 

The final data set consists of just under 87 GB of data (compressed for download 16.4 GB). To reduce the size of the data set 155 

we converted numerical values from floating point precision to 16-bit integers where possible. In some cases, this required us 156 

to stretch the values by a set factor to maintain information content beyond the decimal point. The variable conversion factors 157 

are available as a csv file provided with the data set and in Table 2. Missing data is denoted by a value of -9999 throughout 158 

the data set (NODATA-value). 159 

3.2 Overview and file naming convention 160 

An overview of the eighteen terrain and vegetation structure variables as well as the auxiliary data provided can be found in 161 

Table 2. Generally, the variable names in Table 2 reflect the prefix of the file name of a GeoTiff file within the data set. This 162 

prefix is followed by a suffix representing the unique identifier for each tile based on the UTM coordinates of the tile (see 163 

Sect. 3.4.3 for more detail). When working with the complete data set, tiles from the same variable are grouped within a folder 164 

using the same variable name as used for the file name prefix. For example, for the tile with the unique id “6239_446” the 165 

GeoTiff for the “dtm_10m” variable can be found in “dtm_10m/dtm_10m_6239_446.tif”. The exceptions are the point counts, 166 

vegetation proportions and point source information, please see the relevant sections below for more detail. 167 

 168 

Table 2: Brief overview of the eighteen main EcoDes-DK15 variables and variable groups, their ecological meaning, unit, 169 

format and conversion factor. In addition to the 70 raster layers for the main variables, the data set contains six layers of 170 

auxiliary information (see Sect. 3.7). Note: to obtain the correct unit, the variable value needs to be divided by the conversion 171 

factor. 172 

 173 

Variable(s) Ecological meaning Unit Format 
Conversion 

factor 

Number of 

layers 

dtm_10m elevation m 16-bit integer 100 1 

aspect topographic aspect degrees 16-bit integer 10 1 
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slope topographic slope degrees 16-bit integer 10 1 

heat_load_index proxy of radiation and wetness unitless 16-bit integer 10000 1 

solar_radiation solar radiation ln(MJ x cm-2 x yr-1) 16-bit integer 1000 1 

openness_mean topographic position degrees 16-bit integer 1 1 

openness_difference presence of linear landscape 

features 

degrees 16-bit integer 1 1 

twi topographic wetness unitless 16-bit integer 1000 1 

      

amplitude_mean complex** undefined 32-bit float 1 1 

amplitude_sd complex** undefined 32-bit float 1 1 

canopy_height vegetation height m 16-bit integer 100 1 

normalized_z_mean average structural height  

(incl. vegetation and buildings) 

m 16-bit integer 100 1 

normalized_z_sd variation in structural height  

(incl. vegetation and buildings) 

m 16-bit integer 100 1 

point_counts* number of returns in ground, 

water, building and vegetation 

point classes; total return count 

and vegetation return counts in 

height bins  

count 16-bit integer 1 30 

vegetation_proportion* proportion of vegetation returns 

in height bins 

proportion 16-bit integer 10000 24 

vegetation_density ratio of vegetation returns to 

total returns 

proportion 16-bit integer 10000 1 

canopy_openness ratio of ground and water returns 

to total returns 

proportion 16-bit integer 10000 1 

building_proportion ratio of building returns to total 

returns 

 16-bit integer 10000 1 

      

point_source_info* point source / flight strip 

information 

varied, see 

description 

varied, see 

description 

varied, see 

description 

4 

masks inland water and sea mask binary 16-bit integer 1 2 

 174 

* Variable group containing multiple individual variables, see intext description for detail. 175 

** The amplitude variables are difficult to interpret, but can serve as useful indicators for vegetation classification and 176 

biodiversity studies. Please see intext description for more detail. 177 
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3.3 Completeness of the data set 178 

The processing of the data set was almost completely successful. Processing failed on average for only 41 out of the 49835 179 

tiles per variable with a maximum of 83 tiles failing for the canoy_height, normalized_z_mean and normalized_z_sd variables. 180 

The majority of these tiles were located on the fringes of the data set, including sand spits, sandbanks etc, we therefore did not 181 

attempt re-processing of those tiles. Instead, we generated nodata-value rasters for all missing variable - tile combinations (i.e. 182 

we assigned -9999 to all cells in those tiles). We provide a text file listing the affected “nodata” tiles in the folder of each 183 

variable (the file is named empty_tiles_XXX.txt, where XXX is the variable name). 184 

3.4 Elevation-model derived variables 185 

The following variables were solely derived from the 0.4 m digital elevation model (DHM/Terrain). Visualisations of these 186 

variables for an example tile in the Mols Bjerge area are shown in Fig. 2. 187 

 188 

189 

Figure 2: Illustration of the terrain model derived variables for a 1 km x 1 km tile in the Mols Bjerge area (tile id: 6230_595). 190 

An orthophoto and the tile location relative to Denmark are shown in (a). The terrain model (dtm_10m) is illustrated in (b). 191 

The terrain derived variables comprise of: c) the topographic aspect, d) the topographic slope, e) the heat load index following 192 

Kuehne et al. f) the estimated incident solar radiation, g) the landscape openness mean, h) the landscape openness difference 193 

in the eight cardinal directions and i) the topographic wetness index (TWI) based on Kopecký et al (2020). For visualisation 194 

purposes, we amplified the altitude above sea-level by a factor of two in the 3D visualisations. The 3D raster visualisations 195 
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were generated using the rayshader v0.19.2 package in R (Morgan-Wall, 2020). Orthophoto provided by the Danish Agency 196 

for Data Supply and Efficiency (https://sdfe.dk/hent-data/fotos-og-geodanmark-data/). 197 

3.4.1 Elevation (dtm_10m) 198 

We aggregated the 0.4 m DEM by mean to match the 10 m x 10 m national grid of the remainder of the data set. We used 199 

gdalwarp to carry out the aggregations. Values represent the elevation above sea level in metres multiplied by a factor of 100, 200 

rounded to the nearest integer and converted to 16-bit integer. 201 

3.4.2 Aspect (aspect) 202 

The topographic aspect describes the orientation of a slope in the terrain and may, amongst other things, be related to plant  203 

growth through light and moisture availability. We calculated the aspect in degrees, with 0° indicating North, 90° East, 180° 204 

South and 270° West. Values represent the aspect derived from a 10 m aggregate of the elevation model (aggregated by mean 205 

with 32bit floating point precision). Calculations were carried out using gdaldem binaries and the “aspect” option, which by 206 

default uses Horn’s method to calculate the aspect (Horn, 1981). To avoid edge effects, all calculations were done on a mosaic 207 

that included the focal tile and all available directly neighbouring tiles (maximum eight). The mosaic was cropped back to the 208 

extent of the focal tile upon completion of the calculations. We then converted the value for each cell from radian to degrees, 209 

multiplied it by a factor of 10, rounded to the nearest integer and stored the results as a 16-bit integer. Finally, we assigned a 210 

value of -10 (-1°) to all cells where the slope was 0° (flat). Limitations in the aspect arise in relation to edge effects that occur 211 

where a neighbourhood mosaic is incomplete for a focal tile (i.e., less than eight neighbouring tiles), such as for tiles along the 212 

coastline or at the edge of the covered extent. For those tiles, no aspect can be derived for the rows or columns at the edge of 213 

the mosaic. The cells in those rows and columns have no neighbouring cells and were assigned the no data value (-9999). 214 

3.4.3 Slope (slope) 215 

The topographic slope describes the steepness of the terrain and amongst other things may be related to moisture availability, 216 

exposure and erosion. We derived the topographic slope in degrees with a 10 m grain size from a mean aggregate of the 217 

elevation model (32bit floating point precision) using the gdaldem binaries with the “slope” option, which by default use 218 

Horn’s method to calculate the slope (Horn, 1981). To avoid edge effects, we carried out the calculations on a mosaic including 219 

the focal tile and all available directly neighbouring tiles (maximum eight). The mosaic was cropped back to the extent of the 220 

focal tile upon completion of the calculations. The value for each cell was converted from radian to degrees, multiplied by a 221 

factor of 10, rounded to the nearest integer and stored as a 16-bit integer. Limitations in the slope arise in relation to edge 222 

effects that occur where a neighbourhood mosaic is incomplete for a focal tile (i.e., less than eight neighbouring tiles), such as 223 

for tiles along the coastline or at the edge of the covered extent. For those tiles, no slope can be derived for the rows or columns 224 

at the edge of the mosaic. These cells in those rows and columns have no neighbouring cells and gdaldem assigns the no data 225 

value (-9999) to these cells. 226 

https://doi.org/10.5194/essd-2021-222

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 14 July 2021
c© Author(s) 2021. CC BY 4.0 License.



11 

 

3.4.4 Landscape openness mean (openness_mean) 227 

Landscape openness is a landform descriptor that indicates whether a cell is located in a depression or elevation of the 228 

landscape. We calculate the landscape openness following Yokoyama et al. (2002) using the OPALS implemented algorithms. 229 

We used a mean aggregate of the elevation model with 10 m grain size and 32bit floating point precision, and derived the 230 

mean landscape openness for a cell as the mean of the landscape openness in all eight cardinal directions with a search radius 231 

of 150 m. We chose to base this variable on the aggregated 10 m elevation model and a 150 m search radius, as we think that 232 

these are best suited to describe the landscape scale variation in the landforms of Denmark. The Danish landscapes are 233 

characterised by gently undulating terrain, valleys forged by small to medium sized rivers and dune systems along the 234 

coastlines. First, we generated a mosaic including the focal tile and all available tiles in the direct neighbourhood (max. eight 235 

neighbouring tiles) to reduce edge effects in subsequent calculations. The mean of the positive openness for all eight cardinal 236 

directions with search radius of 150 m was then derived for all cells in the mosaic using the OPALS Openness module (options: 237 

feature = 'positive', kernelSize = 15 and selMode = 0). Next, the mean openness per cell was converted from radians to degrees, 238 

rounded to the nearest integer and stored as a 16-bit integer. For incomplete neighbourhood mosaics (i.e. containing less than 239 

eight neighbouring tiles) we then masked out cells within the first 150 m of all edges where a neighbourhood tile was missing. 240 

Finally, the output was cropped back to the extent of the focal tile. As a consequence of the edge effect related masking, the 241 

focal tiles on the fringes of the data set, such as those on coastlines or at the edge of the coverage area, have no data available 242 

for the first 150 m. The corresponding cells for the affected areas are set to the NODATA value -9999. 243 

3.4.5 Landscape openness difference (openness_difference) 244 

In addition to the mean of the landscape openness, we also derived a landscape openness difference measure. This difference 245 

measure is an indicator of whether a cell is part of a linear feature in the landscape that runs in one cardinal direction, such as 246 

a ridge or valley, therefore providing additional information to the landscape openness_mean variable. We calculated the 247 

landscape openness difference based on the 10 m mean aggregate of the elevation model (32bit floating point precision) and 248 

with a search radius of 50 m. We chose these parameters as we consider them best suited to capture the relatively narrow 249 

valleys and ridgetops common in the Danish landscape. First, we generated a mosaic including the focal tile and all available 250 

tiles in the direct neighbourhood (max. eight neighbouring tiles) to reduce edge effects in subsequent calculations. We then 251 

calculated the minimum and maximum of the positive landscape openness from all eight cardinal directions for all cells in the 252 

mosaic using the OPALS Openness module with a search radius of 50 m (feature = ‘positive’, kernelSize = 5 , selMode = 1 253 

for minimum and selMode = 2 for maximum). Next, we converted the minimum and maximum values from radian to degrees 254 

and calculated the difference between the maximum and minimum value. We rounded the result to the nearest full degree. For 255 

the cases where the neighbourhood mosaic was incomplete, i.e., containing less than eight neighbouring tiles, we masked out 256 

all cells within the first 50 m of all edges with a missing neighbourhood tile. The final output mosaic was then cropped to the 257 

extent of the focal tile and stored as a 16-bit integer GeoTIFF. As a consequence of the edge effect related masking, focal tiles 258 
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on the edges of the data set, such as those on coastlines or at the edge of the coverage area, have no data available for the first 259 

50 m. 260 

3.4.6 Solar Radiation (solar_radiation) 261 

Incident solar radiation is a key parameter for plant growth and indicator for local microclimate. We estimated the amount of 262 

incident solar radiation received per square centimetre per year from the slope and aspect computed as described above. 263 

Calculations were implemented using gdal_calc, following equation 3 specified in McCune and Keon (2002): 264 

 265 

                                              𝑠𝑜𝑙𝑎𝑟_𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =  0.339 + 

                                                                                      0.808 × cos(𝐿) × cos(𝑆) − 
                                                                                      0.196 × sin(𝐿) × sin(𝑆) − 
                                                                                      0.482 × 𝑐𝑜𝑠(180 − |(180 −  𝐴)|) ×  𝑠𝑖𝑛(𝑆) 

 

(1) 

 266 

where L is the centre latitude of the cell in degrees, S is the slope of the cell in degrees and A is the aspect of the cell in degrees. 267 

The resulting estimate is given in: ln(MJ x cm-2 x yr-1) (McCune and Keon, 2002). Slope and aspect for each 10 m x 10 m grid 268 

cell were sourced from the slope and aspect rasters. We stretched the results by a factor of 1000, rounded to the nearest integer 269 

and stored them as 16-bit integers. Due to propagation from the calculation of slope variable, no solar radiation values can be 270 

calculated for cells found right on the edge of the data set, for example in tiles situated along the coastline or at the edge of the 271 

sampling extent. 272 

3.4.7 Heat Load Index (heat_load_index) 273 

The heat load index (McCune and Keon, 2002) was originally developed as an indicator for temperature based solely on aspect, 274 

but this characteristic is probably better captured in our solar radiation variable (see above) that was developed to improve 275 

shortcomings in the heat load index (McCune and Keon, 2002). However, in a previous study (Moeslund et al., 2019) we show 276 

that - in Denmark - the index was moderately correlated with soil moisture, and can therefore serve as an useful indicator of 277 

the amount of moisture available to plants. We calculated the heat load index based on the aspect rasters (described above) 278 

following the equation specified in McCune and Keon (2002) using gdal_calc: 279 

 280 

ℎ𝑒𝑎𝑡_𝑙𝑜𝑎𝑑_𝑖𝑛𝑑𝑒𝑥 =  
(1 −  𝑐𝑜𝑠(𝐴 −  45))

2
 

 

(2) 

 281 

where A is the aspect in degrees. We stretched the result by a factor of 10000, rounded to the nearest integer and stored it as a 282 

16-bit integer. As the heat_load_index is not meaningfully defined for flat cells (slope = 0° / aspect = -1°), we set the value of 283 
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those cells to no data (-9999). Finally, for cells that are located on the outermost edges of the data set the heat_load_index is 284 

not defined due to propagation of the nodata value assigned to the aspect in those cells. 285 

3.4.8 Topographic wetness index (twi) 286 

The Topographic wetness index (TWI) provides a proxy measure of soil moisture or wetness based on the hydrological flow 287 

modelled through a digital terrain model. Here, we derived the TWI following the method recommended by Kopecký et al. 288 

(2020). We based our calculations on the aggregated 10 m elevation model (dtm_10m, 16bit integer) and used a neighbourhood 289 

mosaic (max. 8 neighbours) for each focal tile to derive the TWI. The exact procedure is detailed in the next paragraph. As 290 

such the index values calculated by us only consider a catchment the size of one tile and all its neighbours (for non-edge tiles 291 

this is a 3 km x 3 km catchment, for edge tiles it is smaller depending on the completeness of the neighbourhood mosaic). We 292 

then cropped the resulting output back to the extent of the focal tile, stretched the TWI values by a factor of 1000, rounded to 293 

the next full integer and stored the results as a 16-bit integer. 294 

We calculated the TWI using SAGA GIS v. 7.8.2 binaries. First, we sink-filled the neighbourhood mosaic of the terrain model 295 

using the ta_preprocessor 5 module and the option “MINSLOPE 0.01” (Wang and Liu, 2006). Second, we calculated the flow 296 

accumulation based on the sink-filled neighbourhood mosaic of the terrain model (from step one) using the ta_hydrology 0 297 

module with options “METHOD 4” and “CONVERGENCE 1.0” (Freeman, 1991; Quinn et al., 1991). Third, we derived the 298 

flow width and specific catchment area based on the sink-filled neighbourhood mosaic of the terrain model (from step one) 299 

and the flow accumulation (from step two) using the module ta_hydrology 19 (Gruber and Peckahm, 2008; Quinn et al., 1991). 300 

Fourth, we calculated the slope based on the sink-filled neighbourhood mosaic of the terrain model (from step one) using the 301 

ta_morphometry 0 module with option “METHOD 7” (Haralick, 1983). Finally, we derived the TWI based on the specific 302 

catchment area (from step three) and slope (from step four) using the module ta_hydrology 20 (Beven and Kirkby, 1979; 303 

Böhner and Selige, 2006; Moore et al., 1991). For detailed descriptions of the modules used, please refer to the SAGA GIS 304 

documentation (SAGA-GIS Tool Library Documentation v7.8.2, 2021). 305 

The TWI variable calculated for EcoDes-DK15 is subject to two main limitations: edge effects and small catchment size. Tiles 306 

with incomplete neighbourhoods (i.e., less than 8 direct neighbours are available) will suffer from edge effects in the direct 307 

vicinity of the relevant border and overall due to a reduced catchment size. Furthermore, even in the ideal case of the 308 

neighbourhood being complete, for most cells flow accumulation is therefore only calculated for the direct neighbourhood of 309 

a focal tile, comprising a 3 km x 3 km catchment area. While we hypothesize that, due to the relatively low variation in 310 

topography in Denmark, the TWI based on this comparably small catchment area will serve as a reasonable proxy for terrain-311 

based wetness in most cases, it may be less reliable in areas with exceptionally high variation in topography or for lakes and 312 

rivers with large catchments. In addition, we would like to point the reader towards the general limitations of the TWI as a 313 
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proxy for soil moisture or terrain wetness as for example discussed by Kopecký et al. (2020). These general limitations should 314 

be taken into account when interpreting the TWI values provided in EcoDes-DK15. 315 

3.5 Point-cloud derived variables 316 

The DHM/Point-cloud point cloud was pre-classified into eleven point categories (Geodatastyrelsen, 2015). For the EcoDes-317 

DK15 data set, we restricted the analysis to four of these classes, including ground points (“Terræn”) - class 2, water points 318 

(“Vand”) - class 9, as well as low (“lav”) , medium (“mellemhøj”) and high vegetation (“høj vegetation”) - classes 3, 4 and 5, 319 

respectively. We grouped the three vegetation classes into one single vegetation class and, instead of the pre-assigned height 320 

categories, considered a more detailed set of height bins (see point count and proportion descriptions below). We included all 321 

returns, i.e., first returns and echoes, in our analysis. All point cloud processing was carried out using OPALS and the OPALS 322 

Python bindings. As none of the point cloud derived variables required mosaicking to prevent edge-effects, we processed all 323 

point cloud variables on the focal tile only. After the initial ingestion of the LAZ-file for a tile into the OPALS data manager 324 

format (odm), we used the OpalsAddInfo module to add a normalised height (z) attribute to the points. For this attribute we 325 

subtracted the height of the ground derived from the corresponding DHM/Terrain raster (0.4 m grid size) from the height above 326 

sea level of each point. Figure 3 illustrates how the point cloud data translates to some of the variable outputs for four exemplary 327 

10 m x 10 m cells from the data set, and an overview of the point cloud derived variables for a 1 km x 1 km tile in Vejle Fjord 328 

in central Jutland is provided in Fig. 4. 329 
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 330 

Figure 3: Point cloud examples for four 10 m x 10 m pixels and a selection of the associated EcoDes-DK15 variables derived 331 

from the point clouds, illustrating the ecological meaning and some of the limitations of the EcoDes-DK15 data set. The 10 m 332 

x 10 m pixels represent the following environments: a) an agricultural field, b) the edge of a forest / parkland pond with low 333 

vegetation, c) a young plantation of dense coniferous trees, and d) old growth mixed-woodland. The EcoDes-DK15 variables 334 

shown include (from the top) the total point counts for each pixel in the three main EcoDes-DK15 categories: 1) the number 335 

of returns classified as ground, 2) the number of returns classified as water and 3) the number of returns classified as vegetation. 336 
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In addition, the relative proportion of vegetation points per predefined height bin is illustrated below the total vegetation point 337 

count. Finally, the bottom three panels show the estimated canopy height (altitude above ground for the 95%-percentile of all 338 

vegetation returns), the normalized z standard deviation (variation in height above ground for all return classes), and the mean 339 

return amplitude for each cell. 340 

 341 

 342 

Figure 4: Illustration of the point cloud derived variables for a 1 km x 1 km tile along Vejle Fjord (tile id: 6171_541). An 343 

orthophoto and the tile location relative to Denmark are shown in (a). The point cloud derived variables comprise of: c) the 344 

mean return amplitude, d) the standard deviation in the return amplitude, e) the canopy height (vegetation returns only), f) the 345 

mean of the normalized height above ground (all returns), g) the mean of the normalized height (all returns), h) the ground 346 
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point count, i) the water point count, j) the building point count, k) the total point count, l) the number of point sources (flight 347 

strips), m) the canopy openness, n) the vegetation density and o) the building proportion. For visualisation purposes, we 348 

amplified the altitude above sea-level by a factor of two in the 3D visualisations and divided the point counts by 1000. The 3D 349 

raster visualisations were generated using the rayshader v0.19.2 package in R (Morgan-Wall, 2020). Orthophotograph provided 350 

by the Danish Agency for Data Supply and Efficiency (https://sdfe.dk/hent-data/fotos-og-geodanmark-data/). 351 

3.5.1 Amplitude – mean and standard deviation (amplitude_mean and amplitude_sd) 352 

The amplitude attribute of a point in the DHM/Point-cloud is the actual amplitude of the return echoes, i.e., it describes the 353 

strength of the LiDAR return signals detected by the sensor. The variable is difficult to interpret in terms of its ecological 354 

meaning. Nonetheless, we believe that it is still useful for vegetation classifications, biodiversity analysis and other applications 355 

that perform well with proxy data. We calculate the arithmetic mean and standard deviation of the amplitude for all points 356 

within a 10 m x 10 m cell. Here, ‘all points’ refers to all points classified as ground, water, building, and vegetation points. 357 

Calculations were carried using the OPALS Cell module and results were stored as 32-bit floats. The amplitude attributes in 358 

the DHM/Point-cloud point clouds are not directly comparable when points originate from different point sources (e.g., flight 359 

strips), as the amplitude has not been calibrated and hence is sensitive to differences in sensor, sensor configuration and signal 360 

processing. Calculating summary metrics such as mean and standard deviation for a 10 m x 10 m cell where points from 361 

different point sources are present introduces additional complexities. In some cases, a 10 m cell might contain points from up 362 

to four different sources. We therefore recommend using the two amplitude variables with care, and - if possible - in 363 

conjunction with information on the point source ids contained in the point_source_info variables described below. 364 

3.5.3 Canopy height (canopy_height) 365 

Canopy height is a key parameter of vegetation structure related to biomass and ecosystem functioning. We derived the canopy 366 

height in metres as the 95th-percentile of the normalised height above ground of all vegetation points within each 10 m x 10 367 

m cell using the OPALS Cell module. The resulting canopy heights were multiplied by a factor of 100, rounded to the nearest 368 

integer and stored as 16-bit integers. In cases where there were no vegetation points in any given cell, we set the canopy height 369 

value of the cell to zero metres. Please note that the canopy height is therefore also set as zero metres even if there are no points 370 

present in the cell at all (such as ground or water points). Furthermore, our algorithm calculates the canopy height even if there 371 

is only a small amount of vegetation points in a cell. In rare cases, this might lead to erroneous canopy-height readings if 372 

vegetation is found on artificial structures or points have been mis-classified. For example: A tall communications tower can 373 

be found just south of Aarhus and on top of this tower small patches of vegetation resulted in point returns being pre-classified 374 

as vegetation. The resulting canopy height for this cell is calculated as > 100 m above ground, which would not make sense if 375 

interpreted as a height of the vegetation above ground. For such cases, the building proportion variable may be used to separate 376 

cells with artificial structure from those with vegetation only. See also the “normalized_z” variable below for a closely related 377 

measure. 378 

https://doi.org/10.5194/essd-2021-222

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 14 July 2021
c© Author(s) 2021. CC BY 4.0 License.



18 

 

3.6.4 Normalised height - mean and standard deviation (normalized_z_mean and normalized_z_sd) 379 

Similar to the canopy height variable, the normalised height describes the structure properties of the point cloud above ground. 380 

The key difference between the two variables is that for the normalised height we also included non-vegetation points 381 

(buildings & ground) and derived the summary statistic as the mean rather than the 95%-quantile. For the normalised height 382 

variable, we also provide a measure of variation in form of the standard deviation. Specifically, we calculated the normalised 383 

mean and the standard deviation of the mean height above ground (normalised z attribute) for all points in each 10 m x 10 m 384 

grid cell using the OPALS Cell module. The results were multiplied by 100, rounded to the nearest integer and stored as 16-385 

bit integers. We used the normalised z attribute generated during the ingestion of the point cloud reflecting the height of a 386 

point relative to the ground level determined by the DHM/Terrain raster. Here, all points refer to all points belonging either to 387 

the ground, water, building or vegetation class. By definition the normalised height mean will be highly correlated with the 388 

“canopy_height” variable for cells where mainly vegetation points are present. We kept the American spelling of the variable 389 

name for legacy reasons with previous versions of the data set. 390 

3.6.5 Point counts (xxx_point_count_xxx) 391 

The point count variables are intermediate variables used to generate the proportion variables described below. However, they 392 

can also be used to calculate tailored proportion variables relevant to addressing a specific ecological objective (see use-case 393 

example in Sect. 4.2). For EcoDes-DK15 we derived thirty point count variables for each 10 m x 10 m cells based on filtering 394 

of the pre-defined point classifications and separation by height above ground (normalised z) using the OPALS Cell module. 395 

All point counts were stored as 16-bit integers. These thirty variables contain six general point counts, including ground, water, 396 

vegetation, building and total point counts (Table 3), as well as twenty-four vegetation point counts separated in height bins 397 

(Table 4). Note that the number of returns within a 10 m cell is influenced by a) the number of point sources present in the 398 

cell, b) the relative position and distance of a cell to the point source when the data was collected (i.e., to the flight path), and 399 

c) by the point source themselves (i.e., differences between the LiDAR sensors deployed). The absolute counts are therefore 400 

not directly comparable between cells and need to be standardised first, for example by division of the total number of point 401 

counts as done for the point proportion variables derived by us. 402 

 403 

Table 3: General point count variables, as well as the height ranges and point classes included in each variable. 404 

 405 

Variable name Height range Point classes 

ground_point_count_-01m-01m -1 m to 1 m ground points (class 2) 

water_point_count_-01m-01m -1 m to 1 m water points (class 9) 

ground_and_water_point_count_-01m-01m -1 m to 1 m ground and water points (classes 2,9) 

vegetation_point_count_00m-50m 0 m to 50 m vegetation points (classes 3,4,5) 

https://doi.org/10.5194/essd-2021-222

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 14 July 2021
c© Author(s) 2021. CC BY 4.0 License.



19 

 

building_point_count_-01m-50m -1 m to 50 m building points (class 6) 

total_point_count_-01m-50m -1 m to 50 m 
ground, water, vegetation and building points 

(classes 2,3,4,5,6,9) 

 406 

Table 4: Vegetation point count variables divided into twenty-four height bins. All vegetation point counts include the point 407 

classes 3,4 and 5. 408 

 409 

Variable name Height range 

vegetation_point_count_00.0m-00.5m 0.0 m to 0.5 m 

vegetation_point_count_00.5m-01.0m 0.5 m to 1.0 m 

vegetation_point_count_01.0m-01.5m 1.0 m to 1.5 m 

vegetation_point_count_01.5m-02.0m 1.5 m to 2.0 m 

vegetation_point_count_02m-03m 2 m to 3 m 

vegetation_point_count_03m-04m 3 m to 4 m 

vegetation_point_count_04m-05m 4 m to 5 m 

vegetation_point_count_05m-06m 5 m to 6 m 

vegetation_point_count_06m-07m 6 m to 7 m 

vegetation_point_count_07m-08m 7 m to 8 m 

vegetation_point_count_08m-09m 8 m to 9 m 

vegetation_point_count_09m-10m 9 m to 10 m 

vegetation_point_count_10m-11m 10 m to 11 m 

vegetation_point_count_11m-12m 11 m to 12 m 

vegetation_point_count_12m-13m 12 m to 13 m 

vegetation_point_count_13m-14m 13 m to 14 m 

vegetation_point_count_14m-15m 14 m to 14 m 

vegetation_point_count_15m-16m 15 m to 16 m 

vegetation_point_count_16m-17m 16 m to 17 m 

vegetation_point_count_17m-18m 17 m to 18 m 

vegetation_point_count_18m-19m 18 m to 19 m 

vegetation_point_count_19m-20m 19 m to 20 m 

vegetation_point_count_20m-25m 20 m to 25 m 
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vegetation_point_count_25m-50m 25 m to 50 m 

3.6.6 Vegetation proportions by height bin (vegetation_proportion_xxx) 410 

The vegetation proportions by height bin are amongst the key parameters in the EcoDes-DK15 data set describing vegetation 411 

structure as they provide an indication of how the vegetation is distributed vertically within each cell of the raster. We 412 

calculated the proportions by dividing the vegetation count for each height bin (Table 4) by the total point count 413 

(total_point_count_-01m-50m) within a given 10 m x 10 m cell. Resulting proportions were multiplied by a factor of 10000, 414 

rounded to the nearest integer and converted to 16-bit integers. All calculations were done using gdal_calc based on the 415 

respective point count rasters (Sect. 3.3.5). The naming convention of the vegetation proportion variables 416 

“vegetation_proportion_xxx” follows the same convention as the vegetation point count variables (Table 4), whereby the suffix 417 

“xxx” is replaced with the respective height bin. Please note that height bins are spaced at 0.5 m intervals below 2 m and at 1 418 

m intervals between 2 m and 20 m. Furthermore, the range above 20 m is split into only 2 bins: 20 m to 25 m and 25 m to 50 419 

m. 420 

 421 

Given the properties of the DHM/Point-cloud we recommend being cautious when interpreting differences in the lower height 422 

bins. It is likely that the inaccuracies in the point cloud complicate clear separation between points less than half a metre apart. 423 

Furthermore, note that the proportions in the 0 m - 0.5 m bin are likely biased towards an underrepresentation of the vegetation 424 

proportion in this height bin, due to challenges in separating vegetation from ground points during the pre-classification. Lastly, 425 

keep in mind that dense canopy layers in the upper story of the canopy will reduce penetration of the light beam to the lower 426 

canopy layers. This may result in few returns in the lower layers (for example Fig 3 d) even though perhaps vegetation is 427 

present in those layers. 428 

3.6.7 Vegetation density or total vegetation proportion (vegetation_density) 429 

Vegetation density is an important component of ecosystem structure. Here, we calculated the vegetation density as the ratio 430 

between the vegetation returns across all vertical height bins (vegetation_point_count_00m-50m) and the total point count 431 

(total_point_count_-01m-50m). Calculations were done using gdal_calc based on the two point count rasters (Sect. 3.3.5). 432 

Results were multiplied by 10000, rounded to the nearest integer and stored as 16-bit integers. In addition to actual difference 433 

between vegetation density in a cell, the vegetation_density variable is also influenced by the canopy properties such as the 434 

structure (dense upper layers will prevent penetration of the light beam to lower layers or even the ground) and texture 435 

(different canopies scatter light differently, causing lower or higher number of returns) and the points sources within a cell 436 

(e.g. multiple sources from different viewing angles provide a more complete estimate of the vegetation density). These 437 

additional influences are important to keep in mind when interpreting the vegeation_density variable. 438 
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3.6.7 Canopy openness, or ground and water proportion (canopy_openness) 439 

Canopy openness is an important ecological descriptor particularly of forest canopies, as it describes the amount of light 440 

penetrating through to the levels of the canopy. To some degree the canopy openness serves as the inverse for the vegetation 441 

density. For EcoDes-DK15, we calculated the canopy openness of a 10 m x 10 m cell as the proportion of the ground and water 442 

points (ground_and_water_point_count_-01m-01m) to the total point count (total_point_count_-01m-50m) within the cell. 443 

The raster calculations were done using gdal_calc. Results were multiplied by 10000, rounded to the nearest integer and stored 444 

as 16-bit integers. Please note that the same considerations as for the vegetation_density variable (Sect. 3.3.7) regarding canopy 445 

properties and differences in point sources between the cells apply when interpreting the canopy_openness variable. In 446 

addition, it is important to note that building points will reduce the canopy openness the same way that vegetation points 447 

would. 448 

3.6.8 Building proportion (building_proportion) 449 

In a densely populated country such as Denmark, buildings form an important part of the landscape. For ecological studies the 450 

distance to the nearest buildings, their presence, absence or density may be of relevance. The building_propotion variable of 451 

EcoDes-DK15 provides a proxy for how much building infrastructure can be found within a 10 m cell. We calculated the 452 

variable as the number of building points (building_point_count_-01m-50m) divided by the total number of points 453 

(total_point_count_-01m-50m) within each cell using gdal_calc. Results were multiplied by 10000, rounded to the nearest 454 

integer and stored as 16-bit integers. While most returns from three dimensional infrastructure are classified as buildings in 455 

the DHM/Point-cloud, we would like to highlight that many roads are classified as ground (class 2) and some structures such 456 

as pylons and power lines were assigned a separate class (not described in (Geodatastyrelsen, 2015). These structures are 457 

therefore not included in the building_proportion variable. Finally, we would like to point the reader to the “DCE Basemap” 458 

(Levin, 2019) which may assist in the identification of basic land cover types that include buildings and other manmade 459 

structures. 460 

3.7 Auxiliary data 461 

In addition to the terrain and point cloud derived variables we provide three sets of auxiliary data with EcoDes-DK15. These 462 

are four layers of ALS point source information, a mask for inland water and a sea mask, as well as a shapefile of the footprints 463 

of the 1 km x 1 km tiles in the data set and their unique identifier. 464 

3.7.1 Point source information 465 

The point source attribute of the DHM/Point-cloud represents differences between sensor units or aircrafts that may have been 466 

used during the nationwide LiDAR campaign, differences in the acquisition time and date and differences in the viewpoint or 467 

acquisition angle of the cells. To aid in interpretation of variables that may be particularly influenced by point source, like the 468 
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amplitude variables or the vegetation proportions, we provide summary information about the point sources within each 10 m 469 

x 10 m cell. We summarised this information in four descriptor variables, the “point_source_counts”, “point_source_ids”, 470 

“point_source_nids” and “point_source_proportions”. For each tile (file name suffix = tile id), these variables are found in 471 

four subfolders bundled up in the parent “point_source_info” folder. 472 

point_source_ids - Multi-layer raster containing one 16-bit integer layer for each point source id found in a tile. If a point 473 

with a given point source id is present the value of the cell is set to the point source id (an integer number) in the respective 474 

layer for the point source id, otherwise the value of a cell is set to 0. This multilayer raster can be used to match the file names 475 

of the point_source_counts and point_source_proportions rasters to a given point source id. Point source ids were extracted 476 

using Opals Cell. 477 

point_source_nids - Single layer GeoTiff files containing the number of different point source ids in each cell stored as 16-478 

bit integers. We calculated the number of point source ids based on the point_source_ids variable using gdal_calc. 479 

point_source_counts - For each tile there are multiple rasters (up to four), one raster for each point source id found in the 480 

point cloud of the tile (see the point_source_ids variable). These rasters are named with an additional suffix, which matches 481 

the integer point source id for which the point counts are given in the raster (e.g. point_source_counts_xxxx_xxx_y*, where 482 

xxxx_xxx is the tile id and y* the integer point source id). The rasters contain the number of points per 10 m x 10 m cell for 483 

the respective point source id in the tile. Counts were extracted using the OPALS Cell module and stored as 16-bit integers. 484 

point_source_proportions - For each tile there are multiple rasters (up to four), one raster for each point source id found in 485 

the point cloud of the tile (see the point_source_ids variable). These rasters are named with an additional suffix, which matches 486 

the integer point source id for which the point proportions are given in the raster (e.g. point_source_proportions_xxxx_xxx_y*, 487 

where xxxx_xxx is the tile id and y* the integer point source id).. Each raster contains the proportion of the point counts for a 488 

given point source id in relation to the total point count per 10 m x 10 m cell. Calculations were carried out using gdal_calc. 489 

The final proportions were multiplied by a factor of 10000, rounded to the nearest integer and stored as 16-bit integers. 490 

3.7.2 Water masks (inland_water_mask and sea_mask) 491 

We also provide rasterized water masks for use cases in which require masking inland water bodies or the sea. To represent 492 

all permanent lakes in Denmark, we merged three shapefiles containing (1) lakes protected by the Danish nature protection 493 

legislation (§3, available at https://arealinformation.miljoeportal.dk), (2) other valuable lakes (available on request at the 494 

Danish Farming Agency in the “good farming and environmental condition” data set) and (3) a layer containing the remaining 495 

rather small lakes and ponds (GeoDanmark, https://kortforsyningen.dk/). The combined shapefile is provided on the GitHub 496 

code repository (see below). We then burned the geometries within the shapefile into the 10 m x 10 m grid using gdal_rasterize. 497 

The masks are binary, a cell value of 1 indicates land and a value of -9999 (no data) indicates sea or inland water, respectively. 498 
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When using the masks please consider that the shape, presence and absence of water bodies and coastlines may fluctuate over 499 

time. We created the masks to present a snapshot of the water bodies as close as possible to the time point of the DHM/Point-500 

cloud acquisition (spring 2014 - summer 2015), but inaccuracies may still arise. When combining the data with more recent 501 

observations, keep in mind that inland water bodies and coastlines may have changed since then. Finally, while we aimed to 502 

produce the inland water mask to be as comprehensive as possible, some small ponds and water bodies may have been missed. 503 

Note also that while some rivers are included in the sea mask, the inland water mask does not include rivers or streams. The 504 

masks can be found in the “masks” subfolder of the complete data set. 505 

3.7.3 Footprint file (tile_footprints.shp) 506 

To assist data access and creation of data subsets, we have produced an ESRI shapefile containing the footprints of all 1 km x 507 

1 km tiles in the EcoDes-DK15 data set. The shapefile was generated based on the “dtm_10m” rasters and the tile identifier of 508 

each footprint geometry is specified in the “tile_id” attribute column. 509 

4. Data access and ecological use case example 510 

4.1 Data access and handling 511 

Depending on the extent of the study, it may be preferable to work with a subset of the data set rather than the nationwide VRT 512 

files (Fig. 5). We suggest starting by identifying the relevant EcoDes-DK15 variables of interest, then retrieving the relevant 513 

data from the repository and decompressing the archives (instructions provided on data repository). If the study area of interest 514 

covers a large fraction of Denmark's extent and sufficient processing power is available, the nationwide VRT data should 515 

provide the most convenient access to the selected variables. However, if the study area does not cover a large proportion of 516 

Denmark, then we suggest sub setting the data using the tile footprints to decrease demands on computational resources. After 517 

sub setting, local / regional VRT files or mosaics can be generated if needed. We provide an example R script illustrating how 518 

this sub setting could be done for the use case example shown in the next section on the code repository 519 

(manuscript/figure_6/subset_data set.R). We have also made the resulting subset available as a “teaser” (5 MB) to help the 520 

reader assess the value of EcoDes-DK15 without having to commit to the multi-gigabyte download of the complete data set 521 

(see Sect. 6).  522 

 523 
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 524 

Figure 5: Schematic chart of two possible approaches for accessing and integrating EcoDes-DK15 data into ecological studies. 525 

The first step is to identify which variables are of interest, these variables can then be downloaded from the Zenodo repository 526 

and decompressed. Next a decision needs to be made whether the whole data set (nationwide) or only a subset of the tiles is 527 

required (e.g., a regional study). As the whole data set is relatively large (~ 87 GB), storage and processing limitations need to 528 

be taken into account when planning data processing and handling. If a subset of tiles is sufficient for a study, the provided 529 

tile footprints can be used to identify which tiles are required based on a geometry (e.g., a shapefile) of the study region(s). 530 

Finally, for easy data handling in subsequent analysis, a mosaic of the selected tiles can be created. For nationwide use we 531 

provided virtual mosaics (VRT files) containing all tiles for the variables. An R script illustrating how the sub setting can be 532 

done for a regional study can be found on the GitHub repository: https://github.com/jakobjassmann/ecodes-dk-533 

lidar/blob/master/manuscript/figure_6/subset_dataset.R. 534 
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4.2 Use case example - ecological landscape stratification of Husby Klit nature protected area 535 

Figure 6 illustrates a use case for the EcoDes-DK15 data set with an example of an ecologically motivated landscape 536 

stratification of the “Husby Klit” old-dune protected area in western Denmark. We developed this stratification for a group of 537 

Master’s projects carrying out vegetation monitoring in the area. Our aim was to capture the variation in the dominant 538 

vegetation based on vegetation structure as well as the variation in fine-scale topography created by the dune systems across 539 

the landscape. In addition to using the variables already provided, the stratification required us to derive a topographic position 540 

index as well as grouping the point densities in height bins relevant to the characteristics of the three most common dominant 541 

vegetation types (grass and heath, Pinus mugo Turra, Pinus sylvestris L.) in the area. The source code for this figure contained 542 

in the code repository provides an example of how this can be achieved (manuscript/figure_6/figure_6.R). 543 

 544 

 545 

Figure 6: Use-case example: Landscape stratification of the Husby Klit protected area based on EcoDes-DK15 derived terrain 546 

and vegetation structure descriptors. The target was to stratify the landscape of the Husby Klit “dune plantation” area in the 547 

west of Denmark (56.2837 - 56.3024 °N, 8.1239 - 8.1600 °E) to facilitate stratified random sampling for vegetation monitoring. 548 
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We identified the four tiles overlapping with the boundaries of the protected area and derived a stratification based on two 549 

components: topographic position (a) and vegetation structure (b). We hypothesized that both components would influence 550 

the vegetation communities present. For the topographic position (a), we first derived and standardised the topographic position 551 

index (TPI) (Weiss, 2001) from the terrain model (dtm_10m). Following (Weiss, 2001) we then classified each cell based on 552 

the scaled TPI into three categories. A scaled TPI below a value of -0.5 was classified as a “trough or lower-slope”, a scaled 553 

TPI between -0.5 and 0.5 as “mid-slope or flat”, and a scaled TPI above 0.5 as a “ridge or top”. For the vegetation structure 554 

component (b), we calculated the proportion of returns in three simplified height bins: 1) 0 m to 1.5 m, 2) 1.5 m to 3.0 m and 555 

3) 3.0 m - 50 m. Here we included both ground and vegetation returns as the divisor for the standardisation, but not the returns 556 

from buildings or water. Based on a priori knowledge we deduced that there are three dominant vegetation communities within 557 

the protected area: communities dominated by grass and heath with vegetation growth generally below 1.5 m, communities 558 

dominated by shrubs and small trees (including the invasive Pinus mugo) with vegetation growth predominantly below 3.0 m, 559 

and communities dominated by trees (including the native Pinus sylvestris), generally with growth above 3.0 m. We used this 560 

knowledge to assign the three vegetation classes based on the proportion of point returns in the simplified height bins. For the 561 

“grass and heath” class we used a strict cut off with no points present above 1.5 m. For the “shrubs and small trees” class we 562 

used a fuzzy cut off allowing the proportion of points in the 3.0 m and above bin to reach up to 10% of the maximum proportion 563 

found in this heigh bin. All remaining cells were then assigned to the “trees” class. Finally, we combined the two classifications 564 

into one as illustrated in c). Panel d) shows the location of the protected area within Denmark. The 3D raster visualisations 565 

were generated using the rayshader v0.19.2 package in R (Morgan-Wall, 2020). 566 

5. Discussion - limitations and future perspectives 567 

Our data set demonstrates how the complex information in ALS point cloud data sets spanning more than 40.000 km2, can be 568 

condensed into a compact data set of rasterized variables of interest for ecological studies. For the whole of Denmark, we 569 

provide 70 raster layers representing eighteen measures that describe a snapshot of vegetation height, structure and density, as 570 

well as topography and topography-derived habitat characteristics, including slope, aspect, solar radiation and wetness for the 571 

time period 2014-2015. These measures are of direct relevance for ecological research on species’ habitat characteristics, 572 

distribution modelling, biodiversity and conservation applications. Condensing the ALS derived information into a compact 573 

set of raster variables makes it more accessible to the community of ecological researchers and practitioners, allowing them to 574 

access information on the vertical structure of vegetation and terrain otherwise difficult to obtain for large extents such as those 575 

of a whole country. 576 

 577 

We would like to highlight some key ecological and physical limitations that should be kept in mind when using the data or 578 

derivatives. The EcoDes data set is a snapshot in time representing the collection period of approximately one and a half years 579 

between spring 2014 and summer 2015. Like anywhere on Earth, the landscapes of Denmark may change over time and by 580 
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the time point of publication of this data set over 5 years may have passed since the collection of the source data. External data 581 

sources containing information about on-going or past changes (such as satellite imagery - see below) might help overcome 582 

this bias. Additionally, the geographical differences in the timing of the point cloud collection across the country (Nord-Larsen 583 

et al., 2017), may introduce noise and could affect cross-comparability of the data between regions in some cases. Furthermore, 584 

there are implicit limitations in spatial scale due to the set grain size of the data set. We chose a 10 m x 10 m grid for efficiency 585 

in computation and data handling, as well as to overcome limitations in the density of the source point cloud (four to five 586 

points per m2). Our data set might therefore not serve well for capturing some ecological relevant variation in terrain and 587 

vegetation structures at scales below the 10 m x 10 m grain size. We believe that our data set is nonetheless valuable in 588 

providing ecologically relevant information at the geographical extent of Denmark. 589 

 590 

While some of the variables in the presented data set such as elevation, slope and vegetation height are quite straightforward 591 

to interpret, the ecological meaning of other variables – for example those related to vegetation structure – may not be as 592 

obvious as they are influenced by multiple ecological and sensing methodology related factors. The amplitude, point count 593 

and point proportion variables are amongst those measures. For example, while the (non-calibrated) amplitude in the 594 

DHM/Point-cloud source data may generally relate to the reflectance properties of the surface that generated the return, the 595 

incident light angle, scattering and subsequent generation of echoes may result in several different surfaces generating similar 596 

amplitude signatures. Furthermore, the point counts may be influenced by a whole suite of factors, including incident light 597 

angle, scattering, density of flight strips covering a given cell, as well as canopy properties - most importantly the penetration 598 

ability. While standardising the point counts as proportions to the total counts may help to account for some of these factors, 599 

it is likely that notable uncertainties will remain even in the proportions especially for lower layers of the canopy. Nonetheless, 600 

we believe that these measures can be informative if appropriate care is taken in their interpretation. 601 

Two code developments could enhance the EcoDes-DK15 processing workflow in efficiency and transferability: using gdal 602 

Python bindings and switching to an open-source point cloud handler. First, for practical reasons we reverted to using gdal 603 

binaries rather than the Python bindings as we encountered issues with the gdal bindings provided by the OPALS shell on our 604 

computational server. Solving this issue and using the bindings instead of the binaries could reduce hard drive access time and 605 

overheads from launching subprocesses and therefore potentially speed up the raster manipulations in the workflow. However, 606 

as the point cloud processing takes the majority of time (we estimate 75-80%) we did not invest further resources to do so in 607 

the first development round. Secondly, while our Python source code is open source and freely available, OPALS itself requires 608 

the purchase of a software license, limiting the transferability of our code to projects which can afford the license. We did not 609 

explore alternatives to OPALS, but a redeveloped processing pipeline could make use of purely open source software 610 

benefiting from ongoing developments in the field, see for example the “Laserchicken” Python module (Meijer et al., 2020) 611 

and “lidR” R package (Roussel et al., 2020). 612 

 613 
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We believe that to realise the full potential of ALS derived data such as EcoDes-DK15 these data sets are ideally combined 614 

with other data sources including climate, field data and remote sensing observations. Climate data is especially relevant for 615 

addressing research on species-habitat relationships, distribution models and biodiversity studies and many studies have 616 

demonstrated the power of ALS observations in complementing climate data for such exercises (Coops et al., 2016; Zellweger 617 

et al., 2016). Like for other remote sensing products, field data is essential for validating inferences and putting biological 618 

meaning into ALS data (Coops et al., 2021) - this applies especially to the more complex structural vegetation measures in 619 

EcoDes-DK15. This could be achieved through field surveys combined with terrestrial and drone based ALS data, where the 620 

point density is much higher (e.g., Madsen et al., 2020). The potential benefits from fusing ALS data with other remote sensing 621 

products have been realised early on (Hyde et al., 2005) and demonstrated again since then (e.g., Coops et al., 2021; 622 

Montgomery et al., 2019; Manzanera et al., 2016). However, note that data fusion does not provide additional value in every 623 

use case (Xu et al., 2018; Ceballos et al., 2015; Boelman et al., 2016). We still believe that there is tremendous potential in 624 

combining EcoDes-DK15 with other types of remote sensing data. Fine-grain optical imagery could provide proxies for 625 

horizontal vegetation structure in grasslands where the vegetation is too small to be captured by the DHM/Point-cloud density 626 

(e.g., Malmstrom et al., 2017; Pazúr et al., 2021) and satellite derived time-series can provide unique temporal perspectives 627 

that describe parameters of seasonality (e.g., Boelman et al., 2016) and the historical context on disturbances and landcover 628 

change not captured in the single time-point ALS data (e.g., Senf et al., 2017; Pekel et al., 2016). 629 

6. Data availability 630 

The data is openly available under a Creative Commons by Attribution 4.0 license on Zenodo: 631 

https://doi.org/10.5281/zenodo.4756556 (Assmann et al., 2021) 632 

 633 

A small example subset “teaser” (5 MB) covering the 9 km x 9 km of the Husby Klit area (Fig. 6) is available on the GitHub 634 

code repository: 635 

https://github.com/jakobjassmann/ecodes-dk-lidar/blob/master/manuscript/figure_6/EcoDes-DK15_teaser.zip 636 

 637 

7. Code availability 638 

The source code for the processing pipeline is openly available under a simplified BSD license via GitHub:  639 

https://github.com/jakobjassmann/ecodes-dk-lidar  640 
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8. Conclusions 641 

Open data sets like EcoDes-DK15 will allow ecologists with limited computational resources and little expertise in handling 642 

LiDAR point clouds to use large-scale ALS data for their research. We see our efforts not only as a first step for providing 643 

ready-to-use descriptors of local vegetation and terrain features, but also for providing an example workflow and tools that 644 

allow for the replication of the processing. We have described and documented the measures of terrain and vegetation structure 645 

contained in the data set and pointed out possible applications and limitations. We are confident that EcoDes-DK15 provides 646 

a meaningful collection of ecological descriptors at a 10 x 10 m resolution for the extent of a whole country and we encourage 647 

the community to use our workflow and collection of codes as inspirations to process other large-scale ALS data sets in a 648 

similar manner. Ultimately, we hope the publication of this data set will help facilitate the uptake of ALS-derived information 649 

by ecological researchers and practitioners in Denmark and beyond. 650 
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