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Abstract 11 

Biodiversity studies could strongly benefit from three-dimensional data on ecosystem structure derived from contemporary 12 

remote sensing technologies, such as Light Detection and Ranging (LiDAR). Despite the increasing availability of such data 13 

at regional and national scales, the average ecologist has been limited in accessing them due to high requirements on computing 14 

power and remote sensing knowledge. We processed Denmark’s publicly available national Airborne Laser Scanning (ALS) 15 

data set acquired in 2014/15 together with the accompanying elevation model to compute 70 rasterized descriptors of interest 16 

for ecological studies. With a grain size of 10 m, these data products provide a snapshot of high-resolution measures including 17 

vegetation height, structure and density, as well as topographic descriptors including elevation, aspect, slope and wetness 18 

across more than forty thousand square kilometres covering almost all of Denmark’s terrestrial surface. The resulting data set 19 

is comparatively small (~94 GB, compressed 16.8 GB) and the raster data can be readily integrated into analytical workflows 20 

in software familiar to many ecologists (GIS software, R, Python). Source code and documentation for the processing workflow 21 

are openly available via a code repository, allowing for transfer to other ALS data sets, as well as modification or re-calculation 22 

of future instances of Denmark’s national ALS data set. We hope that our high-resolution ecological vegetation and terrain 23 

descriptors (EcoDes-DK15) will serve as an inspiration for the publication of further such data sets covering other countries 24 

and regions and that our rasterized data set will provide a baseline of the ecosystem structure for current and future studies of 25 

biodiversity, within Denmark and beyond. The full data set is available on Zenodo: https://doi.org/10.5281/zenodo.4756556 26 

and a 5 MB teaser subset can be found on the GitHub code repository: https://github.com/jakobjassmann/ecodes-dk-27 

lidar/blob/master/manuscript/figure_7/EcoDes-DK15_teaser.zip. 28 
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1 Introduction 30 

Over the last decades, airborne laser scanning (ALS) has become an established data source for providing fine-resolution 31 

measures of terrain and vegetation structure in ecological research (Moeslund et al., 2019; Guo et al., 2017; Zellweger et al., 32 

2016). Despite its informative potential and the increasing number of openly available ALS data sets with regional and national 33 

extents (Vo et al., 2016), the uptake of these data sets for large-scale ecological research and applications (such as monitoring 34 

and conservation) has remained comparatively low (Bakx et al., 2019). The low uptake is likely a consequence of the 35 

considerable challenges that remain in handling these very large data sets, which require specialist expertise and software, as 36 

well as substantial amounts of data storage and processing power (Meijer et al., 2020; Vo et al., 2016; Pfeifer et al., 2014). 37 

Here, we address this issue for Denmark by providing a compact set of ecologically relevant measures of terrain characteristics 38 

and vegetation structure derived as raster outputs from the country's national ALS data set with a grain size of 10 m x 10 m. 39 

The typical output from an ALS survey is a so-called point cloud that describes the physical structure of the surveyed area in 40 

three-dimensional space (Bakx et al., 2019; Vierling et al., 2008). In brief, short laser pulses are sent out from a Light Detection 41 

and Ranging (LiDAR) sensor mounted on an airplane (or drone) and reflected by surfaces such as bare ground, plants or 42 

buildings. The return timing of the reflected signal is measured and - with the help of information on the sensor’s orientation 43 

and position - the precise location of the reflecting surface is determined in geographic space (Vierling et al., 2008). If an 44 

object intercepting the light pulse is smaller than the beam’s footprint (e.g., a leaf or a branch of a tree), some of the light may 45 

travel on and trigger a reflection from a second surface (e.g., understory vegetation or the forest floor). A single light pulse 46 

might therefore generate two or even more returns, allowing - to some degree - for the penetration of forest canopies 47 

(Ackermann, 1999). Often, the raw signal is processed by the survey provider and the resulting data is delivered to the end 48 

user in the form of a point cloud of discrete returns, where each point is associated with information on geographic location, 49 

return strength (amplitude), return number, acquisition timing etc. (Vo et al., 2016). For ALS data sets with large extents - 50 

such as Denmark's nationwide data set “DHM/Punktsky” - outputs from many survey flights are co-registered and merged, 51 

resulting in very large point clouds with hundreds of billions of points and data volumes of multiple Terabytes 52 

(Geodatastyrelsen, 2015). For further information on ALS data acquisition, we recommend Vo et al. (2016), Vierling et al. 53 

(2008) and Wagner et al. (2006). 54 

Based on point position and neighbourhood context it is possible to separate ground and vegetation returns in ALS point 55 

clouds, allowing for the calculation of descriptors of terrain and vegetation structure. Filtering bare ground from the point 56 

cloud may be achieved with algorithms (Moudrý et al., 2020; Sithole and Vosselman, 2004), while more complex segmentation 57 

of the point clouds into object classes (such as vegetation, buildings, etc.) is done manually or with the help of supervised 58 

machine learning (see Lin et al., 2020 for a recent overview). Early applications for ALS were focussed on generating simple 59 

digital elevation models (DEMs), city and landscape planning, as well as forestry (Ackermann, 1999), but over the last decades 60 

applications have expanded into other fields, including amongst others the calculation of terrain and vegetation measures for 61 
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ecological research. Terrain derived measures of ecological interest include topographic slope, aspect (i.e., slope direction), 62 

solar irradiation, wetness etc. (e.g., Moeslund et al., 2019; Zellweger et al., 2016; Ceballos et al., 2015), and vegetation 63 

structural descriptors include vegetation density, canopy height diversity, canopy roughness and many more (e.g., Bakx et al., 64 

2019; Moeslund et al., 2019; Coops et al., 2016). It is important to note that point cloud characteristics may limit the type of 65 

measures that can be meaningfully derived from ALS data (Bakx et al., 2019). This applies especially to the point cloud 66 

density, which needs to be high enough to meaningfully resolve the structure of understory layers in forests (Bakx et al., 2019) 67 

or ecosystems with vegetation of low stature such as grasslands or tundra (Boelman et al., 2016). Nonetheless, even simpler 68 

ALS derived descriptors of terrain and vegetation structure can be of high value for ecological applications, as fieldwork-69 

derived alternatives are often too costly and difficult to collect over large extents (Vierling et al., 2008). 70 

ALS data has provided critical information for research on biodiversity and habitat characteristics over the recent years, and 71 

its importance in ecological research is likely to increase in the future. Numerous biodiversity studies have successfully 72 

deployed ALS to study organisms like plants (Mao et al., 2018; Lopatin et al., 2016; Zellweger et al., 2016; Ceballos et al., 73 

2015; Moeslund et al., 2013; Leutner et al., 2012), fungi (Peura et al., 2016; Thers et al., 2017), bryophytes, lichens (Moeslund 74 

et al., 2019), mammals (Tweedy et al., 2019; Froidevaux et al., 2016) and birds (see Bakx et al. (2019) for a comprehensive 75 

review) both in open landscapes and in forests. These studies have all emphasized the value of ALS for representing fine-scale 76 

(~ 10 m resolution) terrain or vegetation structural variation important to local biodiversity patterns. Furthermore, Valbuena 77 

et al. (2020) recently considered ALS data to be one of the key resources for deriving ecosystem morphological traits in the 78 

global assessment of Essential Biodiversity Variables (EBVs). Finding ways of making regional and nationwide ALS data 79 

more accessible to the average ecologist is therefore not only a critical priority for accelerating research on regional biodiversity 80 

patterns and species - habitat relationships, but also for the facilitation of global assessments such as those carried out by 81 

IPBES (2019) and alike. 82 

To open up opportunities for researchers and practitioners not familiar with ALS processing or without access to the required 83 

facilities, we present a new national ALS based data set for Denmark primarily aimed at ecological research with possible uses 84 

in other disciplines. With a grain size of 10 m, these ecological descriptor (EcoDes) rasters provide a snapshot of high-85 

resolution measures of vegetation height, structure and density, as well as topographic descriptors including elevation, aspect, 86 

slope and wetness for almost all of Denmark’s terrestrial surface between spring 2014 and summer 2015 (DK15). In this 87 

publication, we a) describe the source data and outline the processing workflow (Sect. 2.1-2.3), b) summarise the data set’s 88 

main characteristics (Sect. 3.1-3.2), c) describe each descriptor in detail and highlight its use and limitations (Sect. 3.3-3.4), d) 89 

provide guidance on data access and illustrate how the data could be used in an example of ecological landscape classification 90 

(Sect. 4). We finish by e) briefly discussing the general limitations of the data set and processing workflow, as well as providing 91 

perspectives on how the presented data can be complemented with other data sources (Sect. 5). We hope that ease of access 92 
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and thorough documentation of the EcoDes-DK15 data set will encourage uptake and facilitate the development of future 93 

versions of similar data sets in Denmark and beyond. 94 

2 Source data and processing workflow overview 95 

2.1 Denmark - geography and ecology 96 

Located in Northern Europe, Denmark (without Greenland and the Faroe Islands) has an approximate land area of 43 thousand 97 

square kilometres, comprising the large peninsula of Jutland and 443 named islands. The relatively flat (highest point is 171 98 

m above sea level) landscape predominantly consists of arable land and production forest with relatively small patches of 99 

natural or semi-natural areas such as heathlands, grasslands, fresh and salt meadows, bogs, dunes, lakes, streams and deciduous 100 

forests. 101 

2.2 ALS and elevation source data 102 

The Danish elevation model (DHM) is an openly available nationwide data set providing various products based on ALS data. 103 

Here, we used the DHM/Point-cloud (DHM/Punktsky), the classified georeferenced ALS point cloud product, and the 104 

DHM/Terrain (DHM/Terræn), the digital elevation model product derived from the point cloud. The DHM data set is currently 105 

maintained by the Agency for Data Supply and Efficiency, Denmark (https://sdfe.dk/) and, at the time of writing, can be 106 

downloaded from https://kortforsyningen.dk/ (continuously updated with new survey data) and https://datafordeler.dk/ 107 

(versioned). While almost all of Denmark’s terrestrial surface was covered by ALS surveys in 2014/15, currently none of the 108 

products provided by the agency contains data exclusively from these surveys. We therefore merged three different versions 109 

of the source data to obtain a dataset that reflects the state of the vegetation in 2014/15 as best as possible, by only containing 110 

vegetation data from 2014/15 and limited amounts from 2013 (Table 1, Sect. 3.6.3; see GitHub code repository for a detailed 111 

description of the merger and more information on the source data sets). The DHM/Point-cloud product is a collection of 1 x 112 

1 km tiles of three-dimensional point clouds with attributes such as position, intensity, point source ID, or classification. Point 113 

classification follows the ASPRS LAS 1.3 standard (ASPRS, 2011), including for example ground, vegetation, and buildings. 114 

The point density is on average 4-5 points per square meter with a horizontal and vertical accuracy of 0.15 and 0.05 metres, 115 

respectively. Additional information on the data sets can be found in Geodatastyrelsen (Geodatastyrelsen, 2015 - in Danish), 116 

Thers et al. (2017), Nord-Larsen et al (2017) and in the quality assessment report by Flatman et al. (2016). The DHM/Point-117 

cloud product is provided in LAZ-format and in the compound coordinate system for Denmark (ETRS89 / UTM zone 32N + 118 

DVR90 height - EPSG:7416). The DHM/Terrain product is a rasterized digital model of the terrain height above sea level in 119 

0.4 m resolution. This product is provided in a 32-bit GeoTiff format, using the same 1 km x 1 km titling convention and 120 

spatial reference system as the DHM/Point-cloud. 121 

 122 

https://sdfe.dk/
https://kortforsyningen.dk/
https://datafordeler.dk/
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Table 1: Overview of the data sources used for generating the EcoDes-DK15 data set. Three versions of the DHM/Pointcloud 123 

were merged to obtain a point cloud data set that contained no vegetation points scanned after 2015 and as little vegetation 124 

points before 2014 as possible. DHM/Terrain tiles were matched sources from the same data source as the corresponding point 125 

cloud tiles. A copy of the source data is archived on the internal long-term data storage at Aarhus University and is available 126 

on request. For further information see documentation on GitHub code repository and Sect. 3.6.3. 127 

Data source Years Used for Data provider 
Downloaded available 

from (download date) 

Number of 

tiles 

DHM/Pointcloud 

(DHM/Punktsky) 

2007-

2018 

Vegetation 

Descriptors 

Danish Agency for Data 

Supply and Efficiency 

https://kortforsyningen.dk/  

(24 April 2020) 
38671 

DHM/Pointcloud 

(DHM2015_punktsky) 

2007-

2018 

Vegetation 

Descriptors 

Danish Agency for Data 

Supply and Efficiency 

https://datafordeler.dk 

(13 September 2020) 
10955 

DHM/Pointcloud 

(GST_2014) 

2007-

2015 

Vegetation 

Descriptors 

Danish Agency for Data 

Supply and Efficiency 

https://kortforsyningen.dk/  

(unknown, before 2017) 
47  

DHM/Terrain 

(DHM/Terræn) 

2007-

2018 

Terrain 

Descriptors 

Danish Agency for Data 

Supply and Efficiency 

https://kortforsyningen.dk/  

(24 April 2020) 
38671 

DHM/Terrain 

(DHM2015_terraen) 

2007-

2018 

Terrain 

Descriptors 

Danish Agency for Data 

Supply and Efficiency 

https://datafordeler.dk 

(13 September 2020) 
10955 

DHM/Terrain 

(GST_2014) 

2007-

2015 

Terrain 

Descriptors 

Danish Agency for Data 

Supply and Efficiency 

https://kortforsyningen.dk/  

(unknown, before 2017) 
47  

 128 

The 1 km x 1 km tiling of the DHM/Terrain 2014/2015 and DHM/Point-cloud data sets 2014/2015 match in extent and 129 

geolocation. However, a small number of tiles (n = 30) in the DHM/Point-cloud data sets did not have corresponding tiles in 130 

the DHM/Terrain data sets, these were removed prior processing resulting in the total of 49673 tiles shown in Table 1.  131 

2.3 Processing 132 

We processed the source data using OPALS 2.3.2.0 (Pfeifer et al., 2014), Python 2.7 (Van Rossum and Drake Jr, 1995), pandas 133 

0.24.2 (Reback et al., 2019), SAGA GIS 2.3.2 (Conrad et al., 2015) from OSGgeo4W64 and GDAL 2.2.4 (GDAL/OGR 134 

contributors, 2018) also from OSgeo4W64. Some re-processing was required during the peer review process, for which we 135 

used GDAL 3.3.3 from Osgeo4W64 (GDAL/OGR contributors, 2021). The large number of tiles and descriptors to be 136 

calculated, required us to develop a robust processing pipeline, which we realised as a set of Python modules. The source code 137 

is openly available via a GitHub code repository (see Sect. 6). Processing was carried out on a Dell PowerEdge R740xd 138 

https://kortforsyningen.dk/
https://datafordeler.dk/
https://kortforsyningen.dk/
https://kortforsyningen.dk/
https://datafordeler.dk/
https://kortforsyningen.dk/
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computational server (Windows 2012 R2 64-bit Operating System, 2x Intel Xeon Platinum 8180 Processors and 1.536TB 139 

RAM). The processing of the whole data set took approximately 45 days to complete. 140 

 141 

2.3.1 Processing workflow 142 

To facilitate the processing of the large data set, we first generated a set of compact Python modules providing a programming 143 

interface that allows for the calculation of the individual descriptors outlined in Sect. 3. The individual routines were then 144 

integrated into a Python script mediating the processing workflow in parallel, while carrying out error handling, logging and 145 

progress tracking. The schematic of the processing workflow and the Python modules is outlined in Fig. 1. Detailed information 146 

is available on the GitHub repository, including instructions on how to set up the processing, documentation on the functions 147 

provided by the Python modules, as well as detailed intext commentary of the code. 148 

 149 

We generated the processing workflow so that it should be possible to adapt it to other point cloud data sets. However, the 150 

effort required in achieving this will vary depending on various features of the point cloud data set in question (such as tiling 151 

and tile naming conventions, input/output grain sizes etc.). A key pre-requisite is that the point cloud is pre-classified, ideally 152 

following the ASPRS LAS 1.1-1.4 standards (ASPRS, 2019). We have also provided a helper script that can be adapted to 153 

generate a raster DTM from the point cloud should this not be available, see the documentation on the GitHub repository for 154 

the details. Finally, the modular nature of the processing workflow allows for only a subset of the output descriptors to be 155 

calculated and the integration of additional processing routines for any new user-defined descriptors.   156 

 157 
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 158 

Figure 1: Diagram of the processing workflow, the dk_lidar Python module and helper scripts. The workflow requires two 159 

inputs: a pre-classified set of point cloud tiles and a paired set of digital terrain model (dtm) tiles. The process management is 160 

handled by the process_tiles.py script which facilitates processing of each tile pair (dtm and point cloud) in parallel and logs 161 

the progress. For each tile, process_tiles.py calls a specified set of extraction and processing functions from the dk_lidar 162 

modules. Point cloud extraction functions are specified in points.py and terrain model extraction functions are specified in 163 

dtm.py. The dk_lidar modules also contain two further files, common.py a script containing specifications of common functions 164 

used by the points.py and dtm.py, as well as settings.py which is used to set global processing options, specify file paths etc. 165 

Finally, two helper scripts are provided progress_monitor.py which facilitates progress monitoring and estimates the time 166 

remaining and debug.py a script for testing the workflow for a single tile. Together the Python scripts and modules allow to 167 

generate the ecological descriptor outputs from the two input data sets. Further documentation of the dk_lidar modules and 168 

workflow scripts can be found on the GitHub repository associated with this publication: 169 

https://github.com/jakobjassmann/ecodes-dk-lidar. 170 

https://github.com/jakobjassmann/ecodes-dk-lidar
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3 Data set description and known limitations 171 

3.1 Extent, projection, resolution and data format 172 

EcoDes-DK15 covers the majority of Denmark's land area, including the island of Bornholm (approximate extent: 54.56 °N 173 

to 57.75 °N, 8.07 °E to 15.20 °E). The data is projected in ETRS89 UTM 32 N based on the GRS80 spheroid (EPSG: 25832). 174 

The data set is available as GeoTIFFs with 10 m grain size via a data repository on Zenodo (see Sect. 6). For each descriptor 175 

the nation-wide data are split into 49673 raster tiles of 1 km x 1 km with a 10 m grain size based on 25-fold aggregations of 176 

the 0.4 m national grid of Denmark. A virtual raster mosaic (VRT) file is provided for each descriptor (except the 177 

point_source_counts, point_source_ids and point_source_proportion descriptors), and a file containing the tile footprint 178 

geometries can be used for geographical sub-setting of the data. We also provide masks for inland water and the sea. 179 

 180 

The final data set consists of just under 94 GB of data (compressed for download 16.8 GB). To reduce the size of the data set 181 

we converted numerical values from floating point precision to 16-bit integers where possible. In some cases, this required us 182 

to stretch the values by a set factor to maintain information content beyond the decimal point. The descriptor conversion factors 183 

are available as a csv file provided with the data set and in Table 2. Missing data (NoData) is denoted by a value of -9999 184 

throughout the data set. 185 

3.2 Overview and file naming convention 186 

An overview of the eighteen terrain and vegetation structure descriptors as well as the auxiliary data provided can be found in 187 

Table 2. Generally, the descriptor names in Table 2 reflect the prefix of the file name of a GeoTiff file within the data set. This 188 

prefix is followed by a suffix representing the unique identifier for each tile based on the UTM coordinates of the tile (see 189 

Sect. 3.4.3 for more detail). When working with the complete data set, tiles from the same descriptor are grouped within a 190 

folder using the same descriptor name as used for the file name prefix. For example, for the tile with the unique id “6239_446” 191 

the GeoTiff for the “dtm_10m” descriptor can be found in “dtm_10m/dtm_10m_6239_446.tif”. The exceptions are the point 192 

counts, vegetation proportions and point source information, please see the relevant sections below for more detail. 193 

 194 

Table 2: Brief overview of the eighteen main EcoDes-DK15 descriptors and descriptor groups, their ecological meaning, unit, 195 

format and conversion factor. See Sect. 3.4 for a detailed description of each descriptor. In addition to the 70 raster layers for 196 

the main descriptors, the data set contains nine layers of auxiliary information (see Sect. 3.7). Note: to obtain the correct unit, 197 

the descriptor value needs to be divided by the conversion factor. 198 

 199 

Descriptor(s) Ecological meaning Unit Format 
Conversion 

factor 

Number of 

layers 

dtm_10m elevation m 16-bit integer 100 1 
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aspect topographic aspect degrees 16-bit integer 10 1 

slope topographic slope degrees 16-bit integer 10 1 

heat_load_index proxy of radiation and wetness unitless 16-bit integer 10000 1 

solar_radiation solar radiation MJ x 100-1 m-2 x yr-1 32-bit integer 1 1 

openness_mean topographic position degrees 16-bit integer 1 1 

openness_difference presence of linear landscape 

features 

degrees 16-bit integer 1 1 

twi topographic wetness unitless 16-bit integer 1000 1 

      

amplitude_mean complex** undefined 32-bit float 1 1 

amplitude_sd complex** undefined 32-bit float 1 1 

canopy_height vegetation height m 16-bit integer 100 1 

normalized_z_mean average structural height  

(incl. vegetation and buildings) 

m 16-bit integer 100 1 

normalized_z_sd variation in structural height  

(incl. vegetation and buildings) 

m 16-bit integer 100 1 

point_counts* number of returns in ground, 

water, building and vegetation 

point classes; total return count 

and vegetation return counts in 

height bins  

count 16-bit integer 1 30 

vegetation_proportion* proportion of vegetation 

returns in height bins 

proportion 16-bit integer 10000 24 

vegetation_density ratio of vegetation returns to 

total returns 

proportion 16-bit integer 10000 1 

canopy_openness ratio of ground and water 

returns to total returns 

proportion 16-bit integer 10000 1 

building_proportion ratio of building returns to 

total returns 

 16-bit integer 10000 1 

      

point_source_info* point source / flight strip 

information 

varied, see 

description 

varied, see 

description 

varied, see 

description 

4 

masks inland water and sea mask binary 16-bit integer 1 2 

date_stamp* min, max and mode of GPS 
dates for all vegetation points  

date as 
YYYYMMDD*** 

32-bit integer 1 3 

 200 

* Descriptor group containing multiple individual descriptors, see intext description for detail. 201 
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** The amplitude descriptors are difficult to interpret, but can serve as useful indicators for vegetation classification and 202 

biodiversity studies. Please see intext description for more detail. 203 

*** YYYY = year in four digits, MM = month in two digits, DD = day in two digits.  204 

3.3 Completeness of the data set 205 

The processing of the data set was almost completely successful. Processing failed on average for only 18 out of the 49673 206 

tiles per descriptor with a maximum of 65 tiles failing for the canoy_height, normalized_z_mean and normalized_z_sd 207 

descriptors. The majority of these tiles were located on the fringes of the data set, including sand spits, sandbanks etc, we 208 

therefore did not attempt re-processing of those tiles. Instead, we generated NoData rasters for all missing descriptor - tile 209 

combinations (i.e. we assigned -9999 to all cells in those tiles). We provide a text file listing the affected “NoData” tiles in the 210 

folder of each descriptor (the file is named empty_tiles_XXX.txt, where XXX is the descriptor name). 211 

3.4 Elevation-model derived descriptors 212 

The following descriptors were solely derived from the 0.4 m digital elevation model (DHM/Terrain). Visualisations of these 213 

descriptors for an example tile in the Mols Bjerge area are shown in Fig. 2. 214 

 215 

216 

Figure 2: Illustration of the terrain model derived descriptors for a 1 km x 1 km tile in the Mols Bjerge area (tile id: 6230_595). 217 

An orthophoto and the tile location relative to Denmark are shown in (a). The terrain model (dtm_10m) is illustrated in (b). 218 

The terrain derived descriptors comprise of: c) the topographic aspect, d) the topographic slope, e) the heat load index following 219 
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Kuehne et al. f) the estimated incident solar radiation, g) the landscape openness mean, h) the landscape openness difference 220 

in the eight cardinal directions and i) the topographic wetness index (TWI) based on Kopecký et al. (2020). For visualisation 221 

purposes, we amplified the altitude above sea-level by a factor of two in the 3D visualisations and divided the solar radiation 222 

values by 105. The 3D raster visualisations were generated using the rayshader v0.19.2 package in R (Morgan-Wall, 2020). 223 

Orthophoto provided by the Danish Agency for Data Supply and Efficiency (https://sdfe.dk/hent-data/fotos-og-geodanmark-224 

data/). 225 

3.4.1 Elevation (dtm_10m) 226 

We aggregated the 0.4 m DEM by mean to match the 10 m x 10 m national grid of the remainder of the data set. We used 227 

gdalwarp to carry out the aggregations. Values represent the elevation above sea level in metres (DVR90, EPSG: 5799) 228 

multiplied by a factor of 100, rounded to the nearest integer and converted to 16-bit integer. 229 

3.4.2 Aspect (aspect) 230 

The topographic aspect describes the orientation of a slope in the terrain and may, amongst other things, be related to plant  231 

growth through light and moisture availability. We calculated the aspect in degrees, with 0° indicating North, 90° East, 180° 232 

South and 270° West. Values represent the aspect derived from a 10 m aggregate of the elevation model (aggregated by mean 233 

with 32-bit floating point precision). Calculations were carried out using gdaldem binaries and the “aspect” option, which by 234 

default uses Horn’s method to calculate the aspect (Horn, 1981). To avoid edge effects, all calculations were done on a mosaic 235 

that included the focal tile and all available directly neighbouring tiles (maximum eight). The mosaic was cropped back to the 236 

extent of the focal tile upon completion of the calculations. We then converted the value for each cell from radian to degrees, 237 

multiplied it by a factor of 10, rounded to the nearest integer and stored the results as a 16-bit integer. Finally, we assigned a 238 

value of -10 (-1°) to all cells where the slope was 0° (flat). Limitations in the aspect arise in relation to edge effects that occur 239 

where a neighbourhood mosaic is incomplete for a focal tile (i.e., less than eight neighbouring tiles), such as for tiles along the 240 

coastline or at the edge of the covered extent. For those tiles, no aspect can be derived for the rows or columns at the edge of 241 

the mosaic. The cells in those rows and columns have no neighbouring cells and were assigned the NoData value (-9999). 242 

Please also note that we calculated the aspect descriptor from the 10 m aggregate of the DTM/Terrain data set rather than 243 

deriving it from the 0.4 m original resolution rasters and then aggregating it. The latter approach could represent the 244 

aspect/slope at the original resolution better (Grohmann, 2015; Moudrý et al., 2019), but would create inconsistencies within 245 

how the remaining DTM/Terrain descriptors are calculated in this dataset. 246 

 247 

3.4.3 Slope (slope) 248 

The topographic slope describes the steepness of the terrain and amongst other things may be related to moisture availability, 249 

exposure and erosion. We derived the topographic slope in degrees with a 10 m grain size from a mean aggregate of the 250 

https://sdfe.dk/hent-data/fotos-og-geodanmark-data/
https://sdfe.dk/hent-data/fotos-og-geodanmark-data/
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elevation model (32-bit floating point precision) using the gdaldem binaries with the “slope” option, which by default use 251 

Horn’s method to calculate the slope (Horn, 1981). To avoid edge effects, we carried out the calculations on a mosaic including 252 

the focal tile and all available directly neighbouring tiles (maximum eight). The mosaic was cropped back to the extent of the 253 

focal tile upon completion of the calculations. The value for each cell was converted from radian to degrees, multiplied by a 254 

factor of 10, rounded to the nearest integer and stored as a 16-bit integer. Limitations in the slope arise in relation to edge 255 

effects that occur where a neighbourhood mosaic is incomplete for a focal tile (i.e., less than eight neighbouring tiles), such as 256 

for tiles along the coastline or at the edge of the covered extent. For those tiles, no slope can be derived for the rows or columns 257 

at the edge of the mosaic. These cells in those rows and columns have no neighbouring cells and gdaldem assigns the NoData 258 

value (-9999) to these cells. Please also note that we calculated the slope descriptor from the 10 m aggregate of the 259 

DTM/Terrain data set rather than deriving it from the 0.4 m original resolution rasters and then aggregating it. The latter 260 

approach could represent the aspect/slope at the original resolution better (Grohmann, 2015; Moudrý et al., 2019), but would 261 

create inconsistencies within how the remaining DTM/Terrain descriptors are calculated in this dataset.   262 

3.4.4 Landscape openness mean (openness_mean) 263 

Landscape openness is a landform descriptor that indicates whether a cell is located in a depression or elevation of the 264 

landscape. We calculate the landscape openness following Yokoyama et al. (2002) using the OPALS implemented algorithms. 265 

We used a mean aggregate of the elevation model with 10 m grain size and 32-bit floating point precision, and derived the 266 

mean landscape openness for a cell as the mean of the landscape openness in all eight cardinal directions with a search radius 267 

of 150 m. We chose to base this descriptor on the aggregated 10 m elevation model and a 150 m search radius, as we think 268 

that these are best suited to describe the landscape scale variation in the landforms of Denmark. Danish landscapes are 269 

characterised by gently undulating terrain, valleys forged by small to medium sized rivers and dune systems along the 270 

coastlines. First, we generated a mosaic including the focal tile and all available tiles in the direct neighbourhood (max. eight 271 

neighbouring tiles) to reduce edge effects in subsequent calculations. The mean of the positive openness for all eight cardinal 272 

directions with search radius of 150 m was then derived for all cells in the mosaic using the OPALS Openness module (options: 273 

feature = 'positive', kernelSize = 15 and selMode = 0). Next, the mean openness per cell was converted from radians to degrees, 274 

rounded to the nearest integer and stored as a 16-bit integer. For incomplete neighbourhood mosaics (i.e. containing less than 275 

eight neighbouring tiles) we then masked out cells within the first 150 m of all edges where a neighbourhood tile was missing. 276 

Finally, the output was cropped back to the extent of the focal tile. As a consequence of the edge effect related masking, the 277 

focal tiles on the fringes of the data set, such as those on coastlines or at the edge of the coverage area, have no data available 278 

for the first 150 m. The corresponding cells for the affected areas are set to the NoData value -9999. 279 

3.4.5 Landscape openness difference (openness_difference) 280 

In addition to the mean of the landscape openness, we also derived a landscape openness difference measure. This difference 281 

measure is an indicator of whether a cell is part of a linear feature in the landscape that runs in one cardinal direction, such as 282 
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a ridge or valley, therefore providing additional information to the landscape openness_mean descriptor. We calculated the 283 

landscape openness difference based on the 10 m mean aggregate of the elevation model (32-bit floating point precision) and 284 

with a search radius of 50 m. We chose these parameters as we consider them best suited to capture the relatively narrow 285 

valleys and ridgetops common in the Danish landscape. First, we generated a mosaic including the focal tile and all available 286 

tiles in the direct neighbourhood (max. eight neighbouring tiles) to reduce edge effects in subsequent calculations. We then 287 

calculated the minimum and maximum of the positive landscape openness from all eight cardinal directions for all cells in the 288 

mosaic using the OPALS Openness module with a search radius of 50 m (feature = ‘positive’, kernelSize = 5 , selMode = 1 289 

for minimum and selMode = 2 for maximum). Next, we converted the minimum and maximum values from radian to degrees 290 

and calculated the difference between the maximum and minimum value. We rounded the result to the nearest full degree. For 291 

the cases where the neighbourhood mosaic was incomplete, i.e., containing less than eight neighbouring tiles, we masked out 292 

all cells within the first 50 m of all edges with a missing neighbourhood tile. The final output mosaic was then cropped to the 293 

extent of the focal tile and stored as a 16-bit integer GeoTIFF. As a consequence of the edge effect related masking, focal tiles 294 

on the edges of the data set, such as those on coastlines or at the edge of the coverage area, have no data available for the first 295 

50 m. 296 

3.4.6 Solar Radiation (solar_radiation) 297 

Incident solar radiation is a key parameter for plant growth as it represents the electromagnetic energy available to plants 298 

required for photosynthesis. However, in the comparatively flat country of Denmark, shading by other vegetation likely exerts 299 

a larger influence on photosynthetic activity than terrain related shading. Here, the impact of incident solar radiation on the 300 

local climate likely plays a more important role for determining plant growth due to its influence on drought/water dynamics 301 

(Moeslund et al., 2019). We estimated the amount of incident solar radiation received per cell (100 m2) per year from the slope 302 

and aspect computed as described above. Calculations were implemented using gdal_calc, following equation 3 specified in 303 

McCune and Keon (2002): 304 

 305 

𝑠𝑜𝑙𝑎𝑟_𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =  10^6 × 𝑒0.339+0.808 ×cos(𝐿) ×cos(𝑆)−0.196 ×sin(𝐿)×sin(𝑆)−0.482 ×𝑐𝑜𝑠(180 −|(180 − 𝐴)|) × 𝑠𝑖𝑛(𝑆) (1) 

 306 

where L is the centre latitude of the cell in degrees, S is the slope of the cell in degrees and A is the aspect of the cell in degrees. 307 

The resulting estimate is given in: MJ x 100-1 m-2 x yr-1 (McCune and Keon, 2002). Slope and aspect for each 10 m x 10 m 308 

grid cell were sourced from the slope and aspect rasters. We saved the result as 32-bit integers. Due to propagation from the 309 

calculation of slope descriptor, no solar radiation values can be calculated for cells found right on the edge of the data set, for 310 

example in tiles situated along the coastline or at the edge of the sampling extent. 311 
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3.4.7 Heat Load Index (heat_load_index) 312 

The heat load index (McCune and Keon, 2002) was originally developed as an indicator for temperature based solely on aspect, 313 

but this characteristic is probably better captured in our solar radiation descriptor (see above) that was developed to improve 314 

shortcomings in the heat load index (McCune and Keon, 2002). However, in a previous study (Moeslund et al., 2019) we show 315 

that - in Denmark - the index was moderately correlated with soil moisture, and can therefore serve as a useful indicator of the 316 

amount of moisture available to plants. We calculated the heat load index based on the aspect rasters (described above) 317 

following the equation specified in McCune and Keon (2002) using gdal_calc: 318 

 319 

ℎ𝑒𝑎𝑡_𝑙𝑜𝑎𝑑_𝑖𝑛𝑑𝑒𝑥 =  
(1 −  𝑐𝑜𝑠(𝐴 −  45))

2
 

 
(2) 

 320 

where A is the aspect in degrees. We stretched the result by a factor of 10000, rounded to the nearest integer and stored it as a 321 

16-bit integer. As the heat_load_index is not meaningfully defined for flat cells (slope = 0° / aspect = -1°), we set the value of 322 

those cells to NoData (-9999). Finally, for cells that are located on the outermost edges of the data set the heat_load_index is 323 

not defined due to propagation of the NoData value assigned to the aspect in those cells. 324 

3.4.8 Topographic wetness index (twi) 325 

The topographic wetness index (TWI) provides a proxy measure of soil moisture or wetness based on the hydrological flow 326 

modelled through a digital terrain model. Here, we derived the TWI following the method recommended by Kopecký et al. 327 

(2020). We based our calculations on the aggregated 10 m elevation model (dtm_10m, 16-bit integer) and used a 328 

neighbourhood mosaic (max. 8 neighbours) for each focal tile to derive the TWI. The exact procedure is detailed in the next 329 

paragraph. As such the index values calculated by us only consider a catchment the size of one tile and all its neighbours (for 330 

non-edge tiles this is a 3 km x 3 km catchment, for edge tiles it is smaller depending on the completeness of the neighbourhood 331 

mosaic). We then cropped the resulting output back to the extent of the focal tile, stretched the TWI values by a factor of 1000, 332 

rounded to the next full integer and stored the results as a 16-bit integer. 333 

We calculated the TWI using SAGA GIS v. 7.8.2 binaries. First, we sink-filled the neighbourhood mosaic of the terrain model 334 

using the ta_preprocessor 5 module and the option “MINSLOPE 0.01” (Wang and Liu, 2006). Second, we calculated the flow 335 

accumulation based on the sink-filled neighbourhood mosaic of the terrain model (from step one) using the ta_hydrology 0 336 

module with options “METHOD 4” and “CONVERGENCE 1.0” (Freeman, 1991; Quinn et al., 1991). Third, we derived the 337 

flow width and specific catchment area based on the sink-filled neighbourhood mosaic of the terrain model (from step one) 338 

and the flow accumulation (from step two) using the module ta_hydrology 19 (Gruber and Peckahm, 2008; Quinn et al., 1991). 339 

Fourth, we calculated the slope based on the sink-filled neighbourhood mosaic of the terrain model (from step one) using the 340 

ta_morphometry 0 module with option “METHOD 7” (Haralick, 1983). Finally, we derived the TWI based on the specific 341 
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catchment area (from step three) and slope (from step four) using the module ta_hydrology 20 (Beven and Kirkby, 1979; 342 

Böhner and Selige, 2006; Moore et al., 1991). For detailed descriptions of the modules used, please refer to the SAGA GIS 343 

documentation (SAGA-GIS Tool Library Documentation v7.8.2, 2021). 344 

The TWI descriptor calculated for EcoDes-DK15 is subject to two main limitations: edge effects and small catchment size. 345 

Tiles with incomplete neighbourhoods (i.e., less than 8 direct neighbours are available) will suffer from edge effects in the 346 

direct vicinity of the relevant border and overall due to a reduced catchment size. Furthermore, even in the ideal case of the 347 

neighbourhood being complete, for most cells flow accumulation is therefore only calculated for the direct neighbourhood of 348 

a focal tile, comprising a 3 km x 3 km catchment area. While we hypothesize that, due to the relatively low variation in 349 

topography in Denmark, the TWI based on this comparably small catchment area will serve as a reasonable proxy for terrain-350 

based wetness in most cases, it may be less reliable in areas with exceptionally high variation in topography or for lakes and 351 

rivers with large catchments. In addition, we would like to point the reader towards the general limitations of the TWI as a 352 

proxy for soil moisture or terrain wetness as for example discussed by Kopecký et al. (2020). These general limitations should 353 

be taken into account when interpreting the TWI values provided in EcoDes-DK15. 354 

3.5 Point-cloud derived descriptors 355 

The DHM/Point-cloud point cloud was pre-classified into eleven point categories (Geodatastyrelsen, 2015) following the 356 

ASPRS LAS 1.3 standard (ASPRS, 2011). For the EcoDes-DK15 data set, we restricted the analysis to six of these classes, 357 

including ground points (“Terræn”) - class 2, water points (“Vand”) - class 9,  building points (“Bygninger“) - class 6, as well 358 

as low (“lav”), medium (“mellemhøj”) and high vegetation (“høj vegetation”) - classes 3, 4 and 5, respectively. We grouped 359 

the three vegetation classes into one single vegetation class and, instead of the pre-assigned height categories, considered a 360 

more detailed set of height bins (see point count and proportion descriptions below). The overall classification accuracy of the 361 

point cloud was assessed by the Danish authorities (Flatman et al., 2016), but limited information is available for the accuracy 362 

in each class. Thus, some degree of noise should be assumed across all classes. The tall vegetation category (class 6) was used 363 

as a catch-all class if classification failed, as often the case for very tall buildings and structures (Flatman et al., 2016). To 364 

reduce the noise related to such structures, we removed vegetation points with a normalised height exceeding 50 m above 365 

ground when calculating the vegetation point counts. We included all returns, i.e., first returns and echoes, in our analysis. 366 

All point cloud processing was carried out using OPALS and the OPALS Python bindings. As none of the point cloud derived 367 

descriptors required mosaicking to prevent edge-effects, we processed all point cloud descriptors on the focal tile only. After 368 

the initial ingestion of the LAZ-file for a tile into the OPALS data manager format (odm), we used the OpalsAddInfo module 369 

to add a normalised height (z) attribute to the points. For this attribute we subtracted the height of the ground derived from the 370 

corresponding DHM/Terrain raster (0.4 m grid size) from the height above sea level of each point. Figure 3 illustrates how the 371 
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point cloud data translates to some of the descriptor outputs for four exemplary 10 m x 10 m cells from the data set, and an 372 

overview of the point cloud derived descriptors for a 1 km x 1 km tile in Vejle Fjord in central Jutland is provided in Fig. 4. 373 

 374 

Figure 3: Point cloud examples for four 10 m x 10 m cells and a selection of the associated EcoDes-DK15 descriptors derived 375 

from the point clouds, illustrating the ecological meaning and some of the limitations of the EcoDes-DK15 data set. The 10 m 376 

x 10 m cells represent the following environments: a) an agricultural field, b) the edge of a forest / parkland pond with low 377 

vegetation, c) a young plantation of dense coniferous trees, and d) old growth mixed-woodland. The EcoDes-DK15 descriptors 378 
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shown include (from the top) the total point counts for each cell in the three main EcoDes-DK15 categories: 1) the number of 379 

returns classified as ground, 2) the number of returns classified as water and 3) the number of returns classified as vegetation. 380 

In addition, the relative proportion of vegetation points per predefined height bin is illustrated below the total vegetation point 381 

count. Finally, the bottom three panels show the estimated canopy height (altitude above ground for the 95%-percentile of all 382 

vegetation returns), the normalized z standard deviation (variation in height above ground for all return classes), and the mean 383 

return amplitude for each cell. Please note how the classification of the point cloud classification does not separate between 384 

very low growing vegetation (e.g., grass) and ground points in the agricultural field shown in a), and how returns from water 385 

are only registered in shallow areas close to the water bodies edge, such as exemplified by the forest pond in b). Lastly, we 386 

would like to point the reader to the general limitations of ALS in penetrating forest canopies such as those shown in c) and 387 

d). While the upper layers of the canopies are well resolved in both cases, the laser scanning struggles to capture some aspects 388 

of the lower layers; the ground returns were frequently blocked by the thick canopy in c) and the laser fails to meaningfully 389 

characterise understory vegetation and stems in d). 390 

 391 
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 392 

Figure 4: Illustration of the point cloud derived descriptors for a 1 km x 1 km tile along Vejle Fjord (tile id: 6171_541). An 393 

orthophoto and the tile location relative to Denmark are shown in (a). The point cloud derived descriptors comprise of: c) the 394 

mean return amplitude, d) the standard deviation in the return amplitude, e) the canopy height (vegetation returns only), f) the 395 

mean of the normalized height above ground (all returns), g) the mean of the normalized height (all returns), h) the ground 396 

point count, i) the water point count, j) the building point count, k) the total point count, l) the number of point sources (flight 397 

strips), m) the canopy openness, n) the vegetation density and o) the building proportion. Note the influence of point source 398 

overlap illustrated in l) on some of the descriptors, for example: g) ground point count, i) vegetation point count and k) total 399 

point count (see Sect. 3.5.5 for detail). For visualisation purposes, we amplified the altitude above sea-level by a factor of two 400 

in the 3D visualisations and divided the point counts by 1000. The 3D raster visualisations were generated using the rayshader 401 
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v0.19.2 package in R (Morgan-Wall, 2020). Orthophotograph provided by the Danish Agency for Data Supply and Efficiency 402 

(https://sdfe.dk/hent-data/fotos-og-geodanmark-data/). 403 

3.5.1 Amplitude – mean and standard deviation (amplitude_mean and amplitude_sd) 404 

The amplitude attribute of a point in the DHM/Point-cloud is the actual amplitude of the return echoes, i.e., it describes the 405 

strength of the LiDAR return signals detected by the sensor. The descriptor is difficult to interpret in terms of its ecological 406 

meaning. Nonetheless, we believe that it is still useful for vegetation classifications, biodiversity analysis and other applications 407 

that perform well with proxy data. We calculate the arithmetic mean and standard deviation of the amplitude for all points 408 

within a 10 m x 10 m cell. Here, ‘all points’ refers to all points classified as ground, water, building, and vegetation points. 409 

Calculations were carried using the OPALS Cell module and results were stored as 32-bit floats. The amplitude attributes in 410 

the DHM/Point-cloud point clouds are not directly comparable when points originate from different point sources (e.g., flight 411 

strips), as the amplitude has not been calibrated and hence is sensitive to differences in sensor, sensor configuration and signal 412 

processing. Calculating summary metrics such as mean and standard deviation for a 10 m x 10 m cell where points from 413 

different point sources are present introduces additional complexities. In some cases, a 10 m cell might contain points from up 414 

to four different sources. We therefore recommend using the two amplitude descriptors with care, and - if possible - in 415 

conjunction with information on the point source ids contained in the point_source_info descriptors described below. 416 

3.5.3 Canopy height (canopy_height) 417 

Canopy height is a key parameter of vegetation structure related to biomass and ecosystem functioning. We derived the canopy 418 

height in metres as the 95th-percentile of the normalised height above ground of all vegetation points within each 10 m x 10 419 

m cell using the OPALS Cell module. The resulting canopy heights were multiplied by a factor of 100, rounded to the nearest 420 

integer and stored as 16-bit integers. In cases where there were no vegetation points in any given cell, we set the canopy height 421 

value of the cell to zero metres. Please note that the canopy height is therefore also set as zero metres even if there are no points 422 

present in the cell at all (such as ground or water points). Furthermore, our algorithm calculates the canopy height even if there 423 

is only a small amount of vegetation points in a cell. In rare cases, this might lead to erroneous canopy-height readings if 424 

vegetation is found on artificial structures or points have been mis-classified. For example: A tall communications tower can 425 

be found just south of Aarhus and returns from the tower were miss-classified as vegetation. The resulting canopy height for 426 

this cell is calculated as > 100 m above ground, which would not make sense if interpreted as a height of the vegetation above 427 

ground. For such cases, the building proportion descriptor may be used to separate cells with artificial structure from those 428 

with vegetation only. See also the “normalized_z” descriptor below for a closely related measure. 429 

3.5.4 Normalised height - mean and standard deviation (normalized_z_mean and normalized_z_sd) 430 

Similar to the canopy height descriptor, the normalised height describes the structure properties of the point cloud above 431 

ground. The key difference between the two descriptors is that for the normalised height we also included non-vegetation 432 

https://sdfe.dk/hent-data/fotos-og-geodanmark-data/
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points (buildings & ground) and derived the summary statistic as the mean rather than the 95%-quantile. For the normalised 433 

height descriptor, we also provide a measure of variation in form of the standard deviation. Specifically, we calculated the 434 

normalised mean and the standard deviation of the mean height above ground (normalised z attribute) for all points in each 10 435 

m x 10 m grid cell using the OPALS Cell module. The results were multiplied by 100, rounded to the nearest integer and stored 436 

as 16-bit integers. We used the normalised z attribute generated during the ingestion of the point cloud reflecting the height of 437 

a point relative to the ground level determined by the DHM/Terrain raster. Here, all points refer to all points belonging either 438 

to the ground, water, building or vegetation class. By definition the normalised height mean will be highly correlated with the 439 

“canopy_height” descriptor for cells where mainly vegetation points are present. We kept the American spelling of the 440 

descriptor name for legacy reasons with previous versions of the data set. 441 

3.5.5 Point counts (xxx_point_count_xxx) 442 

The point count descriptors are intermediate descriptors used to generate the proportion descriptors described below. However, 443 

they can also be used to calculate tailored proportion descriptors relevant to addressing a specific ecological objective (see 444 

use-case example in Sect. 4.2). For EcoDes-DK15 we derived thirty point count descriptors for each 10 m x 10 m cell based 445 

on filtering of the pre-defined point classifications and separation by height above ground (normalised z) using the OPALS 446 

Cell module. All point counts were stored as 16-bit integers. These thirty descriptors contain six general point counts, including 447 

ground, water, vegetation, building and total point counts (Table 3), as well as twenty-four vegetation point counts separated 448 

in height bins (Table 4). Note that the number of returns within a 10 m cell is influenced by a) the number of point sources 449 

present in the cell, b) the relative position and distance of a cell to the point source when the data was collected (i.e., to the 450 

flight path), and c) by the point source themselves (i.e., differences between the LiDAR sensors deployed). The absolute counts 451 

are therefore not directly comparable between cells and need to be standardised first, for example by division of the total 452 

number of point counts as done for the point proportion descriptors derived by us. 453 

 454 

Table 3: General point count descriptors, as well as the height ranges and point classes included in each descriptor. 455 

 456 

Descriptor name Height range Point classes 

ground_point_count_-01m-01m -1 m to 1 m ground points (class 2) 

water_point_count_-01m-01m -1 m to 1 m water points (class 9) 

ground_and_water_point_count_-01m-01m -1 m to 1 m ground and water points (classes 2,9) 

vegetation_point_count_00m-50m 0 m to 50 m vegetation points (classes 3,4,5) 

building_point_count_-01m-50m -1 m to 50 m building points (class 6) 

total_point_count_-01m-50m -1 m to 50 m 
ground, water, vegetation and building points 

(classes 2,3,4,5,6,9) 

 457 
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Table 4: Vegetation point count descriptors divided into twenty-four height bins. All vegetation point counts include the point 458 

classes 3,4 and 5. 459 

 460 

Descriptor name Height range 

vegetation_point_count_00.0m-00.5m 0.0 m to 0.5 m 

vegetation_point_count_00.5m-01.0m 0.5 m to 1.0 m 

vegetation_point_count_01.0m-01.5m 1.0 m to 1.5 m 

vegetation_point_count_01.5m-02.0m 1.5 m to 2.0 m 

vegetation_point_count_02m-03m 2 m to 3 m 

vegetation_point_count_03m-04m 3 m to 4 m 

vegetation_point_count_04m-05m 4 m to 5 m 

vegetation_point_count_05m-06m 5 m to 6 m 

vegetation_point_count_06m-07m 6 m to 7 m 

vegetation_point_count_07m-08m 7 m to 8 m 

vegetation_point_count_08m-09m 8 m to 9 m 

vegetation_point_count_09m-10m 9 m to 10 m 

vegetation_point_count_10m-11m 10 m to 11 m 

vegetation_point_count_11m-12m 11 m to 12 m 

vegetation_point_count_12m-13m 12 m to 13 m 

vegetation_point_count_13m-14m 13 m to 14 m 

vegetation_point_count_14m-15m 14 m to 14 m 

vegetation_point_count_15m-16m 15 m to 16 m 

vegetation_point_count_16m-17m 16 m to 17 m 

vegetation_point_count_17m-18m 17 m to 18 m 

vegetation_point_count_18m-19m 18 m to 19 m 

vegetation_point_count_19m-20m 19 m to 20 m 

vegetation_point_count_20m-25m 20 m to 25 m 

vegetation_point_count_25m-50m 25 m to 50 m 
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3.5.6 Vegetation proportions by height bin (vegetation_proportion_xxx) 461 

The vegetation proportions by height bin are amongst the key parameters in the EcoDes-DK15 data set describing vegetation 462 

structure as they provide an indication of how the vegetation is distributed vertically within each cell of the raster. We 463 

calculated the proportions by dividing the vegetation count for each height bin (Table 4) by the total point count 464 

(total_point_count_-01m-50m) within a given 10 m x 10 m cell. Resulting proportions were multiplied by a factor of 10000, 465 

rounded to the nearest integer and converted to 16-bit integers. All calculations were done using gdal_calc based on the 466 

respective point count rasters (Sect. 3.3.5). The naming convention of the vegetation proportion descriptors 467 

“vegetation_proportion_xxx” follows the same convention as the vegetation point count descriptors (Table 4), whereby the 468 

suffix “xxx” is replaced with the respective height bin. Please note that height bins are spaced at 0.5 m intervals below 2 m 469 

and at 1 m intervals between 2 m and 20 m. Furthermore, the range above 20 m is split into only 2 bins: 20 m to 25 m and 25 470 

m to 50 m. 471 

Given the properties of the DHM/Point-cloud we recommend being cautious when interpreting differences in the lower height 472 

bins. It is likely that the inaccuracies in the point cloud complicate clear separation between points less than half a metre apart. 473 

Furthermore, note that the proportions in the 0 m - 0.5 m bin are likely biased towards an underrepresentation of the vegetation 474 

proportion in this height bin, due to challenges in separating vegetation from ground points during the pre-classification. Lastly, 475 

keep in mind that dense canopy layers in the upper story of the canopy will reduce penetration of the light beam to the lower 476 

canopy layers. This may result in few returns in the lower layers (for example Fig 3 d) even though perhaps vegetation is 477 

present in those layers. 478 

3.5.7 Vegetation density or total vegetation proportion (vegetation_density) 479 

Vegetation density is an important component of ecosystem structure. Here, we calculated the vegetation density as the ratio 480 

between the vegetation returns across all vertical height bins (vegetation_point_count_00m-50m) and the total point count 481 

(total_point_count_-01m-50m). Calculations were done using gdal_calc based on the two point count rasters (Sect. 3.3.5). 482 

Results were multiplied by 10000, rounded to the nearest integer and stored as 16-bit integers. In addition to actual difference 483 

between vegetation density in a cell, the vegetation_density descriptor is also influenced by the canopy properties, e.g. a dense 484 

upper layer will prevent penetration of the light beam to lower layers or even the ground, and the points sources within a cell, 485 

e.g. multiple sources from different viewing angles provide a more complete estimate of the vegetation density. These 486 

additional influences are important to keep in mind when interpreting the vegetation_density descriptor. 487 

3.5.7 Canopy openness, or ground and water proportion (canopy_openness) 488 

Canopy openness is an important ecological descriptor particularly of forest canopies, as it describes the amount of light 489 

penetrating through to the levels of the canopy. To some degree the canopy openness serves as the inverse for the vegetation 490 

density. For EcoDes-DK15, we calculated the canopy openness of a 10 m x 10 m cell as the proportion of the ground and water 491 
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points (ground_and_water_point_count_-01m-01m) to the total point count (total_point_count_-01m-50m) within the cell. 492 

The raster calculations were done using gdal_calc. Results were multiplied by 10000, rounded to the nearest integer and stored 493 

as 16-bit integers. Please note that the same considerations as for the vegetation_density descriptor (Sect. 3.3.7) regarding 494 

canopy properties and differences in point sources between the cells apply when interpreting the canopy_openness descriptor. 495 

In addition, it is important to note that building points will reduce the canopy openness the same way that vegetation points 496 

would. 497 

3.5.8 Building proportion (building_proportion) 498 

In a densely populated country such as Denmark, buildings form an important part of the landscape. For ecological studies the 499 

distance to buildings, their presence, absence or density may be of relevance. The building_propotion descriptor of EcoDes-500 

DK15 provides a proxy for how much building infrastructure can be found within a 10 m cell. We calculated the descriptor as 501 

the number of building points (building_point_count_-01m-50m) divided by the total number of points (total_point_count_-502 

01m-50m) within each cell using gdal_calc. Results were multiplied by 10000, rounded to the nearest integer and stored as 503 

16-bit integers. While most returns from three dimensional infrastructure are classified as buildings in the DHM/Point-cloud, 504 

we would like to highlight that many roads are classified as ground (class 2) and some structures such as pylons and power 505 

lines were assigned a separate class (not described in (Geodatastyrelsen, 2015). These structures are therefore not included in 506 

the building_proportion descriptor. We would further like to note that the majority of building points are likely based on returns 507 

from the roofs of the buildings. Walls and other vertical structures are probably represented at a lower frequency in the point 508 

clouds. Finally, we would like to point the reader to the “DCE Basemap” (Levin, 2019) which may assist in the identification 509 

of basic land cover types that include buildings and other manmade structures. 510 

3.6 Auxiliary data 511 

In addition to the terrain and point cloud derived descriptors we provide three sets of auxiliary data with EcoDes-DK15. These 512 

are four layers of ALS point source information, a mask for inland water and a sea mask, as well as a shapefile of the footprints 513 

of the 1 km x 1 km tiles in the data set and their unique identifier. 514 

3.6.1 Point source information 515 

The point source attribute of the DHM/Point-cloud represents differences between sensor units or aircrafts that may have been 516 

used during the nationwide LiDAR campaign, differences in the acquisition time and date and differences in the viewpoint or 517 

acquisition angle of the cells. To aid in interpretation of descriptors that may be particularly influenced by point source, like 518 

the amplitude descriptors or the vegetation proportions, we provide summary information about the point sources within each 519 

10 m x 10 m cell. We summarised this information in four descriptors, the “point_source_counts”, “point_source_ids”, 520 

“point_source_nids” and “point_source_proportions”. For each tile (file name suffix = tile id), these descriptors are found in 521 

four subfolders bundled up in the parent “point_source_info” folder. 522 
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point_source_ids - Multi-layer raster containing one 16-bit integer layer for each point source id found in a tile. If a point 523 

with a given point source id is present the value of the cell is set to the point source id (an integer number) in the respective 524 

layer for the point source id, otherwise the value of a cell is set to 0. This multilayer raster can be used to match the file names 525 

of the point_source_counts and point_source_proportions rasters to a given point source id. Point source ids were extracted 526 

using Opals Cell. 527 

point_source_nids - Single layer GeoTiff files containing the number of different point source ids in each cell stored as 16-528 

bit integers. We calculated the number of point source ids based on the point_source_ids descriptor using gdal_calc. 529 

point_source_counts - For each tile there are multiple rasters (up to four), one raster for each point source id found in the 530 

point cloud of the tile (see the point_source_ids descriptor). These rasters are named with an additional suffix, which matches 531 

the integer point source id for which the point counts are given in the raster (e.g. point_source_counts_xxxx_xxx_y*, where 532 

xxxx_xxx is the tile id and y* the integer point source id). The rasters contain the number of points per 10 m x 10 m cell for 533 

the respective point source id in the tile. Counts were extracted using the OPALS Cell module and stored as 16-bit integers. 534 

point_source_proportions - For each tile there are multiple rasters (up to four), one raster for each point source id found in 535 

the point cloud of the tile (see the point_source_ids descriptor). These rasters are named with an additional suffix, which 536 

matches the integer point source id for which the point proportions are given in the raster (e.g. 537 

point_source_proportions_xxxx_xxx_y*, where xxxx_xxx is the tile id and y* the integer point source id). Each raster contains 538 

the proportion of the point counts for a given point source id in relation to the total point count per 10 m x 10 m cell. 539 

Calculations were carried out using gdal_calc. The final proportions were multiplied by a factor of 10000, rounded to the 540 

nearest integer and stored as 16-bit integers. 541 

3.6.2 Water masks (inland_water_mask and sea_mask) 542 

We also provide rasterized water masks for use cases that require masking inland water bodies or the sea. To represent all 543 

permanent lakes in Denmark, we merged three shapefiles containing (1) lakes protected by the Danish nature protection 544 

legislation (§3, available at https://arealinformation.miljoeportal.dk), (2) other valuable lakes (available on request at the 545 

Danish Farming Agency in the “good farming and environmental condition” data set) and (3) a layer containing the remaining 546 

rather small lakes and ponds (GeoDanmark, https://kortforsyningen.dk/). The combined shapefile is provided on the GitHub 547 

code repository (see below). We then burned the geometries within the shapefile into the 10 m x 10 m grid using gdal_rasterize. 548 

The masks are binary, a cell value of 1 indicates land and a value of -9999 (NoData) indicates sea or inland water, respectively. 549 

When using the masks please consider that the shape, presence and absence of water bodies and coastlines may fluctuate over 550 

time. We created the masks to present a snapshot of the water bodies as close as possible to the time point of the DHM/Point-551 

cloud acquisition (spring 2014 - summer 2015), but inaccuracies may still arise. When combining the data with more recent 552 

observations, keep in mind that inland water bodies and coastlines may have changed since then. Finally, while we aimed to 553 

https://arealinformation.miljoeportal.dk/
https://kortforsyningen.dk/
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produce the inland water mask to be as comprehensive as possible, some small ponds and water bodies may have been missed. 554 

Note also that while some rivers are included in the sea mask, the inland water mask does not include rivers or streams. The 555 

masks can be found in the “masks” subfolder of the complete data set. 556 

3.6.3 Vegetation point date stamps (date_stamp_min, date_stamp_max, date_stamp_mode) 557 

The time point at which the source data was collected may be of interest to certain applications that are using EcoDes-DK15 558 

vegetation descriptors. These include for example, comparisons amongst regions where the data was collected under different 559 

foliage conditions (leaf-on/leaf-off) or studies that require a precise timing of the sample such as change detection studies. To 560 

better facilitate these applications, we generated three date_stamp descriptors that summarize the GPS time stamps of the 561 

vegetation points within each 10 m x 10 m cell. The three descriptors are: date_stamp_min, date_stamp_max and 562 

date_stamp_mode, which represent the earliest, latest and most common survey date for the vegetation points in any given cell 563 

in the format “YYYYMMDD”, where YYYY is the year in four digits, MM the month in two digits and DD the day in two 564 

digits. 565 

We used the OPALS addInfo module to generate a new “GPSDay” attribute for all vegetations points (classes 3,4,5) by dividing 566 

the GPSTime (seconds since 6 January 1980) attribute by 86400 (seconds per day) and taking the floor value of the result. We 567 

then exported the min, max and mode for each 10 m x 10 m cell using the OPALS Cell module, loaded the output rasters into 568 

Python and converted the_GPSDay values into year, month and day in CET using the datetime module. Finally, we exported 569 

the min, max and mode dates as 32-bit integers. 570 

Note that the date_stamp descriptors only cover points that are classified as vegetation and therefore do not provide information 571 

about the time point at which points belonging to other classes were surveyed (e.g., ground point, building points etc). We 572 

chose to not include other point classes in the date_stamp descriptors, as we are aware that all versions of the source data sets 573 

include some ground points from 2007, and as we believe that clear information about the vegetation points is most relevant 574 

for the end-users conducting ecological research. Furthermore, determining the date_stamps was not possible for a proportion 575 

of tiles where the GPSTime in the source data was not converted from seconds per GPS week to GPS time in seconds since 6 576 

January 1980. A post-hoc conversion is not possible without the knowledge of the exact GPS week number, which is not 577 

provided in the source data. In these cases, we assigned the NoData value to the date_stamps. The majority of the tiles affected 578 

is located in the areas around Mols Bjerge and Sønderborg (Fig. 5). However, from auxiliary information about the source data 579 

sets we know that these areas were surveyed April-May 2015 and October 2014, respectively.  580 

 581 
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 582 

Figure 5: Distribution of the most common survey date for the vegetation points in each tile of the EcoDes-DK15 dataset. The 583 

data shown is aggregated for each tile from date_stamp_mode descriptor. The figure highlights that while the majority of the 584 

vegetation points is from 2014/15, the data set also includes a small amount of vegetation points from 2013 in western Jutland. 585 

Furthermore, surveys were conducted in all seasons, with vegetation points originating in spring, summer, autumn and winter. 586 

Nonetheless, the majority of vegetation points comes from the leaf-off season. Lastly, the date_stamp descriptors could not be 587 

derived for some regions as the GPSTime was not provided in the point clouds. However, from auxiliary information we know 588 

that the surveys in the Mols Bjerge and Sønderborg areas were conducted in April-May 2015 and October 2014, respectively.  589 

3.6.4 Footprint file (tile_footprints.shp) 590 

To assist data access and creation of data subsets, we have produced an ESRI shapefile containing the footprints of all 1 km x 591 

1 km tiles in the EcoDes-DK15 data set. The shapefile was generated based on the “dtm_10m” rasters and the tile identifier of 592 

each footprint geometry is specified in the “tile_id” attribute column. 593 
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4. Data access and ecological use case example 594 

4.1 Data access and handling 595 

Depending on the extent of the study, it may be preferable to work with a subset of the data set rather than the nationwide VRT 596 

files (Fig. 6). We suggest starting by identifying the relevant EcoDes-DK15 descriptors of interest, then retrieving the relevant 597 

data from the repository and decompressing the archives (instructions provided on data repository). If the study area of interest 598 

covers a large fraction of Denmark's extent and sufficient processing power is available, the nationwide VRT data should 599 

provide the most convenient access to the selected descriptors. However, if the study area does not cover a large proportion of 600 

Denmark, then we suggest sub setting the data using the tile footprints to decrease demands on computational resources. After 601 

sub setting, local / regional VRT files or mosaics can be generated if needed. We provide an example R script illustrating how 602 

this sub setting could be done for the use case example shown in the next section on the code repository 603 

(manuscript/figure_7/subset_data set.R). We have also made the resulting subset available as a “teaser” (5 MB) to help the 604 

reader assess the value of EcoDes-DK15 without having to commit to the multi-gigabyte download of the complete data set 605 

(see Sect. 6).  606 

 607 

https://github.com/jakobjassmann/ecodes-dk-lidar/blob/master/manuscript/figure_7/subset_dataset.R
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 608 

Figure 6: Schematic chart of two possible approaches for accessing and integrating EcoDes-DK15 data into ecological studies. 609 

The first step is to identify which descriptors are of interest, these descriptors can then be downloaded from the Zenodo 610 

repository and decompressed. Next a decision needs to be made whether the whole data set (nationwide) or only a subset of 611 

the tiles is required (e.g., a regional study). As the whole data set is relatively large (~94 GB), storage and processing limitations 612 

need to be taken into account when planning data processing and handling. If a subset of tiles is sufficient for a study, the 613 

provided tile footprints can be used to identify which tiles are required based on a geometry (e.g., a shapefile) of the study 614 

region(s). Finally, for easy data handling in subsequent analysis, a mosaic of the selected tiles can be created. For nationwide 615 

use we provided virtual mosaics (VRT files) containing all tiles for the descriptors. An R script illustrating how the sub setting 616 

can be done for a regional study can be found on the GitHub repository: https://github.com/jakobjassmann/ecodes-dk-617 

lidar/blob/master/manuscript/figure_7/subset_dataset.R. 618 

https://github.com/jakobjassmann/ecodes-dk-lidar/blob/master/manuscript/figure_7/subset_dataset.R
https://github.com/jakobjassmann/ecodes-dk-lidar/blob/master/manuscript/figure_7/subset_dataset.R
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4.2 Use case example - ecological landscape stratification of Husby Klit nature protected area 619 

Figure 7 illustrates a use case for the EcoDes-DK15 data set with an example of an ecologically motivated landscape 620 

stratification of the “Husby Klit” old-dune protected area in western Denmark. We developed this stratification for a group of 621 

Master’s projects carrying out vegetation monitoring in the area. Our aim was to capture the variation in the dominant 622 

vegetation based on vegetation structure as well as the variation in fine-scale topography created by the dune systems across 623 

the landscape. In addition to using the descriptors already provided, the stratification required us to derive a topographic 624 

position index as well as grouping the point densities in height bins relevant to the characteristics of the three most common 625 

dominant vegetation types (grass and heath, Pinus mugo Turra, Pinus sylvestris L.) in the area. The source code for this figure 626 

contained in the code repository provides an example of how this can be achieved (manuscript/figure_7/figure_7.R). 627 

 628 

 629 

Figure 7: Use-case example: Landscape stratification of the Husby Klit protected area based on EcoDes-DK15 derived terrain 630 

and vegetation structure descriptors. The target was to stratify the landscape of the Husby Klit “dune plantation” area in the 631 

west of Denmark (56.2837 - 56.3024 °N, 8.1239 - 8.1600 °E) to facilitate stratified random sampling for vegetation monitoring. 632 

https://github.com/jakobjassmann/ecodes-dk-lidar/blob/master/manuscript/figure_7/figure_7.R
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We identified the four tiles overlapping with the boundaries of the protected area and derived a stratification based on two 633 

components: topographic position (a) and vegetation structure (b). We hypothesized that both components would influence 634 

the vegetation communities present. For the topographic position (a), we first derived and standardised the topographic position 635 

index (TPI) (Weiss, 2001) from the terrain model (dtm_10m). Following (Weiss, 2001) we then classified each cell based on 636 

the scaled TPI into three categories. A scaled TPI below a value of -0.5 was classified as a “trough or lower-slope”, a scaled 637 

TPI between -0.5 and 0.5 as “mid-slope or flat”, and a scaled TPI above 0.5 as a “ridge or top”. For the vegetation structure 638 

component (b), we calculated the proportion of returns in three simplified height bins: 1) 0 m to 1.5 m, 2) 1.5 m to 3.0 m and 639 

3) 3.0 m - 50 m. Here we included both ground and vegetation returns as the divisor for the standardisation, but not the returns 640 

from buildings or water. Based on a priori knowledge we deduced that there are three dominant vegetation communities within 641 

the protected area: communities dominated by grass and heath with vegetation growth generally below 1.5 m, communities 642 

dominated by shrubs and small trees (including the invasive Pinus mugo) with vegetation growth predominantly below 3.0 m, 643 

and communities dominated by trees (including the native Pinus sylvestris), generally with growth above 3.0 m. We used this 644 

knowledge to assign the three vegetation classes based on the proportion of point returns in the simplified height bins. For the 645 

“grass and heath” class we used a strict cut off with no points present above 1.5 m. For the “shrubs and small trees” class we 646 

used a fuzzy cut off allowing the proportion of points in the 3.0 m and above bin to reach up to 10% of the maximum proportion 647 

found in this heigh bin. All remaining cells were then assigned to the “trees” class. Finally, we combined the two classifications 648 

into one as illustrated in c). Panel d) shows the location of the protected area within Denmark. The 3D raster visualisations 649 

were generated using the rayshader v0.19.2 package in R (Morgan-Wall, 2020). 650 

5. Discussion - limitations and future perspectives 651 

Our data set demonstrates how the complex information in ALS point cloud data sets spanning more than 40.000 km2, can be 652 

condensed into a compact data set of rasterized descriptors of interest for ecological studies. For the whole of Denmark, we 653 

provide 70 raster layers representing eighteen measures that describe a snapshot of vegetation height, structure and density, as 654 

well as topography and topography-derived habitat characteristics, including slope, aspect, solar radiation and wetness for the 655 

time period 2014-2015. These measures are of direct relevance for ecological research on species’ habitat characteristics, 656 

distribution modelling, biodiversity and conservation applications. Condensing the ALS derived information into a compact 657 

set of raster descriptors makes it more accessible to the community of ecological researchers and practitioners, allowing them 658 

to access information on the vertical structure of vegetation and terrain otherwise difficult to obtain for large extents such as 659 

those of a whole country. 660 

We would like to highlight some key ecological and physical limitations that should be kept in mind when using the data or 661 

derivatives. Firstly, we were able to only carry out a simple qualitative assessment of the errors in the EcoDes-DK14 data set 662 

within the scope of this project. All descriptors should therefore be seen as proxies for the geographical and biological 663 
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properties they describe. Errors in the original point cloud and DTM will have propagated through to the final descriptors and 664 

future studies are needed to assess to which degree the proxy measures correlate with in-field data. Furthermore, the EcoDes 665 

data set is a snapshot in time representing the state of the vegetation in the one and a half years between spring 2014 and 666 

summer 2015 (with some exception in western Jutland, where the data is from 2013). Like anywhere on Earth, the landscapes 667 

of Denmark may change over time and by the time point of publication of this data set over 5 years may have passed since the 668 

collection of the source data. External data sources containing information about on-going or past changes (such as satellite 669 

imagery - see below) might help overcome this bias. Additionally, the geographical differences in the timing of the point cloud 670 

collection across the country (see Sect 6.3.4) may introduce noise and could affect cross-comparability of the data between 671 

regions, for example due to seasonal differences in foliage (see e.g., Leiterer et al., 2015). Furthermore, there are implicit 672 

limitations in spatial scale due to the set grain size of the data set. We chose a 10 m x 10 m grid for efficiency in computation 673 

and data handling, as well as to overcome limitations in the density of the source point cloud (four to five points per m2). Our 674 

data set might therefore not serve well for capturing some ecological relevant variation in terrain and vegetation structures at 675 

scales below the 10 m x 10 m grain size. We believe that our data set is nonetheless valuable in providing ecologically relevant 676 

information at the geographical extent of Denmark. 677 

While some of the descriptors in the presented data set such as elevation, slope and vegetation height are quite straightforward 678 

to interpret, the ecological meaning of other descriptors – for example those related to vegetation structure – may not be as 679 

obvious as they are influenced by multiple ecological and sensing methodology related factors. The amplitude, point count 680 

and point proportion descriptors are amongst those measures. For example, while the (non-calibrated) amplitude in the 681 

DHM/Point-cloud source data may generally relate to the reflectance properties of the surface that generated the return, the 682 

incident light angle, scattering and subsequent generation of echoes may result in several different surfaces generating similar 683 

amplitude signatures. Furthermore, the point counts may be influenced by a whole suite of factors, including incident light 684 

angle, scattering, density of flight strips covering a given cell, as well as canopy properties - most importantly the penetration 685 

ability. While standardising the point counts as proportions to the total counts may help to account for some of these factors, 686 

it is likely that notable uncertainties will remain even in the proportions especially for lower layers of the canopy. Nonetheless, 687 

we believe that these measures can be informative if appropriate care is taken in their interpretation. 688 

Two code developments could enhance the EcoDes-DK15 processing workflow in efficiency and transferability: using gdal 689 

Python bindings and switching to an open-source point cloud handler. First, for practical reasons we reverted to using gdal 690 

binaries rather than the Python bindings as we encountered issues with the gdal bindings provided by the OPALS shell on our 691 

computational server. Solving this issue and using the bindings instead of the binaries could reduce hard drive access time and 692 

overheads from launching subprocesses and therefore potentially speed up the raster manipulations in the workflow. However, 693 

as the point cloud processing takes the majority of time (we estimate 75-80%) we did not invest further resources to do so in 694 

the first development round. Secondly, while our Python source code is open source and freely available, OPALS itself requires 695 
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the purchase of a software license, limiting the transferability of our code to projects which can afford the license. We did not 696 

explore alternatives to OPALS, but a redeveloped processing pipeline could make use of purely open source software 697 

benefiting from ongoing developments in the field, see for example the “Laserchicken” Python module (Meijer et al., 2020) 698 

and “lidR” R package (Roussel et al., 2020). 699 

 700 

We believe that to realise the full potential of ALS derived data such as EcoDes-DK15 these data sets are ideally combined 701 

with other data sources including climate, field data and remote sensing observations. Climate data is especially relevant for 702 

addressing research on species-habitat relationships, distribution models and biodiversity studies and many studies have 703 

demonstrated the power of ALS observations in complementing climate data for such exercises (Coops et al., 2016; Zellweger 704 

et al., 2016). Like for other remote sensing products, field data is essential for validating inferences and putting biological 705 

meaning into ALS data (Coops et al., 2021) - this applies especially to the more complex structural vegetation measures in 706 

EcoDes-DK15. This could be achieved through field surveys combined with terrestrial and drone based ALS data, where the 707 

point density is much higher (e.g., Madsen et al., 2020). The potential benefits from fusing ALS data with other remote sensing 708 

products have been realised early on (Hyde et al., 2005) and demonstrated again since then (e.g., Coops et al., 2021; 709 

Montgomery et al., 2019; Manzanera et al., 2016). However, note that data fusion does not provide additional value in every 710 

use case (Xu et al., 2018; Ceballos et al., 2015; Boelman et al., 2016). We still believe that there is tremendous potential in 711 

combining EcoDes-DK15 with other types of remote sensing data. Fine-grain optical imagery could provide proxies for 712 

horizontal vegetation structure in grasslands where the vegetation is too small to be captured by the DHM/Point-cloud density 713 

(e.g., Malmstrom et al., 2017; Pazúr et al., 2021) and satellite derived time-series can provide unique temporal perspectives 714 

that describe parameters of seasonality (e.g., Boelman et al., 2016) and the historical context on disturbances and landcover 715 

change not captured in the single time-point ALS data (e.g., Senf et al., 2017; Pekel et al., 2016). 716 

6. Data availability 717 

The data is openly available under a Creative Commons by Attribution 4.0 license on Zenodo: 718 

https://doi.org/10.5281/zenodo.4756556 (Assmann et al., 2021) 719 

 720 

A small example subset “teaser” (5 MB) covering the 9 km x 9 km of the Husby Klit area (Fig. 7) is available on the GitHub 721 

code repository: 722 

https://github.com/jakobjassmann/ecodes-dk-lidar/blob/master/manuscript/figure_7/EcoDes-DK15_teaser.zip 723 

 724 

https://doi.org/10.5281/zenodo.4756556
https://github.com/jakobjassmann/ecodes-dk-lidar/blob/master/manuscript/figure_7/EcoDes-DK15_teaser.zip
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7. Code availability 725 

The source code for the processing pipeline is openly available under a simplified BSD license via GitHub:  726 

https://github.com/jakobjassmann/ecodes-dk-lidar  727 

8. Conclusions 728 

Open data sets like EcoDes-DK15 will allow ecologists with limited computational resources and little expertise in handling 729 

LiDAR point clouds to use large-scale ALS data for their research. We see our efforts not only as a first step for providing 730 

ready-to-use descriptors of local vegetation and terrain features, but also for providing an example workflow and tools that 731 

allow for the replication of the processing. We have described and documented the measures of terrain and vegetation structure 732 

contained in the data set and pointed out possible applications and limitations. We are confident that EcoDes-DK15 provides 733 

a meaningful collection of ecological descriptors at a 10 x 10 m resolution for the extent of a whole country and we encourage 734 

the community to use our workflow and collection of codes as inspiration to process other large-scale ALS data sets in a similar 735 

manner. Ultimately, we hope the publication of this data set will help facilitate the uptake of ALS-derived information by 736 

ecological researchers and practitioners in Denmark and beyond. 737 
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