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Abstract. The Earth energy imbalance (EEI) at the top of the atmosphere is responsible for the accumulation of heat in the 

climate system. Monitoring the EEI is therefore necessary to better understand the Earth’s warming climate. Measuring the 

EEI is challenging as it is a globally integrated variable whose variations are small (0.5-1 W m−2) compared to the amount of 

energy entering and leaving the climate system (~ 340 W m-2). Since the ocean absorbs more than 90 % of the excess energy 15 

stored by the Earth system, estimating the ocean heat content (OHC) provides an accurate proxy of the EEI. This study provides 

a space geodetic estimation of the OHC changes at global and regional scales based on the combination of space altimetry and 

space gravimetry measurements. From this estimate, the global variations in the EEI are derived with realistic estimates of its 

uncertainty. The mean EEI value is estimated at +0.74±0.22 W m-2 (90 % confidence level) between August 2002 and August 

2016. Comparisons against independent estimates based on Argo data and on CERES measurements show good agreement 20 

within the error bars of the global mean and the time variations in EEI. Further improvements are needed to reduce uncertainties 

and to improve the time series especially at interannual and smaller time scales. The space geodetic OHC-EEI product is freely 

available at https://doi.org/10.24400/527896/a01-2020.003.   

1 Introduction 

Over the last decades, greenhouse gases and aerosols concentrations have been increasing in the atmosphere, disrupting the 25 

balance in the Earth system between incoming and outgoing radiation fluxes. Part of the outgoing longwave radiation being 

blocked, the system has reemitted less energy towards space than it has received from the Sun (Hansen et al., 2011; Trenberth 

et al., 2014). This imbalance at the top of the atmosphere, known as the Earth energy imbalance (EEI), is about 0.5-1 W m-2 

(von Schuckmann et al., 2016). It is challenging to estimate the EEI since it is two orders of magnitude smaller than the mean 

incoming solar radiation (340 W m-2) (L’Ecuyer et al., 2015). 30 
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Positive values of the EEI indicate that an excess of energy is stored in the climate system. With its high thermal inertia and 

its large volume, the ocean acts as a buffer, accumulating most of the excess of energy (more than 90 %, e.g. von Schuckmann 

et al., 2020) in the form of heat. The other climate reservoirs, the atmosphere, land and cryosphere, play a minor role in the 

energy storage at seasonal and longer time scales (von Schuckmann et al., 2020b). As a result, the ocean heat uptake (OHU) 

prevails in the global energy budget on timescales longer than several months. The global OHU (GOHU) is therefore a good 35 

proxy of the EEI variations.  

The OHU is counted positive when heat enters the ocean and negative when heat leaves the ocean. It is the time derivative of 

the ocean heat content (OHC). OHC change time series may be inferred by different approaches: (1) direct measurement of 

temperature/salinity profiles mainly derived from the Argo floats network (von Schuckmann et al., 2020b), (2) re-analysis 

which combines in situ measurements of temperature/salinity and space measurements of sea level with ocean modelling 40 

(Stammer et al., 2016), (3) through the ocean surface net flux from satellite observations (Kato et al., 2018; L’Ecuyer et al., 

2015), (4) and the space geodetic approach (introduced in Meyssignac et al., 2019 and this study). These methods are 

complementary, with their own advantages and limitations (Meyssignac et al., 2019). Direct measurements approach relies on 

in situ measurements which are unevenly spatially distributed with poor sampling of the deep ocean (below 2000 m depth), 

marginal seas and below seasonal sea-ice. Re-analyses provide a more complete description of the ocean’s state that is 45 

consistent with the dynamics of the ocean but are subject to large biases in the polar oceans, spurious drifts in the deep ocean 

and inaccurate initial conditions that may obfuscate a significant part of the OHC signal related to EEI (Palmer et al., 2017). 

Ocean net flux approach consists in assessing the radiative and turbulent fluxes from satellite observations to provide the 

spatial distribution of net heat fluxes at the ocean surface, but it is tainted with large residuals and uncertainties (Kato et al., 

2018; L’Ecuyer et al., 2015). The space geodetic approach aims at measuring the sea level changes due to the thermal expansion 50 

and saline contraction of the ocean (also called steric sea level changes) based on differences between the total sea level 

changes derived from satellite altimetry measurements and the barystatic sea level changes from satellite gravity 

measurements. This approach offers consistent spatial and temporal sampling of the ocean, with a nearly global coverage of 

the oceans, excepting the polar regions. It also provides OHC change estimates over the entire ocean water column.  

The EEI shows time variations in response to anthropogenic emissions and natural variability like ocean-atmosphere 55 

interactions or volcanic eruptions. Different amplitudes and time scales are involved in these time variations from monthly to 

interannual variations of the order of a few Wm-2 associated with the coupled natural variability of the ocean and the 

atmosphere to decadal and longer-term variations of the order of a few tenth of Wm-2 associated to the anthropogenic and the 

natural forcing of the climate system. To evaluate these variations and particularly the small decadal and longer-term response 

of EEI to anthropogenic or natural forcing, EEI should be estimated with an accuracy better than 0.1 W m-2. This is particularly 60 

challenging and it requires a fine characterisation of the errors associated with the EEI estimates. 

The originality of this study is to provide the OHC change and EEI from space altimetry and space gravimetry with a 

comprehensive description of the uncertainty. This space geodetic approach has three major advantages: it covers the ocean 

down to the bottom, the spatial coverage is nearly global (until 82° poleward) and it is based on a few instruments which 
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enables an exhaustive description of error sources and a robust propagation of errors from the measurements to the global 65 

OHC (GOHC) change estimate. A preliminary estimate of the GOHC 10-year-trend uncertainty of +/-0.32 W m-2 (90 % 

confidence level -CL-) has been published with this approach (Meyssignac et al., 2019). A central objective of this study is to 

revisit this uncertainty estimate, extend it to other time spans and reduce it as much as possible. First, we extend the spatial 

and temporal coverage of OHC change and EEI time series, to provide regional and global estimates of OHC change over the 

period 2002 to 2016. Second, we rigorously and accurately assess the uncertainty in GOHC change and EEI, propagating the 70 

errors from the sea level and ocean mass changes estimates and taking into account the time correlations in errors. To reach 

these objectives, innovative algorithms have been developed. We present them in this paper.  

The physical assumptions underlying the estimation of the EEI from space geodetic measurements are introduced in section 

2. Section 3 describes the sea level and ocean mass variations, and thermal expansion data used as input for the computation 

of OHC changes and the EEI over the 15-year period from August 2002 to August 2016 (sect. 4.1). Error propagation and 75 

uncertainty calculation are performed independently (sect. 4.2). Results are gathered in sections 5 and 6 for the OHC change 

and the EEI respectively, including comparisons with independent estimates mainly based on the in situ Argo network. 

Conclusions and perspectives for improvement of the EEI record are given in section 7. 

In this article, all uncertainties associated are reported within a [5 %-95 %] confidence level interval (also noted 90 % CL). 

2 Physical principle 80 

In the space geodetic approach, OHC changes are estimated from steric sea level changes, which are due to the thermal 

expansion and the haline contraction of the ocean column of water. Steric sea level changes are calculated as the difference 

between total sea level changes and ocean mass changes (e.g. Meyssignac et al., 2017; Forget and Ponte, 2015 and references 

there in). It is expressed by the sea level budget equation (Eq.1.) where the total sea level change (∆𝑆𝐿𝑡𝑜𝑡𝑎𝑙) is the sum of the 

ocean mass change (∆𝑆𝐿𝑚𝑎𝑠𝑠) and the ocean steric sea level change. The latter is composed of two terms, the ocean thermal 85 

expansion change (∆𝑆𝐿𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑒𝑟𝑖𝑐) and the ocean halosteric change (∆𝑆𝐿ℎ𝑎𝑙𝑜𝑠𝑡𝑒𝑟𝑖𝑐):   

 following Eq. (1): 

𝛥𝑆𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛥𝑆𝐿mass + 𝛥𝑆𝐿𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑒𝑟𝑖𝑐 + 𝛥𝑆𝐿ℎ𝑎𝑙𝑜𝑠𝑡𝑒𝑟𝑖𝑐 ,                                                                                                        (1) 

At global scale, the ocean salinity change is negligible (Llovel et al., 2019, Gregory et al., 2019). Therefore Eq. (1). can be 

simplified, and the global mean thermosteric sea level change (𝛥𝐺𝑀𝑇𝑆𝐿) is obtained from the difference between the global 90 

mean sea level change (𝛥𝐺𝑀𝑆𝐿) and the global mean ocean mass change (𝛥𝐺𝑀𝑂𝑀): 

𝛥𝐺𝑀𝑇𝑆𝐿 = 𝛥𝐺𝑀𝑆𝐿 − 𝛥𝐺𝑀𝑂𝑀,                                                                                                                                (2) 
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Then, the GOHC change (𝛥𝐺𝑂𝐻𝐶) is derived by dividing the thermal expansion change by the expansion efficiency of heat 

(EEH), noted 𝜀 at global scale as in Eq. (3) (see Melet and Meyssignac, 2015 for more details): 

𝛥𝐺𝑂𝐻𝐶 =
∆𝐺𝑀𝑆𝐿

𝜀
,                                                                                                                                              (3) 95 

At global scale, on annual and longer time scales, the heat stored by the Earth in response to the EEI is stored essentially in 

the ocean because the heat capacity of the ocean is much larger than the heat capacity of the rest of the climate system (Palmer 

and McNeall, 2014; Melet and Meyssignac, 2015). The fraction of energy entering the ocean α is around 0.9. The EEI can now 

be retrieved from the GOHU, the temporal derivative of GOHC, by dividing it by α the fraction of energy entering the ocean 

(Eq.(4)). α is set to 0.9, the recent estimate from von Schuckmann et al., 2020. Beforehand, GOHC change is filtered out to 100 

remove the signals related to the intrinsic ocean variability, mostly happening in the mixed layer above the pycnocline. For 

short time scales (< 2-3 years), this signal does not correspond to any response to global warming and therefore must be 

removed to infer variations in the EEI:  

𝐸𝐸𝐼 =
𝐺𝑂𝐻𝑈

𝛼
= 1 𝛼⁄  

𝑑 𝐺𝑂𝐻𝐶

𝑑𝑡
,                                                                                                                                          (4) 

In this study, total sea level change is observed from space with radar altimetry missions (see section 3.1), ocean mass 105 

change is observed from space with the gravimetry missions (see section 3.2) and the global and regional EEH is estimated 

from in situ observations of ocean temperature and salinity (see section 3.3). 

3 Data  

3.1 Sea level  

In this study we used sea level daily gridded dataset for the global ocean (Taburet et al., 2019; Legeais et al., in prep) that is 110 

distributed by the Copernicus Climate Service (C3S) and contains the sea level anomalies around a mean sea surface above 

the reference mean sea surface computed over 1993-2012, also referred as the total sea level change. Data is available over the 

entire altimetry area from January 1993 onward. They are provided on a daily basis at a spatial resolution of 0.25° x 0.25°. 

Thanks to rigorous processing of altimetry measurements based on a two-satellite altimetry constellation, homogeneous 

altimetry standards applied over time (e.g. geophysical corrections, orbit solutions, etc.) and solid validation activities carried 115 

out upstream, C3S sea level products are dedicated to the monitoring of the long-term sea level variations. As C3S sea level 

grids are not corrected from the global isostatic adjustment (GIA), a correction is applied a posteriori. It is derived from an 

ensemble mean of regional GIA corrections computed with the ICE-5G model and with various viscosity profiles (27 profiles) 

used in Prandi et al. (2021) (Spada and Melini, 2019). The average GIA value over oceans is -0.28  mm yr-1 close to the 

generally accepted value of -0.3 mm yr-1 (e.g. WCRP Global Sea Level Budget Group, 2018). An additional correction of 120 
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+0.1 mm yr-1 is considered for the deformations of the ocean bottom in response to modern melt of land ice (Frederikse et al., 

2017). 

The description of the errors, and the uncertainties on the long-term stability of the sea level estimate in these products were 

provided by Ablain et al. (2019) and Prandi et al. (2021) for the global and regional scales respectively. Over the whole 

altimetry period (January 1993-December 2020), the GMSL shows a significant rise of +3.52 ± 0.35  mm yr-1. Focusing on 125 

the period of interest in this study (August 2002-August 2016), the GMSL increase is +3.57 ± 0.40 mm yr-1. At the regional 

scale, the sea level rise distribution ranges between 0 and 6 mm yr-1, with uncertainties ranging from ±0.8 to ±1.2 mm yr-1, 

pointing out that the sea level is rising everywhere over the globe. Recent studies also showed that sea level is accelerating at 

0.12 ± 0.07 mm yr-2 at the global scale (Ablain et al. , 2019) and ranges between -1 mm yr-2 and +1 mm yr-2 at the regional 

scale (Prandi et al. , 2021). 130 

3.2 Ocean mass 

The Gravity Recovery And Climate Experiment (GRACE) mission, launched in 2002, allowed continuous monitoring of ocean 

mass change over the study period (Tapley et al., 2004). GRACE was decommissioned in 2017 and its successor GRACE 

Follow-On (GRACE-FO) was launched in May 2018. This study stands as a proof of concept, demonstrating the capability to 

deliver space geodetic estimates of the OHC change and EEI and their associated uncertainties. The study period is therefore 135 

limited to April 2002-August 2016 when the GRACE data shows the best quality. This restricted period enable to avoid (i) 

instrumental issues deprecating the quality of the GRACE data at the end of the mission (e.g. Wouters et al., 2014), (ii) the 11-

months data gap between GRACE and GRACE-FO, (iii) instrumental issues during the GRACE-FO mission on the 

accelerometers, (iv) eventual biases between the GRACE and GRACE-FO missions (e.g. Landerer et al., 2020; Chen et al., 

2020). Ocean mass variations observed by GRACE are mainly due to freshwater exchanges with the continents (including ice-140 

melting and water cycle) at global scale, and, also, to the ocean circulation at regional scale. However, estimating the rates of 

global and regional ocean mass change with GRACE data remains a challenging task due to numerous processing choices that 

can strongly affect the results and lead to a large variety of solutions with significant uncertainty (Uebbing et al., 2019). In this 

study, we considered the GRACE LEGOS ensemble V1.4 (ftp://ftp.legos.obs-mip.fr/pub/soa/gravimetrie/grace_legos/V1.4/) 

updated from Blazquez et al., (2018). This ensemble version includes 216 solutions, based on fully normalised spherical 145 

harmonic solutions from six different centers and a large variety of choices for post-processing corrections including the 

corrections of the geocenter motion, the oblateness of the Earth, the atmosphere ocean dealiasing, the filtering of the noise 

responsible for the characteristic stripes of GRACE gravity data, the leakage correction and the GIA. More details of this 

update and the appropriate references can be found in the appendix A. This ensemble approach allows a robust estimation of 

the uncertainties associated with state-of-the-art ocean mass change estimates based on GRACE measurements (see Blazquez 150 

et al., 2018 for more details). In addition to spherical harmonics, the ocean mass change can also be estimated from mascon 

solutions provided by the Jet Propulsion Laboratory (JPL RL06), the Center for Space Research (CSR RL06) and the Goddard 

Space Flight Center (GSFC RL06). These three mascon solutions use the same post-processing corrections for the geocenter 
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motion (Sun et al., 2016), for the oblateness of the Earth (C20) and the low harmonic degrees (C30) of the gravity field (Loomis 

et al., 2019), for the dealiasing of the atmosphere and ocean signals (AOB1B RL06 from Dobslaw et al., 2017) and for GIA 155 

(ICE6G-D from Peltier et al., 2018). Comparing these three mascons with the subset of the LEGOS ensemble that use the same 

post-processing corrections lead to similar ocean mass change estimates (see Fig. 1 in appendix A) which confirms the 

consistency of the mascon solutions with the spherical harmonics solutions and gives confidence in their representation of 

mass transport. Within the LEGOS ensemble the subset which uses the mascon post-processing choices shows ocean mass 

changes in the upper range of the ensemble estimates. This corroborates the major role of post-processing choices on the 160 

estimation of global ocean mass change estimates and stresses the need to quantify the associated uncertainty. 

When considering the same mask as the altimetry product, the GMOM trend in the LEGOS ensemble reaches 1.83 ± 0.21 mm 

yr-1 for the period from August 2002 to August 2016, in agreement with the state-of-the-art estimates. Regional variations in 

ocean mass change are fairly small (up to 3.66 mm yr-1) when considering the ensemble mean, except at high latitudes and for 

shallow seas, variations in the ocean bottom pressure due to the ocean circulation or changes in the geoid are relatively small 165 

compared to the global ocean mass increase (Piecuch and Ponte, 2011; Piecuch et al., 2013). 

3.3 Expansion efficiency of heat (EEH) 

The EEH expresses the change in ocean density due to heat uptake. It represents the ratio of the thermosteric sea level change 

over the heat content change under a given heat uptake. As such it allows estimating changes in OHC from changes in 

thermosteric sea level (following Eq. (3)). The EEH is slightly sensitive to changes in temperature because they affect 170 

thermosteric sea level and ocean heat content in the same manner. It is however more sensitive to changes in salinity because 

salinity changes affect more thermosteric sea level than ocean heat content: the saltier the water, the more seawater expands 

in response to constant heat uptake and the larger the EEH. The EEH is thus expected to mainly vary with latitude as vertically 

integrated salt content varies with latitude. In time, the change in EEH is expected to be negligible over the study period, 

because the warming pattern is unlikely to change much at decadal time scales (Russell et al., 2000; Kuhlbrodt and Gregory, 175 

2012). 

In this study, the first regional EEH estimate is calculated down to 2000 m depth from Argo data (Meyssignac et al., in prep.). 

Monthly 3D in situ temperature and salinity fields from various 11 Argo solutions were used to compute the ratio between 

GMTSL change and GOHC change. These monthly ratios are averaged over time, then averaged together to provide a global 

EEH estimate of 0.145 ± 0.001 m YJ–1 representative of the 0–2000 m ocean column for the period 2005-2015, excluding 180 

marginal seas and areas located above 66° N and 66° S. This regional extent corresponds to the spatial extent that is regularly 

sampled by the in situ Argo network. The global EEH estimated here is in good agreement with previous estimates of 0.12 ± 

0.01 m YJ–1 (equivalent to 0.52 W m–2/mm yr–1) representative of the 0–2000 m ocean column over 1955–2010 from in situ 

observations (Levitus et al., 2012) and 0.15 ± 0.03 m YJ–1 for the full ocean depth over 1972–2008 (Church et al. 2011). Its 

uncertainty is however much smaller because the EEH computation is based on the Argo network that has a precise estimate 185 

of ocean temperature and salinity down to 2000 m depth. This more accurate estimate of the EEH enables to significantly 
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reduce the uncertainties of the OHC change estimate (see section 4.2. on the error propagation and uncertainty calculation). 

On the other hand, note that this value of the global EEH is likely biased high by a few percent because we did not consider 

the ocean bottom layer in our computation. The bottom layer, below 2000m depth, is less salty and would slightly lower our 

global EEH estimate if included here.  190 

Figure 1 shows the associated spatial grid (3x3 degree) of EEH estimates (allowing at the same time to visualise its spatial 

availability). The value of the EEH for each cell is the temporal mean of the ratio between the local thermosteric sea level 

variations and the local OHC variations over the period 2005 - 2015. The EEH grid is applied in this study to calculate changes 

in OHC at regional scales (see section 4.1. OHC and EEI calculation). 

3.4 Ancillary data  195 

For validation purposes, OHC change and EEI are also estimated from in situ ocean temperature and salinity from Argo 

datasets covering the first 2000m depth range. We considered the IAP, IFREMER, IPRC, ISHII, EN4, JAMSTEC, NOAA, 

and SIO datasets. Differences in ocean temperature among these products are due to the different strategies in data editing, 

temporal and spatial data gap filling and instrument bias corrections (see for e.g. Boyer et al., 2016). All Argo products are 

post-processed homogeneously in the framework of this study for integration of temperature and salinity to derive the ocean 200 

heat content (e.g. one single integration scheme, climatology computed over the same period 2005-2015). Regional OHC 

change is retrieved relying on the thermodynamic equation of seawater (McDougall and Barker, 2011). Although IAP, 

IFREMER, ISHII, EN4, and NOAA products extrapolate the temperature and salinity profiles over the whole ocean, the 

ensemble of Argo-based GOHC change is calculated here after applying the most restrictive Argo geographical mask among 

Argo products (it corresponds to the Argo mask of the SIO product, see Fig. 1 for the spatial extent of the mask). This approach 205 

enables to get consistent and comparable GOHC change from the different Argo products. A deep ocean contribution of heat 

storage of + 0.07 ± 0.06 W m-2 is added for the layers from 2000m to 4000m (following Purkey and Johnson, 2010; Desbruyères 

et al., 2016). Argo-based EEI estimates are then derived from Argo-based GOHC change with the same method as for the 

space geodetic approach described in section 4.1. The different Argo products provide heterogeneous uncertainty estimates. 

Different products consider different sources of uncertainty and none of the products provide a comprehensive estimate of the 210 

uncertainties (see Table 1 in Meyssignac et al. 2019). The absence of a common reference estimate of the uncertainty in Argo 

gridded temperature products is an issue that has been identified in the climate community. There is currently a community 

effort that is undertaken in the World Climate Research Program (the GEWEX EEI assessment, see http://gewex-eei.org/) to 

tackle this problem. This effort should take a few years and the results are not available yet. For the time being uncertainties 

on the Argo-based GOHC change and EEI are derived from the ensemble dispersion. This type of uncertainty mainly describes 215 

the discrepancy between the various center products involved in the ensemble. It represents the uncertainty associated with 

different approaches to develop the data quality control and the data processing. It does not comprise any errors related to time 

and space correlation in temperature measurements or potential systematic temperature and salinity measurement biases among 

products and potential systematic sampling biases among products. So these uncertainty estimates are likely underestimated. 
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OHC change estimate is also provided by the Ocean Monitoring Indicator (OMI) from the Copernicus Marine Service 220 

(CMEMS) (von Schuckmann et al., 2020a). The yearly indicator is the ensemble mean of 5 GOHC change solutions from 

reanalyses and optimal interpolations of altimetry data and in situ measurements (including Argo data). The OMI indicator is 

based on integrated temperature differences along a vertical profile in the ocean, down to 700 m depth, and averaged between 

60° S and 60° N. Note that uncertainties on the CMEMS GOHC change are also derived from the ensemble dispersion.  

EEI variations are also observed from space by the Clouds and the Earth's Radiant Energy System (CERES) instruments. They 225 

enable monitoring the incoming and outgoing radiative fluxes at the top-of-atmosphere. CERES instruments allow retrieving 

EEI variations (EBAF TOA fluxes, 2019) from weekly to decadal timescales with an uncertainty of ±0.1 W m-2 but the time-

mean EEI is measured with an accuracy of ±3.0 W m-2 due to calibration issues (Loeb et al., 2018). 

Our estimates of OHC change and EEI are validated against independent OHC change and EEI estimates from Argo, reanalyses 

and CERES in sections 5 and 6. 230 

4 Data Processing 

4.1 OHC change and EEI calculation 

A dedicated data processing chain was specifically developed in order to calculate the OHC change and the EEI from space 

geodetic measurements, following the physical principle described in section 2. Changes in OHC at global and regional scales, 

and the EEI are provided in a dedicated product referred to as “MOHeaCAN v2.1” (see section 7).  235 

The first step consists in preprocessing time series of total sea level and ocean mass change from the specific period. Total sea 

level and ocean mass change grids are downsampled to a 3x3 degree spatial resolution (~300 km) and averaged on a monthly 

basis to match the effective spatial and temporal resolutions of GRACE products. The areas not defined in the EEH coefficient 

are then masked out (section 3.3.).  

The second step is dedicated to the calculation of the global time series of OHC change and the EEI. GMSL and GMOM time 240 

series are calculated at each time step (monthly) using a weighted average taking into account the sea surface in each cell. The 

GOHC change is then obtained by making the difference between the GMSL and GMOM time series (Eq. (2)) and dividing 

by the global value of EEH coefficient (Eq. (3)). GOHC change is expressed per unit of area (J m-2), when divided by the 

surface of the Earth at the top of the atmosphere, for a reference height of the top of the atmosphere at 20 km altitude (the same 

as EBAF, Loeb et al., 2018). The EEI estimate is then derived from the temporal variations of the GOHC, by calculating the 245 

derivative, the GOHU, and adjusting it to account for energy contributions from other climate reservoirs (Eq. (4)). Beforehand, 

GOHC change time series is filtered out by applying a low pass filter (Lanczos) with a cut-off period of 3 years in order to 

remove high-frequency content related to the intrinsic ocean variability and the mesoscale activity that is visible in altimetry 

but not in gravimetry (described in section 2.).  

The last step aims at calculating changes in OHC at regional scales. Monthly steric sea level grids change are directly deduced 250 

at 3x3 degree spatial resolution from the difference between the collocated sea level and ocean mass change grids. Contrary 
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to the global scale, the ocean salinity change can not be neglected at regional scales (see Eq. (1)), and halosteric contribution 

to sea level expansion should be removed to retrieve the regional thermal expansion variations of the ocean. Nevertheless, at 

this stage of the study, the regional OHC change grids are obtained from the steric sea level grids divided by the grid of EEH 

coefficients without accounting for ocean salinity change. This has no impact on the estimate of the OHC trend over the full 255 

period 2005-2015 because the EEH has been calculated over this period and the salinity effect is thus implicitly accounted for 

in the local EEH coefficients. However, over other periods or smaller periods included within 2005-2015, the local EEH is 

expected to be slightly different as the local salinity changes with time and this calculation of the OHC change should be 

considered as an approximation. The approximation is accurate at the level of a few percent because local changes in salinity 

are small compared to the total salt content of the water column (according to the Argo record). In this study we have chosen 260 

this conservative approach with a constant EEH because the salinity anomaly data shows important inconsistencies at annual 

and inter-annual time scales among Argo products (e.g. Ponte et al. 2021). Instead of using low-confidence salinity anomaly 

data we prefer to assume at this stage a constant EEH estimated from salinity climatologies that are more reliable. This 

approach leads to an estimate of GOHC change with a lower uncertainty but the counterpart is that the level of confidence in 

regional OHC change is lower. Note that the GOHC change can also be deduced from the regional OHC change grids by 265 

summing each grid weighted by the area of each cell. We checked this approach and found that it leads to the same results as 

with the global approach described before.  

4.2 Error propagation and uncertainty calculation at global scale 

One of our main objectives is to provide the uncertainty associated with the OHC change and EEI estimates. In this study the 

error propagation is performed only at global scale. It is much more complex to propagate the uncertainty at regional scales 270 

because it requires to describe the spatial correlation of the errors in satellite altimetry and space gravimetry data which is not 

a simple task. At this time estimates of these errors are not available in the literature but this work is currently ongoing and 

should be the subject of further publications in the coming years. Meanwhile we focus on the uncertainty at global scale. A 

rigorous approach is proposed here, consisting in providing the variance-covariance matrix (𝛴) of the errors for the GOHC 

change and EEI time series at global scale. To obtain the 𝛴 matrices of the GOHC change and EEI time series, errors must be 275 

propagated from the GMSL and GMOM monthly time series as represented in Fig. 2. The first step consists in estimating the 

variance-covariance matrices for the sea level (𝛴𝐺𝑀𝑆𝐿) and the ocean mass (𝛴𝐺𝑀𝑂𝑀) time series.  

𝛴𝐺𝑀𝑆𝐿 is inferred from the GMSL error budget of Ablain et al. (2019) over the period 2002-2016. In short, the elementary 

variance-covariance matrices (𝛴𝑒𝑟𝑟𝑜𝑟𝑖
) corresponding to each error described in the GMSL error budget (Ablain et al., 2019) 

are first calculated independently of each other. Each matrix is calculated from a large number of random draws (> 1000) of 280 

simulated error signals whose correlation is modelled. Their shape depends on the type of errors prescribed, which can be of 

several kinds: jumps, time-correlated errors, long-term drifts. Assuming errors are independent, 𝛴𝐺𝑀𝑆𝐿 is given by the sum of 

all 𝛴𝑒𝑟𝑟𝑜𝑟𝑖
(see Ablain et al. 2019 for the details of the calculation).  
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For the calculation of 𝛴𝐺𝑀𝑂𝑀  we use an ensemble approach where the ensemble of GMOM time series (𝑋𝑖) is directly used to 

calculate the covariance between each time series: 285 

 𝛴𝐺𝑀𝑂𝑀(𝑖, 𝑗) = 𝑐𝑜𝑣(𝑋𝑖 , 𝑋𝑗) = 𝐸[(𝑋𝑖 − 𝐸[𝑋𝑖])(𝑋𝑗 − 𝐸[𝑋𝑗])],                                                                                                   (5) 

where E is the mean operator. This approach is reliable when GMOM ensembles are large enough, so that the dispersion 

between the members of the ensemble adequately represents the GMOM uncertainties. We use this approach with the LEGOS 

ensemble of 216 ocean mass solutions but we can not apply it with the ensemble of mascon solutions which has only 3 distinct 

members. For the mascon ensemble, the uncertainty is simply computed as the standard deviation between the three solutions. 290 

The second step consists in calculating the variance-covariance matrices for the GMTSL time series (𝛴𝐺𝑀𝑇𝑆𝐿). The GMTSL is 

obtained by calculating the differences between the GMSL and the GMOM. We consider the errors in GMSL independent 

from the errors in GMOM and estimate 𝛴𝐺𝑀𝑇𝑆𝐿  as the sum of 𝛴𝐺𝑀𝑆𝐿and 𝛴𝐺𝑀𝑂𝑀 . Note that this assumption is not verified in 

reality as some errors are correlated between GMSL and GMOM like the errors related to the GIA correction and the error 

associated to the positioning of the reference system (in particular to the geocenter position). But the amplitude of these errors 295 

is very different in altimetry and space gravimetry. While the error in GIA correction and in the geocenter position are 

important in space gravimetry (see for e.g. Uebbing et al., 2019; Blazquez et al., 2018), their effect on satellite altimetry is 

small (see for e.g. Ablain et al., 2019 and reference there in). Thus, on the overall, the correlation in satellite altimetry and 

space gravimetry of the GIA and the geocenter correction errors is expected to have a small effect and we neglect it here.   

In the third step we propagate the errors in the calculation of the GOHC change. As the GOHC change is derived from the 300 

GMTSL by dividing it by the global coefficient of EEH 𝜀, the uncertainty on 𝜀 (𝑒𝜀) has also to be considered: 

𝐺𝑂𝐻𝐶(𝑡) =  
𝐺𝑀𝑇𝑆𝐿(𝑡) ± 𝑒𝐺𝑀𝑇𝑆𝐿(𝑡)

𝜀 ± 𝑒𝜀
,                                                                                                                                               (6) 

The error propagation for the division of the two uncorrelated variables GMTSL(t) and 𝜀  with a respective uncertainty 

𝑒𝐺𝑀𝑇𝑆𝐿(𝑡) and 𝑒𝜖 leads to the following form for the variance-covariance matrix of GOHC change time series (𝛴𝐺𝑂𝐻𝐶 ) (e.g. 

see Taylor, 1997, eq. (3.8)):  305 

𝛴𝐺𝑂𝐻𝐶  =  
1

𝜀2 𝛴𝐺𝑀𝑇𝑆𝐿 + (
𝜀

𝑒𝜀
)

2

𝐺𝑂𝐻𝐶 ∗ 𝐺𝑂𝐻𝐶𝑡,                                                                                                                         (7) 

This equation shows that GOHC errors depend on the uncertainty 𝑒𝜖but also on the value of 𝜀.  

The last step is the propagation of errors in the EEI, obtained after filtering and deriving the GOHC with respect to time and 

adjusting it with 𝛼 the fraction of energy entering the ocean. These complex operations do not allow to express the errors of 

the EEI with a literal expression as for the GOHC change (Eq. (7)). An empirical approach is then proposed to first derive the 310 

variance-covariance matrix of GOHU time series (𝛴𝐺𝑂𝐻𝑈). It firstly consists in generating a set of GOHC errors time series 

(𝑒𝑘) whose variance-covariance matrix is 𝛴𝐺𝑂𝐻𝐶. They are obtained by the product of the Cholesky decomposition of 𝛴𝐺𝑂𝐻𝐶  

(𝛴𝐺𝑂𝐻𝐶 =  𝐴𝐴𝑡), and a random vector (𝑅𝑘) following a Gaussian vector of mean 0 and covariance matrix the identity: 

https://doi.org/10.5194/essd-2021-220

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 12 July 2021
c© Author(s) 2021. CC BY 4.0 License.



11 

 

ek  =  𝐴𝑅𝑘
t ,                                                                                                                                         (8) 

Each 𝑒𝑘 is then filtered by a low-pass filter at 3 years to provide a set of GOHU errors time series from which the variance-315 

covariance matrix 𝛴𝐺𝑂𝐻𝑈 is easily inferred (see Eq. (5)). The final operation consists in applying the formulation from Eq. (7) 

for the division of the GOHU by the 𝛼 fraction. 𝛴𝐸𝐸𝐼 is obtained simply from 𝛴𝐺𝑂𝐻𝑈 neglecting any errors in 𝛼: 

𝛴𝐸𝐸𝐼  =  
1

𝛼2 𝛴𝐺𝑂𝐻𝑈 ,                                                                                                                        (9) 

Once variance-covariance matrices are known, the statistical parameters (e.g. trend, acceleration) can be fit at any time-spans 

from a linear regression model (𝑦 = 𝑋𝛽 + 𝜖) applying an Ordinary Least Square (OLS) approach, where the estimator of 𝛽 320 

with the OLS, noted �̂�, is:  

 �̂� ∼ (𝑋t𝑋)−1𝑋𝑡y ,                                                                                                                                    (10) 

and where the distribution of the estimator �̂� takes into account 𝛴 and follows a normal law:   

�̂� =  𝑁(𝛽, (𝑋𝑡𝑋)−1(𝑋𝑡𝛴 𝑋) (𝑋𝑡𝑋)−1)  ,                                                                                  (11) 

This mathematical formalism was fully described in Ablain et al. (2019) to estimate the uncertainties of the GMSL trend and 325 

acceleration. It is applied in this study to derive the realistic uncertainties of GOHC and EEI trends. The uncertainty envelope 

can also be derived from the square root of the diagonal terms of 𝛴. 

5 Ocean heat content change: results & validation 

5.1 Global and regional OHC change 

The GOHC trend is +0.70 ±0.20 W m-2 for the period from August 2002 to August 2016 (Fig. 3a). It indicates the rate at which 330 

oceans accumulate heat and gives an estimate of the average GOHU. This value is significant when compared to its uncertainty 

of ±0.20 W m-2. In this trend uncertainty, the contribution from satellite altimetry uncertainty is higher than the contribution 

from space gravimetry uncertainty. The GMSL error budget provided by Ablain et al. (2019) is by construction comprehensive 

and conservative (all choices are conservative in particular the representation of the error in wet tropospheric correction and 

its time correlation are probably slightly overestimated) and leads to GMSL errors that are likely slightly overestimated. In 335 

addition, the total GMSL errors have been validated against independent measurements from tide gauges (e.g. Watson et al., 

2015) so there is high confidence that the 90 % CL uncertainty in GMSL used here is an upper bound of the real uncertainty 

in GMSL. GMOM errors are deduced from an ensemble of GRACE solutions (update of Blazquez et al., 2018) accounting for 

all known sources of errors including instrumental errors (e.g. taken into account using solutions from different centers) and 

post-processing choices (e.g. geocenter, oblateness, filter, GIA). Although we are confident the current state-of-the-art post 340 

processings used in the ensemble of solutions provide a reliable coverage of the real associated uncertainty, we can not rule 
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out the possibility that the resulting GMOM uncertainty is slightly underestimated because of some unknown small undetected 

systematic bias among state-of-the-art post processing. Another issue is that there is no validation of GMOM against 

independent data available yet. The global freshwater budget offers a potential approach to validate the GMOM estimates 

against independent estimates derived from the sea ice volume changes and the ocean global salinity estimates (e.g. Munk, 345 

2003). But the first results show that estimates of the global ocean salinity are not accurate enough to provide an efficient 

validation (Llovel et al., 2019). For these reasons, we have a smaller confidence in the GMOM uncertainty estimate than in 

the GMSL uncertainty estimate leading to a confidence in our GOHC change uncertainty estimate that is between medium and 

high. Note that compared to previous estimates in Meyssignac et al. (2019) the uncertainty in GOHC change is reduced here. 

This is essentially due to the updated estimate of the global EEH coefficient with Argo data that leads to a smaller uncertainty 350 

than the estimate of Levitus et al. (2012) used in Meyssignac et al. (2019) (see Meyssignac et al., In prep). 

Regional OHC trends for the period from August 2002 to August 2016 are generally positive ranging from -1 to +2 10-3 W m-

2 (Fig. 4). As the OHC is an integrative variable, it depends on the area considered in the computation. In this case the difference 

between the surface considered in the GOHC change and the surface considered in regional OHC change is of the order of 2 

10-4, explaining the difference of 3 orders of magnitude between the typical GOHC and the typical regional OHC changes. 355 

The spatial patterns depicted by the GOHC trends are highly correlated to climate mode fingerprints retrieved for example in 

steric anomalies (eg. Pfeffer et al., 2018). These include for instance the Pacific Decadal Oscillation, dividing the North Pacific 

along a typical northeast - southwest chevron pattern (e.g. Mantua and Hare, 2002), and the El Niño–Southern Oscillation (e.g. 

Enfield and Mayer, 1997), consisting in a typical west-east oscillation of the temperature in the tropical and South Pacific. The 

spatial patterns observed in the North Atlantic are likely related to the warming of the Gulf Stream in the Northeast Atlantic 360 

and to the cooling of the Atlantic Meridional Overturning Circulation (AMOC) bringing warm waters from the tropical Atlantic 

to the Northwest Atlantic (e.g. Ruiz-Barradas et al., 2018). The positive anomaly in the Indian Ocean is likely related to the 

warm pool, recording higher temperature increase during the last decades than the global ocean (e.g. Rao et al., 2012; Weller 

et al., 2016; Lee et al., 2015).  

5.2 Comparison with estimates based on in situ temperature profiles  365 

To evaluate our GOHC change estimate, we compare it with independent estimates over the period 2005-2015. The processing 

of the Argo gridded ocean in situ temperature products into GOHC change time series is described in section 3.4. The validation 

is restricted to the period January 2005-December 2015, because the coverage of the Argo network becomes nearly global 

only after 2005 and because afterwards issues in the Argo salinity products lead to artefacts in the salinity climatology and 

further in the GOHC change products. Over 2005-2015, the space geodetic GOHC trend of +0.71 ± 0.23 W m-2 is in agreement 370 

within the uncertainties with the Argo-based GOHC trend of +0.59± 0.13 W m-2 and also with the CMEMS GOHC trend of 

+0.60± 0.25 W m-2 (Table 1). 

As an indication, the average GOHC trend deduced from another combination of altimetry and gravity measurements has been 

also calculated using three GRACE mascon solutions (see Table 1). A low value of 0.56 W m-2 is obtained for the 2005-2015 
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time period, but it is still consistent with the MOHeaCAN product as it is in the uncertainty range of the GOHC trend estimated 375 

from the MOHeaCAN product (+0.71 ± 0.23 W m-2). To check more precisely the consistency between the mascon-based 

estimate of the GOHC trend and the MOHeaCAN estimate we re-estimate the MOHeaCAN GOHC trend over 2005-2015 

using only the sub-ensemble of GRACE spherical harmonic solutions that is based on the same post-processing choices as the 

mascon solutions. In this case we find a result (+0.61 ± 0.18 W m-2) that is closer by less than 0.05 W m-2 to the mascon-based 

estimate. This precise consistency at the level of 0.05 W m-2 gives confidence in our estimate. The residual difference could 380 

be due to sources of errors that were omitted in the calculation of the spherical harmonic ensemble, such as incomplete leakage 

errors or differences in the regularisation process of the mascon solutions and the spherical solutions. 

The space geodetic GOHC interannual variations of 5 107 J m-2 are presented in Fig. 5. We find the interannual variations in 

GOHC change in agreement with Argo-based estimates for time scales greater than 3 years, low during the period from 2006 

to 2011, and high during the period from 2011 to 2015 (Fig. 5). At shorter time scales (lower than 3 years), variations in GOHC 385 

change are poorly correlated. At these time scales, part of the signal is due to the internal variability of climate (e.g. ENSO) 

that may not be detected in the same way by both space geodetic and Argo-based estimates because of their different time and 

space resolution. In addition, GOHC variations depicted by all datasets suffer from a lack of accuracy at these time scales to 

analyse any differences in a significant way (see the large uncertainty envelope at sub annual time scales shown in Fig. 5). 

 390 

At regional scale, over the period 2005-2015, space geodetic and Argo-based OHC trends are similar (Fig. 6). Overall there is 

a fairly good spatial coherence of the observed spatial structures as in the Equatorial Pacific Ocean and in the Northern Atlantic 

but the amplitude of the signals is systematically higher in the space geodetic OHC trend. In addition some discrepancies are 

observed in Indian Ocean where space geodetic OHC trends are about two times the Argo-based estimates. Although input 

data are similar, the OHC trends based on the various Argo datasets also show differences at regional scales up to 2.6 10-3 W 395 

m-2 among different Argo products. This is the same order of magnitude as the difference with the regional MOHeaCAN trends 

(Fig. 6). These analyses on a regional scale provide insights on the regional structure of the signal. They remain preliminary 

and present several limitations. On the one hand, the contribution of the regional halosteric signal is not taken into account 

here in the calculation of the space geodetic OHC change. Ocean salinity change may have a significant impact in some local 

regions (as in the southeast Indian Ocean (Llovel and Lee, 2015), in the northwest Indian Ocean or close to the Arctic ocean). 400 

On the other hand, the regional contribution of the deep ocean in the Argo data (restricted to 0-2000m) is not considered. These 

limitations will be the subject of future work and may lead to a better agreement between the OHC trends observed by space 

geodetic data and Argo data.  

6 Earth Energy Imbalance: results & validation  

The space geodetic approach provides the mean EEI estimate and also the temporal evolution of the EEI over the 15-year 405 

period from August 2002 to August 2016 (Fig. 3). The mean EEI of +0.74 ± 0.22 W m-2 is obtained from the GOHC trend 
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corrected to account for the energy uptake from land, cryosphere and atmosphere. This mean EEI value represents an enormous 

amount of energy when it is integrated onto the entire Earth's surface at the top of the atmosphere. For information, it represents 

a total energy uptake of the Earth of about 350 TW (i.e. about 1000 times the power of the world's nuclear power plant). Our 

EEI estimate indicates a positive trend of 0.02 ± 0.05 W m-2 yr-1, representing a non-significant acceleration of the energy 410 

uptake by the ocean over 2002-2016. Longer time series or more accurate data are needed to analyse this acceleration. Our 

EEI estimate also shows large interannual variations of EEI from -0.5 to 2.0 W m-2 (Fig. 3) between 2002 and 2016 that are 

due to climate-change variations of GOHC change or to internal variability. Further studies are needed to determine the causes 

for these variations. At 3-year time scales the uncertainty of our EEI estimate varies from 0.8 to 1.0 W m-2. Such a level of 

uncertainty shows that the monthly signals in our EEI estimate is for the moment subject to too many errors to be interpreted. 415 

  

Space geodetic EEI is compared at interannual time scales with Argo-based and CERES-based EEI estimates (Fig. 7). Signals 

lower than 3 years are filtered out in all EEI time series. EEI means and trends are also removed beforehand from each dataset 

to compare EEI variations at interannual scales.  

The interannual signals are better correlated between the time series from space geodetic and CERES data than with the Argo-420 

based data. Although the amplitude of the space geodetic EEI signal is slightly higher (up to 0.8 W m-2), they appear to be 

fairly well phased between 2006 and 2013 (same phase within a few months). In contrast, the Argo-based EEI have similar 

amplitudes to those of CERES, but are mostly out of phase. The short time period of the in situ data in particular limits the 

analysis of these signals. To date, the origin of the discrepancies between these different EEI estimates remains under 

investigation. They are all impacted by internal variability, in particular ENSO (e.g. mid-2007-mid 2009 (Loeb et al., 2012), 425 

2011) and the high frequency signals (monthly to biannual). Regional signature of the internal variability may not be the same 

in the different observing systems (owing to their different spatial and temporal resolution) leading to discrepancies in EEI 

estimates. Observing systems with incomplete coverage may miss some important signals that sign at global scale. Another 

source of discrepancy among EEI estimates is that we assumed for the geodetic approach and the in situ approach that 90 % 

of the excess of energy due to EEI is captured by the ocean. While this assumption is reasonable at biannual and longer time 430 

scales (Palmer and McNeal 2017), it is probably not true at smaller time scales when atmosphere and to a smaller extent land 

and cryosphere exchange larger portions of energy with the ocean. This too simple assumption may explain some discrepancies 

between the CERES estimate on one side and the geodetic and the in situ estimates on the other side. 

7 Data availability  

Changes in OHC at global and regional scales, and the EEI are gathered in the “MOHeaCAN” product v2.1, available online 435 

at https://doi.org/10.24400/527896/a01-2020.003 with the complete associated documentation (product user manual and 

algorithm theoretical basis document). 
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8 Conclusions and outlook 

This study provides the first space geodetic estimate of the Earth energy imbalance and changes in ocean heat content at global 

scale, with rigorous assessment of the uncertainties using a formal error propagation approach. It is based on the assumption 440 

that monitoring heat accumulation in the ocean, with a combination of satellite altimetry and gravimetry measurements, is 

representative of the vast majority (~ 90 %) of the energy imbalance observed at the top of the atmosphere. The mean value 

of the EEI derived from this space geodetic approach over the period August 2002 to August 2016 is +0.74 ± 0.22 W m-2.  This 

figure is fully in agreement with independent data based on in situ measurements (Argo network) within the confidence level 

of the uncertainty. Furthermore, although this is a preliminary calculation, the OHC change is also calculated for the first time 445 

at regional scale thanks to a set of expansion efficiency of heat coefficients estimated from in situ Argo data. The spatial 

patterns retrieved in the OHC trends are highly correlated to climate mode fingerprints observed in steric anomalies (e.g. 

Pfeffer et al., 2018). They also correlate well with regional OHC trends derived from in situ Argo data, despite known 

limitations in these regional estimates (e.g. deep ocean in Argo data, salinity ocean change not corrected in altimetry and 

gravimetry approach).  450 

The rigorous uncertainty estimate proposed here has still a few limitations. It does not account for the loss of spatial coverage 

imposed by the Argo geographical mask in the computation of the expansion efficiency of heat. It does not include either the 

errors related to the estimation of the global EEH value over the first 2000 m depth only (i.e. the effect of the deep ocean on 

the EEH value is neglected). Furthermore, no error on the fraction of energy entering the ocean α is included in the EEI 

uncertainty. Finally, the approach depends on the knowledge of the GMSL and GMOM error budget. These error budgets can 455 

be improved further. In particular, an effort must be made to better describe the errors in spatial gravity measurements, 

especially to include the uncertainties related to the differences in the harmonic and mascon approaches in the error budget. 

The consistency between the processing of altimetry and gravimetry data could still be improved for instance by homogenising 

the GIA datasets used to correct the gravimetry signals and the sea level from altimetry. Also atmospheric effects should be 

harmonised. Indeed, altimetry data are currently processed with the dynamical atmospheric correction (Carrère and Lyard, 460 

2003) while only the inverse barometer correction is applied in gravimetry processing (Blazquez et al., 2018). Another area 

for improvement is the extension of the spatial and temporal scales of the OHC change and EEI estimation. While altimetry 

and GRACE data are available together since August 2002, the datasets provided in this study are limited in time (August 

2002-August 2016) and space (Argo mask) as the objective of this study is to demonstrate the feasibility of such an approach 

(proof of concept) using reliable GRACE measurements and EEH data over the Argo geographical mask. However, in the 465 

future, the OHC change and EEI time series could be extended in time using the GRACE-FO data already available from 

August 2018. This requires managing issues related to the 11-month gap between GRACE and GRACE-FO data (July 2017-

June 2018) and the degradation of GRACE data quality after August 2016. The OHC change could also be estimated outside 

the current Argo mask by extrapolating the EEH coefficient grid to the full ocean using ocean reanalyses. 
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This study emphasises that the synergy between spatial data (altimetry and gravity) and in situ data (Argo Network) is essential 470 

to obtain accurate estimates of OHC change. The former contributes to observing the total OHC variations over the whole 

water column and with a very good spatial and temporal resolution since 2002, while the latter provides a quasi-global coverage 

since 2005 and allows access to the vertical structure of the thermal expansion of the ocean down to 2000 m depth. The capacity 

of both observing systems to provide independent estimates of the EEI since 2005 is absolutely essential. It enables independent 

comparisons which is the unique method to robustly check and validate the final EEI estimates. By pointing to discrepancies 475 

among different EEI estimates from different observing systems, intercomparisons foster further development to understand 

the causes for discrepancies. As we understand these discrepancies, the different estimates will improve and we can expect 

significantly more precise and more robust estimates of the EEI in the coming decade. It is crucial that the space geodetic 

observing system and the Argo network continue the monitoring and improve their coverage and accuracy in the years to come 

to support this effort.   480 

Appendix A 

The GRACE LEGOS ensemble V1.4: 

GRACE LEGOS V1.4 is an ensemble of 216 global water mass transfer solutions derived from GRACE and GRACE-FO 

mission covering the period from August 2002 to December 2020 at monthly time scale and with a spatial resolution of 1 

degree. The total amount of water remains constant from one month to another for each solution. The ensemble is based on L2 485 

spherical harmonic solutions from 6 different centers: COST-G RL1.2, CNES RL5.0, CSR RL06, GFZ RL06, JPL RL06, and 

TUGRAZ ITSG2018. Atmosphere and ocean dealiasing models are restored using AOD1B RL06 (Dobslaw et al., 2017) except 

for the CNES solution where ERA interim and TUGO models where used. Ocean dealiasing model is restored and C0 

coefficients are corrected in the spherical harmonics to compensate for the total amount of water vapor in the atmosphere 

expressed in C0 GAA (Chen et al, 2019). The ensemble includes also a large variety of choices for post-processing corrections 490 

including: 3 geocenter motion (Lemoine and Reinquin (2017), Uebbing et al., (2019), and Sun et al., (2016)) , 3 oblateness of 

the Earth ( (Cheng et al., 2013), Lemoine and Reinquin (2017), and Loomis et al., (2019)), 2 GIA correction (ICE6G-D (Peltier 

et al., 2018) and Caron et al., (2018). In order to reduce the anisotropic noise DDK filters are applied to the L2 solutions, 

including DDK5 and DDK6 (Kusche et al., 2009) except for the CNES solution where a truncated single value decomposition 

scheme is used for the inversion instead of a classical Cholesky inversion. This method reduces the noise drastically but on the 495 

other hand the coefficients of high degree where information is scarce are normalized to the mean coefficients (Lemoine et al., 

2016). Solid Earth displacement due to the largest Earthquakes (Sumatra 2004 and 2012, Tohoku-Oki 2010 and Chili 2010) 

are corrected following (Tang et al., 2020). Moreover, a new method to convert from spherical harmonics to equivalent water 

height is applied (Blazquez et al. in prep). This method consists in using high spatial a priori solutions to reduce leakage and 

Gibbs effects. The spherical harmonics solution is separated in the a priori part using external data as land/ocean masks, glacier 500 
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mass trends (Hugonnet et al., 2021) and lake volume change (Crétaux et al., 2016) and the rest of the harmonics solution which 

contains less signal and must be filtered. 

 

 

Figure 1: Comparison of global mean ocean mass changes from satellite gravimetry based on spherical harmonics solutions (LEGOS 505 
ensemble V1.4, in grey) and mascon solutions over August 2002-August 2016 for the global ocean. The mean of the full spherical 

harmonic ensemble is shown in red. The mean of the spherical harmonic ensemble subset consistent with mascons is shown in orange. 
The mean of the three mascon solutions considered in this study is shown in blue. 
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Table 1. Global ocean heat content (GOHC) trend and associated uncertainties as estimated from the various datasets depicted in 705 
this paper. Uncertainties are given within a 90 % CL.  

Data type Source 

Spatial coverage (a) 

Temporal sampling (b) 

Depth range (c) 

GOHC trend (W m-2) 

1/2005-12/2005 8/2002-8/2016 

Temperature 

and salinity 

profiles from 

Argo network 

Ensemble of OHC change solutions 

provided by several international 

groups(1) 

(a) Argo mask (Fig.1) 

(b) Monthly sampling 

(c) 0-2000 m + deep 

ocean contribution of 

+0.07 W m-2 

+0.59 ± 0.13(2) Not available 

Combination of 

in situ data 

(Argo network)  

and reanalyses 

Ensemble of OHC change solutions 

from CMEMS (Ocean Monitoring 

Indicator) 

(a) Global 60° S-60° N 

(b) Annual sampling 

(c) 0-700 m 

+0.60 ± 0.25(3) 
+0.60 ± 0.25(3) 

(2003-2016) 

Space geodetic 

data 

Sea level 

grids from 

C3S 

Ensemble mean of 216 

solutions based on 

spherical harmonic 

approach (detailed in this 

paper) 

(a) Argo mask (Fig.1) 

(b) Monthly sampling 

(c) 0-bottom 

+0.71 ± 0.23 +0.70 ± 0.20 

Ensemble mean of 3 

solutions based on 

mascon approach (JPL, 

CSR, GSFC) 

+0.56 ± 0.21(4) +0.57 ± 0.18(5) 

 

(1) List of Argo international groups: 

EN4 data set from the Met Office Hadley Centre (Good et al., 2013), including MBT and XBT data corrected by Gouretski 

and Reseghetti (2010) and Levitus et al. (2012), 710 

IAP (Institute of Atmospheric Physics of the Chinese Academy of Sciences), including MBT and XBT data corrected by 

Gouretski and Reseghetti (2010) and Levitus et al. (2012), 

IPRC (combined to altimetry data), 

IFREMER (Gaillard et al., 2016; Kolodziejczyk et al., 2017), 

Ishii et al. (2017), 715 
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JAMSTEC (Japan Agency for Marine-Earth Science and Technology) MILA GPV (Mixed Layer data set of Argo, Grid Point 

Value) product data set (Hosoda et al., 2010),  

NOAA (National Oceanic and Atmospheric Administration) data (Huang et al., 2017),  

SIO (Scripps Institution of Oceanography) climatology monthly gridded 1°x1° data (Roemmich and Gilson, 2009).   

(2) Uncertainty given by the dispersion of the ensemble and uncertainty on deep ocean contribution 720 

(3) Uncertainty given by the dispersion of the ensemble 

(4) Uncertainty derived from the approach described in this study (gravimetry data uncertainty is simply computed as the 

standard deviation between the 3 mascon solutions). GOHC trends obtained with each mascon dataset - JPL: 0.60 W m-2, CSR: 

0.55 W m-2, GSFC: 0.54 W m-2. 

(5) Uncertainty derived from the approach described in this study (gravimetry data uncertainty is simply computed as the 725 

standard deviation between the 3 mascon solutions). GOHC trends obtained with each mascon dataset - JPL: 0.61 W m-2, CSR: 

0.56 W m-2, GSFC: 0.54 W m-2. 
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 740 

Figure 1: Expansion Efficiency of Heat (EEH) coefficients (m J-1) at regional scale (3x3 degrees) provided by Meyssignac et al., in 
prep.. 
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Figure 2: Propagation of errors from the global mean sea level (GMSL) change and global mean ocean mass (GMOM) change time 745 
series until the global ocean heat content (GOHC) change and Earth energy imbalance (EEI) time series.  
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Figure 3: Times series of (a) global ocean heat content (GOHC) change and (b) Earth energy imbalance (EEI) from space geodetic 

approach (MOHeaCAN v2.1) over the August 2002-August 2016 period. Data spatial distribution considered for the GOHC change 750 
computation is presented in Fig. 1. The uncertainty envelopes are superimposed (at 1-sigma). Uncertainties on trends and means are 

reported within a 90% confidence level (1.65-sigma). The GOHC change curve is shifted along the ordinate axis to start from the 
origin in 2002. Grey areas correspond to data gaps in the gravimetry product used for the space geodetic GOHC change. 
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Figure 4: Map of ocean heat content trends from space geodetic approach (MOHeaCAN v2.1) computed over the August 2002-755 
August 2016 period, 3x3 degree resolution. 
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Figure 5: Interannual variations of global ocean heat content (GOHC) change. A 13-month low-pass filter is applied after removing 

periodic signals (annual and semi-annual) and trend. Red lines correspond to space geodetic estimates where estimates based on 

mascon ocean mass are represented in dash lines and MOHeaCAN v2.1 is represented by mean value (solid red) and the uncertainty 760 
at 1-sigma (shaded areas). Blue lines correspond to the Argo-based estimates from 2005. Grey areas correspond to the data gaps in 
the gravimetry product used for the space geodetic GOHC change. 
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Figure 6: Maps of ocean heat content trends from space geodetic approach for the period from January 2005 to December 2015 and 
at 3x3 degree resolution. 765 
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Figure 7: Interannual variations of Earth energy imbalance (EEI) time series. Mean and trend values have been removed for each 

time series and a filter has been applied to remove signals lower than 3 years. Red lines correspond to space geodetic estimates where 

estimates based on mascon ocean mass are represented in dash lines and MOHeaCAN v2.1 is represented by mean value (solid red) 

and the uncertainty at 1-sigma (shaded areas). Green line corresponds to CERES-based estimates and blue lines to the Argo-based 770 
estimates. 
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