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Abstract. A comprehensive compilation of observed records is needed for accurate quantification of surface mass balance 10 

(SMB) over Antarctica, which is a key challenge for calculation of Antarctic contribution to global sea level change. Here, we 

present the AntSMB dataset: a new quality-controlled dataset of a variety of published field measurements of the Antarctic Ice 

Sheet SMB by means of stakes, snow pits, ice cores, ultrasonic sounders and ground-penetrating radars (GPR). The dataset 

collects 3579 individual multi-year averaged observations, 687 annually resolved time series from 675 sites extending back 

the past 1000 years, and daily resolved records covering 245 years from 32 sites across the whole ice sheet. These records are 15 

derived from ice core, snow pits, stakes/stake farms, and ultrasonic sounders. Furthermore, GPR multi-year averaged 

measurements are included in the dataset, covering the area of 22025 km2. This is the first ice-sheet-scale compilation of SMB 

records at different temporal (daily, annual and multi-year) resolutions from multiple types of measurements, which is available 

at: https://doi.org/10.11888/Glacio.tpdc.271148 (Wang et al., 2021). The database has potentially wide applications such as 

the investigation of temporal and spatial variability in SMB, model validation, assessment of remote sensing retrievals and 20 

data assimilation. As a case of model estimation, records of the AntSMB dataset are used to assess the performance of ERA5 

for temporal and spatial variability in SMB over Antarctica. 

1 Introduction 

Under the background of rapid global warming, wide international concerns have been arouse on changes in the Antarctic Ice 

Sheet (AIS) mass balance, which positively contributed 14.0±2.0 mm to global sea level rise over 1979-2017 (Rignot et al., 25 

2019). Antarctic mass balance is dependent on the partitioning between ice discharge into the ocean and net snow accumulation 

at the surface, i.e., surface mass balance (SMB). Recent negative mass balance of the ice sheet reflects larger ice dynamical 

loss than mass gain from SMB (e.g., Shepherd et al., 2012; Shepherd et al., 2018). Despite the responsibility of ice discharge 

for Antarctic mass balance on the decadal or longer time scales, considerable inter-annual variability is largely determined by 

fluctuations in SMB (Rignot et al., 2019). Because annual net mass input into the entire ice sheet through snowfall is equivalent 30 
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to about 6 mm global sea level decline (IPCC, 2019), any small fluctuations in the Antarctic SMB can even result in large 

variability and trends of global sea level. 

 

SMB is defined as the sum of precipitation, surface and drifting snow sublimation, erosion/deposition caused by drifting snow, 

and surface meltwater run-off. Since the first international polar year 1957/58 (IPY), a number of scientific Antarctic 35 

traverses/expeditions have been performed with the goals of SMB measurements by means of stakes, ice cores/snow pits, 

ultrasonic sounders, or ground-penetrating radar (GPR) (e.g., Isaksson and Melvold, 2002; Mayewski et al., 2005). Due to 

logistical constraints in the harsh environment, gaps in the spatial coverage of SMB measurements are still large, and long-

term samplings are also scarce (Favier et al., 2013). As a result, substantial caveats have been encountered when quantifying 

SMB at the ice sheet scale by using simple interpolation of these observations (Magand et al., 2008; Genthon et al., 2009). 40 

Climate models and various atmospheric reanalysis products provide an important choice to assess SMB for large areas. The 

outputs of regional climate models have been used to calculate ice sheet SMB in recent decades by a wealth of Antarctic mass 

change estimate studies (e.g., Rignot et al., 2011; Shepherd et al., 2012; Rignot et al., 2019). However, these simulations 

depend on ground-based observations to improve their accuracy and resolution. Before application, the model’s performance 

need to be carefully assessed based on in situ observations, as done by some previous studies (Medley et al., 2013; Wang et 45 

al., 2015; Van Wessem 2018; Agosta et al., 2019; Wang et al., 2020). To improve the ice sheet SMB estimates, field 

measurements have been used by cross comparison with remotely sensed data (Arthern et al., 2006), or outputs of the climate 

models (e.g., Monaghan et al., 2006; Van de Berg et al., 2006; Medley et al., 2019; Wang et al., 2019). Thus, it is still pivotal 

to compile all available observations from the past to present to better estimate spatial and temporal variability in SMB, and 

to constraint climate models and remote sensing algorithm.   50 

 

Vaughan and Russell (1997) performed the pioneering work to compile all multi-year averaged SMB field measurement data 

over the AIS, and this compilation was detailly introduced by Vaughan et al. (1999). However, according to Magand et al. 

(2007), this dataset includes a lot of unreliable data, and should be used with caution. To improve this, Favier et al. (2013) 

updated the database using the new field measurements carried out during 1999-2012, through a quality control proposed by 55 

Magand et al. (2007). Recently, several compilations of SMB measurements at annual resolution have been published (e.g., 

Mayewski et al., 2013; Altnau et al., 2015; Thomas et al., 2017, Montgomery et al., 2018). In spite of numerous field 

measurements in these datasets, most cover only limited area of the AIS. In particular, these datasets missed a large amount of 

annually resolved stake/stake farm observations, such as data from the Japanese Antarctic Research Expedition (JARE), South 

Pole and Vostok, and so on. In addition, available SMB measurements derived from GPR are not or at least not fully collected 60 

into these datasets. Furthermore, all available ultrasonic sounder data from automatic weather stations (AWSs) at daily or 

higher resolution have not been compiled until now. 
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In this study, our objective is to generate a comprehensive SMB database for Antarctica, using all available measurements by 

means of stake or stake network, snow pit or ice core, GPR, and ultrasonic sounder, with the control of data quality. This 65 

dataset includes SMB measurements at daily, annual, and multi-year resolutions, which can be applied for validation and 

calibration of climate models and remote sensing, developments of remotely sensed algorithm, examination of spatial and 

temporal patterns in Antarctic SMB and estimate of the drivers of SMB changes across multiple scales. As a case of model 

validation, we make a comparison of the dataset with ERA5 reanalysis. 

2 Description of the AntSMB dataset 70 

2.1 Data collections and sources 

We compile the dataset of SMB measurements over the AIS by searching the literature and public data portal platforms (e.g., 

the National Snow and Ice Data Center, NSIDC, PANGAEA and World Data Service for Paleoclimatology, NOAA), by 

collecting the supplements of publications, and by asking individual data generators to contribute their field measurements by 

email. If two or more request emails were not replied, we consider the data to be unavailable for the public, and thus they are 75 

not included in this dataset.  

 

The new data resources of the records in the database include GPR measurements over West Antarctic coastal zones during 

2010-2017 (Dattler et al., 2019), over the Thwaites Glacier in 2009 (Medely et al., 2013), and  along between Dome C and 

Vostok in 2012 (Le Meur et al., 2018), respectively (Fig.1). They cover the area of  22025 km2. A large amount of new stake 80 

measurements were acquired by revisiting the traverses from Zhongshan Station to Dome Argus (Ding et al., 2015), from 

Syowa Station to Dome Fuji (Motoyama et al., 2015), and between Progress Station and Vostok Station (Khodzher et al., 

2014). In addition to a new long-term ice core SMB records at the South Pole (Winski et al., 2019), this dataset includes 

previously published but unreleased time series of SMB records from ice cores drilled over the Lambert Glacier Basin (Xiao 

et al., 2001; Li et al., 2009; Ding et al., 2017). Furthermore, an important update of annually resolved SMB data results from 85 

the continuous stake network measurements performed at the South Pole, Vostok, and six sites of the transverse between 

Syowa Station and Dome Fuji. In addition, this is the first public release of the published high-resolution ultrasonic sounder 

observations on Berkner Island (Reijmer et al., 1999; Reijmer and Van den Broeke, 2003), Dronning Maud Land (Van den 

Broeke et al., 2004), East Antarctic Plateau (Reijmer and Van den Broeke, 2003), and Chinese transvers from Zhongshan 

Station to Dome Argus (Liu et al., 2019), which are very useful for the investigation of intra-annual and seasonal cycles of 90 

SMB. The other records of the database are obtained from existing SMB data compilations, including the multi-year averaged 

SMB measurements by Favier et al. (2013) and Wang et al. (2016), time series of ice core records at annual resolution by 

Mayewski et al. (2013), Altnau et al. (2015) and Thomas et al. (2017), and SMB component measurements over the Antarctic 

Ice Sheet and Greenland Ice Sheet (SUMup dataset) by Montgomery et al. (2018).. 
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2.2 Selection criteria 95 

In order to establish a comprehensive, complete and quality-controlled AIS SMB product for a variety of scientific application, 

quantitative criteria are designed for record inclusion in the database to centre on the high-resolution and well-dated records, 

and to optimize data spatial coverage. The criteria are as follows. 

 

Firstly, the records must be published through peer-review or publicly available. The duration and temporal resolution of the 100 

records vary by the measurement types. We select the ultrasonic sounder records with the minimum duration of one year. For 

annually resolved archives (ice core, stake and stake network measurements), the duration of records included in this dataset 

should be at least 10 years, but smaller than 1000 years. For the multi-year averaged observations, the included records for 

average span more than 3 years, which are the minimum number of years for an accurate estimation of the mean local SMB 

with the uncertainty of smaller than 10% (Magand et al., 2007).  105 

 

Secondly, the essential parameters for each SMB data are provided, including location, measurement methodology, data time 

coverage, and references to the primary data sources.  

 

Thirdly, the different kind of records are quality-checked to the highest degree as possible, and then selected into the dataset. 110 

1) To ensure the multi-year averaged SMB data reliable at each site, we select the data determined by the anthropogenic 

radionuclides and volcanic horizons with errors of smaller than 10%, or stake measurements for more than three years, as 

suggested by Magand et al. (2007). The records with dating based on both stable isotopes and chemical markers, and natural 

radionuclide are reliable (Magand et al., 2007), and thus included in the dataset. We also include the available GPR-based 

snow accumulation rate data, because their uncertainties can be below 5% at a firn depth of 10 m, and decrease with the 115 

increase of the depth after post-processing including interpretation of reflectors, correct density estimates, and proper 

calibration with ice cores (Spikes et al., 2004; Eisen et al., 2008).  

2) SMB records of annually resolved ice cores should be either cross-dated or layer-counted. Their chronology should include 

at least two age control points, with one near the youngest part and another near the oldest part of the time series (Stenni et al., 

2017). Also, they must be confirmed by the data generator. Furthermore, ice core SMB records are corrected for the impact of 120 

firn density and the vertical strain rate profile (Thomas et al., 2017).  

3) The preliminary quality control for AWS snow accumulation data has been performed by data owner by means of removing 

the null measurements and physically anomalous snow accumulation data (i.e., data outside of the initial and final accumulation 

values) (e.g., Braaten et al., 1997; 2000). Some high-frequency noises still occur in the AWS snow accumulation data. To 

reduce the noises, we discard the data points outside of one standard deviation of a running daily value as done by Fountain et 125 

al. (2010), and Cohen and Dean (2013). 
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2.3 Types of data measurements collected in the AntSMB dataset 

2.3.1 Stakes 

Stakes are the easiest and most traditional way to measure SMB. After placing a stake vertically in the snow or ice, relative 

variations of snow surface heights over a certain period can be determined by repeated measurements of the distance between 130 

the top of the stake and the surface. Changes in snow heights are multiplied by snow density to yield the corresponding SMB. 

This simple method has been widely applied over Antarctica by almost all national glacier surveys. However, in most cases, 

spatial representativity of a single stake records is very limited due to large natural spatial variability, and small-scale 

disturbance from post-depositional effects such as the interactions between the stake and local wind. To reduce the related 

uncertainties, stake lines along a transect or stake farms are often used (e.g., Frezzotti et al., 2005; Kameda et al., 2008; Ding 135 

et al., 2011). In particular, these measurements are useful for the investigation of the spatial distribution of SMB at the scale 

of less than kilometer.  

 

Given the repeated measurements, stake observations are only performed over the easily accessible regions. Due to logistic 

constraint in the extreme environment of Antarctica, the time span for the measurements usually ranges from 1 year to several 140 

years or even more. 

2.3.2 Snow pits/ice cores 

Snow pits and ice cores are used to construct SMB changes in time by determining the age and density of different layers. The 

dating is dependent on the different time markers preserved in the column of snow pit and ice core. Annual layer is dated 

through counting of seasonal changes in various parameters including the visual stratigraphy, the oxygen and hydrogen isotopic 145 

composition, major chemical ion content, hydrogen peroxide, electric conductivity, and so on. When intergraded with the 

prominent horizons of known age from volcanic or radioactive markers, accuracy of dating is largely improved and results in 

time series of annual snow accumulation. Furthermore, the valuable reference horizons can be also used for the estimation of 

the SMB between horizons.  

 150 

In Antarctica, counting annual layer based on the seasonal variations of multiparameter records combining with reference 

horizons can calculate annual SMB on the high accumulation zones. However, seasonal cycles can hardly be identified at 

regions with low accumulation of smaller than 100 kg m-2 yr-1, especially for the East Antarctic Plateau. Thus, reference 

horizon may be the most reliable dating method at the low accumulation area, and only yields a mean SMB between two 

reference horizons. 155 
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2.3.3 GPR 

GPR maps firn stratigraphy along a profile from the surface, and the radar identified firn layer with equal age along the 

continuous profiles can allow to gain a detailed insight into SMB patterns. To calculate SMB, the isochronous layers must be 

well dated, which is usually dependent on complementary depth-age of highly resolved ice core records along the radar profile. 

During the past few decades, grounded GPR has been widely used for the estimation of spatial variation of recent and historical 160 

SMB over Antarctica (e.g., Frezzotti et al., 2007; Anschutz et al., 2008; Müllerr et al., 2010). Most recently, the newly 

developed airborne radar systems provide the revolutionized SMB measurements over the Antarctic Ice Sheet (Kanagaratnam 

et al., 2004, 2007). It can robustly resolve the stratigraphy at the shallow (10 m) to intermediate (100 m) depths and hence to 

measure annual and multi-year accumulation rates at the width of hundreds of kilometers along aircraft flight tracks. The 

systems were firstly developed by the Center for Remote Sensing of Ice Sheets, and flown on the National Aeronautics and 165 

Space Administration Operation IceBridge (OIB) campaigns (Leuschen, 2010; Rodriguez-Morales et al., 2013). The AntSMB 

database contains records of grounded and airborne GPR observations for the 2009-2019 OIB campaigns. 

 

Relative to point measurements such as stakes, snow pits/ice cores, the advantage of GPR observations is to yield a more 

accurate representation of spatial variations of SMB. Furthermore, the radar images of deep internal horizons allow us to 170 

quantify long-term variability in SMB. The errors of GPR-based SMB observations are associated with the depth and age of 

the reflector, and extrapolation of density along the radar profile. The resulting uncertainties were estimated to be about 4% of 

the calculated SMB at a firn depth of 10 m, and about 0.5% at the depth of 60 m after the calibration of depth and layer thinning, 

and robustly dating (the isochronal accuracy of about 1 year)  (Spikes et al., 2004).  

2.3.4 AWS 175 

In Antarctica, some AWSs equipped with ultrasonic sensors measure snow surface height changes by detecting the vertical 

distance to the surface. Combining with density observation, snow height changes can be converted to SMB. Despite the poor 

quality occasionally when the blowing snow or fog happens, this method can continuously yield a high (typically hourly) 

temporal resolution records of SMB (van den Broeke et al., 2004; Gorodetskaya et al., 2013), which can be utilized to identify 

individual accumulation/ablation events, to quantify seasonal cycle of snow accumulation, and also to calculate the surface 180 

energy balance coupled with other AWS observations.  

 

Same as single ice core or stake observation, AWS measurements represent a single location, and spatial representativity is 

possibly limited. In addition, after collection of raw snow height data, the temperature-dependent speed of sound correction 

must be performed. The uncertainty of AWS height measurements is estimated to be ±1 cm or 0.4% of the distance to the 185 

surface. This means that the measurements are not sufficient to examine the smaller snow accumulation events usually 

occurring on the interior of East Antarctic Plateau. 
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2.4 Structure and metadata 

The AntSMB dataset includes three subsets, i.e., (1) multi-year averaged SMB observations from stakes, ice cores and GPR 190 

measurements, (2) annually resolved SMB measurements by ice cores, stakes and stake networks, and (3) AWS daily snow 

height measurements. To facilitate data reuse, subsampling and re-analysis for scientific research efforts, each record in the 

three sub-datasets include some essential information, i.e., the name of measurement sites, site locations, measurement method, 

time coverage of the measurements, and citations. Site locations include latitude, longitude and surface elevation. Each location 

of the measurements is in units of decimal degrees relative to the WGS84 ellipsoid. As listed in the dataset’s metadata, 195 

measurement techniques include firn/ice core, snow pits, stake or stake network, ultrasonic sounder and GPR. Table 1 

summarize the essential information for each measurement. Uncertainties of any measurement methods have been discussed 

in detail by Eisen et al. (2008). 

 

Among the three subdatsets, the number of the multi-year mean SMB subdataset is largest, including  unique measurements 200 

by radar isochrones with the coverage of 22025 km2, 2276 stake measurements, and 1303 ice core and snow pit observations 

(Figure 2). The majority of these observations are derived from airborne snow radar measurements in the coastal zone of West 

Antarctica and Antarctic Peninsula, Ronne Ice Shelf, South Pole, Pine Island and Thwaites glaciers (Medley et al., 2013; 

Medley et al., 2014; Dattler et al., 2019). GPR data from two transects in East Antarctica account for 30% of all measurements 

in this subdatset. In most cases, SMB values come from original measurements. However, for the Japanese traverse route from 205 

Syowa Station to Dome F, we updated multi-year averaged SMB by combining new stake surface height measurements during 

2007-2013 with the improved snow density data from Wang et al. (2015). 

 

Annually resolved SMB subdataset contains 687 time series of records, of which 79 records come from the compilation of ice 

core snow accumulation by Thomas et al. (2017), and 26 from the shallow firn core records in Dronning Maud Land (DML) 210 

collected by Altnau et al. (2015). Continuous stake surface height measurements at sub-annual resolution are available for the 

transverse route from Syowa Station to Dome F since the 1970s (Motoyama et al., 2015). We converted the measurements to 

SMB for the subdataset by multiplying snow height changes by snow density estimated from Wang et al. (2015).  

 

AWS snow accumulation data are measured by the determination of the variations of the vertical heights between the sensor 215 

and snow using surface ultrasonic height rangers. The measurements are performed at 32 sites, of which ten are located at 

Dronning Maud Land, seven at the Ross Ice Shelf, and four along Chinese transverse route from Zhongshan Station to Dome 

A. 
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3. Spatial and temporal analysis of the AntSMB dataset 

3.1 Spatial coverage of SMB records 220 

 The comprehensive observed SMB database collects SMB field data at the daily, annual and multi-year scales from the whole 

AIS. Spatial distribution of the records is uneven within Antarctica. AWS snow accumulation measurements cover a wide 

range of areas, including coastal zone of East Antarctica (McMorrow et al., 2001) and West Antarctica (van Lipzig et al., 

2004b) with high snow accumulation, the dry East Antarctic Plateau (Reijmer and Broeke, 2003; van den Broeke et al., 2004), 

Ross Ice Shelf (Cohen and Dean, 2013), Berkner Island, Lambert Glacier drain, McMurdo Dry Valleys (Doran et al., 2002) 225 

(Figure 1a). Availability of time series from the annual resolution SMB subdataset is rich for West Antarctica, Dronning Maud 

Land, Berkner Island and traverse from Syowa Station to Dome F (Figure 1b). However, large parts of Antarctic interior with 

low snow accumulation remain undocumented, which is easily understood because the seasonal stratigraphy in ice cores is 

almost unavailable at the regions with the accumulation of smaller than 100 kg m-2 yr-1 (Frezzotti et al., 2007; Frezzotti et al., 

2013). Compared with SMB compilation by Favier et al. (2013), spatial coverage of the multi-year SMB subdataset has greatly 230 

improved, especially for West Antarctica and the Antarctic Peninsula. Despite the improvement of spatial distribution, SMB 

records are still poor for the region from the Ronne Ice Shelf via the South Pole to Dome C, and for the coastal zone of East 

Antarctica. 

3.2 Temporal variability in the SMB records 

The records in the comprehensive SMB dataset cover different time spans, ranging from a minimum of 1 year to a maximum 235 

of 1000 years. The covered time periods are closely associated with the measurement method. AWS provides very high-

resolution measurements of snow height changes, but the records generally span only a few years (1-18 years). Although a 

significant advantage of ice cores is to record SMB changes over the long timespans, it is difficult to perform these observations 

at a high spatial density. Stake farms are the easiest method to observe SMB, but continuous measurements are available 

between several years and tens of years, largely due to the logistic constraints in the extreme Antarctic environment. GPR can 240 

detect the local SMB from the last tens of years to about 1000 years along continuous profiles of the snowpack. The temporal 

resolution of GPR measurements is dependent on the age estimates of reflection horizons, and the resulting records in our 

dataset ranges from decadal to centennial.  

 

For annually resolved SMB subdataset, of 183 time series from ice core and stake network measurements, 47 span from 1801 245 

onwards (Fig. 3a). The number of time series peaks during the early 2000s when ice cores were retrieved in Dronning Maud 

Land (Altnau et al., 2015) and West AIS (Mayewski et al., 2013). Prior to 1800, the number of time series decreases greatly, 

with only ten with the duration beyond the past 500 years, and five beyond the past 1000 years (Fig. 3a). The sharp decline 

since the mid-2000s results from a lack of coring efforts. Annually resolved stake measurements cover the past 40 years, 

peaking from the mid-1990s to the early 2000s (Fig. 3b).  250 
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For the multi-year averaged SMB subdataset, 83% of the records with the exception of radar measurements cover less than 20 

years, and 43% span less than 5 years. Figure 3c presents the distribution of years when these records were measured from 

1950 onwards. The distribution of the measurements is relatively even, until the 1990s when the number of samples increase. 

The temporal coverage of radar observations ranges from 25 years to 185 years. 255 

4. Inter-comparison of the different types of SMB measurements 

The dataset compiles the different types of SMB measurements including ice cores/snow pits, stakes, ultrasonic sensors and 

GPR approaches. It is critical to investigate if the resulting data have systematic discrepancy due to the distinct measurement 

methods. In particular, the measurements by ice core, stake, and ultrasonic sensor are performed at the centimeter scale, 

whereas GPR samples at the meter scale. Despite the scale difference, near 100-year averaged GPR measurements agree well 260 

with 5-year averaged single stake at the corresponding locations along the transect near Talos Dome, with the differences of 

around 10% (Frezzotti et al., 2007). Given that no existing observed SMB dataset can be used as an independent reference to 

the different types of Antarctic multi-year averaged SMB observations, the inter-comparison of SMB determined by different 

methods at the same or near locations are made, as presented in Figure 4. They are mainly distributed near Talos Dome, along 

a transect from Terra Nova Bay to Dome C, on the western Dronning Maud Land, and at Dome F and Dome A. It is clear that 265 

despite the different averaged time coverage, they provide a reasonable match with each other, with the largest discrepancy of 

less than 20%, which are consistent with the previous similar inter-comparison (e.g., Vaughan et al., 2004; Frezzotti et al., 

2005; Anschütz et al., 2007).  

5. Comparison with the previous AIS SMB observation datasets  

Here, we present an unprecedentedly comprehensive compilation of SMB observations at the daily, annual and multi-year 270 

scales. For the compilation of the multi-year averaged SMB ground based observations including stake/stake farm, snow pit/ice 

core, and GPR, we apply the same quality control criteria as used in the compilation by Favier et al. (2013) updated by Wang 

et al. (2016). Compared with the dataset, our compilation greatly improved the data spatial coverage by updating records using 

more recent published observations along the margins of West Antarctica, across Marine Byrd Land and Antarctic Peninsula, 

around the South Pole, between Dome C and Vostok, and along the transects of Progress station–Vostok station, Dumont 275 

d’Urville–Dome C, and Talos Dome, etc. We also updated SMB records along the transects of Zhongshan Station-Kunlun 

Station and Syowa Station-Dome F based on the recent revisiting measurements. In particular, our dataset provides the first 

comprehensive compilation of grounded and airborne GPR measurements.  

 

In terms of the collections of annual resolution SMB measurements from ice core, the SUMup dataset focused on the limited 280 

ice core records at West Antarctica from the US International Trans-Antarctic Scientific Expedition during the early 2000s 

(US ITASE, Mayewski et al., 2013) and several cores drilled in 2010/2011 (Medley et al., 2013), and over the DML and 
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Berkner Island from the European Project for Ice Coring in Antarctica (EPICA, Oerter, 2008a-l). The Antarctica 2k database 

constructed by Thomas et al. (2017) included 80 ice core records spanning at least 30 years, and the shorter and other ground-

based measurement records are omitted. However, our Ant-SMB dataset focuses on the collection of annually resolved snow 285 

accumulation records from different kinds of measurements covering the whole ice sheet. As a result, this dataset contains 175 

annually resolved ice core snow accumulation records, 8 stake network measurements covering at least 10 years, and 512 time 

series of continuous stake measurements spanning more than 18 years.  

 

Previous SMB compilations centered on glaciological observations on annual and longer timescales (e.g., Vaughan et al.,1999; 290 

Frezzotti et al., 2013; Thomas et al., 2017), which are useful for the examination of trends and large-scale variability of AIS 

snow accumulation. Nevertheless, they do not shed insight on SMB changes at much shorter timescales, such as synoptic scale 

and accumulation events. AWSs provide high resolution (typically hour) snow accumulation measurements, which is an 

advantage to quantify seasonal cycle of SMB, and to examine the synoptic sources of individual accumulation events, relative 

to the other methods such as snow pits, ice cores, and stakes. Snow accumulation data from individual or several AWSs at the 295 

different sectors of Antarctica have been published by some previous studies (e.g., Reijmer and Van den Broeke, 2003; Thiery 

et al., 2012; Cohen and Dean, 2013; Thomas et al., 2015). However, these data have been not well compiled until now. Our 

dataset is the first attempt to collect all AWS snow accumulation measurements in Antarctica. 

6. Comparison with ERA5  

6.1 ERA5 output 300 

Reanalysis utilizes a large amount of observations assimilated into a numerical model to generate a spatially and temporally 

complete state of the atmosphere. Because the main assimilated data are atmospheric and oceanic measurements, reanalysis 

outputs are not entirely subjective to the density of surface observations, and thus have the potential to provide important 

information over the regions with few or even no surface observation. Recent studies have revealed that European Centre for 

Medium Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) is likely to be the best or among the best 305 

reanalysis dataset for the representation of inter-annual variability in Antarctic precipitation (e.g., Bromwich et al., 2011; Wang 

et al., 2016). 

 

ERA5 is the fifth generation ECMWF reanalysis product produced by the Integrated Forecasting System (IFS) Cy41r2 

operational in 2016 (Hersbach et al., 2020). Compared with ERA-Interim (~80 km and 60 pressure levels), a major advantage 310 

of ERA5 is much higher horizontal and vertical resolutions (~ 31km and 137 pressure levels, respectively), and more enhanced 

outputs (hourly). Furthermore, IFS Cy41r2 includes a more advanced 4DVar assimilation scheme together with an uncertainty 

estimation, and much more observations are assimilated. Detailed improvements can be found in Hersbach et al. (2020). This 

reanalysis dataset has replaced ERA-Interim, of which updates were stopped on August, 2019. Here, our main objective is to 
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know if ERA5 is able to provide a good SMB compared to the AntSMB observational dataset. Despite the recent release of 315 

ERA5 data extending back to 1950, we only use the outputs for the 1979-2018 period, due to the spurious shift of reanalysis 

outputs in 1979 largely caused by changes in the amount of assimilated observations (e.g., Zhang et al., 2018; Huai et al., 2019; 

Wang et al., 2020).  

6.2 A subset of data used for the comparison with ERA5  

6.2.1 Multi-year averaged SMB observations 320 

Given that the output of climate models center on climate information since 1979 in Antarctica, it is necessary to define a 

special dataset for the model comparison. To match with the coverage period of the models, we only retain observations starting 

from 1950 onwards in the multi-year averaged SMB subdataset. In particular, we discard observations starting for the 1950-

1978 period with the time coverage of no more than 10 years. Because blowing snow processes are not schemed by ERA5, 

190 measurements in blue ice regions (SMB values <0) are excluded. Finally, GPR measurements covering the area of 15638 325 

km2, and 3184 multi-year averaged observations are left for model-observation comparison. 

6.2.2 Annually resolved SMB observations 

To estimate the temporal performance of ERA5 for snow accumulation, we use the records from annually resolved SMB 

subdatabase covering at least 10 years starting from 1979. This results in 159 time series of annually resolved SMB. The 

representativeness of SMB measurements at a simple site for a region is influenced by local noises from the interaction between 330 

wind and local snow surface, especially in the regions with accumulation rate of  less than 120 kg m-2 yr-1 (e.g., Frezzotti et 

al., 2005, 2007; Ding et al., 2011). This can be confirmed by that on the DML plateau, ERA5 simulated individual annual 

SMB highly correlate with each other (r>0.70), but  time series of SMB records from different ice cores are poorly correlated, 

even from the same drilling site. As a result, the relationships between ice core records and the corresponding ERA5 

simulations at the drilling core location are variable, including significantly negative, positive and insignificant correlations 335 

(Fig. 5a). Various linear relationships between the simulated and observed time series are also found over the Berkner Island 

and Ronne Ice Shelf with high density of cores, with r values ranging from -0.35 to 0.67. In the two areas, difference in the 

standard deviation of annual SMB values of individual ice cores is large, even for the records from the same locations (Fig. 

5c). At the South Pole, ERA5 shows a significant correlation (r=0.68, p<0.05) with stake farm measurements, but fails to do 

so with the individual ice core records (Fig.5a). A main possibility is that SMB derived from stake networks is less noisy by 340 

removing small-scale spatial variability based on the average of a lot of stakes together. At most of sites, standard deviation of 

ice core records is larger than the corresponding ERA5 for their overlapping periods (Fig.5d). To reduce local noise and better 

assess the performance of ERA5, we first average the individual observation records in the same grid cell, and then stack the 

averaged time series at the same geographic region. If there are ice core records and stake farm observations in the same 

location, the measurements of stake farm are utilized. Because the sites at the top of ice domes likely have minor local noises 345 
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(Monaghan et al., 2006a), the four time series of ice core records from the ice domes are not discarded in the estimate. 

Following Frezzotti et al. (2007) and (2013), a single ice core site with accumulations of more than 700 kg m-2 yr-1 allow the 

determination of annual SMB at ±10% accuracy, which corresponds to the accuracy derived from the instrumental 

measurement, and hence the corresponding ice core records are retained. After the composite and filtering, 48 locations or 

regions with annually resolved SMB are left to compare with ERA5 simulations. 350 

6.3 Spatial performance of ERA5 output 

A comparison of the density distribution of ERA5 precipitation minus evaporation (P-E) with the filtered multi-year averaged 

SMB observations reveals that the multi-year averaged dataset is representative of the high accumulation zone, but not for the 

bins with accumulation rate of 100-300 kg m-2 yr-1 over the West AIS (Fig. 6a). However, this dataset represents entire P-E 

spectrum of the model over the East AIS (Fig.6b). As shown in Fig.6c and d, the dataset also represents well the samples 355 

elevation distribution of SMB in relation to the West AIS and East AIS, especially between 200 and 1000m elevations where 

it was not correctly sampled by the SMB observation dataset compiled by Favier (2013).  

 

ERA5 reveals large spatial gradients of snow accumulation over the AIS (Fig. 7a), with values higher than 1000 kg m-2 yr-1 at 

the margins, and lower values (less than 30 kg m-2 yr-1) on the hinterland of East Antarctic Plateau. There is a very high 360 

correlation between ERA5 output and the observed SMB (R2= 0.93, p < 0.01, which is calculated based on the logarithm of 

SMB values, due to the lognormal SMB distributions). The major spatial pattern of ERA5 simulations is in good agreement 

with the multi-year observations (Fig.7a). Dry biases occur in most sites of inland Antarctica and the Ross Ice Shelf, and wet 

biases in the ice sheet margins (Fig. 7b). The mean bias accounts for 6.6% of the average of observed SMB, which is slightly 

higher than regional climate models (MAR and RACMO2.3p2) (Agosta et al., 2019; Van Wessem et al., 2018). It is obvious 365 

that ERA5 robustly capture the sharp decrease in SMB with elevation (Fig.7c). Compared with observation in each 200 m 

elevation bin, ERA5 is slightly wet below 1600 m elevation, whereas dry biases occur in inland Antarctica with the elevations 

above 3000 m.  

6.4 Temporal performance of ERA5 output 

A recent study showed that ERA5 present relatively good skills for representing snow accumulation changes on the synoptic 370 

timescale, observed at the AWSs over the Ross Ice Shelf and along the traverse route from Zhongshan Station to Dome A,   

with 56%~88% of extreme snowfall events captured (Liu et al., 2019). Given that these AWS observations are included in our 

AntSMB dataset, to avoid repetition, here we make a comparison between cumulative daily snowfall from ERA5 and the 

corresponding accumulation records from 11 AWS observations over the DML (Fig. 8). Obviously, gaps in the AWS records 

occur in most stations because of the problems of sensors or data transmission. Snow accumulation decreases in the daily 375 

cumulative AWS records, and reflects the important role of drifting snow, compaction, sublimation or even ablation in the 

accumulation changes. Despite the noises of these post-deposition processes, stepped increase are observed for both ERA5 
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snowfall and AWS snow accumulation at each station in Fig. 8. Furthermore, the occurrence of large snowfall events are in 

broad consistency with the corresponding large accumulation events at all stations. These suggest in spite of the limits of AWS 

measurements due to the complex impacts of post-deposition noises, they are very useful for evaluating synoptic changes in 380 

the precipitation from reananlysis products or climate models. 

 

The correlation coefficients (r) between ERA5 simulations and SMB observations at 48 locations are shown in Fig.5b. 

Significant and high correlations are observed at two out of five sites over the Antarctic Peninsula, with r values of more than 

0.7 (p<0.05). Over the WAIS, ERA5 simulations are correlated significantly with observations (r>0.45, p<0.05) at 14 out of 385 

18 sites, and correlation coefficients exceed 0.8 at five sites, suggesting relatively good skills of simulated records for capturing 

the observed annual variability in accumulation rates. Significant and positive correlations are present over the plateau, and 

western and eastern coastal areas of the DML. Correlation coefficients show that a large fraction of inter-annual changes 

(>70%) in SMB observations at Law Dome of the Wilkes Land. The performances are relatively good for South Pole, Vostok, 

and Talos Dome. However, no significant or negative correlations are observed at the sites of the Lambert Basin, the Princess 390 

Elizabeth Land, middle DML coasts and Adélie Land.  

 

To further assess the temporal performance of ERA5, we use the continuous time series of stake measurements along the JARE 

traverse route from Syowa station to Dome F. These stake measurements are divided into four subgroups, as done for this 

traverse route by Wang et al. (2015). Stake measurements in each subgroup are stacked, and then compared with the composites 395 

of ERA5 simulations at the respective subgroup (Fig.9). ERA5 overestimates the observed SMB at the coastal and katabatic 

regions, but underestimates those at the inland plateau region. The modeled records match particularly well with observations 

at the coastal, higher katabatic and inland plateau regions, with higher r2 values of >0.5. Observed SMB at the lower katabatic 

region is simulated well by the reanalysis dataset. 

 400 

Overall, ERA5 fits interannual variability in observed SMB acceptedly at most sites over the AIS, and this reveals much of 

atmospheric circulation is represented by this reanalysis product. Nevertheless, its performance is limited at some sites of 

Lambert Basin, inland West Antarctica, and parts of East Antarctic coasts. These may result from the unresolved processes in 

ERA5 such as drifting snow, and the limited performance of ERA5 for the storm frequency related to synoptic-scale 

circulations, and sublimation because of circulation variations. Detailed interpretation of uncertainty of ERA5 is beyond the 405 

scope of this study. 

7. Data availability 

The comprehensive SMB observation dataset is available through a Big Earth Data Platform for Three Poles. The dataset can 

be downloaded from https://doi.org/10.11888/Glacio.tpdc.271148 (Wang et al., 2021). In this repository, the three subdatasets 

included in the entire dataset are provided in Excel spreadsheet format together with metadata files. 410 
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8. Discussion and conclusions  

The dataset provides an unprecedentedly comprehensive compilation of SMB observations, with better spatial coverage than 

previous studies. In particular, our compilation greatly improves spatial density of measurements in the 200-1000 m elevations 

where are not correctly sampled by the dataset from Favier et al. (2013). However, there is a clear need to increase the spatial 

density of annually resolved SMB measurements over the inland East AIS, and daily SMB observations over West Antarctica, 415 

and 90°-170°E sector of East Antarctica.   

 

This dataset can be used to estimate the temporal and spatial changes in the AIS SMB. A temporal homogeneous climatology 

of SMB for the second half of the 20th century may be obtained by temporal rescaling of the multi-year averaged SMB 

subdataset against ERA5 outputs as done by Medley et al. (2019) and Wang et al. (2019). The available syntheses of time 420 

series of records from annually resolved SMB subdataset will allow to investigate regional snow accumulation changes during 

the past several decades or centuries (Kaspari, et al., 2004; Frezzotti et al., 2013; Altnau et al., 2015; Thomas et al., 2017). The 

combination of annual SMB subdataset with reanalysis products or the outputs of regional climate models can generate gridded 

datasets to better constraint the temporal and spatial variability AIS SMB at the different scales (Monaghan et al., 2006b; 

Medley et al., 2019; Wang et al., 2019). The availability of AWS snow height measurements will allow insights into synoptic 425 

and seasonal patterns of SMB, which are vital for model estimation and ice core dating studies.  

 

In the current study, we have made a comparison between observation data and ERA5 output. As a result, in spite of 

discrepancy in magnitude, ERA5 represents spatial variations of SMB observations well, and captures a large proportion of 

the inter-annual variability. Similarly, this dataset can be used to evaluate the quality of other atmospheric reanalyses, and 430 

regional or global climate models such as JRA-55, MERRA-2, RACMO2.3, MAR and CESM. Moreover, a high spatial density 

of stake and GPR measurements along several transections from coasts to inland are included in the dataset, which correctly 

sample the actual distribution of SMB, and thus allow to provide stringent constraints on the models in these specific regions. 

Annually resolved SMB observations in the database are also likely to be used as an important input of data assimilation for 

paleoclimate reconstructions (Dalaiden et al., 2020). The dataset is of vital importance for improvement of remote sensing 435 

algorithm for Antarctic snow accumulation/snowfall rate, such as CloudSat 2C-SNOW-PROFILE product (Palerme et al., 

2014; Behrangi et al., 2016). 

 

The scientific community is expected to apply this dataset for Antarctic hydrological studies, model-data inter-comparison and 

remotely sensed algorithm developments. The cryospheric community is also encouraged to further share their SMB 440 

observation data to update this dataset in the future.  
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Table 1 Brief description of metadata fields used in the Antarctic SMB observations database 

Column 
Name of field in 

database  
Description  Format Unit 

Site name Geo_siteName Name of the site Number Code Number Code 

Dataset 

ID 
DatasetName 

Specific identifier assigned to all 

SMB records from a given site and 

publication 

Number Code Number Code 

Latitude  Geo_latidute Latitude of the site  WGS84 

Decimal 

degrees (-90° to 

90° 

Longitude Geo_longitude Longitude of the site  WGS84 

Decimal 

degrees （-

180° to 180°） 

Elevation Geo_elevation Elevation of the site  
Height above the 

EGM geoid 

m above sea 

level  

Variable 

name 
SMB 

SMB in millimetre of water 

equivalent per year 

Mass loss is 

defined as 

negative 

kg m-2 yr-1 

Method Method 
How each measurement was 

collected 
—— —— 

Starting 

date 
MinYear 

Starting date of measurement, i.e., 

minimum (oldest) year of each SMB 

record 

Number Year 

Ending 

date 
MaxYear 

Ending date of measurement, i.e., 

maximum (more recent) year of each 

SMB record 

Number Year 

Citation  Citation 
Citation for the first publication 

presenting the SMB record. 
—— —— 
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Figure 1: The comprehensive dataset of Antarctic SMB observations. (a) Spatial distribution of available AWS observations; (b) 

Locations of available annual resolved SMB observations. (c) Locations of available multi-year averaged SMB field data. Purple 

five-pointed stars standard for GPR measurements. Black points represent reliable SMB determined by stake/stake farms, ice 

cores/snow pits. (d) Location of multi-year averaged SMB data only during the second half 20th century selected for model validation. 755 
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Figure 2: Bar charts indicating the number of the different types of measurement techniques in the SMB observation dataset. The 

left bar demonstrates the distribution of approaches with the exclusion of high-resolution snow accumulation measurements and 

GPR measurements, and the covered area of GPR measurements is shown in the right bar. 
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Figure 3: (a) Availability of records excluding the stake measurements along the traverse from Syowa Station to Dome F in the 

annual resolved SMB sub-database over time during the past 1000 years. (b)Time coverage of the stake measurements along the 

traverse from Syowa Station to Dome F. (c) Histograms indicating the date taken of the multi-year averaged SMB subdaset only 765 

including ice core and stake measurements. 
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Figure 4: Inter-comparison between different types of SMB measurements including AWS, snow pit/ice core and GPR at 42 locations. 

They are mainly distributed near Talos Dome, along a transect from Terra Nova Bay to Dome C, on the western Dronning Maud 

Land, and at Dome F and Dome A. 780 
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Figure 5: Spatial distribution of the correlation coefficients (a) between annually resolved SMB observation and ERA5 simulations 

for their overlapping period (circle: ice core; diamond: stake network) , and (b) between averaged observed time series in the same 

location/region and the corresponding simulations from ERA5; (c) standard deviation of observed SMB at annual resolution; (d) 

standard deviation of annual SMB from EAR5 simulations  divided by observations   800 
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Figure 6  Relative frequency of ERA5 P-E field data and gridded averaged records from the multi-year averaged SMB subdatabase, 

with a bin range of 50 kg m-2 yr-1 on (a) the West Antarctic Ice Sheet (WAIS) and (b) the East Antarctic Ice Sheet (EAIS). ERA5 

field data are bilinearly interpolated over a 30km Cartesian grid. We average SMB for each 30×30 km grid cell (values from points 

located in the same grid cell are averaged), and then number of grid cells in each bin are calculated.  The contribution of the area of 810 

elevation bin for ERA5 grid cells containing measurements, and entire elevation range to (c) the WAIS and (d) the EAIS. The 200m 

elevation bins are used.  
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 815 

Figure 7: (a) Spatial distribution of ERA5 mean precipitation minus evaporation (approximated as SMB) for the period 1979–2018, 

and multi-year averaged SMB measurements. (b) ERA5 minus observed SMB on the ERA5 grid cells, (c) Multi-year averaged 

observations and ERA5 simulations, binned in 200 m elevation intervals. The number of ERA5 grid cells with in situ measurements 

in each elevation bin is shown by the blue line (right axis).  
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Figure 8: Cumulative daily snow accumulation and snowfall over time for each station over the Dronning Maud Land (a-k). (l) 825 

Spatial distribution of the AWS stations (Notice that AWS3 station records are not included due to a number of missing data) 
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Figure 9: The left map showing the locations of stake measurements along the traverse between Syowa Station and Dome F, and the 

regional boundaries. The right four charts showing the comparison of the inter-annual variability in spatially-averaged stake 

measurements and snow accumulation simulated by ERA5 for (a) the coastal region, (b) lower katabatic region, (c) upper katabatic 

region, and (d) inland plateau region. 835 

 


