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Abstract. Cropland greatly impacts food security, energy supply, biodiversity, biogeochemical cycling, and climate change. 

Accurately and systematically understanding the effects of agricultural activities requires cropland spatial information with 

high resolution and a long time span. In this study, the first 1 km resolution global cropland proportion dataset for 10000 

BCE-2100 CE was produced. With the cropland map initialized in 2010 CE, we first harmonized the cropland demands 

extracted from the History Database of the Global Environment 3.2 (HYDE 3.2) and the Land-Use Harmonization 2 (LUH2) 20 

datasets, and then spatially allocated the demands based on the combination of cropland suitability, kernel density, and other 

constraints. According to our maps, cropland originated from several independent centers and gradually spread to other 

regions, influenced by some important historical events. The spatial patterns of future cropland change differ in various 

scenarios due to the different socioeconomic pathways and mitigation levels. The global cropland area generally shows an 

increasing trend over the past years, from 0 million km2 in 10000 BCE grows to 2.8 million km2 in 1500 CE, 6.2 million km2 25 

in 1850 CE, and 16.4 million km2 in 2010 CE. It then follows diverse trajectories under future scenarios, with the growth 

rate ranging from 18.6% to 82.4% between 2010 CE and 2100 CE. There are large area disparities among different 

geographical regions. The mapping result coincides well with widely-used datasets at present in both distribution pattern and 

total amount. With improved spatial resolution, our maps can better capture the cropland distribution details and spatial 

heterogeneity. The spatiotemporally continuous and conceptually consistent global cropland dataset serves as a more 30 

comprehensive alternative for long-term earth system simulations and other precise analyses. The flexible and efficient 

harmonization and downscaling framework can be applied to specific regions or extended to other land use/cover types 

through the adjustable parameters and open model structure. The 1 km global cropland maps are available at 

https://doi.org/10.5281/zenodo.5105689 (Cao et al., 2021a). 
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1 Introduction 35 

Land use changes driven by humans have profound impacts on climate change, biogeochemical cycling, biodiversity, energy 

supply, and food security (Foley et al., 2005; Kalnay and Cai, 2003; Ito and Hajima, 2020; Poschlod et al., 2005). As one of 

the predominant land use types, agricultural land serves as the important carbon budget component and the basic elements of 

food production, contributing substantially to global change in both the natural environment system and the social-economic 

system (Friedlingstein et al., 2020; Godfray et al., 2010). In recent decades, significant progress has been made in 40 

agricultural monitoring, including cropland extents (Yu et al., 2013; Lu et al., 2020), cropland types (Cao et al., 2021b), 

crops (Zhong et al., 2014; Bargiel, 2017), and farming practices (Biradar and Xiao, 2011; Estel et al., 2015), providing basic 

and direct information to support specific research and management for specific years or periods. In comparison, simulating 

or analyzing the effect of cropland change from the beginning of farming to the end of this century can provide a 

comprehensive view for understanding agriculture, which is of great significance for establishing long-term environmental 45 

or economic strategies (Olofsson and Hickler, 2008; Pongratz et al., 2009; Molotoks et al., 2018; Zabel et al., 2019). 

However, big gaps and uncertainties remain in quantifying the long-term global change through models and other geospatial 

analysis methods, largely affected by the input land use/cover data (Prestele et al., 2017). Therefore, accurate global cropland 

change information, especially a harmonized cropland dataset at high resolution from past to future, plays a crucial role in 

improving the simulation accuracy and supporting the detailed analysis.  50 

Some efforts have been made in developing historical or future cropland products till now. In reconstructing the spatial 

distribution of past cropland, the representative products at global-scale include the Sustainability and the Global 

Environment (SAGE) dataset (5’×5’ resolution for global cropland during 1700 CE-1992 CE) (Ramankutty and Foley, 1999), 

the Millennium Land Cover Reconstruction (ML08) dataset (0.5°×0.5° resolution for global agricultural areas during 800 

CE-1992 CE) (Pongratz et al., 2008), the Kaplan and Krumhardt (KK10) dataset (5’×5’ resolution for 8000 BCE-1850 CE) 55 

(Kaplan et al., 2011), and the History Database of the Global Environment (HYDE) dataset (Klein Goldewijk, 2001; Klein 

Goldewijk et al., 2010, 2017). Among these datasets, the HYDE dataset is constantly updated, and the latest version (HYDE 

3.2) achieves the highest spatial resolution (5’×5’ resolution) and the longest time-span (10000 BCE-2017 CE) through a 

more comprehensive and reasonable algorithm (Klein Goldewijk et al., 2017). The above global-scale datasets usually 

employed a “top-to-bottom” method to downscale the historical records of cropland area according to the cropland suitability, 60 

population, and current distribution of cropland. Additionally, there are some regional or local products with higher 

resolution (Fuchs et al., 2013; Yang et al., 2015; Yu and Lu, 2018).  

Research on simulating future land use/cover change is booming in recent years, with cropland as one of the types. To 

prepare for each generation of the World Climate Research Program Coupled Model Intercomparison Project (CMIP), 

Integrated Assessment Model (IAM) teams constructed a series of scenarios for future land use projections as inputs of Earth 65 

System Models (ESMs) (O’Neill et al., 2016; Riahi et al., 2017). Based on these scenarios, the Land-Use Harmonization 

(LUH) project provided the harmonized land use datasets as a part of CMIP, including LUH (0.5°×0.5° resolution for 1500 
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CE-2100 CE) (Hurtt et al., 2011) corresponding to CMIP5 and LUH2 (0.25°×0.25° for 850 CE-2100 CE) (Hurtt et al., 2020) 

corresponding to CMIP6. More and more studies are devoted to future land use simulations at a higher resolution based on 

various scenarios to satisfy finer applications. On the global scale, there are several 1 km resolution datasets (Li et al., 2016; 70 

Li et al., 2017; Cao et al., 2019). The resolutions of some local or regional downscaling researches were even finer (Chen et 

al., 2018; Wang et al., 2018; Xu et al., 2015). Spatially explicit land use/cover change models such as Cellular Automata 

(CA) (White et al., 1997), Future Land Use Simulation (FLUS) (Liu et al., 2017), Conversion of Land Use and its Effects 

(CLUE) (Veldkamp and Fresco, 1996), Agent-based model (ABM) (Matthews et al., 2007), and Demeter (Vernon et al., 

2018), were extensively adopted in the future land use simulation studies. 75 

Although the above datasets are widely used and contribute a lot to the related research, the existing global products are 

relatively scarce and have large uncertainty (Klein Goldewijk and Verburg, 2013; Prestele et al., 2016; Alexander et al., 

2017). Huge differences between these datasets make them difficult to be well connected and even cause contradictions in 

applications (Prestele et al., 2017). With the development of related models and analytical methods, there is a growing 

demand for continuous datasets from past to future. So far, only the LUH project provided the spatiotemporally continuous 80 

global land use datasets throughout history and future. Nevertheless, although the resolution has been improved to 0.25° in 

the latest version, LUH2 is still too coarse to describe the details of cropland distribution and support the accurate analysis 

(Schaldach et al., 2011; Liao et al., 2020). Underestimation and overestimation are inevitably caused when using low 

resolution land use/cover datasets (Yu et al., 2014), which decrease the credibility of the related research results greatly. The 

low-resolution problem is also common in many other global-scale datasets mentioned above. Besides, since agriculture 85 

approximately originates in 10000 BCE, the important initial period of cropland development is omitted in LUH2. Therefore, 

a harmonized dataset from past to future with higher resolution and longer time-span is urgently needed.   

As for the methods, in the above studies, historical reconstruction and future projection usually adopted different models, 

which cannot be merged directly. Although they performed well in producing the datasets for specific periods and regions, 

most of them have limited extendibility in time scale or spatial scale. Some downscaling models are simple and cannot 90 

accurately characterize the long-term change, while some other models need high computational cost to implement at a large 

scale and fine resolution (Council, 2014). A model capable of reflecting the cropland change in time-space consistency and 

high efficiency is thus required. A flexible and efficient framework for harmonizing and downscaling the cropland 

distribution from past to future at large-scale and high-resolution should be established. 

In the study, we produced a global cropland percentage map at 1 km resolution from 10000 BCE to 2100 CE based on our 95 

proposed harmonization and downscaling framework. And we identified the cropland distribution patterns, estimated the 

cropland areas, and compared the mapping results with other datasets. 
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2 Method 

The framework of producing the 1 km global cropland dataset for 10000 BCE-2100 CE included demand harmonization and 

spatial downscaling (Fig.1). Details for the mapping procedure are provided in the following sections. 100 

2.1 Cropland demands harmonization 

Cropland demands for history and future were estimated based on the existing products. Historical demands during 10000 

BCE-2010 CE were based on HYDE 3.2, which provides a complete historical land use reconstruction and serves as a basis 

of long-term global change analysis and simulation (Klein Goldewijk et al., 2017). Considering that the cropland area in 

HYDE 3.2 referred to the national statistics from the Food and Agriculture Organization (FAO) and subnational statistics of 105 

some larger countries (Klein Goldewijk et al., 2017), the downscaling regions in this study were divided using the provincial 

boundaries for several largest countries (countries with an area of >2.5 million km2, i.e., Russia, Canada, China, America, 

Brazil, Australia, India, Argentina, Kazakhstan) and national boundaries for the other countries. The future demands during 

2010 CE-2100 CE came from the total areas of all five crop types (including C3 annual crops, C3 perennial crops, C4 annual 

crops, C4 perennial crops, and C3 nitrogen-fixing crops) in the LUH2 dataset, which was consistent with the design of 110 

CMIP6 and widely used in ESM simulations (Hurtt et al., 2020). All the eight scenarios with combinations of five Shared 

Socioeconomic Pathways (SSPs) and seven Representative Concentration Pathways (RCPs) (SSP1-RCP1.9, SSP1-RCP2.6, 

SSP2-RCP4.5, SSP3-RCP7.0, SSP4-RCP3.4, SSP4-RCP6.0, SSP5-RCP3.4OS, SSP5-RCP8.5) were projected in the study.  

To drive the downscaling, an initial cropland map with the target resolution is indispensable. Here we selected the global 

synergy cropland map for 2010 CE produced by Lu et al. (2020) as the start point. The map was generated based on the 115 

fusion of multiple existing cropland maps and multilevel statistics of cropland area through the Self-adapting Statistics 

Allocation Model (SASAM). It had higher accuracy than other mainstream datasets and better consistency with the cropland 

statistics (Lu et al., 2020). And it used FAO’s definition of cropland, i.e., “arable lands and permanent crops” (FAO, 2021), 

which was thus inherited into our study. In preprocessing, we first aggregated map resolution from the original 500 m to the 

target 1 km. Then, considering that except cropland, urban and water/snow/ice would be involved in our downscaling rules, 120 

we supplemented maps of these two land cover types from the other dataset. One of the input data for producing the global 

synergy cropland map, Globeland30 2010 (Chen et al., 2014), was selected here for its high accuracy and consistent year. To 

be compatible with urban and water/snow/ice distribution extracted from Globeland30 2010, we further processed the 

cropland map to ensure enough spare space is left for these types in each pixel. The non-cropland percentage in the global 

synergy cropland map was increased to the sum of the urban and water/snow/ice percentage in each 1 km pixel where the 125 

former was less than the latter. The preprocessed initial cropland map was taken as the base map for the following 

procedures.  

Due to the difference in methods and class definitions, there are obvious discrepancies in the cropland areas of HYDE 3.2, 

LUH2, and the base map in some regions. To avoid further errors caused by the inconsistencies, harmonizing the amount is 

thus necessary. We first adjusted the cropland demands in base year (2010 CE) to keep it consistent with the cropland area of 130 

https://doi.org/10.5194/essd-2021-219

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 26 July 2021
c© Author(s) 2021. CC BY 4.0 License.



 

5 

 

the base map. We then calculated the harmonized demands for different regions in historical and future years according to 

the original cropland area change rates of HYDE 3.2 and LUH2. The harmonization process can be expressed as: 

𝐴𝐻,𝑟,2010𝐶𝐸 = 𝐴𝐵𝑎𝑠𝑒,𝑟,2010𝐶𝐸 ,          (1) 

𝐴𝐻,𝑟,𝑡 = 𝐴𝐻,𝑟,𝑡−1 ×
𝐴𝐻𝑌𝐷𝐸 3.2,𝑟,𝑡

𝐴𝐻𝑌𝐷𝐸 3.2,𝑟,𝑡−1
 (t=2000 CE, 1990 CE, …, 9000 BCE, 10000 BCE),    (2) 

𝐴𝐻,𝑟,𝑡 = 𝐴𝐻,𝑟,𝑡−1 ×
𝐴𝐿𝑈𝐻2,𝑟,𝑡

𝐴𝐿𝑈𝐻2,𝑟,𝑡−1
 (t=2020 CE, 2030 CE, …, 2090 BCE, 2100 CE),                       (3) 135 

where 𝐴𝐻,𝑟,𝑡 is the harmonized cropland area for region 𝑟 at time step 𝑡 (the time step intervals are 1000 years for 10000 

BCE-1 CE, 100 years for 1 CE-1700 CE, and 10 years for 1700 CE-2100 CE), 𝐴𝐵𝑎𝑠𝑒,𝑟,2010𝐶𝐸 is the cropland area of the base 

map for region 𝑟 in 2010 CE, 𝐴𝐻𝑌𝐷𝐸 3.2,𝑟,𝑡 and 𝐴𝐿𝑈𝐻2,𝑟,𝑡 are the cropland area of HYDE 3.2 and LUH2 for region 𝑟 at time 

step 𝑡, respectively. Namely, the demands began with the base map but followed the change trajectories of HYDE 3.2 during 

10000 BCE-2010 CE and LUH2 during 2010 CE-2100 CE. The new set of cropland demands after harmonization were 140 

prepared as inputs for the spatial downscaling. 

2.2 Cropland demands downscaling 

The spatial downscaling was performed based on the developed framework as below. First, the maximum area for cropland 

allocation in each 1 km×1 km grid cell was determined by the following rules. For the whole downscaling period (10000 

BCE-2100 CE), water and snow/ice areas were assumed constant over time and thus could not be occupied by cropland. For 145 

the future period (2010 CE-2100 CE), cropland would not expand to the urban area due to urbanization usually being 

regarded as the most irreversible anthropic activities (Grimm et al., 2008; Wu, 2014), and cropland located within the 

protected area (defined by World Database on Protected Areas (WDPA) (UNEP-WCMC. and IUCN., 2021)) could only 

unidirectionally change (i.e., reduce) since the base year. 

Cropland is more likely to occur in the places where both natural environment and socioeconomic conditions are suitable. 150 

The spatial heterogeneity of conditions can be indicated by the suitability layers. In the study, we generated the suitability 

layers using the random forest (RF) regression model, which proved to be effective and efficient in dealing with the 

statistical problems (Breiman, 2001). Given the availability of related variables for model training and prediction, we 

selected eight biophysical and one socioeconomic variables to describe the key information affecting cropland suitability, 

including terrain, climate, soil, and population (Table 1). Note that these variables may not be comprehensive, but they are 155 

representative and reflect different heterogeneous aspects related to cropland distribution. In large-scale research, biome or 

ecoregion frameworks were frequently adopted to better characterize various vegetation-climate association patterns in 

different regions (Yu et al., 2016). In the study, we used the World Wildlife Fund (WWF) biome system (Olson et al., 2001) 

to divide the world into 14 biome regions for separate model training and prediction. About half a million (0.52 million, 

accounting for 0.3% global land pixels at 1 km resolution) training samples were randomly collected worldwide from the 160 
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global synergy cropland map which had been aggregated to 1 km resolution. The key parameter of the RF model, i.e., tree 

number, was set to 100. In the study, two types of suitability layers were generated for later use: one only relied on the 

biophysical drivers and another relied on both biophysical and socioeconomic drivers. 

Over the long downscaling time period, cropland suitability rules change due to the various interaction patterns between 

natural environment, social-economic factors, and agricultural activities. Referring to HYDE 3.2 (Klein Goldewijk et al., 165 

2017), we divided the whole downscaling process into several periods. According to the characteristics of different periods, 

we made some combinations and adjustments based on the above two RF-based suitability layers to get the final cropland 

suitability. During the early stage of agricultural development (10000 BCE-1500 CE), limited by traditional farming 

practices and weak global links, cropland distribution was highly related to local population distribution. Local cropland area 

was almost proportional to the population size, meanwhile, influenced by the biophysical suitability. In the last ~500 years 170 

(1500 CE-2010 CE), with the development of society, the relationship between population and cropland distribution became 

more and more similar with the contemporary pattern, which can be accurately characterized by machine learning model. 

The above RF-based biophysical-socioeconomic suitability layer was thus used for this period. In recent years, population 

demand in agricultural activities is weakening under population intensification and technology development (Goklany, 2009). 

The impact of population on cropland distribution is negligible for most regions in the future years (2010 CE-2100 CE). 175 

Therefore, the future cropland suitability is only indicated by the biophysical suitability layer in the study. We set the 

dynamic time-dependent weights to connect the cropland suitability in different time periods. The final cropland suitability is 

formulated as follows: 

𝑆𝑔𝑐,𝑡 = √𝑊1𝑔𝑐,𝑡 × 𝑆1𝑔𝑐,𝑡 × 𝑃𝑂𝑃𝑔𝑐,𝑡+𝑊2𝑔𝑐,𝑡 × 𝑆2𝑔𝑐,𝑡 + 𝑊3𝑔𝑐,𝑡 × 𝑆1𝑔𝑐,𝑡  ,     (4) 

where 𝑆𝑔𝑐,𝑡  represents the final cropland suitability of grid cell 𝑔𝑐 at time step 𝑡, and 𝑃𝑂𝑃𝑔𝑐,𝑡  represents the normalized 180 

population. 𝑆1𝑔𝑐,𝑡 and 𝑆2𝑔𝑐,𝑡 are the biophysical suitability and biophysical-socioeconomic suitability layers based on the RF 

model, respectively. 𝑊1𝑔𝑐,𝑡 , 𝑊2𝑔𝑐,𝑡  and 𝑊3𝑔𝑐,𝑡  are time weights. Referring to the weight setting in HYDE 3.2 (Klein 

Goldewijk et al., 2017), 𝑊1𝑔𝑐,𝑡 is set to zero in 2000 CE and 100% in 1500 CE (and the pre-1500 CE period as well), while 

𝑊2𝑔𝑐,𝑡 is set to zero in 1500 CE (and the pre-1500 CE period as well) and 100% in 2000 CE, and both 𝑊1𝑔𝑐,𝑡 and 𝑊2𝑔𝑐,𝑡 

change linearly during 1500 CE-2010 CE. In the future time (after-2010 CE), 𝑊3𝑔𝑐,𝑡  is set to 100%, while 𝑊1𝑔𝑐,𝑡  and 185 

𝑊2𝑔𝑐,𝑡 are set to zero. 

Our downscaling algorithm also considered the cell states and neighborhood effects during the allocation process. It was 

implemented under the assumption that cropland would appear close to where it already was at the next time step. Kernel 

density was computed to represent the density and proximity of cropland within or around a given grid cell. It is defined by: 

𝐾𝐷𝑔𝑐,𝑡 =
∑ 𝐶𝑃𝑔𝑐,𝑡−1

𝐷2
1

𝐷2  ,                        (5) 190 
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where 𝐾𝐷𝑔𝑐,𝑡 is the kernel density of grid cell 𝑔𝑐 at time step 𝑡, and 𝐶𝑃𝑔𝑐,𝑡−1 is the cropland proportion of the grid cell at the 

last time step 𝑡 − 1. A user-defined parameter, 𝐷, stands for the moving window size used to compute kernel density.  

The above final cropland suitability and kernel density were combined to the final probability-of-occurrence layer: 

𝑃𝑔𝑐,𝑡 = √𝑆𝑔𝑐,𝑡 × 𝐾𝐷𝑔𝑐,𝑡 ,                        (6) 

where 𝑃𝑔𝑐,𝑡  denotes occurrence probability of cropland in grid cell 𝑔𝑐  at time step 𝑡. The cropland demands were then 195 

tentatively distributed to each grid cell according to the occurrence probability: 

𝑇𝐴𝑔𝑐,𝑡 = 𝐴𝐻,𝑟,𝑡 ×
𝑃𝑔𝑐,𝑡×𝐺𝐴𝑔𝑐

∑ (𝑃𝑔𝑐,𝑡
𝑛
1 ×𝐺𝐴𝑔𝑐)

 ,                        (7) 

where 𝑇𝐴𝑔𝑐,𝑡 is the tentative allocation of cropland area on grid cell 𝑔𝑐 at time step 𝑡, 𝐺𝐴𝑔𝑐 is grid cell area, 𝐴𝐻,𝑟,𝑡 is the 

harmonized cropland demand of the region where grid cell 𝑔𝑐 locates, and 𝑛 is the total number of grid cells in the region. 

The actual allocation area on each grid cell is the minimum value of the tentative allocation area and the maximum area for 200 

cropland allocation: 

𝐶𝐴𝑔𝑐,𝑡 = 𝑚𝑖𝑛 (𝑇𝐴𝑔𝑐,𝑡|𝑀𝐴𝑔𝑐,𝑡) ,                        (8) 

𝐶𝑃𝑔𝑐,𝑡 =
𝐶𝐴𝑔𝑐,𝑡

𝐺𝐴𝑔𝑐
 ,                                                     (9) 

where 𝐶𝐴𝑔𝑐,𝑡 and 𝐶𝑃𝑔𝑐,𝑡  are the actual allocation area and proportion on grid cell 𝑔𝑐 at time step 𝑡. 𝑀𝐴𝑔𝑐,𝑡 is the maximum 

area for cropland allocation of the grid cell. 205 

On the whole, cropland was continually shrinking from present to past, and more cropland tends to intensify in recent years 

(Hu et al., 2020). As a research at the global scale, we thus assumed that as much cropland as possible first appeared in the 

grid cells with cropland in the last time step. In the study, we referred to the previous research (Le Page et al., 2016) and 

divided the whole allocation process into two stages. In the first stage, demands were allocated to the grid cells where 

cropland already existed, referred to as intensification. In the second stage, the unallocated demands were allocated to other 210 

grid cells, referred to as expansion. We used the parameter representing the moving window size for kernel density 

calculation, 𝐷, to directly control the two stages. It was set to 1 and 3 to achieve intensification and expansion in the two 

stages, respectively. In both stages, the allocation was processed iteratively until there was no more spare space for cropland 

allocation or the unallocated demands were less than the threshold (0.01 km2) in all regions. 

3 Results 215 

3.1 Downscaled cropland maps 

Based on the above mapping framework, we produced the 1 km resolution global cropland proportion dataset for 10000 

BCE-2100 CE. Fig. 2 shows the downscaled cropland maps in several key historical years, providing an overall perspective 
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on the cropland change. Agriculture originated in several independent regions, including the Yangtze River Basin and 

Yellow River Basin in China, Neil Delta in Africa, Middle East, some areas in Central and South America, and some 220 

Mediterranean coastal countries (Fig. 2a). Under the restriction of natural and socioeconomic conditions, it slowly spread to 

other places at different speeds (Fig. 2b and 2c). Until 1500 CE, agriculture was prevalent throughout China, India, western 

Europe, Middle East, Central America, and Africa (Fig. 2d). Since the Great Geographical Discoveries strengthened the 

global trade links, agricultural development was thus strengthened (Fig. 2e). However, due to the dramatic population 

declines and political devastation caused by colonialism and disease during the Age of Exploration, cropland was still scarce 225 

in North and South America and Oceania. In the 19th century, many countries speeded up the social development rate, and 

western countries carried out the large-scale Industrial Revolution and introduced machinery into agricultural production, 

which made agricultural development leap forward and caused a great acceleration in cropland area and production. The area 

increase was obvious worldwide (Fig. 2f and g). Moreover, because of the independence of North American countries, the 

cropland area there rose rapidly during the 100 years (Fig. 2f and g). In the last century, owing to great development after the 230 

successive independence of South America, Australia, and other colonies, the cropland in the southern hemisphere expanded 

evidently. With the continuous social development, the cropland in the northern hemisphere also increased on the original 

basis (Fig. 2g and h). 

The downscaled cropland maps in 2100 CE under the eight scenarios are displayed in Fig. 3. Since the scenarios vary in 

terms of socioeconomic pathways and mitigation levels, the global cropland distribution patterns are widely diverse. In most 235 

regions worldwide, cropland has relatively small changes under SSP1-RCP1.9 and SSP1-RCP2.6. The two SSP1 scenarios 

are under the green growth paradigm. The moderate population growth and fast technological development ease the cropland 

demand. Under SSP2-RCP4.5 (Fig. 3c), owing to the implementation of afforestation policy and the improvement of 

agricultural production, cropland increment is relatively modest except in some regions such as Africa, South America, and 

Southeastern Asia. The most distinctive features of cropland change under SSP3-RCP7.0 (Fig. 3d) is the large expansion in 240 

Western Africa due to the higher food demand, as well as the large reduction in China due to the weak regional mitigation 

measures. Scenario SSP4-RCP3.4 (Fig. 3e) is demonstrated to have the largest global cropland expansion, except in some 

countries such as Canada, Brazil, and Russia. The rapid population growth and the high mitigation goal improve the demand 

for food and biomass energy, resulting in a substantial increase in cropland area. Compared with SSP4-RCP3.4, SSP4-

RCP6.0 includes a more moderate mitigation policy, cropland increments are thus less around the world, especially in Asia, 245 

Central America, and Eastern Europe (Fig. 3f). Both SSP5-RCP3.4OS (Fig. 3g) and SSP5-RCP8.5 (Fig. 3h) follow an SSP5 

baseline and exhibit obvious cropland area rise in regions such as Southern America and Africa, but the former has a larger 

area increment and also shows a huge increase in places such as the Great Plains of America, Russia, Middle East, and 

Southeastern Asia. The overall stronger global cropland expansion under SSP5-RCP3.4OS is due to the large-scale 

deployment of bioenergy crops to achieve a lower radiative forcing level. 250 
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The above overall cropland changes from history to future are interpretable and logical, and match the qualitative 

descriptions of cropland changes in some existing studies (Stephens et al., 2019; Ellis et al., 2021; Riahi et al., 2017), 

indicating the rationality and reliability of our downscaled maps on the whole. To further show the performance of 

downscaling, we demonstrated some detailed cases (Fig. 4). Several maps at representative time points and places were 

selected here, including one of the key origins of agriculture in China (Fig. 4a), European cropland distribution during the 255 

Industrial Revolution (Fig. 4b), cropland expansion after the independence of America (Fig. 4c), cropland increase in Brazil 

under the SSP1-RCP2.6 (Fig. 4d), African cropland growth under the SSP2-RCP4.5 (Fig. 4e), and cropland increase in 

Southeast Asia under the SSP3-RCP7.0 (Fig. 4f). Although these croplands locate in different biophysical and 

socioeconomic environments, and their types or appearances vary a lot, they are well characterized in our downscaling maps. 

Visually, our downscaling maps match the spatial patterns in HYDE 3.2/LUH2 data and reflect more details of cropland 260 

distribution. The spatial heterogeneity and field morphology are clearly characterized in our 1 km maps, whereas for the 10 

km or 0.25° maps, it is hard to maintain some small cropland/non-cropland patches. Furthermore, we took the regions shown 

in Fig. 4c and Fig. 4f as examples to present and compare the cropland distribution of the same places for different years (Fig. 

5) or scenarios (Fig. 6). Fig. 5 represents a typical cropland development process in America. The cropland changes from 

past to future in the region are coherently and continuously characterized in our downscaled maps. Both cropland increase 265 

and decrease can be accurately tracked, and different change amounts and patterns in different locations are well captured. 

Fig. 6 demonstrates the diverse future cropland development pathways of the region located in Southeast Asia. In our maps, 

the differences are clearer and vary geographically. Although both regions have varied topography, complex land cover, and 

fragmented cropland patches, the downscaling results correspond well with the HYDE 3.2/LUH2 and demonstrate fine 

details in all these different years or scenarios. The above detailed demonstrations and comparisons also prove the 270 

importance of developing higher resolution cropland datasets. 

Further quantitative comparisons of spatial distribution between our downscaled cropland data and HYDE 3.2/LUH2 data 

are presented in Fig. 7. We aggregated the downscaled maps to align the resolution and calculated the correlation coefficient 

(r) and the Root Mean Squared Error (RMSE) between the corresponding pixels. In general, the datasets exhibited obvious 

spatial similarity according to the two indicators. For the historical period, the correlation coefficients are usually lower in 275 

previous years especially for pre-1500 CE because of the discrepancy accumulation over time. However, the RMSEs also 

decline with downscaling time step increases, which is mainly attributed to the reduction of cropland proportion in pixels. 

For the future period, downscaling performances under different scenarios are distinctive. The most ambitious cropland 

expansion scenario, SSP4-RCP3.4, displays the minimum consistency. The above inconsistencies are partly influenced by 

the base map (Fig. 8), the initial differences transmit into the downscaled maps. The relatively weaker correlations or larger 280 

RMSEs in some years or scenarios do not mean our data are incorrect, because our cropland map and HYDE 3.2/LUH2 use 

different input data and downscaling strategies. But it can indicate the relatively high uncertainty of results, thus, more future 

efforts are needed for these time periods or scenarios. 
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3.2 Estimated cropland area 

According to our downscaled map, on the whole, global cropland area shows an upward trend from 10000 BCE to 2100 CE 285 

(Fig. 9). It first steadily and constantly increased from the origin of agriculture. In 1500 CE, there was 2.8 million km2 

cropland globally. And cropland area continuously grew to 6.2 million km2 until the beginning of large-scale 

industrialization (~1850 CE). In 100 years after 1850 CE, the cropland area increment surpassed that during the past 11850 

years. In recent decades, the growth rate of cropland slowed down. The area increase in the past 20 years (1990 CE-2010 CE) 

has been the smallest since the 18th century. In 2010 CE, the global cropland area was 16.4 million km2. As for the future, 290 

the projected cropland areas have substantial discrepancies across the eight SSP-RCP scenarios. Six scenarios (SSP1-RCP1.9, 

SSP2-RCP4.5, SSP3-RCP7.0, SSP4-RCP3.4, SSP4-RCP6.0, SSP5-RCP3.4OS) yield a monotonously increasing trend with 

different rates, with the rise ranging from 18.6% to 82.4% between 2010 and 2100. The scenario SSP4-RCP3.4 achieves the 

largest cropland area increment in the 21st century, more than 50% higher than the scenario with the second-largest 

increment (SSP5-3.4OS). For scenarios SSP1-RCP2.6 and SSP5-RCP8.5, the turning points are observed in 2090 CE and 295 

2060 CE, respectively, after which cropland area is expected to decline. 

Additionally, we identified large disparities in the cropland areas among different geographical regions (Fig. 10). Countries 

around the world were divided into five continents to demonstrate their distinctive agricultural development paths. In the 

early period, the cropland area was higher and grew steadily in Asia, Europe, and Africa. Before 1850 CE, the total cropland 

area of these three continents accounts for more than 90% of global cropland area. By contrast, the cropland area in 300 

Americas and Oceania did not have substantial increment until the 19th century and the 20th century, respectively. However, 

after over 200 years of rapid development, Americas become the second largest continent in agricultural land area. In the last 

decades, except for the accelerated cropland area rise in Africa, the area tends to be stable in the Americas and Asia and even 

decreased in Europe and Oceania. In the future, cropland areas in Europe and Oceania will experience the smallest changes 

in most scenarios (below 0.62 million km2 and 0.25 million km2, respectively), whereas cropland in Africa is projected to 305 

maintain evident growth under all scenarios (ranging from 43.6% to 166.4%). Americas and Asia demonstrate different 

development characteristics under different scenarios and are similar to the global trends mentioned above. The historical 

and future area trajectories across continents well track historical pathways and future mitigation policies in different human 

societies, and they are connected logically and smoothly. 

To prove the rationality of the results, we also quantitatively compared the cropland area of our dataset with several other 310 

datasets (Fig. 11). In years when FAO cropland area statistics (FAO, 2021) were available, our cropland area at continental 

level was generally consistent in overall patterns with the statistics. The absolute amount of our maps is slightly 

overestimated for all continents except Europe in several years. The two datasets with full coverage of the entire study period, 

HYDE 3.2 and LUH2, are taken for the global level comparisons. Our global area time-series are highly correlated to them, 

whereas the RMSE and the regression line indicate our results are slightly higher. The above differences are related to the 315 

base map (Fig. 12). However, although FAO data and HYDE/LUH2 are widely used, they are not completely correct, 
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especially in some developing countries with weak agricultural statistics systems (FAO, 2010). In contrast, our selected base 

map was produced by the fusion of multilevel cropland area statistics and multiple existing cropland maps. It is more reliable 

in some regions. But regions with large area differences are still noteworthy, more area records and surveys are required to 

reduce the uncertainty. 320 

4 Discussion 

Our downscaled dataset provides spatiotemporally continuous and conceptually consistent global cropland distribution 

information at 1 km resolution, covering the Holocene period until the end of the 21st century. It coincides well with other 

well-known land use datasets and exhibits superior detail description. Furthermore, the proposed framework is flexible and 

efficient, enabling extensions to specific regions or other land use/cover types. However, there are still some limitations and 325 

uncertainties in the study, which are expected to be improved by future research.  

First, uncertainties in original demand data, HYDE 3.2 and LUH2, propagated into our downscaled maps. In HYDE 3.2, the 

total cropland amount for years not covered by FAO statistics (pre-1960 CE) was profoundly determined by modeled 

population and assumed cropland area per capita curve, which was very uncertain (Klein Goldewijk et al., 2017). In LUH2, 

the cropland information was derived from IAM simulations. Errors from the simulations attributed to imperfect model 330 

structures and assumptions directly affected the cropland area of LUH2 (Riahi et al., 2017). All these inaccurate original 

demands directly led to harmonized demand errors and poor downscaling performance, especially in some regions where the 

differences between the original demands and cropland area of the base map were large. Nevertheless, HYDE 3.2 and LUH2 

are regarded as authoritative data and widely used as the basis in related fields despite the above limitations, and there is no 

more suitable data to cover such a long time period until now. Moreover, our downscaling work did not focus on simulating 335 

the amount of cropland area change, but instead spatially disaggregated the given demands to the grid cells. Nevertheless, 

there is no doubt that more accurate demands help to get better mapping results. If more reliable cropland area data are 

available in the future, we can update the results based on them. 

Second, the initial cropland map caused some limitations. The downscaling results are greatly dependent on the base map. 

The global synergy map was produced based on a series of cropland datasets with various resolutions. Some input data with 340 

coarser resolution affected its accuracy. As a result, cropland percentage in the initial cropland map tends to be 

overestimated in some high-value pixels and underestimated in some low-value pixels. We also tried other cropland maps 

extracted from several well-known fine-resolution land cover data such as Globeland30 (Chen et al., 2014), Climate Change 

Initiative Land Cover (CCI-LC) map (ESA, 2017), and Finer Resolution Observation and Monitoring of Global Land Cover 

(FROM-GLC) (Gong et al., 2013), however, despite the superior performance in some details, the overall results were even 345 

worse. Because of the inconsistent definitions or mapping errors, these satellite-based products generally do not match the 

statistics and have larger discrepancies with the original demands from HYDE 3.2/LUH2. Therefore, more future efforts 

should be made to improve the accuracy of cropland maps.  
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Third, difficulties of data acquisition in suitability evaluation hindered the downscaling. We selected some of the most 

common, widely used, and freely available variables for estimating cropland suitability. Nevertheless, they do not represent 350 

all potential factors related to cropland change. Here, we quantified the performance of RF-based suitability evaluation under 

the variables acquisition limitations. We randomly collected 0.35 million (accounting for 0.2% global land pixels at 1 km 

resolution) test samples worldwide, and we calculated the RMSEs between the 1 km global synergy cropland map and the 1 

km suitability layers in 2010 CE. In various WWF biome regions (Fig. 13), the RMSEs are slightly different. At the global 

scale, the RMSEs are 15.2% (between biophysical suitability layer and global synergy cropland map) and 14.7% (between 355 

biophysical-socioeconomic suitability layer and global synergy cropland map), respectively, indicating the suitability 

evaluation results are acceptable despite the data limitations. Undoubtedly, the performance may get better if more variables 

are accessible. In addition to the above variable limitations, the use of population data with resolution coarser than 1 km 

partly limited the ability to depict spatial details especially in the early stage of agricultural development (10000 BCE-1500 

CE). Besides, the biophysical variables were unavailable beyond the recent decades and remained unchanged in the study. 360 

Therefore, to support more precise downscaling, the related driving factor datasets with high resolution and long time-span 

are urgently needed. 

Except for the above limitations from input data, others are related to the downscaling model. Some model parameter 

settings can affect the results, such as moving window size for kernel density calculation. Since the downscaled dataset in 

the study was developed to provide a globally consistent and coherent spatial distribution of cropland, the parameter setting 365 

was based on the situations and rules at the global scale. It did not always incorporate all of the best local data and tune the 

parameters for local areas especially. Thus, the value set in the study may not be optimal for some regions. As a result, it can 

be applied at the global scale, whereas it cannot be used as the basis for some local research. But the flexible framework 

allows researchers to replace input data or revise these model parameters to acquire the best results for their specific study 

areas. In addition, similar to lots of other prevalent downscaling models, such as CA (Yang et al., 2015), FLUS (Liao et al.,  370 

2020), Demeter (Le Page et al., 2016), our model simulates the cropland within a downscaling region as a whole. If the total 

cropland area in a downscaling region decreases (increases) at the next time step, it is impossible that local non-cropland 

(cropland) pixels change to cropland (non-cropland) pixels. As a result, some cropland pixels in historical years that are now 

non-cropland and some non-cropland pixels in future years that are now cropland cannot be well captured. In the cropland 

downscaling, one of the typical impacts was that our maps could not well characterize the process of cropland being 375 

encroached by growing urban. Therefore, for further model improvement, excepting striving to reduce uncertainties of the 

most sensitive parameters, more process details and additional constraints should be included. 
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5 Data availability 

The 1 km global cropland maps for the representative years and scenarios shown in Fig.2 and Fig. 3 are available at 380 

https://doi.org/10.5281/zenodo.5105689 (Cao et al., 2021a). The complete 1 km global cropland dataset from 10000 BCE to 

2100 CE can be viewed at https://cbw.users.earthengine.app/view/globalcroplanddataset. The map values indicate the 

proportion of cropland within 1 km × 1 km grid cell. 

6 Conclusions 

In the study, the first 1 km resolution global cropland proportion dataset from 10000 BCE to 2100 CE was produced through 385 

the proposed harmonization and downscaling framework. Based on our maps, cropland mainly originated in several 

independent regions, and it gradually spread to other places at various speeds. Some critical historical events affected the 

global and regional cropland change. As for the future, the cropland distribution is quite different in various scenarios. 

Globally, the cropland area gradually increases over the past years and displays distinct trends under eight future scenarios. 

From 0 million km2 in 10000 BCE, it grows to 2.8 million km2 in 1500 CE, 6.2 million km2 in 1850 CE, and 16.4 million 390 

km2 in 2010 CE. Between 2010 CE and 2100 CE, the area growth rate ranges from 18.6% to 82.4%. In different regions, 

different natural and socioeconomic conditions lead to obvious spatial heterogeneity. Overall, the distribution and area of our 

cropland maps are consistent with the existing well-known datasets, and it can better characterize the spatial details 

compared with these datasets. Some small patches and field morphology are more clearly demonstrated. Limitations of the 

downscaling originate from the input data and model design, which should be the focus of future research. This high-395 

resolution and long time-span global cropland dataset can support large-scale earth system simulation or detailed agricultural 

analysis. The harmonization and downscaling framework can be applied in specific regional/local studies or other land 

use/cover types through the flexible structure and parameters. 
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Figure 1: The framework of producing the 1 km global cropland dataset for 10000 BCE-2100 CE. 
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Table 1: Variables for cropland suitability evaluation. 620 

Category Variables Year Resolution Source 

Biophysical variables    

Terrain Elevation, slope 2010 CE 7.5” 
Global Multi-resolution Terrain Elevation 

Dataa (Danielson and Gesch, 2011) 

Climate Mean annual temperature, mean 

annual precipitation 
1970 CE-2000 CE 30” 

WorldClim version 2.1b (Fick and 

Hijmans, 2017) 

Soil 
Average of soil water, soil PH, 

and clay content at different 

depths 

1950 CE-2018 CE 250 m 

OpenLandMap Soil water content at 

33kPac (field capacity) (Tomislav and 

Surya, 2019), OpenLandMap Soil pH in 

H2Od (Tomislav, 2018a), OpenLandMap 

Clay contente (Tomislav, 2018b) 

Socioeconomic variables    

Population population 10000 CE-2015 CE 5’ 

History Database of the Global 

Environment (HYDE) 3.2f (Klein 

Goldewijk et al., 2017) 

The URLs of these data sources are as follows (last access: 15 July 2021): a https://developers.google.com/earth-engine/datasets/catalog/U

SGS_GMTED2010?hl=en, b https://worldclim.org/data/worldclim21.html, c https://developers.google.com/earth-engine/datasets/catalog/O

penLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-4B1C_M_v01?hl=en, d https://developers.google.com/earth-engine/dataset

s/catalog/OpenLandMap_SOL_SOL_PH-H2O_USDA-4C1A2A_M_v02?hl=en, e https://developers.google.com/earth-engine/datasets/cata

log/OpenLandMap_SOL_SOL_CLAY-WFRACTION_USDA-3A1A1A_M_v02?hl=en, f https://doi.org/10.17026/dans-25g-gez3 625 
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Figure 2: Downscaled historical cropland maps in (a) 3000 BCE, (b) 1 CE, (c) 1000 CE, (d) 1500 CE, (e) 1700 CE, (f) 1800 CE, (g) 

1900 CE, (h) 2000 CE. 
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Figure 3: Downscaled future cropland maps in 2100 CE under (a) SSP1-RCP1.9, (b) SSP1-RCP2.6, (c) SSP2-RCP4.5, (d) SSP3-

RCP7.0, (e) SSP4-RCP3.4, (f) SSP4-RCP6.0, (g) SSP5-RCP3.4OS, (h) SSP5-RCP8.5. 
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 635 

Figure 4: Visual comparison between our downscaled maps and HYDE 3.2/LUH2 for six different areas: (a)-(f). 
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Figure 5: Cropland distribution of the region shown in Fig. 4c for different years: (a)-(c). 
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 640 

Figure 6: Cropland distribution of the region shown in Fig. 4f for different scenarios: (a)-(c). 
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Figure 7: Comparison of cropland proportion in the corresponding pixels between our downscaled map and (a) HYDE 3.2 in the 

selected eight years, (b) LUH2 in 2100 CE under eight future scenarios. Our downscaled maps were aggregated into 10 km and 645 

0.25° resolution for the two comparisons, respectively. 
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Figure 8: Comparison of cropland proportion in the corresponding pixels between the base map and (a) HYDE 3.2 in 2010 CE, (b) 

LUH2 in 2010 CE. Our downscaled maps were aggregated into 10 km and 0.25° resolution for the two comparisons, respectively. 650 

The cell value represents the pixel numbers in the corresponding cropland proportion range. The black lines are the linear 

regression lines. 
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Figure 9: Global cropland area from 10000 BCE to 2100 CE. 655 
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Figure 10: Cropland area of different continents for (a) 10000 BCE-2010 CE and (b) 2010 CE-2100 CE under eight future 

scenarios. The division of continents is based on countries and identical with FAO statistics. 
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Figure 11: Comparison of cropland area between our downscaled map and (a) FAO statistics at the continental level for 1970 CE-

2010 CE, (b) HYDE 3.2/LUH2 at the global level for 10000 BCE-2100 CE under one historical and eight future scenarios. The 

black lines are the linear regression lines. 
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Figure 12: Comparison of cropland area at the downscaling region-level between the base map and (a) HYDE 3.2, (b) LUH2. The 

black lines are the linear regression lines. 
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Figure 13: Random forest-based suitability evaluation performance in different WWF biome regions. 
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