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ABSTRACT 19 

 The East Asia Regional Reanalysis (EARR) system is developed based on the advanced 20 

hybrid gain data assimilation method (AdvHG) using Weather Research and Forecasting (WRF) 21 

model and conventional observations. Based on EARR, the high-resolution regional reanalysis 22 

and reforecast fields are produced with 12 km horizontal resolution over East Asia for 2010–23 

2019. The newly proposed AdvHG is based on the hybrid gain approach, weighting two 24 

different analysis for an optimal analysis. The AdvHG is different from the hybrid gain in that 25 

1) E3DVAR is used instead of EnKF, 2) 6 h forecast of ERA5 is used to be more consistent 26 

with WRF, and 3) the pre-existing, state-of-the-art reanalysis is used. Thus, the AdvHG can be 27 

regarded as an efficient approach to generate regional reanalysis dataset due to cost savings as 28 

well as the use of the state-of-the-art reanalysis. The upper air variables of EARR are verified 29 

with those of ERA5 for January and July 2017 and the two-year period of 2017-2018  the ten-30 

year period of 2010-2019. For upper air variables, ERA5 outperforms EARR over two years, 31 

whereas EARR outperforms (shows comparable performance to) ERA-I and E3DVAR for 32 

January in 2017 (July in 2017). EARR better represents precipitation than ERA5 for January 33 

and July in 2017. Therefore, though the uncertainties of upper air variables of EARR need to 34 

be considered when analyzing them, the precipitation of EARR is more accurate than that of 35 

ERA5 for both two seasons. The EARR data presented here can be downloaded from 36 

https://doi.org/10.7910/DVN/7P8MZT for data on pressure levels and 37 

https://doi.org/10.7910/DVN/Q07VRC for precipitation. 38 

  39 
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1. Introduction 40 

Reanalysis datasets have been widely used in the socio-economical field as well as 41 

meteorological and climate research areas all over the world. Most of reanalysis datasets 42 

consist of global reanalysis whose spatial and temporal resolutions are relatively coarse (e.g., 43 

Schubert et al. 1993; Kalnay et al. 1996; Gibson et al. 1997; Kistler et al. 2001; Kanamitsu et 44 

al. 2002; Uppala et al. 2005; Onogi et al. 2007; Bosilovich 2008; Saha et al. 2010; Dee et al. 45 

2011; Rienecker et al. 2011; Bosilovich 2015; Kobayashi et al. 2015; Hersbach et al. 2020). As 46 

the importance of regional reanalysis dataset emerged, many operational centers and research 47 

institutes around the world have been producing the dataset in their own areas (Mesinger et al. 48 

2006; Renshaw et al. 2013; Borsche et al. 2015; Bromwich et al. 2016; Jermey and Renshaw 49 

2016; Zhang et al. 2017; Bromwich et al. 2018; Fukui et al. 2018; He et al. 2019; Ashrit et al. 50 

2020). 51 

The long-term high-resolution datasets are essential to investigate the past extreme 52 

weather events which might be associated with mesoscale features such as heavy rainfall events 53 

with high spatial and temporal variability which coarser-resolution model cannot represent. 54 

The dynamical downscaling approaches can be a solution for generating high-resolution dataset, 55 

but they have some issues with insufficient spin-up (Kayaba et al. 2016). Moreover, Fukui et 56 

al. (2018) demonstrated that regional reanalysis over Japan assimilating only the conventional 57 

observations had the potential to reproduce precipitation fields better than the dynamical 58 

downscaling approaches. Ashrit et al. (2020) also found that the high-resolution regional 59 

reanalysis over India showed substantial improvements of regional hydroclimatic features 60 

during summer monsoon for the period of 1979-1993 compared to the global reanalysis ERA-61 

Interim (ERA-I, Dee et al. 2011) from ECMWF. Furthermore, He et al. (2019) revealed that 62 

the pilot regional reanalysis over the Tibetan Plateau was able to represent more accurate 63 
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precipitation features as well as atmospheric humidity than the global reanalyses of ECMWF 64 

(i.e., ECMWF’s fifth-generation reanalysis (ERA5, Hersbach et al. 2020) and ERA-I). 65 

As part of this effort, regional reanalysis over East Asia were produced based on the 66 

Unified Model for the two-year period of 2013-2014 and it was confirmed that regional 67 

reanalysis over East Asia is beneficial (Yang and Kim 2017; Yang and Kim 2019). However, 68 

because UM was no longer available for generating regional reanalysis over East Asia, another 69 

numerical weather prediction (NWP) model and its data assimilation (DA) method are required.  70 

To find the most appropriate and cost-efficient DA method for a regional reanalysis over 71 

East Asia, several DA methods were compared. Yang and Kim (2021) demonstrated that the 72 

hybrid ensemble-variational data assimilation method (E3DVAR) shows the better 73 

performance compared to three-dimensional variational data assimilation (3DVAR) and 74 

ensemble Kalman filter (EnKF) over East Asia for January and July in 2016. However, it is 75 

essential to confirm if this hybrid method is accurate enough to be used for a regional reanalysis 76 

over East Asia. Thus, E3DVAR was compared with the latest and the previous reanalysis data 77 

from ECMWF (i.e., ECMWF’s fifth-generation reanalysis (ERA5, Hersbach et al. 2020) and 78 

ERA-Interim (ERA-I, Dee et al. 2011))  from ECMWF (ERA5 and ERA-I) for (re)analysis 79 

and (re)forecast variables and it was found that a performance for a regional reanalysis needs 80 

to be further improved. 81 

For this reason, a new advanced hybrid gain (AdvHG) data assimilation method, which 82 

combines E3DVAR and ERA5 based on WRF model, is newly proposed and investigated in 83 

this study. A hybrid gain data assimilation method has been developed as a new kind of hybrid 84 

methods (Penny 2014). Based on this method, an advanced data assimilation method is newly 85 

developed in this study. Finally, using this newly proposed DA method (AdvHG), East Asia 86 

regional reanalysis (EARR) system is developed based on WRF model. EARR datasets have 87 

been produced for ten-year period of 2010-2019 and are verified for two-year period of 2017–88 



5 

 

2018.  EARR datasets have been produced for ten-year period of 2010-2019 and are publicly 89 

available (https://dataverse.harvard.edu/dataverse/EARR).  90 

To investigate the accuracy and uncertainty of the state-of-the-art AdvHG DA algorithm 91 

developed in this study, analysis and forecast atmospheric variables of E3DVAR, AdvHG, 92 

WRF-based ERA-I, and WRF-based ERA5 are evaluated for January and July in 2017, 93 

respectively. In addition, reforecast precipitation fields of ERA-I and ERA5 from ECMWF are 94 

also verified and compared. In this study, the datasets are evaluated for two-month period 95 

(January and July in 2017) or ten-year period (2010-2019) depending on the availability of 96 

datasets. The reanalysis and (re)forecast fields of the EARR based on AdvHG and ERA5 are 97 

verified for ten-year period (2010-2019). In section 2, the EARR system including model, data 98 

assimilation method, and observations are explained. In section 3, the evaluation methods are 99 

presented. The verification results of (re)analysis and (re)forecast variables are presented in 100 

section 4. Section 4.1 presents evaluation results for wind, temperature, and humidity variables, 101 

and section 4.2 presents those for precipitation (re)forecast. Section 5 presents data availability. 102 

Lastly, summary and conclusions are presented in section 6. 103 

2. Reanalysis system 104 

2.1. Model 105 

In this study, the Advanced Research Weather Research and Forecasting (WRF, v3.7.1) 106 

model is used with 12-km horizontal resolution (540 x 432 grid points) and 50 vertical levels 107 

(up to 5 hPa) as shown in Fig. 1. for East Asia domain shown in Fig. 1. The model settings and 108 

physics scheme are summarized in Table 1. Analysis fields are obtained every 6 h (00, 06, 12, 109 

and 18 UTC) via assimilation of conventional observations with a 6 h assimilation window, 110 

and forecast fields are integrated up to 36 h. The ERA5 reanalysis (Hersbach et al. 2020) is 111 

used as the first initial condition before the cycling, and as boundary conditions every 6 h. 112 
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2.2. Data assimilation methods  113 

2.2.1. E3DVAR 114 

The E3DVAR method is one of hybrid data assimilation methods, which use a static 115 

climatological background error covariance (BEC) and ensemble-based flow-dependent BEC, 116 

and couples the EnKF and 3DVAR (Zhang et al. 2013). E3DVAR is based on a cost function 117 

of 3DVAR. In E3DVAR, EnKF provides flow-dependent BEC as well as updates perturbations 118 

for ensemble members. Following Zhang et al. (2013), 119 

 1T1
(1 )

2
b b b f

s eJ J J    


      x B P C x ,  (1) 

where 𝐽௦ is a traditional cost function based on a static climatological BEC B and 𝐽 is an 120 

additional cost function based on ensemble-based BEC Pf. C is a correlation matrix for 121 

localization of the ensemble covariance Pf. The weighting coefficient β between static and 122 

ensemble-based BEC is set to 0.8 in this study. To account for model error for E3DVAR, multi-123 

physics scheme is applied to 40-member ensembles. Yang and Kim (2021) found that E3DVAR 124 

is the most appropriate DA method among 3DVAR, EnKF, and E3DVAR methods over East 125 

Asia. More detailed information on E3DVAR implemented in this study can be found in Yang 126 

and Kim (2021). 127 

2.2.2. Advanced hybrid gain data assimilation method Hybrid gain data assimilation method 128 

In the last decade, the traditional hybrid methods have been widely used for many 129 

operational centers and research institutes. Recently, Penny (2014) has proposed a new class 130 

of hybrid gain methods combining desirable aspects of both variational and EnKF families of 131 

algorithms by weighting analyses from 3DVAR and LETKF for an optimal analysis in the 132 

Lorenz 40-component model. Since then, this algorithm has been implemented at ECMWF 133 

(Bonavita et al. 2015) and at a hybrid global ocean DA system in National Centers for 134 

Environmental Prediction (NCEP) (Penny et al. 2015). 135 
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The hybrid gain algorithm can be described with the following equations: 136 

 
det (1 )a a a

Hybx x x    , (2) 

where xHyb
 , xdet

 , and xതതത denote the hybrid analysis, deterministic analysis, and the ensemble 137 

mean analysis from the ensemble-based assimilation method, and α is a tunable parameter 138 

(Penny 2014, Houtekamer and Zhang 2016).  139 

The hybrid gain method is different from traditional hybrid methods, in that a hybrid gain 140 

approach linearly combines analysis fields from EnKF and variational DA method to produce 141 

a hybrid gain analysis rather than linearly combining respective BECs (Penny 2014). Basically, 142 

the hybrid gain method is to hybridize two different Kalman gain matrices of ensemble-based 143 

[Eq. (4)] and variational data assimilation system [Eq. (5)] as in Eq. (3). 144 

 
1 2 3

ˆ f B B fK K K K HK     , (3) 

where 145 

 T T 1( )f f fK P H H P H R   , (4) 

 T T 1( )BK ΒH H ΒH R   . (5) 

H is an observation operator mapping the model state vector to observation space and R is the 146 

observation error covariance matrix. The matrices Pf and B indicate the ensemble-based and 147 

the static climatological BEC, respectively. By choosing the specific coefficients (𝛽ଵ=1, 𝛽ଶ ൌ148 

𝛼, 𝛽ଷ ൌ െ𝛼), it can be written as in Eq. (6) and it can give an algebraically equivalent result 149 

with Eq. (2) (Penny 2014).  150 

 ˆ ( )f B fK K K I HK   . (6) 

One of advantages of the hybrid gain algorithm with respect to its development is that pre-151 

existing operational systems can be used without significant modification for a hybrid analysis 152 
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(Penny 2014) and independent parallel development of respective methods is allowed 153 

(Houtekamer and Zhang 2016). Furthermore, the hybrid gain approach can be considered as a 154 

practical and straightforward method in the foreseeable future to combine advantageous 155 

features of both ensemble- and variational-based DA algorithms (Houtekamer and Zhang 2016). 156 

More detailed information on this algorithm can be found in Penny (2014). 157 

2.2.3. Advanced hybrid gain data assimilation method 158 

In this study, based on the hybrid gain approach, an advanced hybrid gain data assimilation 159 

method (AdvHG) is newly proposed as follows: 160 

 (6 )
E3DVARAdvHG ERA5X X (1 )X ,
aa f h     (7) 

where 
(6 )

ERA5Xf h
 denotes the 6 h forecast of ERA5 reanalysis based on WRF model and E3DVARX

a
161 

denotes the analysis of E3DVAR (Fig. 2). In Eq. (7), α is a tunable parameter and is assigned 162 

to be 0.5 in this study. This advanced hybrid gain approach is different from the hybrid gain 163 

approach in that 1) E3DVAR analysis is used instead of EnKF, 2) 6 h forecast of ERA5 is used 164 

instead of deterministic analysis from variational DA method, and 3) the pre-existing and state-165 

of-the-art reanalysis data (i.e., ERA5) is simply used instead of producing deterministic 166 

analysis by assimilation. The reasons for these different approaches proposed in this study are 167 

as follows:  168 

1) E3DVAR is used instead of EnKF because Yang and Kim (2021) confirmed that 169 

E3DVAR outperforms EnKF for winter and summer seasons over East Asia.  170 

2) Instead of deterministic analysis, the 6 h forecast of ERA5 based on WRF model is 171 

used to make the hybrid analysis more balanced and consistent with WRF model, because 172 

ERA5 reanalysis fields are based on its own modeling system with coarser resolution, which 173 

is different from that of this study.  174 

3) European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) 175 
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is used instead of producing our own analysis fields from a variational DA method. This is a 176 

very efficient approach because of the cost savings as well as the use of the high-quality latest 177 

reanalysis from ECMWF assimilating all currently available observations with the state-of-the-178 

art and advanced technology.  179 

Therefore, the approach proposed in this study is called as “advanced hybrid gain method” 180 

(denoted as “AdvHG”). 181 

2.3. Observations 182 

The NCEP PrepBUFR [Prepared or QC’d data in BUFR (Binary Universal Form for the 183 

Representation of meteorological data) format] conventional observations (global upper air and 184 

surface weather observations, NCEP/NWS/NOAA/U.S.DOC 2008) are used every 6 h (00, 06, 185 

12, and 18 UTC) for an assimilation by E3DVAR and AdvHG methods (Fig. 1). The PrepBUFR 186 

is the output of the final process for preparing the observations to be assimilated in the different 187 

NCEP analyses. For observations, rudimentary multi-platform quality control (QC) and more 188 

complex platform-specific QC were conducted (e.g., surface pressure, rawinsonde heights and 189 

temperature, wind profiler, aircraft wind and temperature) in NCEP (Keyser 2013). 190 

Furthermore, if the innovations (i.e., observation minus background) of some observations are 191 

greater than 5 times the observational error, then that observation is rejected during assimilation 192 

procedure in this study.  193 

The assimilated observations are as follows: the surface observations (SYNOP, METAR, 194 

Ship, and Buoy), radiosonde observation (SOUND), upper-wind report (PILOT), wind profiler, 195 

aircraft, atmospheric motion vector (AMV) wind from a geostationary satellite (GEOAMV), 196 

and Scatterometer oceanic surface winds (Scatwind), and precipitable water vapor from global 197 

positioning system (GPSPW). The observation errors depending on each observation platform, 198 

variable, and vertical levels are assigned based on the default observation error statistics 199 

provided in WRFDA system (Table 2). All observations are spatially thinned by 20 km except 200 
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for AMV thinned by 200 km as done by Warrick (2015), Cotton et al. (2016), and Shin et al. 201 

(2016). 202 

To evaluate 6 h accumulated precipitation simulated by E3DVAR, AdvHG, ERA-I, and 203 

ERA5 over East Asia, global surface weather observations (NCEP PrepBUFR, 204 

NCEP/NWS/NOAA/U.S.DOC 2008) are used every 6 h (00, 06, 12, and 18 UTC). For an 205 

evaluation of the monthly precipitation fields, the world monthly surface station climatology 206 

(NCDC/NESDIS/NOAA/U.S.DOC et al. 1981) over 4700 different stations (2600 in more 207 

recent years) is used.  208 

2.4.Global reanalysis datasets 209 

To compare EARR generated with other reanalysis datasets, ERA5 (Hersbach et al. 2020) 210 

and ERA-I (Dee et al. 2011) reanalysis are chosen. The horizontal resolutions of ERA-I and 211 

ERA5 are approximately 79 km (TL255) and 31 km (TL639), respectively. Because ERA5 is 212 

based on the operational system in 2016, improvements in model physics, numerics, data 213 

assimilation, and additional observations over the last decade are the advantages of ERA5 214 

(Hersbach et al. 2018).  215 

Because reforecast as well as reanalysis fields are verified in this study, for forecast fields, 216 

two different forecast fields from ECMWF (i.e., forecast based on WRF model and reforecast 217 

based on ECMWF model) are used. The WRF forecast fields (i.e., WRF-based ERA5, WRF-218 

based ERA-I) using ERA5 and ERA-I as initial conditions are integrated with 12 km resolution. 219 

Secondly, reforecast fields based on ECMWF model (i.e., ERA5_fromECMWF, ERA-220 

I_fromECMWF), provided and downloaded from ECMWF, are used. In this study, (re)forecast 221 

as well as reanalysis fields need to be verified. Regarding reanalysis and (re)forecast fields of 222 

ECMWF, reanalysis fields (i.e., ERA5 and ERA-I) downloaded from ECMWF are evaluated 223 

(Figs. 3 and 6). There are two different (re)forecast fields (e.g., ERA5_fromECMWF, WRF-224 

based ERA5) used in this study. WRF-based ERA5 and ERA-I are forecast fields based on 225 
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WRF model with 12 km horizontal resolution where ERA5 and ERA-I are used as initial 226 

conditions, respectively. In contrast, ERA5_fromECMWF and ERA-I_fromECMWF are 227 

reforecast fields based on ECMWF model not WRF model, so the reforecast fields of ERA5 228 

and ERA-I are provided and downloaded from ECMWF. These reforecast fields are only used 229 

for evaluation of precipitation (Figs. 8 and 9). The (re)analysis and (re)forecast fields and 230 

corresponding experiments are explained in Table 3.  231 

3. Evaluation method 232 

3.1. Equitable threat score and Frequency bias index 233 

Based on the contingency table (Table 24), ETS is defined as 234 

 
r

r
r

A A (A B)(A C)
ETS= , where A =

A B C A A B C D

  
     

. (8) 

The ETS range is from -1/3 to 1 and the value 1 for ETS is a perfect score. ETS is a more 235 

balanced score than Probability of Detection (POD) and False Alarm Ratio (FAR), because it 236 

is sensitive to both false alarms and misses (Wilson 2010). 237 

FBI is defined as  238 

 A B
FBI=Bias=

A C




. (9) 

The FBI indicates whether the model tends to over-forecast (too frequently, FBI>1) or under-239 

forecast (not frequent enough, FBI<1) events with respect to frequency of occurrence. 240 

3.2 Probability of detection and False alarm ratio 241 

Based on the contingency table (Table 24), POD is defined as 242 

 A Hits
POD=

A C Hits + Misses



. (10) 

The POD range is from 0 to 1. POD is required to be used with FAR, because POD can be 243 

artificially improved by systematically over-forecasting the events (Wilson 2010).  244 
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FAR is defined as  245 

 B False alarms
FAR=

A B Hits + False alarms



. (11) 

The range of FAR is from 0 to 1 and its lower score implies a higher accuracy. 246 

3.3 Brier skill score 247 

Verification of the performance of high-resolution forecast with the traditional verification 248 

metrics (e.g., ETS, FBI) can be misleading due to double penalty, particularly for highly 249 

variable fields (e.g., precipitation). Therefore, as one of spatial verification approaches that do 250 

not require forecast to match point observation spatially, neighborhood (fuzzy) verification 251 

method, which assumes that slightly displaced forecast can be acceptable and a local 252 

neighborhood can define the degree of allowable displacement (Ebert 2008; Kim et al. 2015; 253 

On et al. 2018), is used in this section. According to Ebert (2008), depending on the matching 254 

strategy, neighborhood verifications can be categorized into two frameworks: ‘single 255 

observation-neighborhood forecast (SO-NF)’ where neighborhood forecasts surrounding 256 

observations are considered, and ‘neighborhood observation-neighborhood forecast (NO-NF)’ 257 

strategies where not only neighborhood forecasts but also neighborhood observations 258 

surrounding observations are considered. Due to the absence of high-resolution gridded 259 

precipitation observation data in East Asia, various verification scores widely used as 260 

‘neighborhood observation-neighborhood forecast (NO-NF)’ strategy are not available in this 261 

study. Thus, in this section, Brier skill score as one of ‘single observation-neighborhood 262 

forecast (SO-NF)’ strategy is introduced.  263 

The Brier score (BS) is similar to the mean-squared error (MSE) and is defined as (Wilks 264 

2006):  265 

 
2

1

1
BS= ( )

N

i i
i

p o
N 

 . (12) 
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where pi denotes the probability forecast, and oi denotes the binary observation which is either 266 

0 or 1, and N is the total number of observations during the given period. Generally, Brier skill 267 

score (or Brier score) is used to verify ensemble forecasts which are able to calculate 268 

probabilistic forecasts (Kay et al. 2013; Kim and Kim 2017). However, Brier skill score can 269 

also be used for deterministic forecasts using a pragmatic post-processing procedure (Theis et 270 

al., 2005; Mittermaier et al. 2014), which derives probabilistic forecasts from deterministic 271 

forecasts at every model grid point by considering neighborhood forecast as pseudo ensemble. 272 

 

ref

BS
BSS 1

BS
  , (13) 

where BSref is Brier score of reference. Brier skill score is skill score with respect to Brier score 273 

as in Eq. (13). For reference, a climatology or other forecast can be used either. In this study, 274 

the WRF-based ERA-I is considered as a reference.  275 

3.4 Pattern correlation coefficient 276 

The pattern correlation coefficient (PCC) is defined as Eq. (14) (Shiferaw et al. 2018; Yoo 277 

and Cho 2018; Park and Kim 2020).  278 

 

1
 1/2

2 2

1 1

( )( )
PCC = 

( )  ( )

N

i i
i

N N

i i
i i

x x o o

x x o o



 

 

    



 
, (14) 

where xi and oi are (re)forecast and observed precipitation at ith observation location and the 279 

over-bar indicates the averaged variables over N observed stations in the verification area.  280 

4. Results 281 

4.1 Evaluation of wind, temperature, and humidity variables 282 

4.1.1 RMSE for January and July 2017 283 

The analysis and forecast RMSEs of E3DVAR, AdvHG, the WRF-based ERA-I, and 284 
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WRF-based ERA5 are calculated for zonal wind, meridional wind, temperature, and Qvapor 285 

(water vapor mixing ratio in WRF) variables against sonde observations at 00 and 12 UTC in 286 

verification domain (dashed box in Fig. 1) for January and July in 2017 and averaged over each 287 

month (Figs. 2, 3, and 4  3, 4, and 5).  288 

For analysis RMSE (Fig. 2), ERA5 is smaller than ERA-I for all levels and variables. In 289 

particular, the analysis RMSE difference between ERA5 and ERA-I is distinctive for wind. The 290 

vertically averaged wind RMSE of ERA5 for January (2.22 m s-1) and July (1.98 m s-1) in 291 

2017 is smaller by approximately 0.23 and 0.3 m s-1 than that of ERA-I for January (2.45 m s-292 

1) and July (2.28 m s-1) in 2017. The analysis RMSE of E3DVAR is smaller than that of 293 

AdvHG for all pressure levels and variables, except for temperature in July at 1000 hPa and 294 

Qvapor in January and July at 1000 hPa. In general, the analysis RMSE of AdvHG for all 295 

variables is comparable to or greater than that of ERA5. For analysis RMSE (Fig. 23), E3DVAR 296 

is smaller than AdvHG for all pressure levels and variables, except for temperature in July at 297 

1000 hPa and Qvapor in January and July at 1000 hPa. In general, the analysis RMSE of 298 

AdvHG for all variables is comparable to or greater than that of ERA5. The analysis RMSE of 299 

ERA5 is smaller than that of ERA-I for all levels and variables; in particular, the analysis 300 

RMSE difference between ERA5 and ERA-I is distinctive for wind.  301 

Regarding wind variables of analysis (Figs. 2a, b, c, and d3a, b, c, and d), E3DVAR is the 302 

most closely fitted to observations except for the wind in upper troposphere in January, 303 

followed by ERA5, AdvHG, and ERA-I. For temperature RMSE (Figs. 2e and f 3e and f), 304 

E3DVAR is smaller than AdvHG and ERA5 is smaller than ERA-I. However, in January (Fig. 305 

2e), ERA5 RMSE is the smallest for upper troposphere and RMSEs of ERA5 and E3DVAR 306 

are similar to each other for lower troposphere. In July (Fig. 2f), overall E3DVAR RMSE is the 307 

smallest except for 1000 hPa. E3DVAR is smaller than AdvHG. For Qvapor, RMSE in July is 308 

much larger than that in January due to a monsoonal flow carrying moist air to East Asia. In 309 
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general, Qvapor RMSE of E3DVAR is the smallest, followed by ERA5, AdvHG, and ERA-I. 310 

Therefore, for all variables, generally E3DVAR analysis fields are the most closely fitted to 311 

observations. Since the analysis RMSE implies how much analysis fields are fitted to 312 

observations rather than the accuracy of analysis itself, not only analysis RMSE but also 313 

forecast RMSE should be considered 314 

For 24 h forecast RMSEs (Fig. 3), ERA5 RMSE is the smallest for all levels and variables 315 

for January and July in 2017. In January (Figs. 3a, c, e, and g), overall, the 24 h forecast RMSE 316 

of ERA5 is the smallest and that of ERA-I is the largest for all variables, and RMSEs of AdvHG 317 

and E3DVAR are greater than those of ERA5 and smaller than those of ERA-I. Regarding 318 

AdvHG and E3DVAR, in general, AdvHG is smaller than E3DVAR for all levels and variables. 319 

Thus, in January, ERA5 is the most accurate, followed by AdvHG, E3DVAR, and ERA-I. 320 

Meanwhile, for July (Figs. 3b, d, f, and h ), ERA5 shows the smallest RMSE, and AdvHG and 321 

E3DVAR show comparable RMSE to ERA-I. For 24 h forecast fields in January (Figs. 4a, c, 322 

e, and g), overall, RMSEs of AdvHG and E3DVAR are greater than those of ERA5 and smaller 323 

than those of ERA-I, and AdvHG RMSE is smaller than E3DVAR RMSE for all levels and 324 

variables. Meanwhile, for July (Figs. 4b, d, f, and h), AdvHG and E3DVAR show comparable 325 

RMSE to ERA-I. 326 

Furthermore, general features of 36 h forecast RMSE (Fig. 45) are similar to the 24 h 327 

forecast RMSE (Fig. 34). However, particularly in January, the 36 h forecast RMSE differences 328 

between ERA5 and ERA-I are more distinctive compared to those of 24 h forecast. In January, 329 

the vertically averaged 36 h forecast RMSE differences of ERA5 and ERA-I are 0.52 m s-1 for 330 

wind, 0.16 K for temperature, and 0.08 g kg-1 for Qvapor, whereas those of 24 h forecast are 331 

0.4 m s-1 for wind, 0.11 K for temperature, and 0.06 g kg-1 for Qvapor. In addition, the 36 h 332 

forecast RMSE differences between ERA5 and AdvHG for January are on average 0.1 m s-1 333 

for wind, 0.05 K for temperature, and 0.02 g kg-1 for Qvapor, which are even smaller compared 334 
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to those of 24 h forecast, implying that AdvHG is a lot more accurate than ERA-I for January 335 

in 2017. For July, 36 h forecast RMSE of ERA5 is the smallest and RMSEs of AdvHG and 336 

E3DVAR are similar to those of ERA-I. 337 

4.1.2 RMSE and spread for the period of 2017-18 2010-2019 338 

In this section, EARR produced in this study is verified for a longer period with WRF-339 

based ERA5. RMSE and spread of reanalyses and reforecasts based on AdvHG method are 340 

calculated and averaged over the period of 2017–2018 2010-2019. The reanalyses and 341 

(re)forecast fields are evaluated by calculating RMSE valid at 00 and 12 UTC and spread at 00, 342 

06, 12, and 18 UTC.  343 

The averaged RMSEs of reanalysis for ERA5 and EARR (denoted as AdvHG in Fig. 56) 344 

and spread of analysis and 6 h forecast fields of EARR (AdvHG) are shown in Fig. 56. With 345 

respect to spread, the ensemble spreads of analysis fields are smaller than those of 6 h forecast 346 

fields, on average, by 0.160.15 m s-1 for wind, 0.04 K for temperature, and 0.02 g kg-1 for 347 

Qvapor, which is the well-known characteristics of ensemble-based data assimilation methods. 348 

To be specific, the wind spread (Figs. 56a and b) is similar to or greater than the wind RMSE 349 

except for the upper troposphere above 200 hPa, implying ensemble spread for wind is well 350 

represented below 200 hPa. Even if the ensembles for temperature (Fig. 5c) are underdispersive 351 

compared to RMSE of temperature, overall Qvapor spread (Fig. 5d) is well represented except 352 

for 1000 hPa and above 200 hPa. On the contrary, the ensembles for temperature and Qvapor 353 

(Figs. 6c and d) are underdispersive compared to their RMSEs. 354 

Regarding reanalysis RMSE, overall ERA5 RMSE is smaller than AdvHG RMSE for all 355 

variables (Fig. 5). The vertically averaged RMSEs of ERA5 are smaller by 0.15 m s-1 for wind, 356 

0.08 K for temperature, and 0.01 g kg-1 for Qvapor than those of AdvHG. Regarding reanalysis 357 

RMSE, overall AdvHG RMSE is greater than ERA5 RMSE for all variables (Fig. 6). The 358 

vertically averaged RMSEs of AdvHG are greater by 0.16 m s-1 for wind, 0.09 K for 359 
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temperature, and 0.01 g kg-1 for Qvapor than those of ERA5. Nonetheless, the wind RMSEs of 360 

AdvHG are similar to those of ERA5 for the middle of troposphere (400–850 hPa), and the 361 

Qvapor RMSEs of AdvHG are similar to those of ERA5 except for 1000 hPa. 362 

In addition, regarding 24 h forecast RMSE, ERA5 shows smaller RMSE than AdvHG for 363 

all variables (Fig. 6).    AdvHG shows larger RMSE than ERA5 for all variables (Fig. 7). 364 

The vertically-averaged RMSE differences of wind, temperature, and Qvapor variables 365 

between AdvHG and ERA5 are approximately 0.2 m s-1, 0.07 K, and 0.03 g kg-1, respectively. 366 

These differences are smaller, compared to the 24 h forecast RMSE difference between ERA-367 

I and ERA5 shown in Fig. 34 (i.e., wind, temperatureTemp, and Qvapor RMSE difference: 0.4 368 

m s-1, 0.11 K, and 0.06 g kg-1 for January 2017, 0.25 m s-1, 0.05 K, and 0.04 g kg-1 for July 369 

2017).  370 

4.2  Evaluation of precipitation for January and July in 2017. 371 

4.2.1 Evaluation metrics 372 

4.2.1.1 Equitable threat score and Frequency bias index 373 

In this section, for the point-based Equitable threat score (ETS) and Frequency bias index 374 

(FBI) based on Table 24, the 6 h accumulated precipitation fields based on the 6 h forecast of 375 

E3DVAR, AdvHG, WRF-based ERA-I, WRF-based ERA5, ERA-I_fromECMWF, and 376 

ERA5_fromECMWF are evaluated every 6 h (00, 06, 12, and 18 UTC) for January and July in 377 

2017 (Fig. 78). Here, all the WRF-based precipitation fields are based on 12-km horizontal 378 

resolution, and ERA-I_fromECMWF and ERA5_fromECMWF have 79- and 31-km horizontal 379 

resolutions, respectively. Generally, ETS decreases as a threshold increases for both two 380 

months (Figs. 78a and c). For January in 2017 (Fig. 78a), AdvHG ETS is the greatest among 381 

others. Compared to precipitation reforecasts from ECMWF (i.e., ERA-I_fromECMWF, 382 

ERA5_fromECMWF), AdvHG shows the higher ETS, indicating that AdvHG is able to 383 

simulate more accurate precipitation fields than ERA-I and ERA5 from ECMWF in January 384 
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2017. Surprisingly, ETS of ERA5_fromECMWF for January in 2017 is the lowest among all 385 

the results compared and is even lower than that of ERA-I_fromECMWF.  386 

Since the precipitation reforecasts from ECMWF have not only coarser resolutions but 387 

also different forecast model (i.e., the forecasting system of ECMWF), the precipitation 388 

forecasts of ERA5 and ERA-I are additionally produced by using the same forecast model with 389 

the same resolution as AdvHG and E3DVAR in this study, as explained in section 2.4. For 390 

January 2017 (Fig. 78a), ETS of ERA5 (i.e., WRF-based ERA5) is higher than that of 391 

ERA5_fromECMWF for all thresholds, whereas ETS of ERA-I (i.e., WRF-based ERA-I) is 392 

lower than that of ERA-I_fromECMWF except for strong high thresholds (8 and 16 mm (6 h)-393 

1). The ERA5 ETS is greater than the ERA-I ETS, but is smaller than the AdvHG ETS. The 394 

AdvHG shows the greatest ETS among others with the same resolution and forecast model, 395 

and E3DVAR, ERA5, and ERA-I follow.  396 

Regarding FBI in winter (Fig. 78b), for strong thresholdsfor 4, 8, and 16 mm (6 h)-1 397 

thresholds, all the results show the FBI smaller than 1, implying the underestimation of 398 

frequency of precipitation for strong thresholds for high-threshold events. While FBIs of 399 

ERA5_fromECMWF and ERA-I_fromECMWF are greater than 1 for weak thresholds, those 400 

WRF-based results are similar to 1 or smaller than 1. In general, AdvHG shows the FBI closest 401 

to 1 among all the results, which is consistent with the greatest ETS of AdvHG. The E3DVAR 402 

FBI is similar to the AdvHG FBI, and ERA5 and ERA-I FBIs are similar to each other. FBIs 403 

of ERA5 and ERA-I are smaller than those of AdvHG and E3DVAR.  404 

Meanwhile, overall, the ETS values for January whose maximum is around 0.4 (Fig. 78a) 405 

are much greater than those for July in 2017 whose maximum is around 0.2 (Fig. 78c), implying 406 

that the precipitation forecast in summer is more difficult than that in winter. The ETS 407 

difference between the results in July is smaller than those in January. Particularly, for the 408 

thresholds 4 and 8 mm (6 h)-1, ETSs in July are similar to each other (Fig. 78c). Except for 409 
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those two thresholds, the ETS of ERA-I_fromECMWF is the smallest. At the threshold 16 mm 410 

(6 h)-1, ERA5 ETS is the highest, followed by AdvHG, E3DVAR, ERA-I, ERA5_fromECMWF, 411 

and ERA-I_fromECMWF. At the threshold 0.5 and 1 mm (6 h)-1, the E3DVAR ETS is the 412 

greatest, followed by ERA5, AdvHG, ERA5_fromECMWF, ERA-I, and ERA-I_fromECMWF. 413 

With respect to FBI in July 2017, the WRF-based results show the FBIs greater than 1, 414 

whereas reforecast from ECMWF show the FBIs greater than 1 for weak 0.5, 1, and 4 mm (6 415 

h)-1 thresholds and smaller than 1 for higher thresholds (8 and 16 mm (6 h)-1) strong thresholds  416 

(Fig. 78d). For July in 2017, in general, ERA5_fromECMWF FBI is the closest to 1, followed 417 

by E3DVAR, AdvHG, ERA5, ERA-I, and ERA-I_fromECMWF FBI. 418 

4.2.1.2 Probability of detection and False alarm ratio 419 

The Probability of Detection (POD or Hit Rate) and False Alarm Ratio (FAR) are 420 

calculated for precipitation simulated from E3DVAR, AdvHG, WRF-based ERA-I, WRF-421 

based ERA5, ERA-I_fromECMWF, and ERA5_fromECMWF for January and July in 2017 422 

(Fig. 89). For January in 2017, AdvHG POD is the greatest among the WRF-based results, 423 

followed by E3DVAR, ERA5, and ERA-I (Figs. 89a). Overall, the results of reforecast from 424 

ECMWF (i.e., ERA-I_fromECMWF and ERA5_fromECMWF) have greater POD than the 425 

WRF-based POD for weak thresholds, whereas those have smaller POD than the WRF-based 426 

POD for strong thresholds. Regarding FAR, notably, ERA5_fromECMWF shows extremely 427 

great FAR and ERA5 shows the smallest FAR among all the results, which is a consistent result 428 

with the smallest ETS of ERA5_fromECMWF. In addition to the lowest ETS of 429 

ERA5_fromECMWF for January in 2017 as discussed in the section 4.2.1.1, FAR of 430 

ERA5_fromECMWF is extremely high with low POD in winter. Therefore, especially for 431 

January in 2017, the precipitation fields simulated from ERA5_fromECMWF over East Asia 432 

are much less accurate than any other results from this study. Therefore, especially for January 433 

in 2017, the precipitation fields simulated from EARR (AdvHG) over East Asia are a lot more 434 
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accurate than those from ERA5_fromECMWF.  435 

For July in 2017, generally, ERA5 shows the largest POD, followed by AdvHG, ERA-I, 436 

E3DVAR, ERA5_fromECMWF (Figs. 8c and d). For July in 2017, generally, AdvHG shows 437 

the largest POD, except for ERA5 (Fig. 9c). The ERA-I POD shows the largest POD for weak 438 

thresholds and the smallest POD for strong thresholds, compared to other results. With respect 439 

to FAR, FAR values in July is are much greater than those in January, which is consistent with 440 

the ETS difference between these two seasons. Overall, for strong thresholds, ERA-I shows 441 

the highest FAR and ERA-I_fromECMWF shows the smallest FAR. For weak thresholds, the 442 

ERA-I_fromECMWF shows the highest FAR and E3DVAR shows the smallest FAR among 443 

all the results.  444 

 445 

4.2.1.3 Brier skill score  446 

The neighborhood sizes are chosen to be 3∆x,  5∆x, 9∆x, and 11∆x, which are 36, 60, 447 

108, and 132 km, respectively, and the thresholds 0.5, 1, 4, 8, and 16 mm (6 h)-1 are considered. 448 

The probabilistic precipitation forecasts are calculated at every model grid point depending on 449 

neighborhood sizes and thresholds. Regarding each observation, the nearest model grid point 450 

to observations is considered as the center of neighborhood. For verification, 6 h accumulated 451 

precipitation fields are extracted from the first 0–6 h forecast fields of WRF-based ERA-I, 452 

WRF-based ERA5, E3DVAR, and AdvHG every 6 h (00, 06, 12, and 18 UTC). BSSs of 453 

ERA5_fromECMWF and ERA-I_fromECMWF are not calculated, because they have different 454 

resolution from WRF-based results. 455 

Based on the neighborhood approach, Brier skill score (BSS) is calculated depending on 456 

different neighborhood sizes for January and July in 2017, respectively (Fig. 910). Because the 457 

reference of Brier score is chosen as the ERA-I, the positive BSS implies better accuracy than 458 

ERA-I. In general, for both two months, AdvHG BSS is greater than ERA5 BSS. Although the 459 
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E3DVAR BSS is the greatest in July 2017, the AdvHG BSS is the greatest in January 2017. 460 

For January in 2017, as a neighborhood size increases, AdvHG and E3DVAR BSSs tend 461 

to increase except for ERA5. Overall, AdvHG BSS is the greatest among other BSSs for all 462 

thresholds for all neighborhood sizes. The ERA5 BSS is greater than E3DVAR BSS except for 463 

16 mm (6 h)-1. The highest BSS of AdvHG and the lowest BSS of ERA-I are consistent with 464 

ETS result. Unlike greater E3DVAR ETS than ERA5 ETS, ERA5 BSS is greater than E3DVAR 465 

BSS in January 2017. 466 

For July 2017, while the ETS difference between the WRF-based results is not distinct 467 

(Fig. 78c), the BSS difference is rather noticeable. Generally, E3DVAR BSS is the greatest 468 

among other BSSs for all thresholds except for 16 mm (6 h)-1 for neighborhood sizes 9 and 11. 469 

Although E3DVAR BSS is the largest, AdvHG outperforms ERA5 and ERA-I. The worst 470 

performance of ERA-I precipitation is consistent with ETS result. At weak 0.5, 1, and 4 mm (6 471 

h)-1 thresholds, E3DVAR BSS is the greatest, which is similar to ETS. For strong At 8 and 16 472 

mm (6 h)-1thresholds, ERA5 ETS is the highest, followed by AdvHG and E3DVAR, whereas 473 

overall E3DVAR BSS is the highest, followed by AdvHG and ERA5. 474 

4.2.2 Spatial distribution 475 

4.2.2.1  6 h accumulated precipitation with the pattern correlation coefficient 476 

In this section, the spatial distributions of 6 h accumulated precipitation from the WRF-477 

based forecast and reforecast from ECMWF are compared. In addition, pattern correlation 478 

coefficients (PCC) are calculated and shown at the bottom right of Figs. 10 and 11 and 12.  479 

The PCC is computed according to the usual Pearson correlation operating on the N 480 

observed point pairs of 6 h accumulated precipitation fields simulated from (re)forecast and 481 

observations at the specific time. For the calculation of PCC, 6 h accumulated precipitation 482 

fields from (re)forecast fields are interpolated bilinearly to the N observed points. 483 

Firstly, on 29th and 30th of January in 2017 (Fig. 10), it is noticeable that the precipitation 484 
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of ERA5_fromECMWF does not match observations well over East Asia compared to other 485 

simulated precipitation fields. As shown in Fig. 10g, ERA5_fromECMWF incorrectly 486 

simulates precipitation over South East China, whereas other results do not forecast 487 

precipitation over this area. In addition, ERA5_fromECMWF overestimates precipitation over 488 

inland area of China (Fig. 10zz), whereas other results simulate precipitation similar to 489 

observations regarding its position and intensity. ERA5_fromECMWF also shows noticeably 490 

smaller PCC (Figs. 10g, n, and zz). Although PCC does not represent the exact accuracy or 491 

predictability of precipitation, the overall feature of PCC is consistent with the results found so 492 

far. In particular, PCCs of ERA5_fromECMWF are much smaller than those of other 493 

precipitation fields. For January in 2017, the averaged PCC of AdvHG is the greatest (i.e., 0.61) 494 

and that of ERA5_fromECMWF is the smallest (i.e., 0.46) (not shown). Firstly, on 29th and 495 

30th of January in 2017 (Fig. 11), it is noticeable that the precipitation fields of AdvHG match 496 

observations well over East Asia, whereas, in particular, those of ERA5_fromECMWF do not. 497 

For example, ERA5_fromECMWF overestimates precipitation over inland area of China (Fig. 498 

11zz), while AdvHG simulates precipitation similar to observations regarding its position and 499 

intensity (Fig. 11x). ERA5_fromECMWF also shows noticeably smaller PCC (Figs. 11g, n, 500 

and zz). Although PCC does not represent the exact accuracy or predictability of precipitation, 501 

the overall feature of PCC is consistent with the results found so far. For January in 2017, the 502 

averaged PCC of AdvHG is the greatest (i.e., 0.61) and that of ERA5_fromECMWF is the 503 

smallest (i.e., 0.46) (not shown). 504 

Secondly, for 1st and 2nd of July in 2017 (Fig. 11), overall, the precipitation simulated from 505 

ERA5_fromECMWF is well represented, compared to January in 2017 shown in Fig. 10. The 506 

ERA-I_fromECMWF fails to simulate heavy rain for summer season due to its coarse 507 

resolution. Furthermore, during July in 2017, ERA5 and ERA-I simulate heavier precipitation 508 

than AdvHG (not shown), which is consistent with larger FBI of ERA5 and ERA-I at strong 509 
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thresholds. For 1st and 2nd of July in 2017 (Fig. 12), in general, AdvHG, E3DVAR, and ERA5 510 

well simulate not only overall features of precipitation fields but also their intensity. During 511 

July in 2017, ERA5 and ERA-I simulate heavier precipitation than AdvHG (not shown), which 512 

is consistent with larger FBI of ERA5 and ERA-I at higher thresholds. For one-month period 513 

of July in 2017, the averaged PCC of ERA5 is the greatest (i.e., 0.37) and that of AdvHG is 514 

0.34, but the PCC difference between ERA5 and AdvHG is not distinctive. Moreover, the 515 

overall range of averaged PCC of different datasets in summer (i.e., 0.29-0.35) is smaller than 516 

that in winter (i.e., 0.46-0.61), which is consistent with the seasonal difference of ETS in this 517 

study.  518 

4.2.2.2  Monthly accumulated precipitation 519 

In this section, the monthly accumulated precipitation fields of rain gauge based 520 

observations, E3DVAR, AdvHG, ERA-I, ERA5, ERA-I_fromECMWF, and 521 

ERA5_fromECMWF are compared to each other for two one-month periods in January and 522 

July in 2017, respectively. 523 

Although all the results similarly represent overall features of precipitation in January (Fig. 524 

12), ERA5_fromECMWF (Fig. 12g) simulates the overestimated precipitation over South 525 

China, compared to other results and observations, which is consistent with the results in the 526 

previous section as well as its larger FBI at weak thresholds shown in Fig. 7b. It is noticeable 527 

that all results fail to represent the observed precipitation area over Tibetan Plateau (25°–40°N, 528 

95–105°E). The monthly accumulated precipitation fields simulated by E3DVAR and AdvHG 529 

(Figs. 12b and c) are similar to each other, and E3DVAR and AdvHG produce the best fit to 530 

observed fields. Especially, for the north-western part of Japan (e.g., Chugoku and Kinki), 531 

E3DVAR and AdvHG are able to represent precipitation correctly, whereas ERA-532 

I_fromECMWF and ERA5_fromECMWF fail to do so (Fig. 12). The monthly accumulated 533 

precipitation fields simulated by E3DVAR and AdvHG (Figs. 13b and c) are similar to each 534 
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other, and E3DVAR and AdvHG produce the best fit to observed fields. Especially, for the 535 

north-western part of Japan (e.g., Chugoku and Kinki), E3DVAR and AdvHG are able to 536 

represent precipitation correctly, whereas ERA-I_fromECMWF and ERA5_fromECMWF fail 537 

to do so (Fig. 13). Moreover, although all the results similarly represent overall features of 538 

precipitation in January (Fig. 13), ERA5_fromECMWF (Fig. 13g) simulates the overestimated 539 

precipitation over South China, which is consistent with the results in the previous section as 540 

well as its larger FBI at lower thresholds (0.5 and 1 mm (6 h)-1) shown in Fig. 8b. It is noticeable 541 

that all results fail to represent the observed precipitation area over Tibetan Plateau (25°–40°N, 542 

95°–105°E). 543 

For the monthly accumulated precipitation in July 2017, overall, the ERA5_fromECMWF 544 

(Fig. 143g) and the WRF-based results (Fig. 143b, c, and e) except for ERA-I (Fig. 134d) well 545 

simulate precipitation similar to observations. ERA-I_fromECMWF is not able to simulate 546 

heavy precipitation over Korea. For western and southern part of Japan, while ERA-547 

I_fromECMWF and ERA5_fromECMWF simulate similar precipitation fields to observed 548 

fields, WRF-based results overestimate precipitation over these regions. Compared to ERA-549 

I_fromECMWF and ERA5_fromECMWF, the WRF-based results tend to overestimate 550 

precipitation in South China, Korea, and Japan. This is consistent with the result in Fig. 7d, in 551 

which FBIs from WRF-based results are generally greater than 1 for strong thresholds, whereas 552 

those from ECMWF are smaller than 1. The WRF-based results including AdvHG overestimate 553 

precipitation over western and southern part of Japan, while ERA-I_fromECMWF and 554 

ERA5_fromECMWF simulate similar precipitation fields to observed fields. The WRF-based 555 

results tend to overestimate precipitation in South China, Korea, and Japan, compared to ERA-556 

I_fromECMWF and ERA5_fromECMWF. This is consistent with the result in Fig. 8d, in which 557 

FBIs from WRF-based results are generally greater than for higher thresholds (8 and 16 mm (6 558 

h)-1), whereas those from ECMWF are smaller than 1.  559 



25 

 

Even though detailed precipitation features of WRF-based results are different, overall 560 

features of precipitation from WRF-based results are similar to each other, which implies that 561 

predictability of precipitation strongly depends on the physics schemes as well as NWP model, 562 

especially for summer season. According to Que et al. (2016), depending on the combinations 563 

of physics options in WRF model, the spatial distribution of precipitation can be significantly 564 

different over Asian summer monsoon area and YSU PBL scheme which is used in this study 565 

tends to overestimate precipitation over the same area. Thus, different physics options could 566 

simulate the different spatial distribution of precipitation.  567 

In addition, compared to ERA5 based on WRF model (Fig. 134e), ECMWF model for 568 

ERA5_fromECMWF (Fig. 134g) seems to suppress precipitation. Thus, WRF model with the 569 

physics schemes used in this study might simulate more precipitation than ECMWF model, 570 

although the initial condition is the same. Therefore, it is important to consider the consistency 571 

of the systems for data assimilation and forecast model for a good performance of precipitation. 572 

forecast weather variables like precipitation. 573 

5. Data Availability 574 

The EARR data presented in this study are available every 6 h (i.e., 00, 06, 12, and 18 575 

UTC) for the period of 2010-2019 from Harvard Dataverse Repository 576 

(https://dataverse.harvard.edu/dataverse/EARR). The EARR 6 hourly data on pressure levels 577 

(https://doi.org/10.7910/DVN/7P8MZT, Yang and Kim 2021b) and 6 hourly precipitation data 578 

(https://doi.org/10.7910/DVN/Q07VRC, Yang and Kim 2021c) are provided in NetCDF file 579 

format.  580 

The EARR 6 hourly data on pressure levels (Yang and Kim 2021b) include u-component 581 

of wind, v-component of wind, temperature, geopotential height, and specific humidity 582 

variables of reanalysis on pressure levels (i.e., 925, 850, 700, 500, 300, 200, 100, and 50 hPa). 583 
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The EARR 6 hourly precipitation data (Yang and Kim 2021c) contain 6 h accumulated total 584 

precipitation variable of 6 h reforecast on single level. The 6 h accumulated total precipitation 585 

is obtained from 6 h reforecast field which is integrated for 6 h from reanalysis field every 6 h 586 

(i.e., 00, 06, 12 and 18 UTC). 587 

6. Summary and conclusions 588 

In this study, to develop the regional reanalysis system over East Asia, the advanced 589 

hybrid gain algorithm (AdvHG) is newly proposed and evaluated with traditional hybrid DA 590 

method (E3DVAR) as well as existing reanalyses from ECMWF (ERA5 and ERA-I) for 591 

January and July in 2017. The East Asia Regional Reanalysis (EARR) system is developed 592 

based on the AdvHG as the data assimilation method using WRF model and conventional 593 

observations, and the high-resolution regional reanalysis and reforecast fields with 12 km 594 

horizontal resolution are produced over East Asia for the ten-year period of 2010–2019. The 595 

East Asia Regional Reanalysis (EARR) system is developed based on the AdvHG as the data 596 

assimilation method using WRF model and conventional observations. The high-resolution 597 

regional reanalysis and reforecast fields over East Asia with 12 km horizontal resolution are 598 

produced and evaluated against observations with ERA5 for the ten-year period of 2010–2019. 599 

The AdvHG newly proposed in this study is based on the hybrid gain approach, weighting 600 

analysies from variational-based and ensemble-based DA algorithms to generate optimal 601 

hybrid analysis, which can play an important role as a simple and practical method in the 602 

foreseeable future to take advantage of each strength of two different DA methods. The 603 

advanced hybrid gain method is different from the hybrid gain approach in that 1) E3DVAR is 604 

used instead of EnKF, 2) 6 h forecast of ERA5 is used instead of deterministic analysis for a 605 

more balanced and consistent analysis with WRF model, and 3) the pre-existing and state-of-606 

the-art reanalysis data (i.e. ERA5) is simply used instead of producing our own analysis fields 607 
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from a variational DA method. Thus, it can be regarded as an efficient approach to generate 608 

regional reanalysis dataset because of cost savings as well as the use of the state-of-the-art 609 

reanalysis from ECMWF that assimilates all available observations. 610 

For a verification, the latest ECMWF reanalysis and reforecast datasets (i.e., ERA5 and 611 

ERA-I) are used. With respect to forecast variables, two different forecast fields of ECWMF 612 

are used: 1) reforecast fields from ECMWF (i.e., ERA5_fromECMWF and ERA-613 

I_fromECMWF) and 2) forecast fields (i.e., WRF-based ERA5 and WRF-based ERA-I) 614 

integrated in WRF model with 12 km resolution using ERA5 and ERA-I as initial conditions. 615 

To evaluate this newly proposed algorithm, analysis and forecast wind, temperature, and 616 

humidity variables are evaluated with respect to RMSE and spread for January and July in 2017. 617 

Analysis and forecast wind, temperature, and humidity variables of AdvHG are evaluated with 618 

ERA5 for the ten-year period and evaluated with five different experiments (i.e., E3DVAR, 619 

ERA5, ERA-I, ERA5_fromECMWF, ERA-I_fromECMWF) for January and July in 2017. 620 

Overall, the analysis RMSE of E3DVAR is the smallest among others but comparable to that 621 

of ERA5, especially for January in 2017. Regarding forecast variables, AdvHG outperforms 622 

E3DVAR and ERA5 outperforms ERA-I for January and July in 2017. Although ERA5 623 

outperforms AdvHG for upper air variables for two seasons in 2017, AdvHG outperforms 624 

ERA-I in January and shows comparable performance to ERA-I in July. Additionally the 625 

verification results of AdvHG and ERA5 for the period of 2010-20197-18 are consistent with 626 

those for two one-month period in 2017. 627 

The precipitation forecast variables are also verified regarding a neighborhood-based 628 

verification score (i.e., Brier skill score) as well as the point-based verification scores (i.e., ETS, 629 

FBI, POD, and FAR). According to the point-based verification scores, the precipitation 630 

forecast of AdvHG in January is the most accurate, followed by E3DVAR, ERA5, ERA-I. The 631 

precipitation reforecast of ERA5_fromECMWF shows the worst performance with the lowest 632 
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ETS and the highest FAR among other results in January. For July, overall ETS values of all 633 

results are relatively lower compared to those in January, implying the lower predictability in 634 

summer season. For July, ERA5 shows the greatest ETS for strong thresholds followed by 635 

AdvHG and E3DVAR, and E3DVAR ETS is the greatest followed by ERA5 and AdvHG for 636 

weak thresholds. However, the ETS differences between the results are not distinctive. In 637 

addition, the ETS differences between the results are not distinctive in July. For higher 638 

thresholds (8 and 16 mm (6 h)-1) in July, AdvHG ETS is greater than E3DVAR ETS and smaller 639 

than ERA5 ETS, whereas E3DVAR ETS is the greatest followed by ERA5 and AdvHG for 640 

lower thresholds (0.5 and 1 mm (6 h)-1). 641 

To prevent from double penalty when verifying a highly variable data with high resolution 642 

(e.g., precipitation), Brier skill score (BSS) based on neighborhood approach is calculated for 643 

6 h accumulated precipitation forecasts depending on different neighborhood sizes for January 644 

and July in 2017. In general, BSS of AdvHG is greater than that of ERA5 and ERA-I for both 645 

two months. Although the E3DVAR BSS is the greatest in July 2017, the AdvHG BSS is the 646 

greatest in January 2017. 647 

Lastly, the spatial distributions of 6 h and monthly accumulated precipitation forecast for 648 

AdvHG, E3DVAR, ERA-I, ERA5, ERA-I_fromECMWF, and ERA5_fromECMWF are 649 

compared with rain-gauge based observations. For January 2017, it is noticeable that AdvHG 650 

precipitation is the closest to observations with highest PCC (i.e., 0.61) and 651 

ERA5_fromECMWF overestimates precipitation over South China with the lowest PCC (i.e., 652 

0.46). For July in 2017, due to a coarse resolution of ERA-I_fromECMWF, it fails to represent 653 

heavy rain over East Asia. Meanwhile, the WRF-based results tend to overestimate 654 

precipitation compared to ERA-I_fromECMWF and ERA5_fromECMWF. For July in 2017, 655 

the WRF-based results tend to overestimate precipitation compared to ERA-I_fromECMWF 656 

and ERA5_fromECMWF. In addition, even though the averaged PCC of ERA5 (i.e., 0.37) is 657 
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slightly greater than that of AdvHG (i.e., 0.34), the PCC difference between ERA5 and AdvHG 658 

is not distinctive and overall range of averaged PCC of all datasets in summer (i.e., 0.29-0.357) 659 

is smaller than that in winter (i.e., 0.46-0.6). 660 

In conclusion, for upper air variables, overall, ERA5 outperforms EARR based on AdvHG, 661 

but the RMSE difference between ERA5 and EARR (AdvHG) is smaller than that between 662 

ERA5 and ERA-I. In addition, EARR outperforms ERA-I for January 2017 and shows 663 

comparable performance to ERA-I for July 2017. On the contrary, according to the evaluation 664 

results of precipitation, in general, EARR better represents precipitation than ERA5 as well as 665 

ERA5_fromECMWF for January and July in 2017. Even if E3DVAR precipitation is better 666 

represented than EARR precipitation for July, the difference is not considerable for July and 667 

EARR better simulates precipitation for January than E3DVAR. Therefore, although the 668 

uncertainties of upper air variables of EARR should be considered when analyzing them, the 669 

precipitation reforecast of EARR is more accurate than that of ERA5 for both two seasons. 670 
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Table caption 900 

Table 1. Model configuration. 901 

Table 2. Summary of observations used in this study. The default observation error statistics 902 

provided in WRFDA system are used for assimilation in this study. The variables u, v, T, RH, 903 

Ps, and TPW denote zonal wind, meridional wind, temperature, relative humidity, surface 904 

pressure, and total precipitable water, respectively. 905 

Table 3. (Re)analyses and (re)forecasts and corresponding experiments used in this study. 906 

Table 24. The 2 ൈ 2 contingency table for dichotomous (yes-no) events. 907 

  908 
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Figure caption 909 

Figure 1. The model domain over East Asia with verification area (black dashed box). 910 

Figure 1. The East Asia Regional Reanalysis domain with different types of NCEP PrepBUFR 911 

observations available for assimilation at 00 UTC on 1st of January in 2017. The black dashed 912 

box denotes a verification area. 913 

Figure 2. The schematic diagram of the advanced hybrid gain data assimilation method in the 914 

East Asia regional reanalysis system. 915 

Figure 23. RMSEs of analysis of (a,b) zonal wind, (c,d) meridional wind, (e,f) temperature, 916 

and (g,h) Qvapor (water vapor mixing ratio) from ERA-I (black dashed), ERA5 (black solid), 917 

E3DVAR (blue dashed), AdvHG (blue solid) depending on pressure levels for (left) January 918 

and (right) July in 2017. 919 

Figure 34. Same as Fig. 23 except for 24 h forecast. 920 

Figure 45. Same as Fig. 23 except for 36 h forecast. 921 

Figure 56. RMSEs of analysis of (a) zonal wind, (b) meridional wind, (c) temperature, and (d) 922 

Qvapor (water vapor mixing ratio) from ERA5 (black solid) and AdvHG (blue solid) and 923 

spreads of analysis (black dashed) and 6 h forecast (gray dashed) of AdvHG depending on 924 

pressure levels averaged over the two-year period of 2017–2018. 925 

Figure 67. Same as Fig. 56 except for RMSE of 24 h forecast. 926 

Figure 78. (a,c) ETS and (b,d) FBI for (a,b) January and (c,d) July in 2017 depending on 927 

thresholds 0.5, 1, 4, 8, and 16 mm (6 h)-1. 928 

Figure 89. (a,c) POD and (b,d) FAR for (a,b) January and (c,d) July in 2017 depending on 929 

thresholds 0.5, 1, 4, 8, and 16 mm (6 h)-1. 930 
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Figure 910. Brier skill score of the probabilistic postprocessed forecast with reference to the 931 

WRF-based ERA-I for (a-d) January and (e-h) July in 2017 (Blue solid: AdvHG, blue dashed: 932 

E3DVAR, red solid: WRF-based ERA5). 933 

Figure 1011. The spatial distribution of 6 h accumulated precipitation of (1st column) 934 

observation, (2nd column) E3DVAR, (3rd column) AdvHG, (4th column) ERA-I, (5th column) 935 

ERA5, (6th column) ERA-I_fromECMWF, and (7th column) ERA5_fromECMWF and the 936 

pattern correlation coefficient (PCC) shown at the bottom right of each figure at valid time (1st 937 

low, 3rd low) 06 UTC and (2nd low, 4th low) 18 UTC on 29th and 30th of January in 2017. 938 

Figure 1112. As in Fig. 1011, but for 1st and 2nd of July in 2017. 939 

Figure 1213. The spatial distribution of the monthly accumulated precipitation of (a) 940 

observations, (b) E3DVAR, (c) AdvHG, (d) ERA-I, (e) ERA5, (f) ERA-I from ECMWF, and 941 

(g) ERA5 from ECMWF for January 2017. 942 

Figure 1314. As in Fig. 1213, but for July 2017. 943 
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Table 1. Model configuration 945 

 Description 

Hori. Resol. 12 km (540ൈ432 grid points) 

Vert. Lev. 50 vertical levels (up to 5 hPa) 

Model WRF Model (v3.7.1, Skamarock et al. 2008) 

LBC ERA5 (Hersbach et al. 2020) 

Data assimilation 
E3DVAR (Zhang et al. 2013), 
Adanced hybrid gain method 

Microphysics Thompson scheme (Thompson et al. 2008) 
Cumulus 

convection 
Grell–Freitas ensemble scheme (Grell and Freitas 2014) 

PBL Yonsei University scheme (Hong et al. 2006) 

Radiation 
Rapid Radiative Transfer Model (RRTMG) scheme 

(Iacono et al. 2008) 

Surface layer 
Revised MM5 Monin-Obukhov scheme (Jiménez et al. 

2012) 
Surface model Unified Noah Land Surface Model (Tewari et al. 2004) 

 946 

  947 
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Table 2. Summary of observations used in this study. The default observation error statistics 948 

provided in WRFDA system are used for assimilation in this study. The variables u, v, T, RH, 949 

Ps, and TPW denote zonal wind, meridional wind, temperature, relative humidity, surface 950 

pressure, and total precipitable water, respectively.  951 

Observations Descriptions Variables 
Observation errors 

(depending on vertical 
levels) 

SOUND Upper-air observation from radiosonde 
u, v 1.1-3.3 m/s 
T 1 K 

RH 10-15% 
PROFILER Upper-air wind profile from wind profiler u, v 2.2-3.2 m/s 

PILOT 
Upper-air wind profile from pilot balloon or 

radiosonde 
u, v 2.2-3.2 m/s 

AIREP Upper-air wind and temperature from aircraft 
u, v 3.6 m/s 
T 1 K 

Scatwind Scatterometer oceanic surface winds u, v 2.5-3.8 m/s 

SHIPS Surface synoptic observation from ship 

u, v 1.1 m/s 
T 2 K 
Ps 1.6 hPa 
RH 10% 

SYNOP Surface synoptic observation from land station 

u, v 1.1 m/s 
T 2 K 
Ps 1 hPa 
RH 10% 

BUOY Surface synoptic observation from buoy 

u, v 1.4-1.6 m/s 
T 2 K 
Ps 0.9-1 hPa 
RH 10% 

GPSPW 
Precipitable water vapor from global positioning 

system (GPS) 
TPW 0.2 mm 

METAR 
Aviation routine weather report from automatic 

weather station (AWS) 

u, v 1.1 m/s 
T 2 K 
Ps 1 hPa 
RH 10% 

AMV 
Conventional atmospheric motion vector data 

from geostationary satellite 
u, v 2.5-4.5 m/s 

 952 

 953 
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Table 3. (Re)analyses and (re)forecasts and corresponding experiments used in this study. 955 

Experiment (Re)analysis (Re)forecast 

AdvHG (EARR) Reanalysis from AdvHG Generated using WRF 
E3DVAR Analysis from E3DVAR Generated using WRF 
WRF-based ERA5 Reanalysis from ERA5 Generated using WRF 
WRF-based ERA-I Reanalysis from ERA-I Generated using WRF 
ERA5_fromECMWF Reanalysis from ERA5 Downloaded from ECMWF 
ERA-I_fromECMWF Reanalysis from ERA-I Downloaded from ECMWF 

  956 
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Table 24. The 2 ൈ 2 contingency table for dichotomous (yes-no) events. 957 

Forecast Observed  
Yes No 

Yes Hits (A) False alarms (B) A + B 
No Misses (C) Correct rejections (D) C + D 

 A + C B + D Total = A + B + C + D 

 958 

  959 
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 960 

Figure 1. The model domain over East Asia with verification area (black dashed box).  961 
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 962 

Figure 1. The East Asia Regional Reanalysis domain with different types of NCEP PrepBUFR 963 

observations available for assimilation at 00 UTC on 1st of January in 2017. The black dashed 964 

box denotes a verification area. 965 

966 
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 967 

Figure 2. The schematic diagram of the advanced hybrid gain data assimilation method in the 968 

East Asia regional reanalysis system. 969 
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 971 

Figure 2. RMSEs of analysis of (a,b) zonal wind, (c,d) meridional wind, (e,f) temperature, and 972 

(g,h) Qvapor (water vapor mixing ratio) from ERA-I (black dashed), ERA5 (black solid), 973 

E3DVAR (blue dashed), AdvHG (blue solid) depending on pressure levels for (left) January 974 

and (right) July in 2017. 975 
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 976 

Figure 3. RMSEs of analysis of (a,b) zonal wind, (c,d) meridional wind, (e,f) temperature, and 977 

(g,h) Qvapor (water vapor mixing ratio) from ERA-I (black dashed), ERA5 (black solid), 978 

E3DVAR (blue dashed), AdvHG (blue solid) depending on pressure levels for (left) January 979 

and (right) July in 2017. 980 
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 981 

Figure 3. Same as Fig. 2 except for 24 h forecast.  982 
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 983 

Figure 4. Same as Fig. 3 except for 24 h forecast. 984 
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 985 

Figure 4. Same as Fig. 2except for 36 h forecast.  986 
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 987 

Figure 5. Same as Fig. 3 except for 36 h forecast. 988 
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 989 

Figure 5. RMSEs of analysis of (a) zonal wind, (b) meridional wind, (c) temperature, and (d) 990 

Qvapor (water vapor mixing ratio) from ERA5 (black solid) and AdvHG (blue solid) and 991 

spreads of analysis (black dashed) and 6 h forecast (gray dashed) of AdvHG depending on 992 

pressure levels averaged over the two-year period of 2017–2018.  993 

994 
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 995 

Figure 6. RMSEs of analysis of (a) zonal wind, (b) meridional wind, (c) temperature, and (d) 996 

Qvapor (water vapor mixing ratio) from ERA5 (black solid) and AdvHG (blue solid) and 997 

spreads of analysis (black dashed) and 6 h forecast (gray dashed) of AdvHG depending on 998 

pressure levels averaged over the ten-year period of 2010–2019. 999 

 1000 
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 1001 

Figure 6. Same as Fig. 5 except for RMSE of 24 h forecast.  1002 
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 1003 

Figure 7. Same as Fig. 6 except for RMSE of 24 h forecast. 1004 

 1005 

 1006 
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 1007 

Figure 78. (a,c) ETS and (b,d) FBI for (a,b) January and (c,d) July in 2017 depending on 1008 

thresholds 0.5, 1, 4, 8, and 16 mm (6 h)-1. 1009 
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 1011 

Figure 89. (a,c) POD and (b,d) FAR for (a,b) January and (c,d) July in 2017 depending on 1012 

thresholds 0.5, 1, 4, 8, and 16 mm (6 h)-1. 1013 

  1014 



61 

 

 1015 

Figure 910. Brier skill score of the probabilistic postprocessed forecast with reference to the 1016 

WRF-based ERA-I for (a-d) January and (e-h) July in 2017 (Blue solid: AdvHG, blue dashed: 1017 

E3DVAR, red solid: WRF-based ERA5). 1018 
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 1020 

Figure 1011. The spatial distribution of 6 h accumulated precipitation of (1st column) 1021 

observation, (2nd column) E3DVAR, (3rd column) AdvHG, (4th column) ERA-I, (5th column) 1022 

ERA5, (6th column) ERA-I_fromECMWF, and (7th column) ERA5_fromECMWF and the 1023 

pattern correlation coefficient (PCC) shown at the bottom right of each figure at valid time (1st 1024 

low, 3rd low) 06 UTC and (2nd low, 4th low) 18 UTC on 29th and 30th of January in 2017. 1025 

 1026 
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 1027 

Figure 1112. As in Fig. 101111, but for 1st and 2nd of July in 2017. 1028 
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 1029 

Figure 1213. The spatial distribution of the monthly accumulated precipitation of (a) 1030 

observations, (b) E3DVAR, (c) AdvHG, (d) ERA-I, (e) ERA5, (f) ERA-I from ECMWF, and 1031 

(g) ERA5 from ECMWF for January 2017. 1032 
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 1033 

Figure 1314. As in Fig. 1213, but for July 2017. 1034 


