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Abstract. We present a chronology framework named LegacyAge 1.0 containing harmonized chronologies for 15 

2831 pollen records (downloaded from the Neotoma Paleoecology Database and the supplementary Asian 16 

datasets) together with their age control points and metadata in machine-readable data formats. All chronologies 17 

use the Bayesian framework implemented in Bacon version 2.5.3. Optimal parameter settings of priors 18 

(accumulation.shape, memory.strength, memory.mean, accumulation.rate, thickness) were identified based on 19 

information in the original publication or iteratively after preliminary model inspection. The most common control 20 

points for the chronologies are radiocarbon dates (86.1%), calibrated by the latest calibration curves (IntCal20 21 

and SHcal20 for the terrestrial radiocarbon dates in the northern and southern hemispheres; Marine20 for marine 22 

materials). The original publications were consulted when dealing with outliers and inconsistencies. Several major 23 

challenges when setting up the chronologies included the waterline issue (18.8% of records), reservoir effect 24 

(4.9%), and sediment deposition discontinuity (4.4%). Finally, we numerically compare the LegacyAge 1.0 25 
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chronologies to those published in the original publications and show that the reliability of the chronologies of 26 

95.4% of records could be improved according to our assessment. Our chronology framework and revised 27 

chronologies provide the opportunity to make use of the ages and age uncertainties in synthesis studies of, for 28 

example, pollen-based vegetation and climate change. The LegacyAge 1.0 dataset, including metadata, datings, 29 

harmonized chronologies, and R code used, are open-access and available at PANGAEA 30 

(https://doi.pangaea.de/10.1594/PANGAEA.933132; Li et al., 2021) and Zenodo 31 

(https://doi.org/10.5281/zenodo.5815192; Li et al., 2022), respectively. 32 

 33 

1 Introduction 34 

Global and continental fossil pollen databases are used for a variety of paleoenvironmental studies, such as past 35 

climate and biome reconstructions, palaeo-model validation, and the assessment of human-environmental 36 

interactions (Gajewski, 2008; Gaillard et al., 2010; Cao et al., 2013; Mauri et al., 2015; Trondman et al., 2015; 37 

Marsicek et al., 2018; Herzschuh et al., 2019). Several fossil pollen databases have been successfully established 38 

(Gajewski, 2008; Fyfe et al., 2009), such as the European Pollen Database 39 

(http://www.europeanpollendatabase.net), the North American Pollen Database 40 

(http://www.ncdc.noaa.gov/paleo/napd.html), and the Latin American Pollen Database 41 

(http://www.latinamericapollendb.com); most of these data are now included in the Neotoma Paleoecology 42 

Database (https://www.neotomadb.org/; Williams et al., 2018). Chronologies and age control points are stored in 43 

these databases along with the pollen records.  44 

  However, to date, the metadata and dating results of these records are not available in a machine-readable 45 

format; furthermore, the chronologies have been established using a variety of methodologies, and the 46 

quantification of temporal uncertainty, particularly between records, remains a challenge (Blois et al., 2011; 47 

Giesecke et al., 2014; Flantua et al., 2016; Trachsel and Telford, 2017). Recently, the need for harmonized and 48 

consistent chronologies allowing for the accurate assessment of temporal uncertainty between records has 49 

increased as studies are looking for spatiotemporal patterns using multi-record analyses (Jennerjahn et al., 2004; 50 

Blaauw et al., 2007; Giesecke et al., 2011; Flantua et al., 2016). Accordingly, some effort has been made to 51 

harmonize the chronologies for a subset of the records in these databases (Fyfe et al., 2009; Blois et al., 2011; 52 

Giesecke et al., 2011; Giesecke et al., 2014; Flantua et al., 2016; Brewer et al., 2017; Wang et al., 2019; Mottl et 53 

http://www.europeanpollendatabase.net/


3 

al., 2021). However, a harmonized chronology framework is needed, not only to allow for the consistent inference 54 

of age and age uncertainties but also to apply to newly published records or one that can be adjusted to the specific 55 

requirement of a study. 56 

  Here we present the rationale and code, as well as the metadata and parameter settings for the chronology 57 

framework LegacyAge 1.0, which contains harmonized chronologies for 2831 palynological records, synthesized 58 

from the Neotoma Paleoecology Database (last access: April 2021, Neotoma hereafter) and the supplementary 59 

Asian datasets (Cao et al., 2013, 2020). We also report on the major challenges of setting up the chronologies and 60 

assessing their quality. Finally, the newly harmonized chronologies are numerically compared with the original 61 

ones. All data and R code used for this study are open-access and available at PANGAEA 62 

(https://doi.pangaea.de/10.1594/PANGAEA.933132; Li et al., 2021) and Zenodo 63 

(https://doi.org/10.5281/zenodo.5815192; Li et al., 2022), respectively. 64 

 65 

2 Methods 66 

2.1 Data sources 67 

We established harmonized chronologies for 3471 records in the ‘Global taxonomically harmonized late 68 

Quaternary pollen dataset’ (https://doi.pangaea.de/10.1594/PANGAEA.929773; Herzschuh et al., 2021). This 69 

compilation comprises 3147 records from Neotoma (last access: April 2021) and 324 Asian records from China 70 

and Siberia compiled by Cao et al. (2013, 2020) and from our own data (AWI). Records are from lake sediments 71 

(49.4%), peatlands (34.3%), and other archives (16.3%) (Fig. 1). The following chronology metadata were 72 

collected for each record: Event, Data_Source, Site_ID, Dataset_ID, Site_name, Location (longitude, latitude, 73 

elevation, and continent), Archive_Type, Site_Description, Reference, Laboratory_label, Dating_Method, 74 

Material_Dated, Date (uncalibrated and calibrated age, error older, error younger, depth, thickness), Additional 75 

relevant comments from authors (e.g., reservoir effect, hiatus, outliers, and date rejected). Furthermore, 76 

information on the original chronologies of each pollen record was also taken from the Neotoma and 77 

supplementary Asian datasets, including Chronology_name, Age_type (calibrated or uncalibrated radiocarbon 78 

years BP), Pollen_depth, Estimated age (age, age error)). These metadata are available at 79 

https://doi.pangaea.de/10.1594/PANGAEA.933132 (Supplement Table S1 and S4; Li et al., 2021). 80 
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2.2 Chronological control points 82 

2.2.1 Radiometric dates 83 

Radiocarbon dating: most records were dated using radiocarbon-based methods (14C dating, conventional or 84 

accelerator mass spectrometry, Christie, 2018), coverimg the time range of ca. the last 50 kyr BP (before present, 85 

where ‘present’ is 1950 CE). However, the accuracy and precision of the radiocarbon dates depend on the 86 

calibration curve, taphonomy, and dating materials (Blois et al., 2011; Heaton et al., 2021).  87 

Lead-210 dating: the uppermost part of some lake records has been dated using a radioactive isotope of lead 88 

(lead-210), which has a half-life of ca. 22 years and provides useful age control for the last 75-150 years. However, 89 

the abundance of other radioactive isotopes (e.g., Caesium-137) affects the accuracy and precision of the 90 

calibration curve for lead-210, resulting in temporal uncertainty (Appleby and Oldfield, 1978; Cuney, 2021). 91 

Luminescence dating: archaeological materials, loess, and river sediments have often been dated via 92 

luminescence, including thermoluminescence (TL) and optically stimulated luminescence (OSL), which cover 93 

time scales from millennia to hundreds of thousands of years (Roberts, 2013). Due to the systematic and random 94 

errors in the measurement process, the luminescence ages have at least 4-5% uncertainty, which widens with 95 

increasing time (Wallinga and Cunningham, 2015). 96 

2.2.2 Lithological dates 97 

Varve dating: varve chronology, generated from counting varves, is considered a relatively accurate dating 98 

method for the late Quaternary, particularly the Holocene. Although sediment characteristics (e.g., thickness, 99 

continuity, marking layer) may create uncertainty in varve-counted ages, these uncertainties are small relative to 100 

those from radiometric methods (Ojala et al., 2012; Zolitschka et al., 2015; Ramisch et al., 2020). If a pollen 101 

record has a varve chronology stored and assessed in the Varved Sediments Database (VARDA, https://varve.gfz-102 

potsdam.de/), we generally prefer to use it over chronologies based on other dating techniques. 103 

Tephrochronology: tephra layers are used as isochrones to correlate and synchronize sequences at a regional or 104 

continental scale (Lowe, 2011). The uncertainties of tephrochronology are similar to those known in radiocarbon 105 

dating, such as methodological and dating errors (Flantua et al., 2016). Tephras documented in the Global 106 

Tephrochronological Database (Tephrabase, https://www.tephrabase.org/) were included to improve the 107 
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chronologies, such as the Mazama ash (7630+-40 cal. yr BP; Brown and Hebda, 2003), Vedde ash (12121+-57 108 

cal. yr BP; Lane et al., 2012), and the Laacher See ash (12880+-120 cal. yr BP). 109 

2.2.3 Biostratigraphical dates 110 

Biostratigraphical dates have been widely relied on before 14C dating became available and affordable (Bardossy 111 

and Fodor, 2013). We ignored most of the available biostratigraphical dates when we harmonized the chronologies 112 

because vegetation reaction to climate change is likely not sufficient synchron. Only a few well-known and widely 113 

applicable biostratigraphic boundaries (Rasmussen et al., 2014) were used in other dating techniques that could 114 

not sufficiently constrain the chronologies, for example, the Younger Dryas/Holocene (11500±250 cal. yr BP), 115 

Allerød/Younger Dryas (12650±250 cal. yr BP), and Oldest Dryas/Bølling (14650±250 cal. yr BP; Giesecke et 116 

al., 2014). 117 

 118 

2.3 Establishing the chronologies 119 

2.3.1 Method choice 120 

We used the Bacon software (Blaauw and Christen, 2011) to establish continuous down-core chronologies from 121 

the age control points. Bacon fits a monotonic autoregressive (AR1) model to age control points using Bayesian 122 

methods to combine information from the control points with prior information on the statistical properties of 123 

accumulation histories for deposits, e.g., a prior distribution for the mean accumulation rate and how it varies 124 

(Blaauw and Christen, 2011). Several other approaches are available for age-depth modeling, including linear 125 

interpolation, smoothing splines, and other Bayesian methods, e.g., OxCal (Ramsey, 2008) and Bchron (Haslett 126 

and Parnell, 2008). However, Bacon has become one of the most frequently used and compares well with other 127 

methods (Trachsel and Telford, 2017, Blaauw et al., 2018).     128 

  Bacon provides the calibrated ages (mean, median, minimum, maximum) at each depth (e.g., every centimeter) 129 

with a 95% confidence intervals and an indication of how well the model fits the dates, although it needs much 130 

supervision and computing power. The prior distribution guides the overall trend of the age-depth relationships, 131 

so the control points guide rather than strictly constrain the age-depth relationships (Giesecke et al., 2014). Bacon 132 

version 2.3.3 and later (Blaauw and Christen, 2011) can also handle sudden shifts in the accumulation rate when 133 

given the hiatus/boundary depth and resetting the memory to 0 when crossing the hiatus. Therefore, all age-depth 134 
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relationships in our dataset will be constructed using the latest Bacon version 2.5.3 (Blaauw and Christen, 2011; 135 

Blaauw et al., 2018) in R (R Core Team, 2021). 136 

2.3.2 Core tops and basal ages 137 

Wherever possible, the record-related publications were read to decide whether the core top was modern at the 138 

time of sampling. For modern core-tops, if the core was collected from sites where sediment was still accumulating, 139 

the sediment surface could be assigned to the year of sampling, adding one significant time control for the 140 

chronologies. If the sampling date was unavailable, an alternative surface age from the original chronology in 141 

Neotoma was added at the core top. An estimated artificial core-top age (-50 + -30 cal yr BP) was used if none of 142 

the above ages were available (Supplement Table S2, S3). We inferred the surface age from the calibrated age-143 

depth model for core-tops judged not to be modern. For basal ages, when the calibrated age-depth model for the 144 

lowermost profile has considerable extrapolation and was not sufficiently constrained by the control points, we 145 

also accepted the prior information of core basal age from the record-related publications or Neotoma.  146 

2.3.3 Calibration curves 147 

To transform the measured 14C ages to calendar ages, the latest calibration curves, approved by the radiocarbon 148 

community (Hajdas, 2014), were used in Bacon routine: IntCal20 (Reimer et al., 2020; Heaton et al., 2021) and 149 

SHcal20 (Hogg et al., 2020) to calibrate the terrestrial radiocarbon dates in the northern and southern hemispheres, 150 

respectively; and Marine20 (Heaton et al., 2020) for the 38 marine records included in our dataset (Sánchez Goñi 151 

et al., 2017). The numerical probability distributions of calendar age from calibrated radiocarbon dates were 152 

summarised to a mean and standard deviation for use in Bacon. Absolute dates (e.g., lead-210, OSL, tephra), 153 

already presented on the calendar scale, were not calibrated (Blaauw and Christen, 2011). Modern/post-bomb 14C 154 

dates (negative 14C ages) were calibrated using appropriate post-bomb calibration curves (post-bomb=1 for 155 

>40°N; 2 for 0°-40°N; 4 for southern hemisphere; Hua et al., 2013). 156 

2.3.4 Parameter settings for the initial Bacon run 157 

After consultation of the relevant publication (Blaauw and Christen, 2011; Goring et al., 2012; Cao et al., 2013; 158 

Fiałkiewicz-kozieł et al., 2014; Blaauw et al., 2018) and assessments of several runs with a test set of records, we 159 

set the following Bacon parameters (Supplement Table S3):  160 
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(1) The prior for the accumulation rate consists of a gamma distribution with two parameters, mean accumulation 161 

rate (acc.mean; default 20 yr cm-1) and accumulation shape (acc.shape; default 1.5). For the acc.shape, we 162 

accepted its default value as higher values resulted in a more peaked shape of the gamma distribution. A first 163 

approximation of the acc.mean was calculated as the average accumulation rate between the first and the last 164 

date of each record, combined with the prior information of dates, which is more reasonable than using a 165 

constant value.  166 

(2) Bacon divides a core into many vertical sections of equal thickness (thick; default 5 cm), which significantly 167 

affects the flexibility of the age-depth model, and through millions of Markov Chain Monte Carlo iterations 168 

estimates the accumulation rate for each section. Blaauw and Christen (2011) indicated that models with few 169 

sections tend to show more abrupt changes in accumulation rate, while models with many sections usually 170 

appear smoother but are computationally more intense. We run Bacon for six section thicknesses (2.5 cm, 5 171 

cm, 10 cm, 30 sections, 60 sections, and 120 sections), optimal values after numerous tests, with and without 172 

core-top age resulting in 12 initial chronologies for each record. 173 

(3) The prior for the memory, that is, the dependence of accumulation rate between neighboring depths, is a beta 174 

distribution defined by two parameters: memory strength (mem.strength; default 10) and mean memory 175 

(mem.mean; default 0.5). For the mem.strength, we used a value of 20 as suggested by Goring et al. (2012), 176 

which allows a large range of posterior memory values. We set different mem.mean values (0.3 for lake and 177 

0.7 for peatland) to accommodate differences in accumulation conditions between lakes and peatland, where 178 

the higher memory for peatlands implies a more constant accumulation history (Blaauw and Christen, 2011; 179 

Goring et al., 2012; Cao et al., 2013; Cao et al., 2020).  180 

(4) The minimum (maximum) depth (d.min and d.max, respectively) of the age-depth model was defined by the 181 

uppermost (lowermost) dating or pollen sample depth (Supplement Table S4). The parameter ‘d.by’ (default 182 

1 cm) defines the depth intervals at which ages are calculated, and we accepted its default value. 183 

  In addition to the major parameters mentioned above, we also adjusted several additional parameters for 184 

individual records according to prior information collected from record-related publications or Neotoma 185 

(Supplement Table S2, S3). 186 
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(1) Reservoir effects: the uptake of old carbon by aquatic plants, mosses, or shells either originating from, e.g., 187 

limestone in the catchment (‘hard-water effect’) or slow 14C exchange between the atmosphere and ocean 188 

interior, can result in too old radiocarbon dates (Philippsen, 2013; Philippsen and Heinemeier, 2013; Giesecke 189 

et al., 2014; Heaton et al., 2020). In addition to the reservoir ages reported by the original authors, we also 190 

identified some additional records for which there is likely a reservoir effect through modern correction and 191 

linear extrapolation (Wang et al., 2017). We then subtracted the reservoir age as a constant from all 14C dates 192 

of an affected record, excluding those derived from terrestrial macrofossils. We may have underestimated the 193 

number of such records due to the difficulty of estimating the reservoir age where the sediment surface was 194 

eroded or used for agricultural purposes. 195 

(2) Waterline issues: stratigraphic records do not always start at a depth of 0 cm, for example, if the uppermost 196 

part of the core is lost, if the record is only a part of a longer sequence, or if the depths are measured from the 197 

water surface instead of the sediment surface, leading to the so-called waterline issue. Accordingly, we 198 

adjusted the uppermost depth of the chronology based on information collected from the original publications 199 

and Neotoma.  200 

(3) Hiatuses: where sediment deposition was not continuous, it is possible to set a “hiatus” at which Bacon resets 201 

the memory to 0, causing a break in the autocorrelation in the accumulation rate for depths before and after 202 

the hiatus and additionally models an instantaneous jump in age at that depth (Blaauw and Christen, 2011). 203 

(4) Dates rejected/added: Neotoma usually reports all 14C dates from cores, even when deemed inaccurate. We 204 

assessed prior information on dates and then excluded the 14C dates of samples with contaminated or reworked 205 

sediments from age-depth model from age-depth models, in most cases following the suggestions in the 206 

original publications. For example, we excluded the date at 164 cm, accepted by the author (Gajewski et al., 207 

2000), from the Muskoka Lake record (ID 1783), as it does not agree with the other three dates from the same 208 

core and where lithology had changed significantly at that depth. We down-weighted the impact of outliers on 209 

the overall trend of the age-depth relationships and risked that age uncertainties were too optimistic. We also 210 

documented all lithological dates (e.g., varves and tephra) and biostratigraphical dates collected from the 211 

original publications and Neotoma to supplement the chronology metadata. 212 
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2.3.5 Assessment of initial age-depth models and final parameter selection 213 

To objectively evaluate the 12 initial age-depth models for each record, we initially tested a least-squares method 214 

between the age model and ages of dated depths and calculated the mean uncertainty for each model. However, 215 

the least-squares method is susceptible to outliers (Birks et al., 2012), and models with least-squares may risk 216 

more abrupt changes in accumulation rate due to over-fitting dates. Instead of a numerical comparison, we finally 217 

implemented a visual comparison based on the Bacon output graphs, which show the Markov Chain Monte Carlo 218 

iterations, the prior and posterior distributions for the accumulation rate and memory, and how well the model fits 219 

the date (Blaauw and Christen, 2011). 220 

  Preference was given to models that fitted the dates well, had small mean uncertainties (Supplement Table S5), 221 

and good runs of Markov Chain Monte Carlo iterations (i.e., a stationary distribution with little structure among 222 

neighboring iterations as indicated by the traceplot of the joint likelihood) when visual choosing the ‘best’ model 223 

for each record (Blaauw and Christen, 2011; Blaauw et al., 2018). If necessary, we adjusted the parameter settings 224 

such as the section thickness and mean accumulation rate to better fit with the dates that were consistent with prior 225 

information. For the final parameter settings used for each record, please see 226 

https://doi.pangaea.de/10.1594/PANGAEA.933132 (Supplement Table S3; Li et al., 2021).  227 

 228 

2.4 Evaluation of the newly generated age-depth models 229 

For the temporal uncertainty of the age-depth models, we take used the 95% confidence intervals for age estimated 230 

by the Bacon model for each centimeter (Supplement Table S5). These values are approximately twice the 231 

standard error of the estimated age at a given depth. We plotted our newly generated ‘best’ calibrated chronologies 232 

with 95% confidence intervals together with the original ones taken from the Neotoma and Cao et al. (2013, 2020) 233 

datasets (Supplement Table S4) to compare and evaluate the performance of the new models visually. The criteria 234 

for the preferred models are that the model fitted the dates well, had small uncertainties, combined dates with 235 

prior information (e.g., geological and hydrological setting, environmental history), and calibrated with the latest 236 

calibration curves. 237 

https://doi.pangaea.de/10.1594/PANGAEA.931920
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3 Results 238 

3.1 Overview of major challenges when establishing the chronologies 239 

Age-depth models were initially established for all 3471 records in the harmonized pollen data collection 240 

(Herzschuh et al., 2021). We discarded 640 records with fewer than two reliable dates (i.e., no reliable date or 241 

only one reliable date), evaluated based on prior information from original literature, leaving chronologies for 242 

2831 records. We faced several major challenges when establishing the chronologies. After assessments and 243 

consultation of prior information from original publications (Supplement Table S2, S3), we identified 139 records 244 

(4.9%) with reservoir effects, 533 records (18.8%) with waterline issues, 125 records (4.4%) with hiatuses, 924 245 

records (32.6%) with rejected or added dates, and 743 records (26.2%) that contained several of the above 246 

problems: all these challenges have been handled (Fig. 2). After assessing initial age-depth models, accumulation 247 

rates were adjusted for 367 records (13.0%), and different section thicknesses were applied to 411 records (14.5%). 248 
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3.2 LegacyAge 1.0 quality 250 

3.2.1 Dates used for final chronologies 251 

A total of 19,990 control points (out of 21,199 dates available) were used to generate the chronologies for the 252 

2831 records (Supplement Table S1). Among them, the most common chronological control points are 253 

radiocarbon dates (86.1%), followed by lithological and biostratigraphical dates (8.5%) collected from 254 

publications or Neotoma, and lead-210 (5.0%); other dating techniques make up 0.4% of the control points. The 255 

median number of dates per chronology is 5, with 23.3% of the chronologies having 2 or 3 dates, 53.3% having 256 

4-8 dates, and 23.4% having at least 9 dates (Fig. 3). 257 
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  Currently, 80.5% of chronological control points in the LegacyAge 1.0 fall within the Holocene (37.9%, 25.2%, 259 

and 17.4% within the late (ca. 0-4.2 cal. kyr BP), middle (ca. 4.2-8.2 cal. kyr BP), and early Holocene (ca. 8.2-260 

11.7 cal. kyr BP), respectively), 14.5% within the Last Deglaciation (ca. 11.7-19.0 cal. kyr BP; Clark et al., 2012), 261 

2.0% within the Last Glacial Maximum (LGM; ca. 19.0-26.5 cal. kyr BP; Clark et al., 2009), and only 3.0% earlier 262 

than the LGM (Fig. 4). 263 

 264 

Figure 4. Histogram showing the number of available dates in distinct time slices. 265 

3.2.2 Spatial and temporal coverage 266 

Of the 2831 chronologies finally established, 1032 records are from North America, 1075 records from Europe, 267 

488 records from Asia, 150 records from South America, 54 records from Africa, and 32 records from the Indo-268 

Pacific (Fig. 3). Most records (2659 records, 93.9%) are in the northern hemisphere, where the main vegetation 269 

and climate zones are covered.  270 

  As shown in Fig. 5, 94.8% of chronologies cover part of the last 30 kyr, while Marine Isotope Stage 3 (MIS-3) 271 

is relatively poorly covered. Specifically, 98.0% of chronologies cover part of the Holocene (90.7%, 81.0%, and 272 

65.8% cover part of the late, middle, and early Holocene, respectively), 46.7% cover part of the Last Deglaciation, 273 

10.7% cover part of the Last Glacial Maximum, and only 6.1% earlier than LGM. 274 
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 275 

Figure 5. Histogram showing the number of available chronologies in distinct time slices. 276 

3.2.3 Temporal uncertainty 277 

Boxplots of age uncertainties for all chronologies in distinct time slices (Fig. 6), excluding outliers (ca. 5.1%), 278 

illustrate that age uncertainty tends to increase with age and is mainly related to the uncertainty and precision of 279 

the chronological control points, calibration curves, and age models (Blois et al., 2011). The boxplots show wide 280 

boxes, i.e., a more extensive data range, for the LGM period, characterized by fewer outliers, mostly from 281 

chronologies with sparse age control points and significant dating errors, than the periods with small box sizes. 282 

 283 

Figure 6. Boxplots of age uncertainties and outlier percentages in distinct time slices. 284 
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3.3 Comparison of the LegacyAge 1.0 vs. original age-depth models 285 

For 906 records out of the 2831 records included in the LegacyAge 1.0, no calibrated chronologies were originally 286 

available from the Neotoma and Cao et al. (2013, 2020) datasets for comparison. Of the remaining 1925 records, 287 

the new LegacyAge 1.0 chronologies were selected instead of the original ones in 95.4% of cases, based on the 288 

aforementioned criteria. However, some records still chose the original chronology, mainly because they are varve 289 

chronologies, had incomplete metadata (e.g., missing sample depths), or included some non-14C dates that our 290 

model could not accommodate (Supplement Table S6).  291 

  In most cases, the newly established chronologies were rather similar to the original ones. For 1012 records 292 

(52.6% of 1925 records), the original chronologies were within the 95% confidence intervals of the LegacyAge 293 

1.0 chronologies, while the other 913 records (47.4%) were partially or completely outside the 95% confidence 294 

intervals. 295 

  Selected typical examples of the comparative results between the accepted LegacyAge 1.0 chronologies, 296 

alternative newly generated but rejected chronologies, and the original chronologies are illustrated in Fig. 7. For 297 

the EL Tiro-Pass record (ID 47502, Fig. 7a), both the original and LegacyAge 1.0 chronologies were established 298 

by Bacon and are acceptable. However, the LegacyAge 1.0 chronology has the advantage that it makes use of the 299 

latest radiocarbon calibration curve (IntCal20; Reimer et al., 2020), and the estimated surface age is more realistic 300 

as sediments are still accumulating (Niemann and Behling, 2008). For the Fargher Pond record (ID 15344, Fig. 301 

7b), the LegacyAge 1.0 chronology includes more varve ages from the Varved Sediments Database. These provide 302 

a better constraint for the lowermost profile than the original model had (Grigg and Whitlock, 2002). For the 303 

Oltush Lake record (ID 4320, Fig. 7c), the 14C age of modern sediment in this lake is 350 yr BP and thus, the 304 

assumption of a reservoir effect of 350 years resulted in slightly younger ages than originally given (Davydova 305 

and Servant-Vildary, 1996). Some alternative rejected chronologies performed poorly due to the inability of high-306 

resolution Bacon models to accommodate accumulation rate changes (Fig.7b and Fig. 7c). Finally, for the 307 

Soppensee record (ID 44723, Fig. 7d), most of the 14C dates (> 540 cm) come from samples with insufficient 308 

carbon to achieve accurate dating (Hajdas and Michczyński, 2010), and thus the original chronology, generated 309 

from counting varves, outperformed our newly generated chronologies. 310 
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4 Code and data availability 312 

Seven supplementary datasets (Table S1-S7, in comma-separated values format) and one readme text about the 313 

LegacyAge 1.0 are accessible in the navigation bar ‘Further details’ of the PANGAEA page 314 

(https://doi.pangaea.de/10.1594/PANGAEA.933132; Li et al., 2021). We provided the chronological control 315 

points metadata (Table S1), prior information of dates from publication (Table S2), Bacon parameter settings 316 

(Table S3), original chronology metadata from the Neotoma and Cao et al. (2013, 2020) (Table S4), LegacyAge 317 

1.0 chronology (Table S5), description of the comparison of original chronology and LegacyAge 1.0 (Table S6), 318 

and record references (Table S7) respectively. All datasets are already in long data format that can be joined by 319 

the dataset ID. 320 

  The R-code for calculation and comparison of chronologies with embedded manual, metadata for code runs, 321 

Bacon output graphs of each record, graphs comparison of original chronologies and LegacyAge 1.0, and a short 322 

shared-screen video of the R-code to show the usage on two example records are accessible on Zenodo 323 

(https://doi.org/10.5281/zenodo.5815192; Li et al., 2022).   324 

 325 

5 How to use the LegacyAge 1.0 dataset and code 326 

  LegacyAge 1.0 provides the calibrated ages (mean, median, minimum, maximum) and uncertainties at each 327 

centimeter for each record with a 95% confidence interval (Supplement Table S5). All users can apply some 328 

interpolation algorithms in the chronologies, subsetted from the LegacyAge 1.0 dataset or outputted by our code, 329 

to assign ages for proxy depths of records.  330 

  As for the R-code, users only need to set the working directory where the Bacon results will be stored and input 331 

the record ID of interest to run it successfully. The manual and shared-screen video on R-code usage could provide 332 

helpful guidance for users, with or without some R-experience. 333 

 334 

6 Conclusion 335 

This paper presents the framework as well as metadata, machine-readable datings, R pipeline, chronologies, and 336 

age uncertainties of 2831 pollen records synthesized from the Neotoma Paleoecology Database (last access: April 337 



20 

2021) and 324 additional Asian records (Cao et al., 2013, 2020). Chronologies and uncertainties can be used for 338 

synthesis works; metadata, datings, and pipelines can be used to reestablish the chronologies for customized 339 

purposes, and the framework can be used to establish chronologies for newly updated records. 340 
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