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Abstract. An accurate paddy rice map is crucial for ensuring food security, particularly for Southeast and Northeast Asia. 

MODIS satellite data are useful for mapping paddy rice at continental scales but have a mixed pixel problem caused by the 

coarse spatial resolution. To reduce the mixed pixels, we designed a rule-based method for mapping paddy rice by 

integrating time-series Sentinel-1 and MODIS data. We demonstrated the method by generating annual paddy rice maps for 15 

Southeast and Northeast Asia in 2017–2019 (AsiaRiceMap10mNESEA-Rice10). We compared the resultant paddy rice 

maps with available agricultural statistics at subnational levels and existing rice maps for some countries. The results 

demonstrated that the linear coefficient of determination (R2) between our paddy rice maps and agricultural statistics ranged 

from 0.80 to 0.97. The paddy rice planting areas in 2017 were spatially consistent with the existing maps in Vietnam (R2 = 

0.93) and Northeast China (R2 = 0.99). The spatial distribution of the 2017–2019 composite paddy rice map was consistent 20 

with that of the rice map from the International Rice Research Institute. The paddy rice planting area may have been 

underestimated in the region in which the flooding signal was not strong. The dataset is useful for water resource 

management, rice growth, and yield monitoring. The full product is publicly available at 

https://doi.org/10.5281/zenodo.5645344https://doi.org/10.17632/j34b3jsvr9.1 (Han et al., 2021a). Find small examples here 

(https://doi.org/10.17632/cnc3tkbwcm.1) (Han et al., 2021b). 25 

1 Introduction 

Rice is one of the main food sources, accounting for approximately 12% of the global cropland area (Zhang et al., 2018; 

Singha et al., 2019). Approximately 90% of the world's rice is produced in Asian countries (Chen et al., 2012; Yeom et al., 

2021). Rice provides food for over 50% of the world's population (Minasny et al., 2019). The consumption of rice increases 

as the world's population increases. Additionally, approximately one-tenth of CH4 emissions in the atmosphere come from 30 

https://doi.org/10.5281/zenodo.5645344
https://doi.org/10.17632/cnc3tkbwcm.1
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methane emissions from rice paddies (Ehhalt et al., 2001; Xin et al., 2017; Zhang et al., 2020). Rice agriculture is significant 

in food security, water resource security, disease transmission, and environmental sustainability (Clauss et al., 2018b; Li et 

al., 2020; Park et al., 2018). An accurate planting area and spatial distribution information are the basis for monitoring paddy 

rice growth and predicting yield. However, few spatial maps of paddy fields at continental scales exist (Li et al., 2020; 

Singha et al., 2019). Therefore, it is necessary to produce a paddy rice map dataset with high spatial resolution. 35 

 

Many methods for mapping rice have been developed based on different remote sensing data, including (1) machine learning 

classifiers (e.g., random forest and support vector machines), (2) phenology-based classifiers, (3) rule-based algorithms, and 

(4) the time-series algorithm approach (Dong et al., 2016b; Bazzi et al., 2019; Dong et al., 2016a; Dong and Xiao, 2016; Luo 

et al., 2020b, a; Nelson et al., 2014; Phung et al., 2020; Minasny et al., 2019; Shew and Ghosh, 2019; Xiao et al., 2006; Zhan 40 

et al., 2021). Satellite image sources include MODIS, Landsat, Sentinel, RADARSAT, and PALSAR (Dong and Xiao, 2016; 

Shao et al., 2001; Singha et al., 2019; Zhou et al., 2016). Many studies have demonstrated that phenology-based classifiers 

using MODIS data are useful for mapping paddy rice at continental scales (Dong et al., 2016b; Xiao et al., 2006; Zhang et al., 

2020). The transplanting period of rice is a distinct characteristic used for distinguishing rice from other crops or land-use 

types. For example, Xiao et al. (2006) mapped paddy rice at continental scales (South Asia and Southeast Asia (SE Asia)) 45 

using the phenological characteristics in the period of flooding/transplanting. Additionally, this method was successfully 

applied in other large regions (Xin et al., 2020; Zhang et al., 2017, 2020). The International Rice Research Institute (IRRI) 

extracted the distribution of paddy rice for Asia (Nelson and Gumma, 2015). However, the paddy rice maps generated using 

MODIS data contain a large number of mixed pixels caused by the coarse spatial resolution (500 m) (Dong et al., 2015, 

2016b; Shew and Ghosh, 2019), particularly in hilly areas (Liu et al., 2019b). The mixed land cover types within MODIS 50 

pixels can affect the accuracy of the rice map (Sun et al., 2009). Fine spatial resolution images, including Landsat TM/ETM 

+/OLI, HJ, and Sentinel-2 images, are also used for mapping paddy rice. Some previous studies have shown that rice maps 

generated from Landsat images have relatively high accuracy (Dong et al., 2016a; Torbick et al., 2017). However, they are 

only suitable for relatively small study areas in which cloud cover is minimal, and not for continental scales (Ramadhani et 

al., 2020; Torbick et al., 2017).  In contrast to optical satellite images, synthetic aperture radar (SAR) data are unaffected by 55 

clouds (Park et al., 2018). Moreover, SAR data have the special characteristics of backscatter changes during the growth of 

paddy rice (Bazzi et al., 2019; Clauss et al., 2018b; Nguyen et al., 2016; Phung et al., 2020; Planque et al., 2021). For 

example, Singha et al. (2019) mapped the rice map for Bangladesh based on Sentinel-1 data and random forest classifiers 

with good accuracy. Although paddy rice has been mapped in several studies using SAR data, they are still difficult to use 

widely over large areas because of the lack of a large number of ground truth samples (Clauss et al., 2018b; Minh et al., 2019; 60 

Nguyen et al., 2016; Phung et al., 2020; Minasny et al., 2019; Zhan et al., 2021; Zhang et al., 2018). Because the average 

area of crop fields in many regions in Asia is less than half a hectare (Maclean et al., 2013), it is critical to generate paddy 

rice maps with higher spatial resolution at continental scales than past efforts with MODIS. 
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Optical remote sensing images and SAR data have complementary information (Park et al., 2018; Wang et al., 2015). The 65 

combination of optical and SAR images can provide opportunities for mapping paddy rice with a few mixed pixels and a 

high spatial resolution at continental scales. MODIS data have the advantage of high temporal resolution, which reduces 

cloud problems and provides valuable spectral information for identifying paddy rice. Sentinel-1 SAR data with a high 

spatial resolution (10 m) provide backscatter information for different land types. Therefore, the integration of MODIS and 

SAR images may solve the mixed pixel issue to a great degree and enable the production of more reliable paddy rice maps 70 

than those based only on MODIS images (Dong and Xiao, 2016; Park et al., 2018; Torbick et al., 2010; Wang et al., 2015). 

We take advantage of both MODIS and SAR strengths to map paddy rice fields at a large scale. 

 

Thus, we aim to improve the MODIS-based method for mapping paddy rice fields by integrating Sentinel-1 SAR data to 

reduce mixed pixel effects. Then we use the method to generate paddy rice maps in 2017–2019 for SE Asia and Northeast 75 

Asia (NE Asia). The map products will be useful for scientific communities and stakeholders for many purposes. 

2 Materials 

2.1 Study area 

The study areas were NE and SE Asia. NE Asia is composed of Northeast China (Liaoning, Jilin, and Heilongjiang province), 

the Democratic People's Republic of Korea, the Republic of Korea, and Japan (Dong et al., 2016b; Yeom et al., 2021). The 80 

main paddy rice-producing regions in NE Asia are concentrated in the plain in Northeast China, the western plain of the 

Korean Peninsula, and the alluvial plains around the Japanese islands. In SE Asia, the countries where rice is planted 

intensively include Indonesia, Thailand, Vietnam, Myanmar, the Philippines, Malaysia, and Myanmar. SE Asia cultivates 

approximately 30% of the world’s rice (Bridhikitti and Overcamp, 2012; Huke and Huke, 1997). The dense planting areas of 

rice in SE Asia are located in valleys and deltas, such as the Red River Delta in Northern Vietnam and the Mekong Delta in 85 

Southern Vietnam (Clauss et al., 2018a; Phung et al., 2020). The Mekong Delta produces more than half the rice in Vietnam 

(Bouvet and Le Toan, 2011). The main rice cropping system in NE Asia is single rice (Dong et al., 2016b). By contrast, three 

rice cropping systems are dominant in SE Asia: single rice, double rice, and triple rice (Laborte et al., 2017). Because 

climate and crop calendars vary across SE and NE Asia, the study area was classified into eight refined agroecological zones 

based on temperature, seasonal precipitation, and farming practices from previous studies (Oliphant et al., 2019; Suepa et al., 90 

2016). The zones were further subdivided into 41 regions for classification (Figure 1). 
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Figure 1: Agroecological zones and 100 m radius sample blocks in SE and NE Asia. 

 

2.2 Data source 95 

2.2.1 Satellite imagery 

We acquired the time-series MOD09A1 images from the Google Earth Engine (GEE) data catalog 

(https://developers.google.com/earth-engine/datasets/, last access: 2021/06/18). The 8-day composite MOD09A1 provides 

seven surface reflectance bands (red, blue, green, near infrared, and shortwave infrared 1-2) at 500 m spatial resolution. We 

used the blue band (≥ 0.2) to remove cloudy pixels (Chen et al., 2012; Xiao et al., 2006). We projected MODIS data using 100 

the WGS1984 coordinate system. Additionally, we collected SAR data with 10 m resolution in interferometric wide swath 

mode from the Sentinel-1 satellite (Torres et al., 2012). To maximize the frequency of observations, we used the Level 1 

ground range detected (GRD) product in ascending and descending orbits. We pre-processed the GRD data with VH and VV 

polarization that we acquired (e.g., calibration and geocoding) using the Sentinel-1 Toolbox on the GEE 

(https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD, last access: 2021/06/18) (Singha et 105 

https://developers.google.com/earth-engine/datasets/
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
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al., 2019; Liu et al., 2020a). Then, we applied a filter with a boxcar kernel (30 × 30) moving to reduce speckle noise 

(Minasny et al., 2019). However, the rugged terrain and side-looking SAR imaging geometry caused radiometric distortion 

(Mullissa et al., 2021; Vollrath et al., 2020). To increase the quality of observations, we used the physical reference model 

(volume) proposed by Vollrath et al. (2020) to make a radiometric slope correction for Sentinel-1 on the GEE. Figure S1 

shows an example of the effect of slope correction in SE Asia using the model. The code can be found at 110 

https://github.com/ESA-PhiLab/radiometric-slope-correction (last access: 2021/06/18). 

2.2.2 Terrain data 

We generated digital elevation model (DEM) data from the Shuttle Radar Topography Mission (SRTM) Version 4 (Reuter et 

al., 2007). The spatial resolution of the DEM was 90 m × 90 m. We acquired the DEM data and calculated the slope map 

from the DEM on the GEE platform (Table 1).  115 

2.2.3 Forest land 

We extracted the forest land mask from the Global PALSAR Forest Map in 2017 (Table 1). The Global PALSAR Forest 

Map (25-m spatial resolution) was generated by the Japan Aerospace Exploration Agency (JAXA) (Shimada et al., 2014). 

Pixels with a forest area larger than 0.5 ha and forests covering over 10% of the pixel area were defined as forest pixels 

(Shimada et al., 2014). 120 

2.2.4 Wetland 

We extracted the distribution of wetland from the GlobeLand30 dataset in 2020. GlobeLand30 is available from the National 

Geomatics Center of China (Table 1). This product at 30-m spatial resolution with high accuracy was generated using 

Landsat, Chinese HJ-1, and GF-1 satellite images (http://www.globallandcover.com, last access: 2021/06/18) (Chen et al., 

2015). 125 

 

Finally, we resampled all the raster data to 10 m to match the spatial resolution of Sentinel-1. 

2.2.5 Agricultural statistics 

We collected annual rice planting area census data at the subnational level (state, province, city, prefecture, or county) from 

the available Statistical Yearbooks of various countries. The agricultural statistics were provided by agricultural statistical 130 

offices. The areas in the statistics data were converted into hectares (ha). Detailed information about the collected 

agricultural statistics in this study is presented in Table 1. 

https://github.com/ESA-PhiLab/radiometric-slope-correction
http://www.globallandcover.com/
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2.2.6 Existing rice maps 

We collected the existing publicly available rice maps from three sources: (1) the 500 m spatial resolution paddy rice map 

with high accuracy in Southern China in 2017 that was generated using the phenology-and pixel-based algorithm from 135 

MODIS data (Xin et al., 2020), (2) the High-Resolution Land Use and Land Cover (HRLULC) map for Vietnam in 2017 

(HASHIMOTO et al., 2014) with 10 m spatial resolution generated using multiple remote sensing data, and (3) the 500 m 

resolution rice maps of Asia obtained from the IRRI (Nelson and Gumma, 2015), which were mainly derived from MODIS 

data. We compared these existing products with our paddy rice maps. 
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Table1: Detailed information about the data used in this study. 140 

Data type 
Data product or 

country name 
Year Resolution Descriptions Data access 

Last access 

(yyyy/mm/dd) 

Satellites 

Imagery 

MOD09A1 
2017-

2019 
500m  

Extracting the spectral 

characteristics and 

phenology information 

https://developers.google.com

/earth-engine/datasets/catalog/

MODIS_006_MOD09A1 

2021/06/18 

Sentinel-1 
2017-

2019 
10m  

Extracting the backscatter 

coefficient characteristics 

and phenology 

information 

https://developers.google.com

/earth-engine/datasets/catalog/

COPERNICUS_S1_GRD 

2021/06/18 

Terrain data SRTM V4 - 90m  Extracting slope map 

https://developers.google.com

/earth-engine/datasets/catalog/

CGIAR_SRTM90_V4 

2021/06/18 

Existing 

rice maps 

Paddy rice map 

in Northeast 

China 

2017 500m  

Comparing spatial 

consistency among 

products 

https://figshare.com/s/56f225

88ee25330b9d37 
2021/06/18 

HRLULC map 

in Vietnam 
2017 10m  

Comparing of spatial 

consistency among 

products 

https://www.eorc.jaxa.jp/ALO

S/en/lulc/lulc_index.htm 
2021/06/18 

IRRI rice map 

in Asia 

2000-

2012 
500m  

Comparing of spatial 

consistency among 

products 

http://irri.org/our-work/resear

ch/policy-and-markets/mappi

ng   

2021/06/18 

Forest land 

The Global 

PALSAR Forest 

Map 

2017 20m Extracting forest map 

https://developers.google.com

/earth-engine/datasets/catalog/

JAXA_ALOS_PALSAR_YE

ARLY_FNF 

2021/06/18 

Wetlands Globalland30 2020 30m Extracting wetlands map 
http://www.globallandcover.c

om/home_en.html 
2021/06/18 

Annual 

agricultural 

statistics 

Jilin province 

(China) 

2017-

2019 
City scale 

Verifying the 

classification accuracy 
http://tjj.jl.gov.cn/tjsj/tjnj/ 2021/06/18 

Liaoning 

province 

(China) 

2017-

2019 
City scale 

Verifying the 

classification accuracy 

http://tjj.ln.gov.cn/tjsj/sjcx/nds

j/ 
2021/06/18 

Republic of 

Korea 

2017-

2019 

County 

scale 

Verifying the 

classification accuracy 

https://kosis.kr/statisticsList/st

atisticsListIndex.do?vwcd=M

T_ZTITLE&menuId=M_01_

01 

2021/06/18 

Japan 
2017-

2019 

Prefecture 

scale 

Verifying the 

classification accuracy 

https://www.stat.go.jp/english

/data/nenkan/index.html 
2021/06/18 

Vietnam 
2017-

2019 

Province 

scale 

Verifying the 

classification accuracy 

https://www.gso.gov.vn/en/sta

tistical-data/ 
2021/06/18 

Myanmar 
2017-

2018 
State scale 

Verifying the 

classification accuracy 
https://www.csostat.gov.mm/ 2021/06/18 

Philippines 
2017-

2019 

Province 

scale 

Verifying the 

classification accuracy. 

We used the annual area 

of irrigated rice. 

https://openstat.psa.gov.ph/Da

tabase/Agriculture-Forestry-F

isheries 

2021/06/18 

 

http://tjj.jl.gov.cn/tjsj/tjnj/
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2.3 Methodology 

2.3.1 Analyzing the characteristics of spectral indices from paddy rice 

There are three growing stages for paddy rice: transplanting, growing, and post-harvest periods (Singha et al., 2019). 

Flooding signals in the transplanting period are unique characteristics that distinguish paddy rice from other crops (Clauss et 145 

al., 2016; Dong et al., 2016b; Sun et al., 2009). The color combination of MODIS images (R/G/B = band7/ band2/ band1) in 

the transplanting stage of the paddy rice field has a prominent tone (Figure S54). We calculated the Land Surface Water 

Index (LSWI) and Enhanced Vegetation Index (EVI) for each image:  

𝐿𝑆𝑊𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑆𝑊𝐼𝑅
                                                                                         (1) 

𝐸𝑉𝐼 = 2.5 ×
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+6×𝜌𝑅𝐸𝐷−7.5×𝜌𝐵𝐿𝑈𝐸+1
,                                                                      (2) 150 

where 𝜌𝑆𝑊𝐼𝑅, 𝜌𝑁𝐼𝑅, 𝜌𝑅𝐸𝐷 , and 𝜌𝐵𝐿𝑈𝐸  are values of band 6, band 2, band 1, and band 3, respectively. Note that we chose EVI 

instead of the normalized difference vegetation index (NDVI) for paddy rice identification because NDVI is more sensitive 

to atmospheric contamination and has a saturation issue (Zhang et al., 2015). Figure 2 shows the standard temporal profile of 

the EVI and LSWI of different paddy rice planting systems (single, double, and triple) at three typical sites. When LSWI 

plus 0.05 is larger than EVI, it indicates that the paddy rice is in the transplanting period (the). Both the EVI and LSWI 155 

values increase after paddy rice is transplanted. EVI values are higher than LSWI values because the fields are fully covered 

by the rice canopy. The EVI decreases during the post-harvest period. Both double paddy rice and triple paddy rice have 

flooding signals. The above phenomena are consistent with previous studies (Dong et al., 2016b; Minh et al., 2019; Shew 

and Ghosh, 2019; Xiao et al., 2006). The profiles of the LSWI and EVI of some land cover types (e.g., water, urban, and 

forest) are different from paddy rice (Figure S3). Therefore, color gradations and the relationship between EVI and LSWI are 160 

useful for extracting phenological information of paddy rice. In this study, we did not smooth the EVI and LSWI time series. 

LSWI changes under different dry and wet conditions and smoothing the EVI and LWSI time series may eliminate the true 

paddy rice flood signal (Liu et al., 2020b). Therefore, we did not reconstruct the EVI and LSWI datasets. 

2.3.2 Analyzing the characteristics of backscatter coefficients from paddy rice 

The backscatter coefficients change as paddy rice grows and develops. Paddy rice fields appear as a black area in the VH 165 

image on the transplanting date (Figure S2) because the water (flood) in the transplanting period decreases the VH 

backscatter coefficient values (Dineshkumar et al., 2019; Torbick et al., 2017). The VH and VV backscatter coefficients have 

a local minimum value during the transplanting period in all reference paddy rice fields (Figure 2). After transplanting, the 

VH backscatter coefficients increase as the paddy rice grows and reaches a peak at the heading stage (Zhan et al., 2021; 

Zhang et al., 2018). The VH backscatter coefficients decrease after the rice harvest stage (Phung et al., 2020; Singha et al., 170 

2019; Torbick et al., 2017). Additionally, paddy rice has consistent temporal behavior in the VV/VH ratio and VH. The 
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profiles of the dynamic backscatter coefficients of some land cover types (e.g., water, urban, and forest) are different from 

those of paddy rice (Figure S43). Therefore, color gradations and the time-series of backscatter coefficients are useful for 

identifying paddy rice phenology information (Yulianto et al., 2019; Phung et al., 2020; Zhan et al., 2021). 

 175 

Figure 2: Temporal profile analysis of EVI, LSWI, VV, VH, and VH/VV from three typical paddy rice sites with different latitudes 

during 2017–2020: (a) single paddy rice in Northeast China (131.896961°E, 46.804562°N); (b) double paddy rice in the Philippines 

(120.864242°E, 15.630637°N); and (c) triple paddy rice in Indonesia (116.141157°E, 8.6211997°S). The shaded areas indicate the 

standard deviation. 

 180 
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2.3.3 Sample blocks collected for extracting phenological parameters 

Paddy rice in SE and NE Asia is cultivated using diverse cropping systems because of the climate and other natural 

conditions (Dong et al., 2016a; Laborte et al., 2017; Nelson et al., 2014; Shew and Ghosh, 2019). With reference to previous 

studies (Clauss et al., 2016; Gumma et al., 2014; Liu et al., 2020a; Phan et al., 2019; Phung et al., 2020), we acquired 

information about the flooding signal period and length of the growing season for each subzone using sampling-based 185 

information. We selected sample blocks that were distributed over the different rice-growing zones across SE and NE Asia. 

Each block was a polygon with a radius of 100 m. We collected the sample blocks according to multiple rules (Clauss et al., 

2016; Dong et al., 2016a; Fikriyah et al., 2019; Singha et al., 2019). First, the time-series of the backscatter coefficients and 

vegetation index of the mean values from all pixels in each sample block were consistent with the phenological 

characteristics of paddy rice (Sections 2.3.1 and 2.3.2). Second, the sample blocks were also digitized using Google Earth or 190 

Sentinel-1/2 images using visual interpretation referring to previous studies (Dong et al., 2016a; Zhang et al., 2015). Third, 

we also used existing rice maps and calendar information as complementary information (Laborte et al., 2017; Maclean et al., 

2013). Note that not all Google Earth or Sentinel-2 images were available throughout SE and NE Asia. We collected a total 

of 438 sample blocks and 504 sample blocks using the above rules for SE and NE Asia, respectively (Figure 1). These 

blocks covered most paddy rice fields in the study areas. We generated mean backscatter coefficients and vegetation index 195 

time-series profiles for each block. Then, we manually extracted the paddy rice growth and phenological parameters based 

on the backscatter time-series characteristics. Finally, we obtained the phenological information for each subzone from the 

sample blocks (Gumma et al., 2014; Liu et al., 2020a). Although there may be some limitations in extracting phenological 

parameters for zones using random samples, it may be one of the most effective approaches currently available (Clauss et al., 

2016; Gumma et al., 2014; Han et al., 2021; Li et al., 2020; Phan et al., 2019; Phung et al., 2020). 200 

2.3.4 Algorithm for identifying paddy rice fields 

We used a rule-based method to map paddy rice and produce annual paddy rice maps for SE and NE Asia in 2017–2019 at 

10 m resolution (AsiaRiceMap10mNESEA-Rice10) using the phenological features of paddy rice (Figure 3). The steps for 

generating the paddy rice maps are as follows: 

 205 

Step one. Detect the flooding area of paddy rice. The key features used to identify paddy rice are the flooding signals in the 

transplanting phase (Dong and Xiao, 2016). We used LSWI + 0.05 > EVI and LSWI < 0.45 to extract the flooding signals. 

This rule has been used to successfully map potential paddy rice fields over large areas (Sakamoto et al., 2009; Xiao et al., 

2006; Zhou et al., 2016). Because paddy rice flooding signals occur over a short period, non-permanent flooding (e.g., 

persistent water bodies and fishponds) should be removed (Nelson et al., 2014; Zhang et al., 2015). We removed pixels that 210 

had more than 20 composite periods identified as flooding signals during a year.  
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In addition to the optical MODIS-based LSWI/EVI relationship approach, we also applied the minimum value of VH data in 

the transplanting stage to identify flooding signals, as suggested in previous studies (Clauss et al., 2018b). VH has a higher 

sensitivity in paddy rice growth stages than VV polarization (Inoue et al., 2020; Nguyen et al., 2016; Wakabayashi et al., 215 

2019). However, the minimum value of VH in different regions is different because Sentinel-1 data are affected by the 

incidence angle (ranging from approximately 30° to 45°) (Figure S65) (Phung et al., 2020; Singha et al., 2019; Zhang et al., 

2018). Currently, it is still challenging to normalize the incidence angle over a large area on the GEE. The VH value of the 

water surface changes continuously from -21 dB to -34 dB as the incidence angle changes (Phung et al., 2020). To reduce the 

incidence angle effect on the Sentinel-1 images, we considered -20 dB as the conservative baseline threshold to achieve the 220 

minimum VH value. In previous studies, researchers also proved the effectiveness of this threshold for identifying flooding 

signals in paddy fields (Clauss et al., 2018b; Nguyen et al., 2015, 2016; Nguyen and Wagner, 2017; Zhang et al., 2018). To 

further improve the accuracy of flooding signal extraction, we fine-tuned the baseline threshold of VH for each subzone 

based on the histogram of sample blocks collected in Section 2.3.3. We considered the pixels that met all the above 

conditions as flooding signals. 225 

 

Step two. The EVI of paddy rice increased rapidly after the transplanting period because of the increasing numbers of leaves 

and biomass (Chen et al., 2012). Therefore, we removed pixels with a maximum EVI value of less than 0.4, as suggested in 

previous studies (Kontgis et al., 2015; Sakamoto et al., 2009). 

 230 

Step three. Moreover, the coefficient of variation (CV) has been proven to be an effective indicator for distinguishing crop 

types and non-cropland (Huang et al., 2021; Liu et al., 2020a; Rose et al., 2021; Whelen and Siqueira, 2018). The VH 

backscatter coefficient of crops, particularly of paddy rice, has a larger time-series variation range than non-agricultural land 

(e.g., urban and water) (Figure S43). Based on this time-series characteristic, paddy rice may be identified from different 

land surfaces. Therefore, we removed pixels with CV values greater than -0.4 and less than -0.1 calculated using VH during 235 

the growth of paddy rice (Rose et al., 2021; Whelen and Siqueira, 2018). The threshold was determined from the histogram 

of the paddy rice sample blocks in the study area. The histograms can be found in Figure S7. We measured the 𝐶𝑉𝑉𝐻 using 

the temporal mean (MEAN) and standard deviation (SD) of the time-series of VH during the paddy rice growth period: 

 

𝐶𝑉𝑉𝐻 =
𝑆𝐷

𝑀𝐸𝐴𝑁
.                                                                                (3) 240 

 

Step four. We used the mask with slopes larger than 5° to remove steep terrain; it is unsuitable to plant paddy rice on 

sloping land (Sun et al., 2009). 

 

Step five. We used the PALSAR-based forest map in 2017 as a mask (Wang et al., 2015; Zhang et al., 2017). 245 
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Step six. Simultaneously, it is challenging to extract paddy rice from wetlands because paddy rice and wetland have similar 

characteristics to flooding signals (Zhang et al., 2015; Zhou et al., 2016). We used the water mask from GlobalLand30 in 

2020 referring to the study of Zhang et al (2015) to reduce the misclassification of paddy rice. 

 250 

Step seven. We classified pixels that met all the above rules as paddy rice. Then, we deleted small isolated pixels (connected 

components less than 12 pixels) to remove the “salt and pepper” effect in the classification 

(https://catalog.data.gov/dataset/global-food-security-support-analysis-data-gfsad-cropland-extent-2015-southeast-and-

northe, last access: 2021/06/18). 

 255 

The single cropping system for paddy rice identification is not ideal because of the difference in paddy rice cultivation time 

in some regions of SE Asia (Fikriyah et al., 2019; Shew and Ghosh, 2019). Therefore, we combined all paddy rice fields 

identified at different times into the annual map. We applied the improved method to generate the annual paddy rice maps 

for SE and NE Asia in 2017–2019. Please note that the method we improved may not extract rice fields (e.g., rain-fed paddy 

rice and upland rice) if flooding signals are not available (Xiao et al., 2006; Zhang et al., 2017). 260 

2.4 Accuracy assessment 

It is challenging to evaluate the accuracy of the classification at continental scales (Xiao et al., 2006; Zhang et al., 2020). We 

used two strategies to evaluate the paddy rice maps as accurately as possible. First, we compared the available agricultural 

statistics on a subnational level in some countries (Table 1). Referring to the study of Xiao et al. (2006), we calculated the 

annual area of paddy rice based on paddy intensity. The paddy intensities of countries in NE Asia, Myanmar, Vietnam, and 265 

the Philippines were 1, 1.4, 2.2, and 2 respectively. Second, we compared the spatial consistency between our classification 

results and existing rice maps (Table 1). We used the coefficient of determination (R2) to measure the consistency between 

our paddy rice maps, agricultural statistics, and existing products. 

𝑅2 =
(∑ (𝑥𝑖−�̅�𝑖)×(𝑘𝑖−�̅�𝑖)

𝑛
𝑖=1 )

2

∑ (𝑥𝑖−�̅�𝑖)
2×∑ (𝑘𝑖−�̅�𝑖)

2𝑛
𝑖=1

𝑛
𝑖=1

 ,                                                                               (4)                                                                                                                 

where n is the total number of administrative units, 𝑥𝑖 represents the mapped paddy rice areas, 𝑥�̅� is the corresponding mean 270 

value, 𝑘𝑖 represents the agricultural statistics or areas from existing rice maps, and 𝑘�̅� is the corresponding mean value. 

https://catalog.data.gov/dataset/global-food-security-support-analysis-data-gfsad-cropland-extent-2015-southeast-and-northe
https://catalog.data.gov/dataset/global-food-security-support-analysis-data-gfsad-cropland-extent-2015-southeast-and-northe
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Figure 3: Flow chart for mapping paddy rice in SE and NE Asia using multiple data. 

3 Results 

3.1 Comparison of the classification with agricultural statistics  275 

The paddy rice maps in SE and NE Asia in 2017–2019 are presented in Figures S86 and S97, respectively. We calculated the 

annual paddy rice area using the pixel number approach for each administrative unit. The estimated annual rice paddy areas 

were significantly correlated with the agricultural statistics at subnational levels. The resultant paddy rice maps and the 

agricultural statistics had relatively high correlations in Northeast China (R2 ranged from 0.82 to 0.89, p < 0.01) (Figure 4a). 

The paddy areas in Changchun, Jilin, and Tonghua city were underestimated. This is mainly because of the lack of available 280 

satellite data. When we excluded the three cities, R2 ranged from 0.85 to 0.97, with significant correlations. Additionally, 

there were significant correlations between the paddy rice maps and agricultural statistics in the Republic of Korea (Figure 

4b), but the results underestimated the paddy rice area (R2 ranged from 0.80 to 0.82, p < 0.01). The main reason may be that 

many small rice fields were situated in narrow valleys in the mountains (Dong et al., 2016b; Peng et al., 2011). The 

correlations were high in most counties in Japan (R2 ranged from 0.89 to 0.93, p < 0.01). In Hokkaido, the paddy rice areas 285 

were overestimated (Figure 4c), as they were by Zhang et al. (2018). The resultant paddy rice areas were consistent with the 

agricultural statistics in Myanmar, with R2 ranging from 0.91 to 0.94 (Figure 4d), and in Vietnam, with R2 equal to 0.97 in 
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the three years (Figure 4e). R2 between the paddy rice maps and the statistical data ranged from 0.81 to 0.87 in the 

Philippines, but rice areas in some provinces were underestimated (Figure 4f). Cloud contamination may be a major reason 

for the underestimation (Peng et al., 2011; Xiao et al., 2006). The spatial distribution of paddy rice was visually consistent 290 

with that of the higher spatial resolution images in some typical testing regions (Figure S108). 

 

  

  

Figure 4: Comparison of the resultant annual paddy rice areas and the agricultural statistics at the subnational level in different 295 
countries from 2017 to 2019. The marginal kernel density plot above or to the right of each scatter plot shows the distribution of 

the data in one dimension. 
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3.2 Comparison of the classification with other annually available rice maps 

We further compared the resultant rice maps with existing rice maps at the subnational level. The annually available datasets 

included the MODIS-based rice paddy map with 500 m resolution for Northeast China in 2017 and the JAXA-derived rice 300 

map with a 10m resolution for Vietnam in 2017 (Section 2.2.6). The paddy rice area statistics from our maps and existing 

products significantly correlated with R2 = 0.99 (P < 0.01) for Northeast China and R2= 0.93 (P < 0.01) for Vietnam (Figure 

5). We note that the paddy rice area in our maps was smaller than that in the MODIS-based product for Northeast China. The 

main reason may be that the 500 m resolution MODIS-based paddy rice map had a large number of mixed pixels. Although 

the spatial patterns of our maps were consistent with the MODIS-based products (Figures S9 S11 and S10S12), our maps 305 

contained more details with fewer mixed pixels (Figures 9a–f). Additionally, the detailed information at the field scale was 

consistent for both our maps and the JAXA-derived paddy rice map (Figures 9g–r). Overall, the comparison of the 

classification with existing products confirmed the reliability of the paddy rice maps that we generated.  

 

Figure 5: Comparison of the annual paddy rice area between our classification and existing datasets at the subnational level in 310 
Northeast China (a) and Vietnam (b). The marginal kernel density plot above or to the right of each scatter plot shows the 

distribution of the data in one dimension. 

 

3.3 Comparison of  the composite paddy rice map and IRRI dataset 

The composite paddy rice map is a mosaic of rice planting areas in three years (2017–2019) where rice has been detected in 315 

one or more years. We compared the composite paddy rice areas with IRRI products at the national and subnational levels in 

SE and NE Asia. The results demonstrated that the correlations between them were significant at both levels (R2 ranged from 

0.73 to 0.80) (Figure 6). The paddy rice area based on the IRRI product was higher than our results. The main reason may be 

that our method reduced the mixed pixels in the paddy rice map and the IRRI product from MODIS overestimated the area, 

as in previous studies (Figure S131) (Chen et al., 2012; Li et al., 2020; Nelson and Gumma, 2015). The difference between 320 

the two datasets may also be partly caused by the inconsistent epoch composite years in the two datasets. Moreover, 

although the distribution of paddy rice was consistent between our results and the IRRI product, there were regional 
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differences. Our paddy rice map underestimated the rice area in Thailand (Figure 6a), which may be because the rice planted 

in eastern Thailand has no obvious strong flooding signals (Zhang et al., 2020). Despite the various spatial resolutions and 

different years in the rice paddy data, the inter-comparison verified the accuracy of our dataset. 325 

 

Figure 6: Comparisons between the paddy rice area in our study and IRRI dataset in SE Asia at the (a) national and (b) county 

levels. The marginal kernel density plot above or to the right of each scatter plot shows the distribution of the data in one 

dimension. 

 330 

3.4 Spatial patterns of paddy rice areas 

In NE Asia, paddy rice fields are primarily cultivated in the longitude range from 123°E to 134°E and latitude range from 

45°N to 48°N (Fig. 7). In Northeast China, paddy rice is mainly cultivated in Heilongjiang (Sanjiang Plain) and Liaoning 

province. Paddy rice in the Democratic People's Republic of Korea and the Republic of Korea is distributed in the western 

coastal plains. Some paddy rice fields are located in narrow valleys. Rice fields in Japan are mainly on the coastal alluvial 335 

plains. 
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Figure 7: Spatial distribution of classified composite paddy rice with a 10 m spatial resolution in NE Asia during 2017–2019. The 

curves represent the distribution of the number of paddy rice pixels' relative change rates along the longitude and latitude 

gradients. 340 

 

Paddy rice is generally planted in the plains and deltas of rivers in SE Asia in the longitude range from 94°E to 106°E and 

latitude range from 10°N to 21°N (Figure 8). For example, the Mekong Basin and Hong River Delta are typical main rice-

growing areas in Vietnam. Paddy rice in the Philippines is mostly grown in the northern plains, and scattered in the Southern 

Philippines. Most of the rice cultivation in Malaysia is in the northwest corner of the peninsula section. 345 
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Figure 8: Spatial distribution of classified composite paddy rice with 10 m spatial resolution in SE Asia during 2017–2019. The 

curves represent the distribution of the number of paddy rice pixels' relative change rates along the longitude and latitude 

gradients. 

4 Discussion 350 

MODIS data were useful for mapping paddy rice at continental scales using combined EVI and LSWI analysis. Most paddy 

rice fields were fragmented in Asia (Li et al., 2020; Lowder et al., 2016). Therefore, it is difficult to solve the intra-class 

temporal variability of paddy rice pixels caused by the coarse resolution of 500 m (Dong et al., 2016b; Xiao et al., 2006). 

Mixed pixels may cause an overestimation of the rice cultivation areas (Nelson and Gumma, 2015). We improved the 

MODIS-based approach by incorporating Sentinel-1 data, and used the approach to identify paddy rice fields in SE and NE 355 

Asia for 2017–2019. Reducing the mixed pixel problem is the key point of the improved paddy rice mapping method. 

Compared with the paddy rice maps acquired from existing MODIS-based products, our classification provides more 
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information about field details with a higher spatial resolution (10 m) (Figure 9). Therefore, the integration of MODIS and 

Sentinel-1 data makes it possible to improve the accuracy of mapping paddy rice at continental scales. 
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360 
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Figure 9: Visual comparison of our paddy rice maps and existing products in typical regions in 2017: (a–c, g–i, m–o) classification 

using our method; find the example data for (a), (g), and (m) here (https://doi.org/10.17632/cnc3tkbwcm.1, example01-03); (d–f) 

MODIS-based paddy rice fields; and (j–l, p–r) JAXA-derived rice fields. 

 365 

https://doi.org/10.17632/cnc3tkbwcm.1
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Although our paddy rice maps are consistent with existing products, some uncertainty sources still affect the mapping results. 

First, identifying small paddy rice fields in hilly regions is challenging for MODIS data, which will lead to an 

underestimation of the area of paddy rice fields (Dong and Xiao, 2016; Zhang et al., 2015). For example, the rice planting 

area is smaller than the agricultural statistics in the mountainous provinces of the Republic of Korea (Figure 10). Second, 

tThe classification method relies on rice paddies containing irrigation water during transplanting stages. Therefore, rain-fed 370 

paddy rice and upland rice may not be detected because of the unavailability of flooding signals (Zhang et al., 2017). The 

main reason for the underestimation of the rice area in eastern Thailand may be that the flooding signal of rice was not 

detected, which has also been mentioned in previous studies (Bridhikitti and Overcamp, 2012; Guo et al., 2019; Zhang et al., 

2020). Third, aAlthough MODIS data with a high temporal resolution was used in our method, the accuracy of rice maps is 

still affected by cloud contamination (Figure 11a-b) (Dong and Xiao, 2016). MFourth, missing observations in Sentinel-1 375 

data would lead to noteworthy omission errors (Figure 11c-d). Fifth,Also, both the thresholds of different indicators and 

phenological information extracted by sample blocks may affect the accuracy of the classification (Dirgahayu and Parsa, 

2019; Jeong et al., 2012; Li et al., 2020; Yeom et al., 2021). SixthFinally, uncertainties in other land cover products used in 

this study may also affect the accuracy of the classification.other land cover products used in this study may also affect the 

accuracy of the classification. 380 
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Figure 10: Estimated distribution of paddy rice in 2017 in mountainous regions in South Korea: (a) flooding signal based on 

MODIS indices; (b) paddy rice map generated by our method; find the example data for (b) here 

(https://doi.org/10.17632/cnc3tkbwcm.1, example04); and (c) mountainous landscapes acquired from Google Earth. 385 

 

https://doi.org/10.17632/cnc3tkbwcm.1
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Figure 11: Spatial distribution map of good-quality observation numbers during 2017 to 2019 for (a1-a3) MODIS images in 

Northeast Asia, (b1-b3) MODIS images in Southeast Asia, (c1-c3) Sentinel-1 images in Northeast Asia, and (d1-d3) Sentinel-1 

images in Southeast Asia. 390 

 

 

Under the combined effects of climate change and human activities, such as frequent extreme disasters, population growth, 

and urban expansion, paddy rice, knowing the spatial distribution of paddy rice is important for food security. The potential 

applications of the dataset include: (1) improving paddy rice yield prediction accuracy. Crop masks are the basis for paddy 395 

rice yield prediction. Previous studies have demonstrated that the accuracy of crop masks affects the accuracy of yield 

prediction (Liu et al., 2019a; Zhang et al., 2019)(Liu et al., 2019a); (2) assessing damage to agriculture from extreme hazards. 

Floods are one of the major natural disasters in Southeast Asia. High-resolution paddy rice maps will improve the accuracy 

of the area and yield loss estimates for flooded farmland (Phan et al., 2019); (3) estimating green-house relevant methane 

emissions. Paddy rice is an important source of methane in the atmosphere (Redeker et al., 2000). Accurate paddy rice maps 400 

and crop intensity maps facilitate the estimation of methane emissions (Zhang et al., 2020); In addition, paddy maps are 

helpful in making land-use decisions for the government, etc. 
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Recently, as more Sentinel-2 images with higher resolutions are available, combining Sentinel-2 and other satellite images 

will improve the temporal resolution of the data. For example, the Harmonized Landsat and Sentinel-2 (HLS) project 405 

provide images with 2–3 days at 30m spatial resolution by combining Landsat 8 satellite and Sentinel-2 satellite 

(https://hls.gsfc.nasa.gov/, last access: 2021/11/5). Zhang et al. (2021) mapped the global cropping intensity with a high 

spatial resolution by integrating Sentinel-2, Landsat 8, and MODIS satellites(Zhang et al., 2021). Therefore, combining 

multi-source remote sensing data provide opportunities for global rice mapping in the future. Also, the increasing number of 

Planet satellite images at higher resolutions (3 - 5 meter) could further improve the accuracy of the paddy rice map in the 410 

future (https://www.planet.com/, last access: 2021/11/5). To further improve the accuracy of paddy rice map products, more 

accurate information on cropland and forest masks, and crop calendars will need to be developed in the future. 

5 Data availability 

The datasets of the paddy rice maps for SE and NE Asia from 2017 to 2019 are available on a public repositoryMendeley 

Data. Find a small example here data (https://doi.org/10.17632/cnc3tkbwcm.1) (Han et al., 2021b), or download the full 415 

product with 5° per grid cell here (https://doi.org/10.5281/zenodo.5645344https://doi.org/10.17632/j34b3jsvr9.1) (Han et al., 

2021a). The spatial reference system of the datasets is EPSG: 4326. We encourage users to validate this dataset 

independently. Please note that some small islands are not classified, and thus data for these areas are not available. 

6 Conclusions 

We constructed a paddy rice map database for SE and NE Asia for three years (2017–2019) at a 10 m spatial resolution 420 

(AsiaRiceMap10mNESEA-Rice10) by integrating MODIS and Sentinel-1 data. The paddy rice planting areas in our 

database were significantly correlated with those from the official statistics. The distribution of paddy rice in the maps was 

consistent with existing data products. Additionally, our method reduced the effects of mixed pixels and provided more 

detailed spatial information than MODIS-based paddy rice maps. We demonstrated that multi-sensor data integration has the 

advantages of improving the spatial resolution of rice maps and reducing mixed pixels. To summarize, we provided more 425 

accurate paddy rice maps at continental scales using the improved method for paddy rice mapping.  
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 25 

Figure S1. Sentinel-1 RGB color composite over the typical area in Vietnam in 2018 26 

before correction (a) and after correction (b) with a physical volume model. (R/G/B: 27 

VV, VH, and VV/VH). 28 



 29 
Figure S2. VH polarization backscatter images on the paddy rice transplanting date (a) 30 

and heading date (b), and normalized histogram of the images (c). 31 

 32 



  33 

  34 

Figure S3. The seasonal dynamics of EVI and LSWI for different land cover types 35 

from random sample blocks. The profile was generated from the following random 36 

points: forest (20.232934°N, 103.552905°E), paddy rice (47.665726°N, 37 

133.018530°E), urban (21.003088°N, 105.827390°E), water (12.974382°N, 38 

103.940706°E). The light-shaded areas indicate the standard deviation. 39 



 40 

Figure S3S4. The seasonal dynamics of VH backscatter coefficients for different land 41 

cover types from random sample blocks with 100m radius. The profile was generated 42 

from the following random points: forest (20.232934°N, 103.552905°E), paddy rice 43 

(47.665726°N, 133.018530°E), urban (21.003088°N, 105.827390°E), water 44 

(12.974382°N, 103.940706°E). The light-shaded areas indicate the standard deviation. 45 
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 47 

Figure S45. Spatial-temporal dynamics of flooded (a, b) and open canopy (c, d) for 48 

rice paddy fields in Northeast China. (a, c) Composite MODIS images displayed with 49 

SWIR2 band, NIR band, and blue band (R/G/B=band7/band2/band1). (b, d) the 50 

corresponding 2-D scatter plots of vegetation indices (EVI and LSWI) and the 51 

difference between them from the MODIS data. The color density represents the 52 

number of pixels. 53 



 54 

Figure S56. The seasonal dynamics of vegetation indices (EVI and LSWI) and 55 

backscattering coefficient (VH) of paddy rice at different incidence angles for 56 

Sentinel-1. (a, c) 35 deg. (b, d) 40 deg. The light-shaded areas indicate the standard 57 

deviation. 58 



 59 

Figure S7. The histogram of the coefficient of variation of the time-series of VH 60 

(CVVH) during the paddy rice growth period is based on sample rapeseed parcels in 61 

the study area.  62 



 63 
Figure S68. Spatial distribution of annual paddy rice fields with 10m resolution in 64 

Northeast Asia during 2017 - 2019 derived by our improved method (a-c). (d-l): the 65 

zoomed-in maps displaying detailed information in local zones. Find the example data 66 

for (d-l) here (https://doi.org/10.17632/cnc3tkbwcm.1 , example05-13).67 

https://doi.org/10.17632/cnc3tkbwcm.1


 68 
Figure S79. Spatial distribution of annual paddy rice fields with 10m resolution in 69 

Southeast Asia in 2017 - 2019 derived by our improved method (a-c). (d-l): the 70 

zoomed-in maps displaying detailed information in local zones. Find the example data 71 

for (d-l) here (https://doi.org/10.17632/cnc3tkbwcm.1 , example14-22).72 

https://doi.org/10.17632/cnc3tkbwcm.1


 73 

Figure S810. Comparison of classification results (a, c) with high-resolution optical 74 

images (b, d) from paddy rice transplanting period in typical areas. Sentinel-2 median 75 

images are composite displayed with SWIR2 band, NIR band, and blue band (R/G/B 76 

= band12/band8/band4). 77 



 78 

Figure S911. Comparison of our paddy rice map (a) with the existing MODIS-based 79 

map (b) in Northeast China in 2017. 80 



 81 

Figure S1012. Comparison of our paddy rice map (a) with the existing map (b) 82 

(Paddy fields on the JAXA map) in Vietnam in 2017. 83 



 84 

Figure S1113. Paddy rice maps of Northeast and Southeast Asia. (a, c, e, and g) were 85 

derived by our method. (b, d, f, and h) are the International Rice Research Institute 86 

(IRRI)-based rice map. Note that the periods between our paddy rice maps 87 

(2017-2019) and the IRRI-based data products (2000-2012) are different. The purpose 88 

of the comparison is for a general verification of the paddy rice distribution. 89 


