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Abstract. Accurate assessment of the various sources and sinks of carbon dioxide (CO2), especially terrestrial ecosystem and 15 

ocean fluxes with high uncertainties, is important for understanding of the global carbon cycle, supporting the formulation of 

climate policies, and projecting future climate change. Satellite retrievals of the column-averaged dry air mole fractions of 

CO2 (XCO2) are being widely used to improve carbon flux estimation due to their broad spatial coverage. However, there is 

no consensus on the robust estimates of regional fluxes. In this study, we present a global and regional resolved terrestrial 

ecosystem carbon flux (NEE) and ocean carbon flux dataset for 2015–2019. The dataset was generated using the Tan-Tracker 20 

inversion system by assimilating Observing Carbon Observatory 2 (OCO-2) column CO2 retrievals. The posterior NEE and 

ocean carbon fluxes were comprehensively validated by comparing posterior simulated CO2 concentrations with OCO-2 

independent retrievals and Total Carbon Column Observing Network (TCCON) measurements. The validation showed that 

posterior carbon fluxes significantly improved the modelling of atmospheric CO2 concentrations, with global mean biases of 

0.33 ppm against OCO-2 retrievals and 0.12 ppm against TCCON measurements. We described the characteristics of the 25 

dataset at global, regional, and Tibetan Plateau scales in terms of the carbon budget, annual and seasonal variations, and spatial 

distribution. The posterior 5-year annual mean global atmospheric CO2 growth rate was 5.35 PgC yr–1, which was within the 

uncertainty of the Global Carbon Budget 2020 estimate (5.49 PgC yr–1). The posterior annual mean NEE and ocean carbon 

fluxes were –4.07 and –3.33 PgC yr–1, respectively. Regional fluxes were analysed based on TransCom partitioning. All 11 

land regions acted as carbon sinks, except for Tropical South America, which was almost neutral. The strongest carbon sinks 30 

were located in Boreal Asia, followed by Temperate Asia and North Africa. The entire Tibetan Plateau ecosystem was 

estimated as a carbon sink, taking up –49.52 TgC yr–1 on average, with the strongest sink occurring in eastern alpine meadows. 

These results indicate that our dataset captures surface carbon fluxes well and provides insight into the global carbon cycle. 

The dataset can be accessed at https://doi.org/10.11888/Meteoro.tpdc.271317 (Jin et al., 2021). 
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1 Introduction 35 

Anthropogenic carbon dioxide (CO2) emissions are dominant sources for increasing atmospheric CO2 concentrations. Total 

emissions are partitioned among the atmosphere, land, and ocean. During the past decade (2010–2019), 31 % and 23 % of 

emissions were absorbed by the land and ocean, respectively (Friedlingstein et al., 2020). However, there is little agreement 

on the magnitude and interannual variability of land and ocean fluxes at regional scales (Hauck et al., 2020; Piao et al., 2020; 

Eldering et al., 2017; Piao et al., 2009). Precise knowledge of the various reservoirs within the carbon cycle is a prerequisite 40 

to monitor flux changes and make well-informed projections under future climate change (Zscheischler et al., 2017). 

Atmospheric inversions provide important insight into the global carbon cycle through absorbing atmospheric CO2 

observations. Many inversion studies have utilized high-precision in situ and flask observations to infer surface CO2 fluxes 

(Peters et al., 2007; Chevallier et al., 2010; Lauvaux et al., 2016). Although this is a useful way to quantify carbon fluxes at 

large scales, estimate uncertainty grows quickly as the scale shrinks due to the lack of observations outside of North America 45 

and Europe (Crowell et al., 2019; Byrne et al., 2017; Peylin et al., 2013). To improve spatial coverage and fill observation gaps 

of in situ CO2 network, column-averaged CO2 mole fraction (XCO2) observations from satellites have been extensively applied 

to flux inversions. The Greenhouse gases Observing SATellite (GOSAT) was the first dedicated greenhouse gas satellite 

(Yokota et al., 2009), followed by Orbiting Carbon Observatory 2 (OCO-2) (Crisp et al., 2004). Inversions using GOSAT 

retrievals can significantly reduce the uncertainty of flux estimates in regions where surface CO2 observations are sparse; 50 

however, no agreement is achieved on the estimates of regional fluxes (Chevallier et al., 2014; Basu et al., 2013; Takagi et al., 

2011). Compared with GOSAT, OCO-2 has higher spatial resolution, broader spatial coverage, and collects more 

measurements per day (Eldering et al., 2017). Its higher measurement signal-to-noise ratio allows for higher-precision XCO2 

retrievals, and its higher spatial sampling density facilitates validation using the ground-based Total Carbon Column Observing 

Network (TCCON) (Liang et al., 2017; Wunch et al., 2017). Based on these characteristics, OCO-2 may provide better 55 

constraints on surface CO2 fluxes inversions (Basu et al., 2018). Chevallier et al. (2019) indicated that large-scale annual fluxes 

estimated from bias-corrected OCO-2 land retrievals are within the uncertainty of fluxes estimated from the surface network. 

Villalobos et al. (2020) performed idealized flux inversion experiments over Australia using OCO-2 retrievals and found that 

the integrated flux uncertainty was greatly reduced and flux inversions at the unusually fine scale yielded useful information 

on the carbon cycle at continental and finer scales. With the refinement of instrument error characterization, retrieval 60 

algorithms, and bias correction procedures, the accuracy and precision of satellite-retrieved XCO2 have improved significantly 

(O'dell et al., 2018; Kiel et al., 2019). The effectiveness and potential of these constantly updated satellite retrievals for inferring 

surface CO2 fluxes requires further and persistent investigation. 

In the global carbon cycle, the response of carbon fluxes in the Tibetan Plateau ecosystems play an important role 

(Nieberding et al., 2020; Li et al., 2016). The plateau’s crucial role is almost entirely due to its height, with an area of 2.5 65 

million km2 at an average elevation exceeding 4000 m above sea level (Qiu, 2008). The temperature on the Tibetan Plateau 

has increased by 0.35 °C per decade from 1970 to 2014, at a pace that is about three times the observed rate of global warming, 
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resulting in significant permafrost thawing and glacier retreat (Yao et al., 2019). These warming-induced environmental issues 

may enhance the productivity of grasslands and soil respiration, as well as substantial emissions of old CO2 (Ding et al., 2017; 

Du et al., 2018). However, there are many uncertainties in the Tibetan Plateau carbon cycle under climate change, which are 70 

further amplified by human activities (Chen et al., 2013; Piao et al., 2019). Previous studies on Tibetan Plateau carbon fluxes 

mainly relied on ground-based measurements; the application of satellite data is promising to compensate for ground-based 

findings and reveal new information about the carbon cycle. 

In this study, we used the Tan-Tracker inversion system (Tian et al., 2014a, 2014b) to generate a global dataset containing 

terrestrial ecosystem carbon fluxes and ocean carbon fluxes from 2015 to 2019 by assimilating OCO-2 XCO2 retrievals. The 75 

Tan-Tracker inversion system adopts a dual-pass inversion strategy and the nonlinear least squares four-dimensional 

variational data assimilation (NLS-4DVar) method (Tian and Feng, 2015; Tian et al., 2018). The dual-pass strategy well 

distinguishes simulated CO2 errors from uncertainties in both the initial CO2 concentrations and carbon fluxes. The NLS-

4DVar method comprising a fast localization module (Zhang and Tian, 2018) is able to assimilate large amounts of 

observations within an inversion window and obtain high accuracy inversion with low computational complexity. Compared 80 

with previous versions of Tan-Tracker, we improved the dual-pass strategy of Tian et al. (2014a),  embedded the upgraded 

ensemble update scheme (Tian et al., 2020) to guarantee the system’s stable operation, and updated the GEOS-Chem transport 

model (Nassar et al., 2010) to v12.9.3 (http://www.geos-chem.org). In the dataset, we present optimized global daily gridded 

terrestrial ecosystem and ocean carbon fluxes with a spatial resolution of 2° latitude × 2.5° longitude. Corresponding fluxes 

from other sectors are also available (e.g., fossil fuel emissions, biomass burning emissions) to infer the global carbon budget. 85 

Besides, global model-simulated CO2 concentrations forced by optimized fluxes are provided. The optimized fluxes were 

comprehensively validated against independent OCO-2 retrievals and TCCON XCO2 observations. Data users can calculate 

the preferred carbon fluxes at a global or regional scale according to their needs for further analysis or comparison with other 

sources of flux information.  

This paper is organized as follows: Sect. 2 describes the methods and data employed; Sect. 3 and 4 describe the dataset 90 

and its characteristics, respectively; Sect. 5 evaluates the posterior fluxes against OCO-2 retrievals and TCCON observations; 

Sect. 6 discusses the strengths and limitations of the method and dataset, as well as future developments; Sect. 7 introduces 

the data availability; the conclusion is presented in Sect. 8. 

2 Methods and Data 

2.1 Tan-Tracker inversion system 95 

Figure 1 shows the frame of the Tan-Tracker inversion system. The fluxes to be optimized are terrestrial ecosystem carbon 

fluxes (i.e., net ecosystem exchange, NEE) and atmosphere-ocean carbon exchange, whereas other fluxes (e.g., fossil fuel 

emissions and biomass burning emissions) are assumed to have no errors. This assumption is commonly adopted in global flux 

inversion systems (Peters et al., 2007; Nassar et al., 2011; Crowell et al., 2019; Jiang et al., 2021). The core of Tan-Tracker is 
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a novel dual-pass inversion strategy with modifications to Tian et al. (2014a, 2014b) and the NLS-4DVar method (Tian and 100 

Feng, 2015; Tian et al., 2018). This dual-pass strategy performs assimilations twice within an inversion window. First, the CO2 

assimilation pass is performed using the prior fluxes within a short time (5 days) to obtain the optimized initial CO2 

concentrations; then, the flux assimilation pass is performed using the optimized initial CO2 concentrations within a longer 

time (14 days) to obtain the optimized fluxes. This strategy well distinguishes the CO2 simulation deviation caused by errors 

from initial CO2 concentrations and carbon fluxes. When assimilation of the current inversion window is complete, the prior 105 

initial CO2 concentrations before assimilation and the posterior fluxes are used to actuate the atmospheric chemistry transport 

model, which simulates the period from the initial moment of the current window to the initial moment of the next window to 

obtain the initial CO2 concentrations of the next window. Then, the previous steps are repeated, performing cyclic data 

assimilation. 

The Tan-Tracker optimization procedure is realized using the NLS-4DVar method (Tian and Feng, 2015; Tian et al., 110 

2018). The optimization minimizes the following cost function: 

𝐽(𝒙) =
1

2
(𝒙 − 𝒙𝑎)T(𝐁𝑝𝑟𝑖𝑜𝑟)−1(𝒙 − 𝒙𝑎) +

1

2
(𝒚 − ℎ(𝒙))

T
𝐑−1(𝒚 − ℎ(𝒙)).                                                                                  (1) 

where 𝒙 is the state variable (i.e., the variable to be optimized) and 𝒙𝑎 is the prior state variable, 𝐁𝑝𝑟𝑖𝑜𝑟  is the prior error 

covariance matrix, 𝒚 is the observed CO2 concentrations, ℎ(∙) is the observation operator, and 𝐑 is the observation error 

covariance matrix. The state variable of the CO2 assimilation pass is CO2 concentrations, whereas that of the flux assimilation 115 

pass is the scaling factor, that is: 

𝐹𝑖,𝑗
𝑝𝑜𝑠𝑡

= 𝜆𝑖,𝑗
𝑝𝑜𝑠𝑡

× 𝐹𝑖,𝑗
𝑝𝑟𝑖𝑜𝑟

.                                                                                                                                                                 (2) 

where 𝐹𝑖,𝑗
𝑝𝑜𝑠𝑡

 is the posterior carbon flux, 𝜆𝑖,𝑗
𝑝𝑜𝑠𝑡

 is the posterior scaling factor, and 𝐹𝑖,𝑗
𝑝𝑟𝑖𝑜𝑟

 is the prior carbon flux, 𝑖 = 1,2, … , 𝐼, 

𝑗 = 1,2, … , 𝐽, and I and J denote the numbers of grids in longitude and latitude, respectively. Both of fluxes and scaling factors 

are gridded variables. 120 

The Tan-Tracker inversion system uses the global three-dimensional (3D) atmospheric chemistry transport model GEOS-

Chem to simulate CO2 concentrations in the atmosphere (Suntharalingam et al., 2004; Nassar et al., 2010, 2013). The spatial 

resolution of GEOS-Chem is 2° latitude × 2.5° longitude, with 47 layers in the vertical direction. The model is driven by the 

various carbon fluxes, initial CO2 concentrations, and Modern-Era Retrospective analysis for Research and Applications 2 

(MERRA-2) meteorological data provided by the Goddard Earth Observing System (GEOS) of the National Aeronautics and 125 

Space Administration (NASA) Global Modeling and Assimilation Office (Gelaro et al., 2017). The observations assimilated 

are OCO-2 column CO2 (XCO2) retrievals (O'dell et al., 2012; O'dell et al., 2018). In this study, we optimized the global NEE 

and atmosphere-ocean carbon fluxes during 2015–2019 using the Tan-Tracker inversion system. The configurations of Tan-

Tracker are described in Table 1. 
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 130 

Figure 1. Flowchart of the Tan-Tracker inversion system. 

Table 1. Configurations of the Tan-Tracker inversion system. 

 System setup Configuration Reference 

Inversion setup Inversion strategy Dual pass Tian et al. (2014a); Tian et al. 

(2014b); Han and Tian (2019) 

 Optimized fluxes Terrestrial ecosystem carbon flux (NEE) 

and atmosphere-ocean carbon exchange 

Peters et al. (2007); Jiang et al. 

(2021) 

 Assimilated data OCO-2 XCO2 retrievals O'dell et al. (2012); O'dell et al. 

(2018) 

 Inversion method NLS-4DVar method Tian and Feng (2015); Tian et 

al. (2018) 

 State variable CO2 concentration for CO2 pass;  

scale factor for flux pass 

– 

 Assimilation window 5 days for CO2 pass;  

14 days for flux pass 

– 
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Transport model GEOS-Chem Version 12.9.3 Suntharalingam et al. (2004); 

Nassar et al. (2010); Nassar et 

al. (2013) 

 Spatial scale Global – 

 Spatial resolution 2° latitude × 2.5° longitude, 47 vertical 

levels 

– 

 Meteorological forcing MERRA-2 (Gelaro et al., 2017) 

2.2 Prior CO2 fluxes 

The various carbon fluxes required to drive GEOS-Chem to simulate atmospheric CO2 concentrations included NEE, ocean 

carbon fluxes, fossil fuel emissions, biomass burning emissions, ship emissions, aviation emissions, biofuel burning emissions, 135 

and chemical production of CO2 (Table 2). The 3D chemical source of CO2 includes the oxidation of CO, CH4 and other carbon 

gases. As fossil fuel emission and biospheric inventories used to count CO2 precursor species (CO, CH4 and other carbon gases) 

as direct CO2 emissions at the surface, whereas real chemical production of CO2 from these species occurs at different times 

and locations from emission, model implementation of CO2 chemical production requires adjustments to these surface emission 

inventories (Nassar et al., 2010).  140 

The optimized fluxes were NEE and ocean-atmosphere exchange. The prior NEE was obatined from CarbonTracker 

CT2019B (Jacobson et al., 2020), which provides data from January 2000 until March 2019, with a spatial resolution of 1° × 

1° and temporal resolution of 3 h. CarbonTracker is a CO2 measurement and modeling system developed by the National 

Oceanic and Atmospheric Administration (NOAA) that tracks CO2 sources and sinks worldwide. CarbonTracker uses ground-

based atmospheric CO2 observations from a host of collaborators and simulates atmospheric transport to estimate surface CO2 145 

fluxes (Peters et al., 2007). The prior ocean carbon fluxes were obtained from Takahashi et al. (2009), which contains monthly 

data from 2000 to 2013 with a horizontal resolution of 4° × 5°. As the original ocean flux dataset does not cover the simulation 

period of this study, we used NOAA Marine Boundary Layer (MBL) Reference data of CO2 

(https://www.esrl.noaa.gov/gmd/ccgg/mbl/index.html, last accessed: 26 April 2021) to extend the ocean flux to 2018. NOAA 

MBL Reference is a data product derived directly from measurements of weekly air samples collected by the Cooperative Air 150 

Sampling Network; the zonally-averaged MBL reference can be used to identify large-scale trends in atmospheric greenhouse 

gases (Conway et al., 1994). According to the correlation of MBL CO2 concentration and ocean carbon fluxes described in 

Takahashi et al. (2009), we constructed the ocean fluxes for 2014–2018 using corresponding MBL data. Due to a lack and 

deficiency of data for 2019, prior NEE and ocean carbon fluxes for 2018 were used as 2019 prior estimates. 

Table 2. Summary of inventories used for the GEOS-Chem CO2 simulation in this work. 155 

Flux Type Inventory name/ 

abbreviation 

Description References 

https://doi.org/10.5194/essd-2021-210

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 July 2021
c© Author(s) 2021. CC BY 4.0 License.



 

7 

 

Fossil fuel emissions ODIAC 1° × 1° monthly global emissions Oda and Maksyutov 

(2011); Oda et al. (2018b) 

Net ecosystem 

exchange (NEE) 

CarbonTracker 

CT2019B 

1° × 1° 3-hourly averaged data 

 

Jacobson et al. (2020) 

Ocean carbon fluxes Takahashi et al. (2009) 4° × 5° climatology of monthly ocean-

atmosphere CO2 fluxes 

Takahashi et al. (2009) 

Biomass burning 

emissions 

GFED v4 0.25° × 0.25° monthly data scaled with 

daily factors 

Van Der Werf et al. 

(2017); Randerson et al. 

(2017) 

Ship emissions CEDS 0.5° × 0.5° monthly ship emissions Hoesly et al. (2018) 

Aircraft emissions AEIC 1° × 1° with 47 vertical levels, aviation 

fuel burning from AEIC scaled with 

global annual CO2 emission totals 

calculated from IEA  

Olsen et al. (2013); 

Simone et al. (2013) 

Biofuel burning 

emissions 

Yevich & Logan 1° × 1° annual inventory of biofuel CO2 

emissions for 1985 and scaled to 1995 

Yevich and Logan (2003) 

Chemical source GEOS-Chem CO2 

chemical source 

Chemical production of CO2 based on 

CO loss rates from GEOS-Chem 4° × 5° 

simulations 

Nassar et al. (2010) 

2.3 OCO-2 column CO2 observations 

The OCO-2 Level 2 Lite (v9r) carbon dioxide column-averaged dry-air mole fraction (XCO2) products retrieved by the 

Atmospheric Carbon Observations from Space (ACOS) algorithm (Connor et al., 2008) were used in this study (O'dell et al., 

2012; O'dell et al., 2018). The OCO-2 satellite carries high-resolution spectrometers that return high-precision measurements 

of reflected sunlight received within the CO2 and O2 bands in the short-wave infrared spectrum (Crisp et al., 2012). The OCO-160 

2 spacecraft flies in a 705-km-altitude sun-synchronous orbit, with a 16-day (233 orbits) ground track repeat cycle. OCO-2 has 

a footprint of 1.29 × 2.25 km2 at nadir mode and acquires eight cross-track footprints, creating a swath width of 10.3 km. After 

filtering and bias correction, the OCO-2 XCO2 retrievals (v7) agree well when aggregated around and coincident with ground-

based TCCON data in nadir, glint, and target observation modes, with absolute median differences of < 0.4 ppm and root-

mean-square differences of < 1.5 ppm (Wunch et al., 2017). O'dell et al. (2018) demonstrated that OCO-2 retrieval error 165 

variance with respect to TCCON was reduced by 20 % over land and 40 % over ocean between versions 7 and 8, with improved 

nadir and glint observation consistency over land. 

Considering the quality and large amount of OCO-2 XCO2 observations, we performed quality control and observation 

thinning to filter out some retrievals (Han and Tian, 2019). The observation preprocessing procedure included three steps. In 
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the first step, observations were filtered according to the xco2_quality_flag and xco2_uncertainty parameters provided by the 170 

OCO-2 Lite product. xco2_quality_flag = 0 denotes the retrieval quality is good whereas xco2_quality_flag = 1 denotes the 

quality is bad. We selected only observations with xco2_quality_flag = 0. The xco2_uncertainty parameter represents the 

posterior uncertainty of XCO2 retrieval, and observations with xco2_uncertainty > 1.5 ppm were filtered out. In the second 

step, differences between OCO-2 XCO2 and corresponding model-simulated XCO2 were considered. The observation was 

discarded when the absolute difference exceeded 2 ppm, or the difference was beyond the range of two standard deviations 175 

above or below the daily mean difference. In the third step, if the number of observations remaining after the first two filtering 

steps exceeded 20,000, then the observation too close to the previous one was eliminated to maintain a number of observations 

around 20,000. Figure 2 shows the OCO-2 observations in the first inversion window before and after quality control and 

thinning. After the preprocessing procedure, extremely large and small observations were excluded.  Observations over the 

Antarctic were generally discarded due to poor quality (xco2_quality_flag = 1), perhaps because of a small solar altitude angle 180 

(O'dell et al., 2018). 

 

Figure 2. Spatial distributions of (a) all OCO-2 XCO2 observations and (b) observations after quality control and thinning in the 

first inversion window (2015.1.1–2015.1.14). 
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During the optimization procedure, simulated and satellite observations were used to calculate the second term in Eq. (1). 185 

The xco2_uncertainty parameter provided by the OCO-2 Level 2 Lite product was used to construct the observation error 

covariance matrix R; observation errors were assumed to be independent of each other. We used an observation operator to 

project the model-simulated 3D atmospheric CO2 concentration to the satellite column-averaged concentration. According to 

Connor et al. (2008), the observation operator is expressed as follows: 

XCO2
𝑚 = XCO2

𝑎 + 𝒉T𝐀(𝒙 − 𝒙𝑎).                                                                                                                                               (3) 190 

where XCO2
𝑚  is the model simulated column concentration, XCO2

𝑎  is the prior column concentration, 𝒉  is the pressure 

weighting function, 𝐀 is the averaging kernel matrix, 𝒙 is the modeled CO2 profile, and  𝒙𝑎 is the prior profile. 

2.4 Uncertainty quantification and ensemble update 

As a hybrid method based on 4DVar and the ensemble Kalman filter (EnKF), the NLS-4DVar method applies an ensemble to 

approximate the prior error covariance matrix (Tian et al., 2018) as follows: 195 

𝐁𝑝𝑟𝑖𝑜𝑟 =
(𝐏𝑥

𝑝𝑟𝑖𝑜𝑟
)(𝐏𝑥

𝑝𝑟𝑖𝑜𝑟
)

T

𝑁−1
.                                                                                                                                                              (4) 

where 𝐏𝑥
𝑝𝑟𝑖𝑜𝑟

= (𝒙1
′ , 𝒙2

′ , … , 𝒙𝑁
′ ) is an ensemble of prior perturbations, 𝒙𝑗

′ = 𝒙𝑗 − 𝒙𝑎, 𝑗 = 1,2, … , 𝑁, 𝒙𝑗 is the jth perturbation, 

and 𝑁  is the number of prior perturbations. According to Evensen (2009), the ensemble of posterior perturbations after 

assimilation is calculated as follows: 

𝐏𝑥
𝑝𝑜𝑠𝑡

= 𝐏𝑥
𝑝𝑟𝑖𝑜𝑟

𝐕2√𝐈 − 𝚺2
T𝚺2ФT,                                                                                                                                                   (5) 200 

where 

𝐔2𝚺2𝐕2
T = 𝐗2,                                                                                                                                                                              (6) 

𝐗2 = 𝚲−1 2⁄ 𝐙T𝐏𝑦 ,                                                                                                                                                                         (7) 

𝐙𝚲−1𝐙T = [(𝐏𝑦)(𝐏𝑦)
T

+ (𝑁 − 1)𝐑]
−1

.                                                                                                                                      (8) 

and Ф is a random orthogonal matrix, 𝐏𝑦 = ℎ(𝐏𝑥
𝑝𝑟𝑖𝑜𝑟

) − ℎ(𝒙𝑎). Then, the prior (𝐁𝑝𝑟𝑖𝑜𝑟) and posterior (𝐁𝑝𝑜𝑠𝑡) error covariance 205 

matrices can be calculated using 𝐏𝑥
𝑝𝑟𝑖𝑜𝑟

 and 𝐏𝑥
𝑝𝑜𝑠𝑡

, respectively, according to Eq. (4). 𝐁𝑝𝑟𝑖𝑜𝑟  and 𝐁𝑝𝑜𝑠𝑡 represent the prior and 

posterior uncertainties of scaling factors, respectively. In the flux assimilation pass, the prior perturbations of the scaling factor 

in the first inversion window were obtained through historical sampling, and prior perturbations in the following windows 

were generated through ensemble updating. Compared with previous versions (Tian et al., 2014a, 2014b), the current Tan-

Tracker system adopts an upgraded ensemble update method that well maintains the ensemble dispersion during cyclic 210 

assimilation (Tian et al., 2020). The new ensemble update equation is as follows: 

𝐏𝑥,𝑟+1
𝑝𝑟𝑖𝑜𝑟

= 𝐏𝑥,𝑟
𝑝𝑟𝑖𝑜𝑟

𝐕2ФT.                                                                                                                                                                       (9) 

where 𝐏𝑥,𝑟+1
𝑝𝑟𝑖𝑜𝑟

 is the prior perturbations of the (r + 1)th window and 𝐏𝑥,𝑟
𝑝𝑟𝑖𝑜𝑟

 is the prior perturbations of the rth window. 
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After obtaining the prior and posterior uncertainties of the scaling factors, the prior and posterior total flux uncertainties 

(𝜎𝑡𝑜𝑡𝑎𝑙
𝑝𝑟𝑖𝑜𝑟

 and 𝜎𝑡𝑜𝑡𝑎𝑙
𝑝𝑜𝑠𝑡

) can be calculated according to the correlation between fluxes and scaling factors as follows (Niwa and Fujii, 215 

2020): 

𝜎𝑡𝑜𝑡𝑎𝑙
𝑝𝑟𝑖𝑜𝑟

= √(𝑭𝑝𝑟𝑖𝑜𝑟)T𝐁𝑝𝑟𝑖𝑜𝑟(𝑭𝑝𝑟𝑖𝑜𝑟),                                                                                                                                              (10) 

𝜎𝑡𝑜𝑡𝑎𝑙
𝑝𝑜𝑠𝑡

= √(𝑭𝑝𝑟𝑖𝑜𝑟)T𝐁𝑝𝑜𝑠𝑡(𝑭𝑝𝑟𝑖𝑜𝑟).                                                                                                                                               (11) 

where we assume that the flux uncertainties are time independent. 

The uncertainty reduction (UR) rate is an important indicator of inversion system performance. Following Deng et al. 220 

(2007), the UR is defined as follows: 

UR = (1 −
𝜎𝑡𝑜𝑡𝑎𝑙

𝑝𝑜𝑠𝑡

𝜎𝑡𝑜𝑡𝑎𝑙
𝑝𝑟𝑖𝑜𝑟)  × 100 %.                                                                                                                                                     (12) 

The magnitudes of the UR rates indicate the degree to which the final inverted fluxes are constrained by atmospheric CO2 

observations. 

2.5 Evaluation of posterior fluxes 225 

Generally, it is impossible to directly verify the posterior fluxes due to the lack of flux observations. Instead, we compared the 

simulated CO2 concentrations driven by posterior fluxes with CO2 observations to achieve indirect verification (e.g., Wang et 

al. (2019); Wu et al. (2020); Liu et al. (2021)). The evaluation of posterior fluxes consists of two parts. First, the simulated 

CO2 concentrations were compared with unassimilated OCO-2 XCO2 retrievals, that is, independent observations. Second, the 

simulated CO2 concentrations were validated by comparisons with TCCON XCO2 observations. TCCON is a network of 230 

ground-based Fourier Transform Spectrometers that record direct solar spectra in the near-infrared spectral region. From these 

spectra, accurate and precise column-averaged CO2 abundances are retrieved and reported (Wunch et al., 2011). In this study, 

we used GGG2014 version data from 30 TCCON sites (Wunch et al., 2015); the site locations are shown in Fig. 3. 

To statistically evaluate the inversion results, we calculated four statistics: the root mean square error (RMSE), mean bias 

(BIAS), mean absolute error (MAE), and correlation coefficient (CORR). These four statistics represent the bias, error variance, 235 

and linear correlation between the simulated and observed CO2 concentrations, and are formulated as follows: 

RMSE = √
1

𝑀
∑ (ℎ(𝑥)𝑗 − 𝑦𝑗)

2𝑀
𝑗=1 ;                                                                                                                                                (13) 

BIAS =
1

𝑀
∑ (ℎ(𝑥)𝑗 − 𝑦𝑗)𝑀

𝑗=1 ;                                                                                                                                                      (14) 

MAE =
1

𝑀
∑ |ℎ(𝑥)𝑗 − 𝑦𝑗|𝑀

𝑗=1 ;                                                                                                                                                       (15) 

CORR =
∑ (ℎ(𝑥)𝑗−ℎ(𝑥)̅̅ ̅̅ ̅̅ )𝑀

𝑗=1 (𝑦𝑗−�̅�)

√∑ (ℎ(𝑥)𝑗−ℎ(𝑥)̅̅ ̅̅ ̅̅ )
2𝑀

𝑗=1 √∑ (𝑦𝑗−�̅�)
2𝑀

𝑗=1

.                                                                                                                                       (16) 240 

where ℎ(𝑥)𝑗 and 𝑦𝑗 are the jth simulated observation and real observation, respectively. M is the number of observations and 

the overbar denotes the average.  

https://doi.org/10.5194/essd-2021-210

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 July 2021
c© Author(s) 2021. CC BY 4.0 License.



 

11 

 

 

Figure 3. Distribution of 30 TCCON sites used for validation in this study (red circles). Shaded areas indicate the 11 TansCom land 

regions. 245 

3 Dataset description 

Here we present a global gridded dataset containing various carbon fluxes and simulated CO2 concentrations from 2015 to 

2019 (inclusive). The posterior NEE and ocean carbon fluxes were generated using the Tan-Tracker inversion system inferred 

from OCO-2 XCO2 retrievals. Apart from these two optimized fluxes, all other emissions listed in Table 2 plus net carbon 

fluxes are included in the flux files. The global gridded fluxes are daily with a resolution of 2° latitude × 2.5° longitude at 47 250 

vertical levels. The vertical layers are set using the hybrid sigma-pressure grid from GEOS-Chem 

(http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_vertical_grids, last accessed: 14 May 2021). The fluxes are 

distributed in 47 layers due to the presence of aircraft emissions and chemical sources; the remaining fluxes are surface fluxes. 

The GEOS-Chem simulated instantaneous CO2 concentrations actuated by posterior NEE and ocean fluxes were generated 

every 3 h, at the same spatial resolution as the fluxes. The surface pressure and pressure at each vertical level are provided in 255 

the concentration files. The aggregated global annual and monthly fluxes with corresponding uncertainties are provided in 

tabular format. Users can aggregate the gridded fluxes on their preferred regions and compare the results with other available 

datasets. The characteristics of the dataset are described in Sect. 4. 
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4 Characteristics of the dataset 

4.1 Global fluxes 260 

4.1.1 Global carbon budget 

The annual atmospheric CO2 growth rate (AGR) is the net difference between total CO2 emissions and uptake over land and 

ocean (Jiang et al., 2021). Table 3 presents the annual and annual mean AGR during 2015–2019 estimated from prior and 

posterior fluxes in this study. For comparison, the AGRs from Global Carbon Budget 2020 (GCB2020; Friedlingstein et al., 

2020), CarbonTracker CT2019B (Jacobson et al., 2020), and Jena CarboScope (JCS; Rödenbeck, 2005) (http://www.bgc-265 

jena.mpg.de/CarboScope/?ID=s, last accessed: 26 May 2021) are also included. The AGR of GCB2020 was estimated directly 

from atmospheric CO2 concentration measurements, which are provided by the NOAA Earth System Research Laboratory 

(ESRL; https://www.esrl.noaa.gov/gmd/ccgg/ggrn.php, last accessed: 23 April 2021); it can be considered a true value. The 

uncertainty of the GCB2020 AGR is around 0.2 PgC yr–1. CT2019B does not contain complete data for 2019; therefore, we 

have omitted the 2019 annual and annual mean estimates of CT2019B data. JCS provides estimates of surface-atmosphere 270 

CO2 exchange based on atmospheric measurements using atmospheric transport inversion. In this study, we used version 

s10oc_v2020 of the JCS product. Table 3 shows that prior AGR evaluations were generally greater than those of GCB2020, 

except for 2018, contributing to a positive annual mean deviation of 0.43 PgC yr–1, mainly due to prior results for 2016 and 

2017, which were 0.61 and 1.14 PgC yr–1, respectively. The positive sign of the deviation indicates that prior carbon sources 

were overestimated, or sinks were underestimated. After absorbing the satellite observations, the posterior AGR weakened 275 

every year, with an annual mean of 5.33 PgC yr–1, which was within the uncertainty range of the GCB2020 estimate (5.49 PgC 

yr–1). The AGRs of CT2019B were generally smaller than those of GCB2020. A comparison of the AGR of CT2019B and 

GCB2020 throughout 2015–2018 showed a negative deviation of 0.12 PgC yr–1. The AGRs of JCS during 2015–2017 were 

quite close to the GCB2020 evaluations. The largest deviation in the JCS data occurred in 2019, with a positive deviation of 

0.4 PgC yr–1 compared with GCB2020. Overall, posterior AGRs were clearly refined compared to the prior, indicating the 280 

effectiveness of the flux inversions. Notably, although the annual mean result is comparatively accurate, the annual AGRs still 

require improvement, which imposes higher requirements on inversion systems. 

Table 3. Annual and annual mean global atmospheric CO2 growth rates (AGRs) during 2015–2019 estimated in this study and in 

three flux products: GCB 2020, CT2019B, and JCS. 

 Atmospheric CO2 growth rate (PgC yr−1) 

Prior Posterior GCB2020 CT2019B JCS 

2015 6.71 5.81 6.28 5.94 6.26  

2016 6.71  6.11  6.07 6.24 5.98  

2017 5.75  4.98  4.58 4.46 4.55  

2018 5.02  4.38  5.09 4.87 4.81  
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2019 5.51  5.49  5.43 – 5.83  

Annual mean 5.94  5.35  5.49 – 5.49  

Figure 4 presents the interannual variations and corresponding uncertainties of global NEE and ocean carbon fluxes from 285 

prior and posterior estimates as well as GCB2020, CT2019B, and JCS. It should be noted that JCS products contain only the 

net biosphere exchange (NBE), which is the sum of NEE and biomass burning emissions; therefore, to obtain the NEE of JCS, 

we subtracted the biomass burning emissions used in this study, such that JCS NEE data represent NBE minus GFED4 v4. 

The annual mean prior NEE was –3.53 PgC yr–1. Posterior NEE were consistently stronger than prior NEE, varying from –

3.17 PgC yr–1 in 2016 to –4.73 PgC yr–1 in 2018, with an annual mean of –4.07 PgC yr–1. The enhancements were obvious 290 

during 2015–2018, exceeding 0.5 PgC yr–1. Posterior NEE were generally greater than GCB2020 except for 2016; the largest 

discrepancy occurred in 2015. However, posterior and GCB2020 estimates of NEE were comparable considering their 

uncertainties. JCS NEE were basically greater than those of GCB2020, except for 2016, but generally weaker than the posterior 

ones. 

For the ocean fluxes, differences between the posterior and prior sinks were moderate during 2015–2019, within 0.15 295 

PgC yr–1. The posterior sinks were strengthened in 2015, 2017, and 2018, and weakened in 2016 and 2019. The posterior ocean 

sink had an annual value of –3.33 PgC yr–1, slightly stronger than the prior value of –3.29 PgC yr–1. The ocean formed a sink 

for CO2 because the gas is highly soluble in seawater, a property that is critical to the ocean’s ability to absorb atmospheric 

CO2 (Mckinley et al., 2017). During the past two decades, sufficient evidence has been gathered to support the conclusion that 

the global integrated ocean carbon sink has grown as atmospheric carbon content increases (Khatiwala et al., 2013; Watson et 300 

al., 2020). Posterior ocean sinks showed an increasing trend, especially from 2015 to 2018. The GCB2020 ocean flux estimates 

were quite stable, with an annual mean of –2.60 PgC yr–1 and standard deviation of 0.06 PgC yr–1. Posterior ocean sinks were 

universally greater than the GCB2020 estimates, with the largest deviation occurring in 2018 (1.08 PgC yr–1). Posterior ocean 

fluxes were more consistent with the CT2019B estimates; both were stronger than the GCB2020 estimates, and those of 

CT2019B were even stronger than the posterior fluxes. Compared with the posterior and CT2019B results, JCS had smaller 305 

ocean sinks and better coherence with GCB2020.  
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Figure 4. Interannual variations and corresponding uncertainties of global (a) NEE and (b) ocean carbon fluxes from prior and 

posterior estimates in this study, as well as GCB2020, CT2019B, and JCS products during 2015–2019. Since prior NEE data were 

obtained from CT2019B, we omitted CT2019B in (a). 310 

Combining the NEE and ocean fluxes, the total posterior annual mean sink was –7.40 PgC yr–1, which is strengthened 

compared to the prior estimate of –6.82 PgC yr–1, and contributed to a decrease in net carbon emissions that was consistent 

with the aforementioned AGR estimates. Notably, CO2 emissions and uptake were classified differently among different 

inversion systems and GCB2020, preventing NEE and ocean flux estimates from being perfectly equivalent. GCB2020 

contains fossil CO2 emissions, land-use change emissions, and terrestrial and ocean CO2 sinks. CT2019B includes fossil CO2 315 

emissions, biomass burning emissions, and terrestrial and ocean CO2 sinks. In this study, apart from the above mentioned 

sources and sinks, we additionally considered emissions from shipping, aviation, biofuel burning, and chemical production 

from CO oxidation (Table 2), providing a more comprehensive consideration of the global carbon cycle. Table A1 shows the 

annual CO2 emissions and uptake from all considered sectors. The uncertainties of carbon emissions other than NEE and ocean 

fluxes are unclear and therefore omitted, but these uncertainties actually exist and should be well described. Both the 320 

improvements of inversion methods and accompanying emissions estimates are necessary to obtain more accurate NEE and 

ocean carbon fluxes. 

4.1.2 Seasonal cycle 

Figure 5 shows the seasonal cycle and corresponding uncertainties of global NEE and ocean carbon fluxes from prior and 

posterior estimates during 2015–2019. For NEE, the terrestrial ecosystem emitted CO2 in winter (December to February) and 325 

autumn (September to November), and taken up CO2 in spring (March to May) and summer (June to August). The prior annual 
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NEE means for winter, spring, summer, and autumn were 1.74, –0.31, –6.66, and 1.70 PgC, respectively. After inversion, the 

corresponding posterior fluxes were 1.41, –0.55, –6.32, and 1.39 PgC, respectively. The magnitudes of posterior fluxes in 

winter, summer, and autumn decreased by 19 %, 5 %, and 18 %, respectively, whereas the magnitude in spring increased by 

79%, which was the most obvious flux modification. Overall, the annual net sink of terrestrial ecosystems increased. The CO2 330 

emissions in winter and autumn were roughly equivalent. The largest emissions occurred in October or November, and the 

posterior range was 0.72 PgC in 2018 to 1.16 PgC in 2015. The net terrestrial ecosystem sinks mainly owed to the large uptake 

in summer. The largest uptake occurred in July, up to –2.62 ± 0.07 PgC in posterior estimates. Spring uptake was much smaller 

than in summer, and the posterior estimate in 2016 was nearly neutral (–0.04 PgC).  

Unlike terrestrial ecosystems, the ocean acted as a carbon sink year-around. The prior annual mean ocean uptake values 335 

for winter, spring, summer, and autumn were –0.99, –0.86, –0.68, and –0.77 PgC, respectively. The inversion modifications 

were not significant, generating posterior estimates of –1.01, –0.89, –0.69, and –0.75 PgC, respectively. The largest and 

smallest uptakes occurred in winter and summer, respectively. Seasonal changes in the ocean flux field are attributed to the 

combined effects of seasonal changes in water temperature, biological utilization of CO2, water mixing, and wind speeds 

(Takahashi et al., 2002). 340 

 

Figure 5. Monthly variations and corresponding uncertainties of global (a) NEE and (b) ocean carbon fluxes from prior and posterior 

estimates during 2015–2019. 
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4.1.3 Uncertainty evaluation 

Figure 6 shows the global 5-year mean monthly prior and posterior uncertainties for NEE and ocean fluxes. Monthly means 345 

were calculated because uncertainties exhibit clear monthly characteristics. Figure A1 includes the daily uncertainties from 

prior and posterior estimates. The uncertainties were calculated from the ensemble of perturbations and prior fluxes using Eqs. 

(4), (10), and (11). As the prior ensemble dispersion was maintained when updated over time, the variation in uncertainties 

mainly depended on the prior fluxes and flux correlations between different grids. The pattern of NEE monthly uncertainties 

was consistent with NEE monthly variation (Fig. 5a), with the largest sinks (June, July, and August) contributing to the largest 350 

uncertainties in the same months. For the ocean fluxes, uncertainties were much smaller than NEE. Because the flux initial 

ensemble of perturbations was generated through historical sampling, small uncertainties indicated relatively stable ocean 

fluxes over time. Large ocean uncertainties were concentrated in winter and summer. Large uncertainties in winter were related 

to the large ocean sink during that season, whereas large uncertainties in summer were caused by the high spatial correlations 

between gridded fluxes.  355 

Figure 7 shows the daily UR rates for NEE and ocean fluxes from 2015 to 2019, which varied prominently over time. 

The estimated URs depended strongly on the number of observations and specification of the observation errors, as well as the 

a priori error covariance matrix (Deng et al., 2014; Jiang et al., 2021). The UR values reflect the decrease of posterior 

uncertainties constrained by OCO-2 XCO2 retrievals. The NEE URs ranged from 0.00 % to 27.90 %. The 0.00 % URs were 

caused because no OCO-2 retrievals were provided in the inversion windows from April 21, 2015 to May 6, 2015 and from 360 

August 10, 2017 to September 6, 2017. Ocean URs were comparable to those over land, ranging from 0.00 % to 25.13 %. Due 

to the monthly prior ocean fluxes and 14-day inversion window, dates within the same month and the same inversion window 

shared common URs. Table 4 presents the global annual and annual mean prior uncertainties as well as the UR rates of NEE 

and ocean sinks during 2015–2019. Temporal correlations in the error covariance matrix were neglected, resulting in 

discrepancies among the annual uncertainties and URs (Deng et al., 2014). The annual differences in uncertainty and UR 365 

decreased greatly when integrated over a year.  The annual prior uncertainty of NEE was ~0.55 PgC yr–1, and URs ranged 

from 7.28 % in 2015 to 8.45% in 2018. The annual prior uncertainties associated with ocean sinks were much smaller than 

those of NEE, and the annual total uncertainties of different years were probably consistent with each other. URs for ocean 

sinks were generally higher than those of NEE, with larger interannual variability, ranging from 6.59 % in 2014 to 10.49 % in 

2016. 370 

https://doi.org/10.5194/essd-2021-210

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 July 2021
c© Author(s) 2021. CC BY 4.0 License.



 

17 

 

 

Figure 6. Global 5-year mean monthly prior and posterior uncertainties for (a) NEE and (b) ocean carbon fluxes. 
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Figure 7. Daily uncertainty reduction (UR) rates for (a) NEE and (b) ocean carbon fluxes from 2015 to 2019. 

Table 4. Global annual and annual mean prior uncertainties and URs of NEE and ocean sinks during 2015–2019. 375 

 NEE Ocean sink 

Prior uncertainty 

(PgC yr–1) 

UR (%) Prior uncertainty 

(PgC yr–1) 
UR (%) 

2015 0.54 7.28 0.028  7.37 

2016 0.53 8.14 0.028  10.49 

2017 0.56 7.36 0.029  6.59 

2018 0.56 8.45 0.029  10.07 

2019 0.56 7.48 0.029  7.99 

Annual mean 0.55 7.74 0.029  8.50 

4.2 Regional fluxes 

Figure 8 shows the global distributions of the prior and posterior annual mean NEE and ocean carbon fluxes during 2015–

2019. For the prior NEE, carbon sinks mainly occurred over central and eastern North America, the central Amazon, southern 

South America, central Europe, most of Russia and China, central and southern Africa, and most of Australia. The area of the 

terrestrial ecosystem carbon sources was much smaller than that of the sinks, which mainly occurred over western and southern 380 
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North America, northern South America, small areas in southern South America, northern and southern Europe, western Russia, 

scattered areas of northwestern and southwestern China, the Malay Archipelago, and the southern coast of Australia. After 

assimilating OCO-2 XCO2 retrievals, sinks of central and northeastern North America were impaired whereas sinks of western, 

southeastern, and southern North America were strengthened. Meanwhile, sinks of the southern Amazon and eastern Brazil 

were weakened. In Europe, the source was weaker and sink was stronger than prior ones. A widespread weakening of sink 385 

occurred in central Russia. Sinks of northeastern and eastern China as well as Australia were reinforced, sinks of Indochinese 

Peninsula were weakened nevertheless. 

By contrast, the ocean carbon flux distribution was much simpler, with a clear characteristic that fluxes varied with 

latitude. The ocean flux sources mainly occurred in tropical oceans and high-latitude Southern Ocean, and the equatorial 

Pacific was the most prominent source area for atmospheric CO2. Sinks mainly occurred in mid-latitude regions of both 390 

hemispheres and high latitude Northern Ocean. After inversion, the overall pattern of ocean fluxes was preserved. The tropical 

sources were generally impaired, especially the eastern equatorial Pacific. Sinks of North Pacific were strengthened whereas 

sinks of southern Pacific were weakened. Besides, the northern and southern sinks of Atlantic as well as southern sinks of 

Indian Ocean were basically weaker than prior estimates. In general, the spatial distribution of NEE was far more complicated 

than that of ocean carbon fluxes (Fig. 8), and the interannual variation of NEE was also stronger (Fig. A2). Therefore, the 395 

regional NEE requires more detailed analysis and attribution. 

Table 5 lists the prior and posterior NEE for the 11 TransCom land regions. In each region, the prior NEE indicated a 

carbon sink. The powerful sinks occurred mainly in Asia, Africa, and North America, accounting for 45 %, 27 %, and 18 % 

of the total carbon sink. Among these regions, Boreal Asia had the strongest sink, followed by Temperate Asia, and the weakest 

sink occurred in Tropical South America. After inversion, the posterior sinks of most regions were reinforced, except in 400 

Tropical South America and Boreal Asia. The European sink showed the largest increase of 0.29 PgC yr–1. Clear sink 

enhancement also occurred in Temperate Asia and Northern Africa, of 0.17 and 0.10 PgC yr–1, respectively. By contrast, 

Tropical South America shifted from a weak sink to a weak source. Harris et al. (2021) has pointed out that forests in the 

Brazilian Amazon were a net carbon source of 0.22 GtCO2e yr–1 between 2001 and 2019, and estimated that commodity-driven 

deforestation was the largest source of gross forest-related emissions. In Boreal Asia, the sink was weakened by 0.14 PgC yr–405 

1, but remained the strongest sink worldwide, followed by Temperate Asia and Northern Africa, accouning for 40 %, 27 %, 

and 17 % of the posterior global total sink. The interannual variability differed greatly for different regions. The Tropical South 

America had the most obvious interannual variability, followed by Temperate North America and Southern Africa (Fig. A3). 

The flux uncertainties in the Northern Hemisphere were generally higher than those in the Southern Hemisphere because of 

the more complicated distribution of carbon sources and sinks in the Northern Hemisphere (Fig. 8). The four regions with the 410 

greatest uncertainties were Boreal Asia, Europe, Temperate North America, and Temperate Asia. Under the constraint of OCO-

2 satellite observations, the posterior uncertainties of all 11 regions decreased. Australia, South Africa, and Tropical South 

America showed the clearest improvements where ground-based CO2 observations are insufficient. 
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Figure 8. Global distributions of 5-year annual mean NEE and ocean carbon fluxes: (a) prior, (b) posterior, and (c) their differences 415 
(posterior – prior). 
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Table 5. Prior and posterior NEE values, and corresponding UR rates for the 11 TransCom land regions. 

Region 
NEE 

UR (%) 
Prior (PgC yr–1) Posterior (PgC yr–1) 

Boreal North America –0.23 ± 0.078 –0.24 ± 0.072 7.7 

Temperate North America –0.37 ± 0.125 –0.42 ± 0.115 7.9 

Tropical South America –0.01 ± 0.046 0.01 ± 0.042 9.5 

Temperate South America –0.17 ± 0.049 –0.17 ± 0.045 8.9 

Northern Africa –0.53 ± 0.046 –0.63 ± 0.042 8.7 

Southern Africa –0.40 ± 0.025 –0.41 ± 0.023 9.7 

Boreal Asia –0.88 ± 0.201 –0.74 ± 0.185 7.9 

Temperate Asia –0.56 ± 0.082 –0.73 ± 0.075 8.5 

Tropical Asia –0.07 ± 0.020 –0.08 ± 0.018 9.0 

Australia –0.05 ± 0.011 –0.09 ± 0.010 9.9 

Europe –0.12 ± 0.138 –0.41 ± 0.127 8.0 

4.3 Tibetan Plateau fluxes 

The Tibetan Plateau was demonstrated to act as a carbon sink through remote sensing observations, ecosystem models, and 

atmospheric inversions during the 1980s and 1990s (Piao et al., 2009). Recent flux observations and field soil carbon data have 420 

also confirmed the carbon sink function of the Tibetan Plateau (Kato et al., 2006; Li et al., 2016; Ding et al., 2017). The carbon 

estimates of the Tibetan Plateau reported in this study are consistent with those reported in previous studies. The prior annual 

mean NEE was –52.65 TgC yr–1, whereas the posterior NEE was weakened to –49.52 TgC yr–1 during 2015–2019. Figure 9 

shows the 5-year annual and seasonal variations of NEE on the Tibetan Plateau. The prior NEE ranged from –38.35 TgC yr–1 

in 2015 to –67.47 TgC yr–1 in 2017, whereas the posterior NEE ranged from –30.39 TgC yr–1 in 2015 to –68.87 TgC yr–1 in 425 

2017. The posterior NEE were impaired every year except in 2017, with the largest change occurring in 2015. The prior 

uncertainties of annual NEE on the Tibetan Plateau were 14.83, 13.54, 15.92, 15.77, and 15.77 TgC yr–1, respectively, during 

2015–2019. After inversion, these uncertainties were reduced by 8.54 %, 9.06 %, 8.20 %, 8.70 %, and 6.94 %, respectively. 

The UR rates on the Tibetan Plateau were comparable to that observed globally and regionally. 

The NEE on the Tibetan Plateau showed a clear seasonal cycle. The ecosystem acted as a carbon sink from May to 430 

September and as a carbon source from January to April and October to December, with the peak monthly uptake occurring 

in July. The prior annual mean sink from May to September and source from January to April and October to December were 

estimated to be –101.65 and 49.00 TgC yr–1, which contributed to forming a net annual sink. The corresponding posterior 

values were –104.40 and 54.88 TgC yr–1, respectively. Both the posterior seasonal sink and source were amplified, whereas 

the increased amplitude of the source was stronger than that of the sink, resulting in a decrease in the posterior annul net sink. 435 
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Figure 9. Prior and posterior NEE on the Tibetan Plateau during 2015–2019. (a) Annual variation. (b) Seasonal cycle. 

Figure 10 shows the 5-year mean spatial distribution of NEE on the Tibetan Plateau during 2015–2019. Previous studies 

have reported clear regional heterogeneity in the spatial distribution of carbon sinks on the Tibetan Plateau, with significantly 

stronger carbon sinks in eastern alpine meadows than in western alpine steppes (Jin et al., 2015; Ding et al., 2017). Our 440 

estimates were consistent with these findings. Overall, the Tibetan Plateau ecosystem tended to take up carbon; the eastern 

plateau was the strongest carbon sink, whereas small parts of the southeastern and northern regions emitted CO2. The eastern 

distribution was dramatically modified after inversion, with impaired central sinks and amplified surrounding sinks. The 

central and northern sinks of the plateau were weakened, and the western and southern sinks were slightly strengthened. This 

spatial heterogeneity in the distribution of carbon sources and sinks on the Tibetan Plateau is related to water conditions. 445 

Alpine meadows face lower drought stress than alpine steppes; therefore, the increased vegetation productivity of alpine 

meadows due to warming is greater than that of alpine steppes, in turn leading to more organic carbon fixation by vegetation 

input into the soil (Ding et al., 2017; Du et al., 2018; Hopping et al., 2018). The results of field control experiments on the 

Tibetan Plateau have also shown that warming promotes the net exchange of carbon fluxes in meadow ecosystems with better 

water conditions, whereas it inhibits carbon fixation in arid steppes (Ganjurjav et al., 2018). 450 
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Figure 10. Five-year mean spatial distributions of NEE on the Tibetan Plateau during 2015–2019 based on (a) prior NEE, (b) 

posterior NEE, and (c) their difference (posterior – prior). 

5 Dataset evaluation 

5.1 Evaluation using independent OCO-2 observations 455 

We evaluated model simulated XCO2 against independent OCO-2 retrievals to indirectly verify the posterior NEE and ocean 

carbon fluxes. Figure 11 compares prior and posterior simulated XCO2 with independent OCO-2 XCO2 observations. The 

simulated and observed XCO2 values were daily averages; daily statistics were calculated using all observations within a single 

day. The prior simulated XCO2 were generally higher than OCO-2 observations, and the deviation accumulated with forward 

model integration. Since 2016, RMSE, BIAS, and MAE remained above 1.5, 1.0, and 1.5 ppm, respectively. By 2018, these 460 

statistics reached 2.3, 2.0, and 2.0 ppm, respectively. Table 6 shows the 5-year annual mean statistics. After inversion, 
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simulated CO2 concentrations decreased, especially at the surface (Fig. A4); posterior RMSE, BIAS, and MAE were greatly 

improved, with RMSE decreasing from 2.12 to 1.27 ppm, BIAS from 1.62 to 0.33 ppm, and MAE from 1.80 to 0.95 ppm. 

There were no significant changes in CORR before or after inversion. These results show that satellite observations were well 

absorbed by the inversion system, such that the NEE and ocean carbon fluxes were corrected effectively.  465 

 

Figure 11. Comparison of prior and posterior simulated XCO2 with independent OCO-2 XCO2 observations. (a) Time series of 

simulated and observed XCO2, (b) RMSE, (c) BIAS, and (d) MAE of simulated and observed XCO2. 

Table 6. Statistics for simulated XCO2 and OCO-2 independent XCO2 observations. 

RMSE (ppm) BIAS (ppm) MAE (ppm) CORR 

Prior Posterior Prior Posterior Prior Posterior Prior Posterior 

2.12 1.27 1.62 0.33 1.80 0.95 0.95 0.95 

5.2 Evaluation using TCCON observations 470 

Table 7 lists the statistics for simulated XCO2 and TCCON observed XCO2. The prior model-simulated XCO2 were generally 

higher than TCCON observations except at the HeiFei site, and BIAS exceeded 2 ppm at many sites (e.g., Ny Ålesund, 

Garmisch, and Nicosia sites). RMSE, BIAS, and MAE between prior simulated and observed XCO2 were 1.89, 1.51, and 1.63 

ppm worldwide. This result agrees with the flux analysis presented in Sec. 4.1, which indicated that the global carbon sink was 

underestimated. The error of model simulations was generally larger in the Northern Hemisphere than in the Southern 475 
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Hemisphere, due to the more complex carbon flux pattern in the Northern Hemisphere (Wang et al., 2019). After inversion, 

the global carbon sink was reinforced, contributing to a more reasonable atmospheric CO2 simulation. The posterior RMSE, 

BIAS, and MAE were 1.06, 0.12, and 0.81 ppm, decreasing by 44 %, 92 %, and 50 %, respectively, compared to the prior 

statistics, demonstrating the optimization of posterior fluxes through absorbing OCO-2 satellite observations. 

Figure 12 shows the time series of prior and posterior simulated XCO2 and observed XCO2 at 30 TCCON sites. The 480 

global CO2 concentrations generally increased over time. In the Northern Hemisphere, CO2 concentrations showed a strong 

seasonal cycle. The strong source in winter caused high CO2 concentrations, whereas the strong sink in summer caused low 

CO2 concentrations. In the Southern Hemisphere, the seasonal cycle was much weaker than in the Northern Hemisphere, and 

became less clear as latitude increased. The Southern Hemisphere is mainly covered by ocean, and the seasonal variation in 

ocean fluxes was much less pronounced than NEE (Fig. 5), with a less complex spatial distribution than that over land (Fig. 485 

8), contributing in turn to the weak seasonal cycle of CO2 concentrations in the Southern Hemisphere. Generally, posterior 

simulated XCO2 characterized the temporal variation characteristics of CO2 observations.  

At most sites, prior simulated XCO2 were larger than TCCON observations. The overestimation of winter CO2 

concentrations in the Northern Hemisphere was very clear, especially in the mid- and high latitudes. After inversion, the 

simulated concentrations agreed better with TCCON observations (Fig. 13). The overestimation of winter CO2 concentrations 490 

at mid- and high latitudes of the Northern Hemisphere was also well mitigated due to the weakening of winter carbon sources 

(Sec. 4.1.2). The inversion results were not ideal at the Jet Propulsion Laboratory, Caltech, and HeFei sites. At these three sites, 

prior simulated XCO2 were close to the TCCON observations, whereas posterior simulations were about 1 ppm smaller than 

the TCCON observations, suggesting that carbon sinks were overestimated or carbon sources were underestimated. This may 

be related to biases of OCO-2 retrievals (O'dell et al., 2018). Besides, the resolution of the Tan-Tracker inversion system is 2° 495 

latitude × 2.5° longitude; therefore, it cannot achieve ideal results at every site worldwide. Improvements of inversion 

resolution and observation quality are necessary to infer fluxes at finer regional scales. 

Table 7. Geographic locations of TCCON sites used for validation, and statistics used to compare simulated XCO2 and TCCON 

XCO2 observations. Sites are listed according to latitude from north to south. 

Station Lat. Long. 

RMSE (ppm) BIAS (ppm) MAE (ppm) 

Prior Posterior Prior Posterior Prior Posterior 

Eureka 80.05  –86.42  1.57  1.13  1.02  –0.61  1.30  0.86  

Ny Ålesund 78.90  11.92  2.62  1.27  2.47  0.96  2.47  1.08  

Sodankylä 67.37  26.63  2.46  1.15  2.28  0.81  2.31  0.94  

East Trout Lake 54.35  –104.99  2.46  1.05  2.25  0.42  2.28  0.81  

Bialystok 53.23  23.02  1.90  0.93  1.68  0.51  1.70  0.73  

Bremen 53.10  8.85  2.19  1.09  1.96  0.55  1.98  0.87  

Karlsruhe 49.10  8.44  2.21  1.07  1.92  0.48  1.96  0.87  
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Paris 48.97  2.36  1.96  1.46  1.06  –0.32  1.58  1.14  

Orléans 47.97  2.11  2.45  1.17  2.26  0.86  2.26  0.95  

Garmisch 47.48  11.06  2.56  1.19  2.34  0.84  2.35  1.00  

Zugspitze 47.42  10.98  1.49  0.80  1.20  –0.21  1.25  0.62  

Park Falls 45.95  –90.27  1.85  0.81  1.48  0.10  1.57  0.59  

Rikubetsu 43.46  143.77  2.20  1.09  1.83  0.32  1.87  0.75  

Lamont 36.60  –97.49  1.60  0.70  1.37  –0.02  1.42  0.55  

Anmeyondo 36.50  126.33  1.35  1.00  0.91  –0.10  1.11  0.77  

Tsukuba 36.05  140.12  2.06  1.24  1.64  0.14  1.77  0.92  

Nicosia 35.14  33.38  2.52  0.74  2.46  0.11  2.46  0.61  

Edwards 34.96  –117.88  1.93  0.75  1.81  0.34  1.81  0.59  

Jet Propulsion Laboratory 34.20  –118.18  0.98  1.40  0.49  –1.10  0.80  1.16  

Caltech 34.14  –118.13  1.13  1.66  0.17  –1.24  0.90  1.37  

Saga 33.24  130.29  1.62  1.10  1.09  –0.51  1.30  0.89  

Hefei 31.91  117.17  1.21  1.74  –0.08  –1.24  0.93  1.47  

Izana 28.30  –16.48  1.72  0.85  1.46  –0.32  1.50  0.72  

Burgos 18.53  120.65  2.01  0.92  1.83  0.00  1.84  0.71  

Manaus –3.21  –60.60  1.12  0.97  0.64  0.36  0.89  0.79  

Ascension Island –7.92  –14.33  2.05  1.20  1.83  0.89  1.83  0.98  

Darwin –12.46  130.89  1.56  0.99  1.39  0.17  1.43  0.76  

Réunion Island –20.90  55.49  1.53  1.01  1.27  0.18  1.32  0.77  

Wollongong –34.41  150.88  1.34  0.86  1.09  –0.12  1.20  0.66  

Lauder –45.04  169.68  1.73  0.57  1.55  0.34  1.56  0.47  

Global mean – – 1.89 1.06 1.51 0.12 1.63 0.81 
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 500 

Figure 12. Time series of prior and posterior simulated XCO2 and XCO2 observations at 30 TCCON sites. Sites are sorted according 

to latitude from north to south. 
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Figure 13. Scatter plots of prior and posterior simulated XCO2 and XCO2 observations at 30 TCCON sites. Sites are sorted 

according to latitude from north to south. 505 
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6 Discussion 

The atmospheric CO2 observations assimilated in this study were OCO-2 XCO2 retrievals. Although satellite observations 

have better spatial coverage than ground-based observations, they remain unable to continuously monitor CO2 concentrations 

with global coverage, resulting in observational gaps. Spatial and temporal gaps in ground- and space-based observations can 

introduce artifacts into flux estimates, leading to difficulties in constraining carbon fluxes at regional scales (Basu et al., 2018; 510 

Byrne et al., 2017; Liu et al., 2014). Advances in satellite retrieval algorithms allow significant improvements in the 

consistency of space- and surface-based flux constraints (Byrne et al., 2020). The simultaneous assimilation of ground- and 

space-based atmospheric CO2 observations will be carried out in the Tan-Tracker inversion system, expecting more precise 

estimation of regional fluxes. 

In this study, we optimized terrestrial ecosystem carbon fluxes and ocean carbon fluxes, while assuming no error in other 515 

emission inventories. As the largest emission sector, global fossil CO2 emissions are estimated with an uncertainty at ±5 % 

according to GCB2020 (Friedlingstein et al., 2020). However, uncertainties of national bottom‐up fossil fuel emissions vary 

across countries according to data collection and management practices (Andres et al., 2014; Marland, 2008; Oda et al., 2018a). 

Inaccuracies in fossil CO2 emissions are added to NEE optimization based on our assumption, which may cause bias in NEE 

estimates. Fossil CO2 emissions are anthropogenic, whereas NEE are natural emissions or uptakes; both have different 520 

emission characteristics and spatial distributions.  In a future study, we plan to simultaneously optimize fossil emissions and 

NEE to distinguish errors from anthropogenic and natural sectors. 

The treatment of various errors during inversion also requires improvement. The transport model is assumed to have no 

error, and all errors associated with simulated CO2 are attributed to the initial CO2 concentrations and carbon fluxes. An 

independent and comprehensive quantification of the systematic errors of transport models is required to distinguish CO2 525 

simulation errors from different sources. To account for prior flux uncertainties, we used 36 samples to approximate the prior 

error covariance matrix and updated the matrix over time. To date, there is no consensus on the accurate calculation of prior 

uncertainties. In this study, when gridded flux uncertainties were integrated over space and time, only the spatial correlation 

of gridded fluxes was considered, whereas the temporal correlation was omitted. However, the gridded fluxes were correlated 

in time according to their diffusive and accumulative characteristics, resulting in underestimated monthly or yearly 530 

uncertainties. Further efforts are required to improve confidence in the resulting posterior fluxes and corresponding 

uncertainties. 

The global-scale flux inversion performed in this study had a spatial resolution of 2° latitude × 2.5° longitude. Inversions 

with this resolution are feasible and effective for large and global regions. However, the requirements for fine and accurate 

regional inversions are increasing, and the present resolution cannot meet the stricter standards anticipated in the future. 535 

Therefore, we plan to perform finer inversions at regional scales to obtain a better understanding of regional carbon cycles. 
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7 Data availability 

The dataset is available in the National Tibetan Plateau/Third Pole Environment Data Center and can be accessed at 

https://doi.org/10.11888/Meteoro.tpdc.271317 (Jin et al., 2021). As the satellite XCO2 retrievals, carbon fluxes, and meteorological 

data are persistently improving and updating, we plan to update the dataset annually in the future, aiming to support current 540 

scientific research and policy making. 

8 Conclusion 

Here we present a global and regional resolved NEE and ocean carbon flux dataset during 2015–2019. The dataset was 

generated by the Tan-Tracker inversion system constrained by OCO-2 XCO2 retrievals. We qualitatively validated the 

posterior fluxes by comparing the posterior simulated CO2 concentrations with OCO-2 independent retrievals and TCCON 545 

observations. After inversion, posterior RMSE, BIAS, and MAE for simulated and OCO-2 XCO2 were greatly improved, with 

RMSE decreasing from 2.12 to 1.27 ppm, BIAS from 1.62 to 0.33 ppm, and MAE from 1.80 to 0.95 ppm. The posterior RMSE, 

BIAS, and MAE for simulated and TCCON XCO2 were 1.06, 0.12, and 0.81 ppm, decreasing by 44 %, 92 %, and 50 %, 

respectively, compared to the prior statistics. Both validations demonstrated the optimization of posterior fluxes through 

absorbing OCO-2 satellite observations. We described the characteristics of the dataset at the global, regional and Tibetan 550 

Plateau scales from aspects of carbon budget, annual and seasonal variations, and spatial distribution. Also, the posterior fluxes 

were assessed through comparisons with other flux estimates, such as GCB2020, CT2019B, and JCS data. The posterior 5-

year annual mean global AGR was 5.35 PgC yr–1 and within the uncertainty of the GCB2020 estimate. The posterior annual 

mean NEE and ocean carbon fluxes were –4.07 and –3.33 PgC yr–1, respectively. Regional fluxes are analysed based on 

TransCom partition. All 11 land regions acted as carbon sinks apart from Tropical South America, which was almost neutral. 555 

The strongest carbon sinks were seen in Boreal Asia, followed by Temperate Asia and North Africa. The Tibetan Plateau 

ecosystem was estimated as a carbon sink as a whole, absorbing –49.52 TgC yr–1 for the annual mean. The sinks in the eastern 

alpine meadows were much stronger than that in the western steppes, while sporadic areas in the southeastern and northern 

regions acted as sources. This dataset can help understand global and regional carbon distribution and its variability, support 

the formulation of climate policies, and make well-informed projections under future climate change. 560 

Appendix A 

In the Appendix, we include the table and figures to support the main text. 

Table A1. Global annual carbon flux estimates from various sectors and AGR during 2015–2019. The NEE and ocean carbon fluxes 

here refer to posterior values. 

CO2 emissions and uptakes 

(PgC yr–1) 
2015 2016 2017 2018 2019 
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NEE –4.05  –3.17  –4.15  –4.73  –4.28  

Ocean carbon fluxes –2.90  –3.17  –3.47  –3.64  –3.47  

Fossil fuel emissions 9.31  9.35  9.45  9.67  9.72  

Biomass burning emissions 2.10  1.74  1.79  1.70  2.14  

Biofuel burning emissions 0.82  0.82  0.82  0.82  0.82  

Ship emissions 0.27  0.27  0.27  0.27  0.27  

Aircraft emissions 0.28  0.29  0.31  0.32  0.32  

Chemical source 1.11  1.11  1.11  1.11  1.11  

Surface correction –1.14  –1.14  –1.14  –1.15  –1.15  

AGR 5.81  6.11  4.98  4.38  5.49  

 565 

 

Figure A1. Daily uncertainties for (a) prior NEE, (b) posterior NEE, (c) prior ocean carbon fluxes, and (d) posterior ocean carbon 

fluxes from 2015 to 2019. 
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Figure A2. Spatial distributions of prior and posterior NEE plus ocean carbon fluxes from 2015 to 2019. The first column plots (a, 570 
c, e, g, i) denote the prior distributions and the second column plots (b, d, f, h, j) denote the posterior distributions. 
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Figure A3. Prior and posterior interannual variations of NEE in the 11 TransCom land regions from 2015 to 2019. 
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 575 

Figure A4. Spatial distributions of prior and posterior simulated surface CO2 concentrations from 2015 to 2019. The first column 

plots (a, c, e, g, i) denote the prior distributions and the second column plots (b, d, f, h, j) denote the posterior distributions. 
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