
 

1 

 

VODCA2GPP - A new global, long-term (1988-2020) GPP dataset 

from microwave remote sensing 

Benjamin Wild1, Irene Teubner1,2, Leander Moesinger1, Ruxandra-Maria Zotta1, Matthias Forkel3, Robin 

van der Schalie4, Stephen Sitch5 and Wouter Dorigo1 

1Department of Geodesy and Geoinformation, TU Wien, Wiedner Hauptstraße 8, 1040 Vienna, Austria 5 
2Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Hohe Warte 38, 1190 Vienna, Austria 
3Environmental Remote Sensing Group, Institute of Photogrammetry and Remote Sensing, Technische Universität Dresden, 

Helmholtzstraße 10, 01069 Dresden, Germany 
4VanderSat, Wilhelminastraat 43A, 2011 VK Haarlem, the Netherlands 
5College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QE, UK 10 

Correspondence to: Benjamin Wild (benjamin.wild@tuwien.ac.at)  

Abstract. Long-term global monitoring of terrestrial Gross Primary Production (GPP) is crucial for assessing ecosystem 

response to global climate change. In recent decades, great advances have been made in estimating GPP and many global GPP 

datasets have been published. These datasets are either based on observations from optical remote sensing, are upscaled from 

in situ measurements, or rely on process-based models. Although these approaches are well established within the scientific 15 

community datasets nevertheless differ significantly.  

 

Here, we introduce the new VODCA2GPP dataset, which utilizes microwave remote sensing estimates of Vegetation Optical 

Depth (VOD) to estimate GPP at global scale for the period 1988 - 2020. VODCA2GPP applies a previously developed carbon 

sink-driven approach (Teubner et al., 2019, 2021) to estimate GPP from the Vegetation Optical Depth Climate Archive 20 

(Moesinger et al., 2020; Zotta et al., in prep.), which merges VOD observations from multiple sensors into one long-running, 

coherent data record. VODCA2GPP was trained and evaluated against FLUXNET in situ observations of GPP and compared 

against largely independent state-of-the-art GPP datasets from MODIS, FLUXCOM and the TRENDY-v7 process-based 

model ensemble.  

 25 

The site-level evaluation with FLUXNET GPP indicates an overall robust performance of VODCA2GPP with only a small 

bias and good temporal agreement. The comparisons with MODIS, FLUXCOM and TRENDY-v7 show that VODCA2GPP 

exhibits very similar spatial patterns across all biomes but with a consistent positive bias. In terms of temporal dynamics, a 

high agreement was found for regions outside the humid tropics, with median correlations around 0.75. Concerning anomalies 

from the long-term climatology, VODCA2GPP correlates well with MODIS and TRENDY-v7 (Pearson’s r: 0.53 and 0.61) 30 

but less well with FLUXCOM (Pearson’s r: 0.29). A trend analysis for the period 1988-2019 did not exhibit a significant trend 

in VODCA2GPP at global scale but rather suggests regionally different long-term changes in GPP. For the shorter overlapping 

observation period (2003-2015) of VODCA2GPP, MODIS, and the TRENDY-v7 ensemble, significant increases of global 
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GPP were found. VODCA2GPP can complement existing GPP products and is a valuable dataset for the assessment of large-

scale and long-term changes in GPP for global vegetation and carbon cycle studies. The VODCA2GPP dataset is available at 35 

TU Wien Research Data (https://doi.org/10.48436/1k7aj-bdz35; Wild et al., 2021). 

1 Introduction 

Gross Primary Production (GPP) describes vegetation’s conversion of atmospheric CO2 to carbohydrates through 

photosynthesis and is the largest CO2 flux in the carbon cycle (Beer et al., 2010). GPP is also considered the primary driver of 

the terrestrial carbon sink responsible for the uptake of approximately 30% of anthropogenic CO2 emissions (Friedlingstein et 40 

al., 2020). GPP therefore plays a key role in mitigating the negative effects of anthropogenic emissions. Estimates of global 

mean annual GPP range from 112 (Anav et al., 2015) up to 175 (Welp et al., 2011) Pg C yr -1, but exhibits a high degree of 

interannual variability. It is strongly affected by increasing concentrations of CO2 in the atmosphere and the associated global 

climate change (Haverd et al., 2020; Schimel et al., 2015; Cox et al., 2000). Quantifying GPP is essential to understand the 

effect of climate variability and changes in atmospheric CO2 concentrations on the land carbon cycle (e.g., Baldocchi et al., 45 

2016; Nemani et al., 2003).  

 

Locally, GPP can be determined at in-situ flux towers, which measure the net exchange of carbon dioxide by means of eddy-

covariances that are partitioned into GPP and ecosystem respiration fluxes (Baldocchi, 2003). FLUXNET (Pastorello et al., 

2020) is the global network of flux towers covering all major biomes, and provides the scientific community with harmonized 50 

and well-documented flux observations. FLUXNET stations, however, are sparsely and unevenly distributed, which 

complicates the derivation of GPP globally.  

 

On the global scale, GPP is commonly estimated using optical remote sensing data in combination with (semi-)empirical or 

machine learning models (e.g., O’Sullivan et al., 2020; Jung et al., 2020; Gilabert et al., 2017; Alemohammad et al., 2017; 55 

Tramontana et al., 2016). Specifically, these models are based on light use efficiency (LUE) theory and/or statistical models 

that are applied to derive GPP based on optical remote sensing variables that are indicative of the vegetation’s photosynthetic 

activity, such as the Fraction of Absorbed Photosynthetically Active Radiation (fAPAR), Leaf Area Index (LAI), spectral 

vegetation indices, or Sun Induced Fluorescence (SIF). Optical remote sensing-based datasets have the advantage of being 

available globally with high spatial (usually on the order of 100 m to 1 km) and temporal resolution (e.g., 8-daily for MODIS). 60 

However, optical remote sensing is strongly affected by cloud cover, leading to data gaps and high uncertainties in regions 

with frequent cloud cover and high GPP such as tropical forests. Additionally, in very productive regions methods based on 

optical remote sensing tend to underestimate GPP because of the saturation of reflectance measurements in dense canopies 

(Turner et al., 2006).  

 65 
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Compared to optical remote sensing, Vegetation Optical Depth (VOD) from microwave remote sensing is much less affected 

by weather conditions. VOD describes the vegetation’s attenuation of radiation in the microwave domain, which is controlled 

by its water content, biomass, type, and density (Jackson and Schmugge, 1991; Vreugdenhil et al., 2016). Thus, VOD has been 

intensively used as a proxy of above-ground biomass (Li et al., 2021; Rodríguez-Fernández et al., 2018; Tian et al., 2016; Liu 

et al., 2015) and is becoming increasingly important for monitoring vegetation dynamics (e.g., Frappart et al., 2020; Piles et 70 

al., 2017). 

 

Teubner et al. (2018, 2019, 2021) investigated how GPP can be estimated from VOD. First, they showed that GPP is 

significantly correlated with spatial patterns and temporal changes in VOD (Teubner et al., 2018). Based on this relationship, 

they developed a theoretical framework and a machine-learning method using FLUXNET observations to predict GPP using 75 

VOD (Teubner et al., 2019). They showed that GPP can be adequately estimated for most regions of the world with an overall 

tendency for moderate overestimation and good temporal agreement with existing GPP products, especially for temperate 

regions. Recently, Teubner et al. (2021) improved this method by adding air-temperature in their model to account for 

temperature dependence of plant respiration (Atkin and Tjoelker, 2003), and found that this significantly improved the 

temporal agreement with reference GPP data. 80 

 

However, until recently, long-term analysis of GPP from VOD was complicated due to relatively short observation periods of 

individual passive microwave remote sensing sensors (Moesinger et al., 2020). Moesinger et al. (2020) overcame this issue by 

merging single-frequency VOD from various sensors into the long-term Vegetation Optical Depth Climate Archive (VODCA), 

which comprises VOD observations of more than 20 years for X-, and C-Band and more than 30 years for Ku-Band. A new 85 

version of VODCA (Zotta et al., in prep.) not only combines single sensors from identical frequencies but also merges 

observations from different bands (X, C and Ku) into a single long-running, multi-frequency VOD climate archive with 

improved quality.  

 

Here, our objective is to generate, evaluate and describe a novel long-term GPP dataset by applying the approach of Teubner 90 

et al. (2019, 2021) to the VODCA dataset. This microwave-based GPP dataset can likely complement existing datasets from 

optical satellite observations as it is less affected by cloud cover which enables a consistent long-term analysis of changes in 

global GPP. In our analysis, we compare the VODCA2GPP dataset mainly with other data-driven products (FLUXNET, 

MODIS and FLUXCOM). However, FLUXCOM does not account for CO2 fertilization effects (Walker et al, 2020) which is 

why trends derived from FLUXCOM are not realistic (Jung et al., 2020). Therefore, we assess monthly anomalies and long-95 

term trends in VODCA2GPP also against TRENDY models, which consider CO2 fertilization.  
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2 Data 

2.1 Input to the VODCA2GPP model 

2.1.1 VODCA 100 

The Vegetation Optical Depth Climate Archive (VODCA v1; Moesinger et al., 2020) consists of three single-frequency VOD 

products (Ku-, X- and C-band), covering the period from 1987-2017 (Ku-Band), 1997-2019 (X-Band), and 2002-2019 (C-

band), respectively. For VODCA2GPP, we used an updated VODCA version (VODCA v2 CXKu; Zotta et al., in prep) that 

merges all bands in a single dataset to obtain increased spatial and temporal coverage and reduced random errors compared to 

VODCA v1. VODCA v2 CXKu utilizes observations from the same sensors and frequencies as VODCA v1 (Table 1) to 105 

generate a single long-running multi-frequency VOD time series. VODCA v2 CXKu is obtained by first scaling VODCA v2 

observations from C- and Ku-band to X-band to remove systematic biases and then computing a weighted average in order to 

fuse overlapping observations. The reference frequency for the scaling of the different frequencies is X-Band. VODCA v2 

CXKu provides a single, long-term vegetation metric covering over 30 years of observations (1988-2020) and thus exceeds 

the temporal length of the single-frequency multi-sensor products (VODCA v2 C-, X and Ku).  VODCA v2 CXKu merges 15 110 

passive night-time VOD datasets retrieved from seven different sensors via the Land Parameter Retrieval Model (LPRM; Van 

der Schalie et al., 2017). LPRM is based on radiative transfer theory introduced by Mo et al. (1982) and uses forward modelling 

to simulate the top of atmosphere brightness temperatures under a wide range of conditions and minimizes its difference with 

the actual satellite observation. Although primarily developed for soil moisture, it simultaneously solves for the VOD using 

an analytical solution by Meesters et al. (2005), utilizing the ratio between H- and V-polarized observations (Van der Schalie 115 

et al., 2017). LPRM assumes that the soil and vegetation temperatures are equal, which may not be the case during the day due 

to uneven heating from solar radiation. VODCA v2 therefore uses only night-time observations which are assumed to be in 

thermal equilibrium (Owe et al., 2008). Scaling of the single-sensor VOD observations is done by means of cumulative 

distribution function (CDF) matching (Moesinger et al., 2020). 

Table 1: Input data for the merged-band VODCA v2 with the main sensor specifications: time periods used, local ascending 120 
equatorial crossing times (AECT) and used frequencies. Table information is taken from Moesinger et al. (2020) and adapted for 

VODCA v2 CXKu.  

Sensor Time period used AECT C-Band [GHz] X-Band [GHz] Ku-Band [GHz] reference 

AMSR-E Jun 2002 – Oct 2011 13:30 6.93 10.65 18.70 Van der Schalie et al. (2017) 

AMSR2  Jul 2012 – Dec 2020 

Jul 2012 – Aug 2017 (Ku-Band) 

13:30 6.93, 7.30 10.65 18.70 Van der Schalie et al. (2017) 

SSM/I F08 Jul 1987 – Dec 1991 18:15   19.35 Owe et al. (2008) 

SSM/I F011 Dec 1991 – May 1995 17:00-18:15   19.35 Owe et al. (2008) 

SSM/I F13 May 1995 – Apr 2009 17:45 – 18:40   19.35 Owe et al. (2008) 

TMI Dec 1997 – Apr 2015 Asynchronous  10.65 19.35 Owe et al. (2008); 

Van der Schalie et al. (2017) 

WindSat Feb 2003 – Jul 2012 18:00 6.80 10.70 18.70 Owe et al. (2008); 

Van der Schalie et al. (2017) 
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The preprocessing of LPRM level 2 VOD data used in VODCA v2 follows the steps described in detail in Moesinger et al. 

(2020). These include projecting the data onto a 0.25° × 0.25° grid, using nearest neighbour resampling, selecting the closest 125 

night-time value in a window of ± 12 hours for every 0:00 UTC (Zotta et al., in prep). Data are masked for radio-frequency 

interference (De Nijs et al., 2015), negative VOD retrievals and temperatures. Different from Moesinger et al. (2020), masking 

for low land surface temperature (LST < 0°C), when the dielectric properties of water change drastically, is not based on Ka-

band retrievals because these have high uncertainties over frozen land (Holmes et al. 2009). Instead, VODCA v2 uses the 

ERA-5 Land (Muñoz-Sabater et al. 2021) soil temperature level 1 (stl1) data. To ensure that all observations taken under frozen 130 

conditions are masked, all observations with an associated surface soil temperature (stl1) below 3°C are masked (Zotta et al., 

in prep.). 

2.1.2 ERA5-Land – 2m Air Temperature 

2 m air temperature (T2m) from the ERA5-Land dataset was used to represent the temperature dependence of autotrophic 

respiration. T2m is a commonly used parameter for describing the relationship between autotrophic respiration and temperature 135 

(Teubner et al., 2021; Drake et al., 2016; Ryan et al., 1997). ERA5-Land is a reanalysis dataset of meteorological variables 

which is provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Muñoz-Sabater et al., 2021). 

ERA5-Land is produced at a spatial resolution of 89 km (~0.08°) and is available hourly. 

2.1.3 FLUXNET2015 in-situ GPP 

In-situ GPP data from Tier1 v1 FLUXNET2015 (Pastorello et al., 2020) were used to train and evaluate the VODCA2GPP 140 

product. FLUXNET GPP estimates are available for night-time and day-time flux partitioning, which were averaged as 

suggested by Pastorello et al. (2020). FLUXNET data are available daily from 1991 until 2014 with a mean observation 

timespan of 7.27 ± 4.89 years for the used stations, indicating significant variability in station data availability. An overview 

of the used FLUXNET2015 stations can be found in Table B1. 

2.2 Reference datasets 145 

2.2.1 MODIS GPP 

GPP estimates derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data are based on Monteith’s 

(1972) light-use efficiency concept which relates the amount of absorbed solar radiation to vegetation productivity. The 

MODIS algorithm uses fAPAR as proxy for the absorbed solar energy. For this study the MOD17A2H v006 GPP product was 

used (Running et al., 2015; Zhao et al., 2005). It is available at 8-daily temporal resolution and 500 m sampling and was 150 

resampled to 0.25° to match the resolution of VODCA2GPP.  
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2.2.2 FLUXCOM GPP 

FLUXCOM GPP (Tramontana et al., 2016; Jung et al., 2020) is produced by upscaling GPP estimates from in-situ eddy 

covariances using machine learning techniques. Two FLUXCOM GPP setups exist: FLUXCOM RS uses high resolution land 

surface properties from MODIS observations as machine learning model input while FLUXCOM RS + METEO uses the mean 155 

seasonal cycle of land surface variables derived from MODIS observations and additionally incorporates meteorological data 

(Jung et al., 2020). For validating VODCA2GPP, FLUXCOM RS was used because it includes temporal properties of land 

surface variables at finer spatial and temporal resolution than FLUXCOM RS+METEO. FLUXCOM RS GPP has 10 km 

sampling and is available every 8 days in accordance with the MODIS input data. The data were aggregated to 0.25° to match 

the VODCA2GPP resolution. 160 

2.2.3 TRENDY-v7 GPP 

In addition to remote sensing-based datasets, GPP estimates from the reanalysis-driven TRENDY-v7 ensemble of 16 dynamic 

global vegetation models (DGVMs) were used as an independent reference dataset (Le Quéré et al. 2018; Sitch et al. 2015). 

TRENDY-v7 simulations consider forcing effects of climate, land use, and changes in atmospheric CO2 concentration on GPP 

over the period 1950-2017. The TRENDY-v7 ensemble consists of the following DGVMs: CABLE-POP, CLASS-CTEM, 165 

CLM5.0, DLEM, ISAM, JSBACH, JULES, LPJ, LPJ-GUESS, LPX, OCN, ORCHIDEE, ORCHIDEE-CNP, SDGVM, 

SURFEX and VISIT. DGVMs output monthly GPP which was provided on a common 1° × 1°grid. For the comparison with 

VODCA2GPP, all TRENDY-v7 models were regridded to 0.25° using nearest neighbour resampling and merged into an 

unweighted ensemble mean GPP time series.  

3 Methods 170 

3.1 VOD2GPP-model 

VODCA2GPP is based on the VOD-driven GPP estimation approach (the VOD2GPP-model) introduced by Teubner et al. 

(2019, 2021). The VOD2GPP model describes the theoretical relationship between GPP and VOD. The biogeochemical basis 

of this model is the relationship between GPP and ecosystem net uptake of carbon (NPP) and autotrophic respiration (Ra) 

(Bonan, 2008): 175 

 

𝐺𝑃𝑃 = 𝑅𝑎 + 𝑁𝑃𝑃,           (3.1) 

 

where Ra can be again split into two terms: maintenance respiration and growth respiration (Bonan, 2008).  The VOD2GPP-

model makes use of several VOD variables to represent the sum of NPP and Ra: the original VOD time series (VOD), which 180 

relates to maintenance respiration, temporal changes in VOD (∆(VOD)), which relate to both growth respiration and NPP, and 
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the temporal median of VOD (mdn(VOD)) derived from the complete time series which serves as a proxy of vegetation density. 

Specifically, mdn(VOD) is incorporated to subtract larger structural vegetation components which makes the resulting model 

more closely related to biomass changes of smaller structural vegetation components such as leaves. It was shown that this 

increases model performance (Teubner et al., 2019). NPP is mostly represented by ∆(VOD) while Ra is represented by the 185 

original VOD signal and ∆(VOD). Thus, the VOD-based-only VOD2GPP-model can be formulated as follows (Teubner et al., 

2019): 

 

𝐺𝑃𝑃(𝑉𝑂𝐷) = 𝑠(𝑉𝑂𝐷) + 𝑠(∆(VOD)) + 𝑠(𝑚𝑑𝑛(𝑉𝑂𝐷)),       (3.2) 

 190 

where 𝑠() denotes the mapping function that maps the input variables to GPP. ∆(VOD) is derived for each pixel (x_i) by 

computing the difference between two consecutive VOD observations of the smoothed and 8-daily aggregated VOD Signal 

(Teubner et al. 2019): 

𝛥(𝑉𝑂𝐷) = 𝑉𝑂𝐷𝑥𝑖,𝑡𝑗
− 𝑉𝑂𝐷𝑥𝑖,𝑡𝑗−1

 

The smoothing was performed in order to increase the robustness of the derivation and implemented using a Savitzky-Golay 195 

filter with a window size of 11 data points as suggested by Teubner et al. (2021). 

 

Eq. 3.2 represents a simplified model formulation connecting VOD to GPP but which does not explicitly take into account the 

strong temperature dependence of autotrophic respiration (Wythers et al., 2013; Atkin et al., 2005; Tjoelker et al., 2001) which 

is mainly attributed to its maintenance part (Bonan, 2008; Ryan et al., 1997). Therefore, an improved formulation of the model 200 

was developed by considering the temperature dependence of maintenance respiration through a term representing the 

interaction between temperature (T2m) and VOD (Teubner et al., 2021):  

 

𝐺𝑃𝑃(𝑉𝑂𝐷, 𝑇2𝑚) = 𝑡𝑒(𝑉𝑂𝐷, 𝑇2𝑚) + 𝑠(∆(𝑉𝑂𝐷)) + 𝑠(𝑚𝑑𝑛𝑉𝑂𝐷),       (3.3) 

 205 

The mapping and interaction functions were implemented using generalized additive models (GAMs). The usage of short time 

intervals (in the order of several days) for the computation of ∆(VOD) is crucial since it reduces the influence of larger 

vegetation components (e.g., stems) and makes the model more sensitive to changes in leaf biomass.  

3.2 Generalized Additive Models  

Generalized Additive Models (GAMs; Hastie and Tibshirani, 1990) are semi-parametric generalizations of linear models and 210 

combine properties of Generalized Linear Models (GLM) and additive models (Guisan et al., 2002). Link functions 𝑓() are 

trained and summed up for each predictor in order to relate the expected value of a response variable 𝐸(𝑌) to the explanatory 

variables 𝑥𝑖 (Hastie and Tibshirani, 1990). The model can be written as: 
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𝐸(𝑌) = 𝛽 + ∑ 𝑠𝑖(𝑥𝑖)𝑛
𝑖=1 ,           (3.4) 215 

 

where 𝛽 denotes a constant offset and 𝑛 corresponds to the number of input predictor variables 𝑥𝑖. The link functions 𝑠𝑖()  are 

implemented as smooth spline functions and allow the representation of non-monotonic and non-linear relationships which 

give them a high degree of flexibility (Hastie and Tibshirani, 1990). Hence, the relationship between target and predictor 

variables does not require explicit a-priori knowledge but can be estimated from the data itself, which makes GAMs appropriate 220 

for the VOD2GPP-model for which the exact relationship between VOD, air temperature, and GPP is difficult to determine 

(Teubner et al., 2019).  

3.3 Preprocessing 

The model-input data (response variable: FLUXNET GPP; predictor variables: VODCA v2 CXKu, ERA5-Land T2m) were 

resampled from daily to 8-daily resolution using the 8-day means over the respective time period in order to reduce noise and 225 

computation times. This means that also the final VODCA2GPP represents the mean of daily GPP for an 8-day period with an 

estimate every 8 days. Since VODCA v2 CXKu already incorporates extensive quality flagging (e.g., for temperature) no 

additional data processing was necessary.  

 

For the computation of ∆(𝑉𝑂𝐷), the resampled VOD observations were smoothed in order to increase the robustness of the 230 

derivation (Teubner et al., 2019). The smoothing was performed using a Savitzky-Golay filter with a window size of 11 data 

points as suggested by Teubner et al. (2021). ∆(𝑉𝑂𝐷) was then obtained by subtracting the VOD observations at two 

consecutive timesteps. 𝑚𝑑𝑛(𝑉𝑂𝐷) was derived by computing the temporal median VOD of the entire time series from 8-daily 

VOD for each pixel.  

3.4 Model training and output 235 

For each valid FLUXNET2015 in-situ observation, the corresponding overlapping pixel values of VOD, ∆(VOD), mdn(VOD) 

and T2m were used to set up the GAM. Data from days with one or more invalid or missing observations were not considered 

for model training. While a cross validation was performed to evaluate the model (Sect. 3.5), all data were used for training of 

the final VODCA2GPP model. The GAM-based implementation of the VOD2GPP-model is consistent with Teubner et al. 

(2021) and utilizes algorithms from the pygam python package (Servén et al., 2018).  240 

 

The trained VODCA2GPP model was applied to each pixel where all input variables (VOD, ∆(VOD), mdn(VOD) and T2m) 

were available. The result of this upscaling process is VODCA2GPP which covers the period between January 1988 and July 

2020. It has a spatial resolution of 0.25° and its temporal resolution is 8 days. In rare cases (~2.5% of all data points)  the 
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machine learning model produced slightly negative results for GPP, due to the extrapolation capacities of the trained GAM. 245 

As negative GPP is not possible, such estimates were set to zero.  

3.5 Site-level evaluation and uncertainty assessment 

The robustness of the model was evaluated based on a site-based cross-validation analysis during which the influence of the 

selection of available in-situ stations on the GPP model was investigated. For the cross-validation 10 VODCA2GPP models 

were trained. Each of the 10 models was trained with 90% of the available FLUXNET stations, while the remaining 10% of 250 

the stations were retained for validation (Teubner et al., 2019). Every station was excluded exactly once which is why this 

approach is classified as pseudo-random. Model performance was assessed at all sites that were omitted in the respective model 

run by computing Root Mean Square Errors (RMSE), Bias, and Pearson’s r for different time scales (8-daily, monthly and 

yearly).  In addition, the uncertainty of the VODCA2GPP model was then expressed through the minimum/maximum range 

as well as the standard deviation of the resulting 10 mean annual accumulated GPP estimates for each pixel. The standard 255 

deviation is also incorporated as an uncertainty map in the available dataset (layer name: ‘Uncertainties’) to support users with 

an indicator for known uncertainties in VODCA2GPP. 

3.6 Product evaluation and assessment 

Mean annual, monthly, and 8-daily GPP from VODCA2GPP, MODIS GPP and FLUXCOM GPP were evaluated against GPP 

from FLUXNET. The used error metrics were RMSE, Bias and Pearson’s r. Global spatial GPP patterns were compared against 260 

products by computing the mean annual GPP per pixel and the differences in mean annual GPP per pixel over the common 

observation period. Temporal agreements were tested by means of a Pearson correlation analysis for 8-daily GPP. A correlation 

analysis of GPP anomalies was conducted for monthly GPP and also includes TRENDY-v7 GPP which only provided monthly 

GPP data. Anomalies were derived by subtracting the long-term mean of the overlapping observation periods from monthly 

GPP estimates for each product.  265 

 

Additionally, a trend analysis was conducted for all available GPP products in order to compare long-term changes in GPP. 

Trends in yearly median GPP were quantified using the Theil-Sen estimator (Theil, 1950; Sen, 1968) which calculates the 

slopes for each line between two points. The median of all computed slopes is then used for line-fitting making it insensitive 

to outliers and more robust than simple linear regression (Wilcox, 2010). Slopes were considered as significant when the signs 270 

of the lower and upper 90%-confidence intervals were equal. For the trend analysis yearly median GPP was used. 
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4 Results 

4.1 Spatiotemporal patterns in global GPP 

 

Figure 1: a) Mean yearly aggregated GPP for the common observation period of the three products VODCA2GPP, MODIS, and 275 
FLUXCOM (2002-2016); b) and c) Difference in mean annual GPP between VODCA2GPP and FLUXCOM and MODIS, 

respectively; d) Latitude plot of zonal means of mean annual GPP. The means were computed based on 8-daily, 0.25 degree sampling. 

The Min/Max area denotes the minimum/maximum latitudinal mean for the ten model runs that were obtained with the site-based 

cross-validation. The dots represent the latitudinal location of the FLUXNET sites and their corresponding mean annual GPP. The 
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brightness of the dots indicates the data availability for the respective FLUXNET station. Only pixels and observation dates that are 280 
available in all three datasets were used for these plots.  

The average annual GPP of VODCA2GPP exhibits spatial patterns similar to the remote sensing-based MODIS and 

FLUXCOM products (Fig. 1). The agreement in annual GPP is high in northern latitudes (e.g., Europe, Russia, Canada) while 

there are relatively large differences in the southern hemisphere, especially in tropical and sub-tropical regions (Fig. 1d). The 

largest positive differences are found in the subtropics. Very arid regions (e.g., Australian deserts, Kalahari Desert, etc.) have 285 

low mean yearly productivity in all three datasets (Fig. 1a) but tend to be higher in VODCA2GPP compared to MODIS and 

FLUXCOM (Fig. 1b, c). The mean global total GPP as derived from VODCA2GPP amounts to 200 ± 2.2 Pg C yr-1. 

Comparison of the latitudinal distribution of FLUXNET stations shows that closest agreement in yearly GPP is generally found 

in regions with high density of FLUXNET in-situ stations while largest discrepancies are found in regions with few or no 

FLUXNET stations. 290 

 

Similarly, uncertainties tend to be smaller in latitudes with a high density of FLUXNET stations (Fig. 1d). The lowest spread 

in the 10 models (i.e., the lowest uncertainty) is found north of 20°N where also the majority of FLUXNET GPP stations is 

located. The Southern hemisphere, where only few in-situ stations are located, generally exhibits a larger spread (higher 

uncertainty) indicating a considerable sensitivity of the model to the choice of stations. This emphasizes the need for a well 295 

distributed network of in-situ flux towers across all biomes. The uncertainty map (Fig. 2b) shows that arid regions (e.g., Sahara, 

Australian deserts, Arabian Peninsula) as well as various mountainous regions (e.g., Carpathians, Alps, Rocky Mountains, 

Andes) have the highest model uncertainties. Moderate to high model uncertainties are also exhibited for the tropics. 

Furthermore, significant uncertainties in VODCA2GPP are found in parts of eastern and western Siberia’s boreal forests as 

well as in parts of southern China.  300 

 

Figure 2: a) Mean annual GPP as derived from VODCA2GPP for the period 1988-2019. b) Standard deviation of mean annual GPP 

(1988-2019) as obtained by the uncertainty analysis based on site-level cross-validation. 
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Figure 3: Pearson’s r between VODCA2GPP and MODIS GPP (a) and VODCA2GPP and FLUXCOM GPP (b). The correlations 305 
are based on the common observation period between 2002 and 2016 with 0.25° spatial and 8-daily temporal resolution.  

VODCA2GPP shows good temporal agreement with MODIS and FLUXCOM for most regions outside the tropics (Fig. 3). 

Pearson’s r is the highest in regions with distinct interannual variability such as sub-arctic, temperate, and semi-arid regions 

and the lowest for dense tropical forests where even negative correlations occur. Median Pearson’s r between VODCA2GPP 

and the reference datasets MODIS and FLUXCOM is 0.77 and 0.75, respectively.  310 

4.2 Site-level evaluation 

VODCA2GPP’s tendency towards a positive bias with respect to MODIS and FLUXCOM products is not mirrored in the 

comparison against FLUXNET GPP (Fig. 4, Fig. A1). The bias with respect to FLUXNET site data is substantially smaller 

for VODCA2GPP than for MODIS and FLUXCOM. The RMSE and Pearson’s r values of VODCA2GPP are slightly higher 

and lower, respectively, than for MODIS and FLUXCOM and of the same magnitude for 8-daily values and mean annual GPP. 315 

All three datasets underestimate productivity at high GPP values. A landcover-based analysis (Fig. A3) shows that 

discrepancies in annual VODCA2GPP are mostly occurring in (semi-)arid environments (e.g., savannas, open shrublands, 

grasslands). VODCA2GPP performs best in temperate environments (e.g., wetlands, evergreen broadleaf forest, croplands). 

Wetlands and evergreen broadleaf forests exhibit the best performance for all products while all three datasets underperform 

in open shrublands and deciduous broadleaf forest.  320 
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Figure 4: GPP from FLUXNET plotted against GPP from VODCA2GPP, MODIS and FLUXCOM for the period 2002-2016 with 

8-daily sampling.  

 325 
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Figure 5: Site-based cross-validation for 8-daily, monthly, and yearly sampling of GPP from VODCA2GPP and FLUXNET.  RMSE, 

Bias and Pearson’s r were computed at each of the 10% of FLUXNET sites that were omitted during the respective training run. 

Non-significant Pearson correlation (p-value < 0.1) were ignored. The boxplots for Pearson’s r are based on the 71 (8-daily), 66 330 
(monthly) and 8 (yearly sampling) significant values for Pearson’s r values. The whiskers of the boxplots extend to the 0.05/0.95 

percentiles.   

 

The site-based spatial cross-validation also exhibits only a small (negative) bias of VODCA2GPP (Fig. 5) for monthly and 8-

daily GPP values while the bias for annual variations is positive and slightly higher. High median Pearson’s r for 8-daily and 335 

monthly values indicates good model performance for interannualseasonal variations. It is to be noted that there are only 8 

significant Pearson’s r drops substantially at annual scalevalues for yearly sampling which is partly explained bydecreases the 

expressiveness of this value. This is explicable with the short observation period covered byof most FLUXNET time series 

(mean observation time span: 7.27 years), and thus may show littlesites which might not exhibit interannual variability. The 

RMSE decreases with increasing observation length scales.  340 

4.3 Anomaly patterns in space and time 

In terms of anomalies from the long-term climatology, VODCA2GPP shows good correlation with MODIS and TRENDY-v7 

and weaker correlation with FLUXCOM (Table 2). TRENDY-v7 correlates similarly well with VODCA2GPP and MODIS 
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and shows worse correspondence with FLUXCOM. The highest correlation is found between the two optical remote sensing-

based products MODIS and FLUXCOM. 345 

 

Table 2: Pearson’s r correlation matrix for mean global monthly GPP anomalies between 2002 and 2016.  

 VODCA2GPP MODIS GPP FLUXCOM GPP TRENDY-v7 GPP 

VODCA2GPP 1.00    

MODIS GPP 0.53 1.00   

FLUXCOM GPP 0.29 0.69 1.00  

TRENDY-v7 GPP 0.61 0.60 0.26 1.00 

 

The temporal evolution and spatial distribution of the anomalies exhibit similar patterns (Fig. A4). Several extreme events are 

captured in VODCA2GPP and in at least one of the other GPP datasets. An example of such GPP extremes are the strong 350 

positive anomalies between 2010 and 2011 at around 25°S which were mainly caused by record-breaking rainfalls in Australia 

(Wardle et al., 2013). These positive anomalies are clearly visible in all examined GPP products apart from FLUXCOM (Fig. 

A4). Other GPP extremes that are noticeable in all products apart from FLUXCOM are the extremely low GPP in 2002/2003 

and early 2005 around 20°S (Fig. A4). Both anomalies can be explained by extreme drought events that occurred in these years 

(Bureau of Meteorology, 2002/2003/2005; Horridge et al., 2005) which are associated with El Niño events (Taschetto and 355 

England, 2009). Also, the distinct drop in GPP in 2015/2016 in similar latitudes is likely linked to El Niño related drought 

events (Malhi et al., 2018; Zhai et al., 2016). Generally, extreme events in VODCA2GPP are more pronounced than in the 

other datasets.  

 

Figure 6: Time-series of mean global monthly GPP anomalies.  360 
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4.4 Global GPP trends 

Trends in global annual median GPP for the overlapping period between 2003 and 2015 are similar for VODCA2GPP, 

TRENDY-v7 and MODIS and all show significant positive trends (Table 3, Fig. 7). FLUXCOM does not exhibit a significant 

trend. The spatial distribution of GPP trends for the period 2003-2015 (Fig. 8) exhibits many similarities between all analysed 

products. Large patterns of strong positive trends are, for example, found in eastern parts of Siberia and China as well as in 365 

India and North America. Patterns of negative trends are found north of the Caspian Sea in all datasets. The remote sensing-

based products exhibit distinct patterns of declining GPP in central Siberia and significantly increasing GPP in Western Russia. 

Generally, the trends of VODCA2GPP match better with MODIS and TRENDY-v7 than with FLUXCOM.  While there are 

many similar patterns in the Northern Hemisphere, trends in the Southern Hemisphere do not match well or are even 

contradictory. Especially in the Tropics, hardly any similarities are apparent. Note that the analysed time period is short and 370 

may be impacted by individual extreme events.  

 

For the full time period (1988-2019), VODCA2GPP increases slightly on a global scale (Table 3), but this cannot be classified 

as significant due to contradictory upper and lower confidence intervals. The same is true for the slightly shorter period between 

1988 and 2016 during which TRENDY-v7 does detect a small significant positive trend on a global scale. The spatial 375 

distribution of long-term (1988-2019; Fig. 9) trends in VODCA2GPP is similar to the shorter period (2003-2015), but in 

general, long-term VODCA2GPP trends are less pronounced. The comparison of the fully overlapping period between 

VODCA2GPP and TRENDY-v7 (1988-2016, Fig. A5) shows that TRENDY-v7 exhibits weak but consistent positive trends 

for practically all biomes while VODCA2GPP trends are spatially differing and for some regions even opposite in sign to the 

trends in TRENDY-v7.    380 

 

A comprehensive comparison with in-situ GPP trends is not possible because most FLUXNET time series are too short to 

derive reliable trends. However, trends that could be derived for a few stations with a long time series (Fig. A6) also suggest 

increasing GPP.  The in-situ analysis indicates that there is a comparatively good correspondence between VODCA2GPP and 

FLUXNET GPP trends. Together with the strong similarities between VODCA2GPP and MODIS/TRENDY GPP, this 385 

suggests that VODCA2GPP can provide a valuable contribution to the analysis of global GPP trends. 

Table 3: Theil-Sen trends in global yearly median GPP. Same signs of the upper/lower 90%-confidence interval indicate significant 

trends. The analysed periods are 2003-2015 which corresponds to the fully overlapping periods for all datasets (for the period 2002-

2016 there were some data gaps in the MODIS and FLUXCOM data used at the very beginning/very end. Since these data gaps 

could potentially impact the slope estimation, the slightly shorter period 2003-2015 was used), 1988-2016 which corresponds to the 390 
fully overlapping period of VODCA2GPP and TRENDY-v7, and 1988-2019 which corresponds to all available complete years of 

VODCA2GPP data.  

 2003-2015 1988-2016 1988-2019 

 Theil-Sen slope 

[g C m-2 yr-1 ] 

Lower/Upper 

confidence interval  

Theil-Sen slope 

[g C m-2 yr-1 ] 

Lower/Upper 

confidence interval   

Theil-Sen slope 

[g C m-2 yr-1 ] 

Lower/Upper 

confidence interval   
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VODCA2GPP 0.013  +0.008 / +0.025  0.002 -0.001 / +0.006 0.002 -0.001 / +0.005 

TRENDY-v7 GPP  0.017 +0.006 / +0.026  0.004 +0.000 / +0.008 - - 

MODIS GPP 0.012 +0.002 / +0.020  - - - - 

FLUXCOM GPP -0.004 -0.009 / +0.001  - - - - 

 

 

Figure 7: Time-series of yearly median GPP with the regression lines as obtained by the Theil-Sen estimator. Areas around the 395 
regression lines indicate the 90%-confidence intervals.  
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Figure 8: Global map of trends in yearly median GPP for the period 2003-2015 for all analysed datasets. White indicates non-

significant trends. 

 400 

 

Figure 9: Global map of yearly median GPP trends for the period 1988-2019 for VODCA2GPP. White indicates non-significant 

trends. 
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5 Discussion 

5.1 Uncertainties in the VODCA2GPP model 405 

The results from the uncertainty analysis and the comparison with in-situ GPP show that VODCA2GPP estimates can be 

viewed as reliable across most biomes. However, significant uncertainties were exhibited in some areas with extreme climatic 

or topographic conditions (e.g., deserts and mountain ranges). Also, parts of eastern and western Siberia and parts of southern 

China show relatively large spread in predictions. The observed uncertainty patterns in Siberia might be associated with 

topography, landcover, generally lower data availability (due to frozen masking in VODCA) and a lack of FLUXNET stations. 410 

Complex topography is presumably also the main driver for uncertainties in southern China. The uncertainty analysis suggests 

that VODCA2GPP estimates tend to be too high in these regions and thus should be interpreted with caution. Furthermore, 

moderate uncertainties were also found for the tropics which is likely due to the extremely low in-situ data availability and 

higher absolute GPP than in mid-latitudes.  

 415 

The comparison with in-situ GPP shows clear differences in performance of the VODCA2GPP model across different biomes. 

High performance is achieved in densely vegetated biomes while performance decreases in arid and less vegetated regions. A 

reason for the weaker performance in areas with less water availability might be adapted water regulation strategies of plants. 

Plants in drought-prone regions often reduce transpiration by limiting stomatal conductance to maintain a constant water 

potential even in times of extreme water scarcity (Sade et al., 2012). Since VOD is largely driven by the vegetation’s water 420 

content, this isohydric behaviour of vegetation could at least partly explain relatively high VOD and consequently also 

overestimated GPP in those regions (Teubner et al., 2021).  

 

Also, the observation bias which is introduced by unevenly distributed FLUXNET sites decreases the model’s robustness.  

GPP is measured in situ only at a few locations and these stations are mostly located in temperate regions (e.g., Europe and 425 

North America) while semi-arid and tropical forest regions are underrepresented in the training data.  

 

A comparison of uncertainties between VODCA2GPP and optical remote sensing based GPP (Xie et al., 2021) shows that in 

both cases topographic complexity decreases the reliability. Furthermore, the reliability of GPP estimates based on optical 

remote sensing is highly dependent on weather and illumination conditions. Clouds often contaminate or prevent the 430 

observations which is presumably the main reason why the largest uncertainties for FLUXCOM and MODIS are found in the 

wet tropics where GPP is known to be underestimated (de Almeida et al., 2018; Jung et al., 2020). In contrast, VODCA2GPP 

shows good skill for densely vegetated areas, including broadleaf evergreen forests. On the other hand, the relatively high 

uncertainties of VODCA2GPP in water-limited regions have not been reported for FLUXCOM or MODIS GPP, indicating 

that these are VOD-specific and presumably caused by the abovementioned isohydric behavior of plants in arid regions. 435 
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5.2 Limitations in VODCA and their impact on VODCA2GPP 

Certain limitations in the VODCA v1 product exist, as outlined in Moesinger et al. (2020), which are partly also evident in 

VODCA v2 (Zotta et al., in prep) and thus propagate to VODCA2GPP. A known issue of VODCA v2 is caused by an 

observation gap between October 2011 and July 2012 for AMSR-E and AMSR2 (Table 1), which prevents a direct bias 440 

removal between the sensors. However, scaling between the sensors is achieved by using TMI observations North/South of 

35°N/35S for X and Ku-band. Beyond these latitudes for X- and Ku-band, and globally for C-band, AMSR-E data were 

matched directly to AMSR2 using the last two years of AMSR-E and first two years of AMSR2 as reference period, under the 

assumption that trends between 2010-2014 are negligible (Moesinger et al., 2020). The result is that AMSR2 observations 

exhibit a slight positive bias in parts of North America which is also evident in a spatial break in VODCA v1 X- and Ku-Band 445 

trends (Moesinger et al., 2020). Although the impact of this procedure on VODCA2GPP trends is small and spatially limited, 

users are advised to keep the potential bias in mind when analysing VODCA2GPP data after 2012 for latitudes North/South 

of 35°N/35°S. Other limitations in VODCA concern the mixing of observations that were retrieved at different geometries 

(e.g., incidence angles) or observation times (Moesinger et al., 2020) and the data loss in certain regions, mostly in the 

Himalayas, which is caused by failure of the CDF-matching method due to insufficient input data (Moesinger et al., 2020). 450 

These issues, however, only have a small or spatially very limited influence on the final VODCA2GPP product. Furthermore, 

VOD retrievals exhibit a tendency for saturation in regions with very dense vegetation making it less likely to distinguish 

variability. A slight tendency for saturation was also observed for VODCA2GPP but the landcover based analysis exhibited a 

very high agreement between VODCA2GPP and in-situ GPP indicating high reliability of VODCA2GPP over densely 

vegetated regions. 455 

 

Another limitation of VOD products in general, and thus also of VODCA2GPP, is the limited spatial resolution (0.25°). The 

lower achieved spatial granularity from passive microwave remote sensing is presumably another reason for the slightly weaker 

performance of VODCA2GPP in comparison with optical remote sensing derived GPP since the VODCA grid cell might not 

always be well represented by the in-situ measurements. Furthermore, the lower spatial resolution of VODCA2GPP is 460 

disadvantageous for the analysis of local GPP as small-scale variations in GPP might be hidden in VODCA2GPP. However, 

due to its long-term availability and generally high reliability, VODCA2GPP can still serve as a valuable source of data for 

various other applications (Sect. 5.4), especially concerning long-term climate-related studies and climate model evaluation. 

5.3 Observed bias between VODCA2GPP and other remote sensing-based GPP datasets 

There is only a very small bias when comparing VODCA2GPP with eddy-covariance measurements from FLUXNET but 465 

relatively large discrepancies in absolute GPP exist between VODCA2GPP and other remote-sensing-based products, and to 

a lesser extent with process-based TRENDY-v7 models. In tropical regions, the positive bias between VODCA2GPP and 

MODIS/FLUXCOM GPP can be partly explained by a reported and observed tendency of FLUXCOM and MODIS to 
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underestimate GPP in these regions (Turner et al. 2006; Wang et al., 2017; Fig. 1; Fig. A3). Outside the tropics, discrepancies 

in absolute GPP among products might be caused by the assumed overestimation of VODCA2GPP in winter months (i.e., in 470 

times with very little or no primary productivity). This overestimation is explained by water content in vegetation that is also 

present in these dormant periods. The sensitivity of microwaves to this water content results in non-zero VOD and, 

consequently, non-zero GPP (Teubner et al., 2021). This effect is similar to the isohydricity effect discussed in Sect. 5.1, which 

is an explanation for overestimation of VODCA2GPP in arid regions.  

 475 

Another potential explanation for the positive bias of VODCA2GPP compared to MODIS/FLUXCOM is the presence of 

surface water and its impact on VOD retrievals. The presence of surface water is known to decrease the brightness temperature 

of the earth’s surface and thus significantly decreases VOD retrievals (Bousquet et al., 2020). The impact of surface water 

contamination is evident in VODCA pixels that partly contain water bodies (e.g., lakes, rivers). These pixels exhibit 

systematically lower values than neighbouring pixels without water bodies. On the one hand, this leads to underestimation in 480 

the VODCA2GPP model in pixels containing surface water. On the other hand, it also has an effect on model training. This 

effect is caused by FLUXNET stations located close to water bodies, which hardly impact in-situ GPP retrievals but do cause 

erroneous VOD-retrievals at the 0.25° pixel scale. As a result, underestimated VOD is trained against unaffected in-situ GPP, 

which causes a slight but systematic global overestimation. A potential solution would be the masking of water-contaminated 

VOD. However, due to the constraints with temperature in the interaction term (eq. 3.3) this would strongly reduce the data 485 

available for training, which would potentially decrease the robustness of the VODCA2GPP model if the number of stations 

is not increased.  

 

A general issue in the upscaling of GPP is the low availability of in-situ GPP, which is not only problematic in model training 

but also hampers a fair evaluation and validation at global scale. The remote sensing-based reference products, FLUXCOM 490 

and MODIS, however, are also trained and calibrated using in-situ GPP observations (Jung et al., 2020; Running et al., 1999) 

and can therefore not be viewed as fully independent from VODCA2GPP (Teubner et al., 2021). In contrast to observation-

based GPP products, estimates from the TRENDY ensemble can be considered largely independent from VODCA2GPP.  

5.4 Potential applications of VODCA2GPP 

The validation results show that VODCA2GPP generally exhibits a high consistency with in-situ GPP observations and global 495 

state-of-the-art GPP products indicating that VODCA2GPP can be used complementary to current global GPP products. For 

the analysis of global as well as regional GPP anomalies, VODCA2GPP can provide valuable insights that might be hidden in 

other observational products due to the fundamentally differing observation methods and the associated limitations related to 

saturation effects, cloud cover, and other atmospheric effects such as water vapour content or aerosols (Xiao et al., 2019). 

 500 
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Also, for the monitoring of global GPP trends, VODCA2GPP has the potential to serve as independent and reliable source of 

data. The long-term trend analysis suggests that the majority of biomes have increased their primary productivity since 1988. 

There are several potential drivers for long-term increases in GPP, the most important ones being global warming, land-use 

changes and elevated CO2 concentration in the atmosphere (Piao et al., 2019). The observed long-term trends in GPP across 

the different products support the theory of elevated atmospheric CO2 leading to an increased uptake of CO2 (Haverd et. al, 505 

2020; Walker et al., 2020; Campbell et al., 2017; Schimel et al., 2015). The absence of trends in FLUXCOM does not contradict 

but rather supports this theory as FLUXCOM does not account for CO2 fertilization effects (Jung et al., 2020). Due to the 

shortness of most in-situ GPP time series, it is, however, difficult to draw final conclusions on the existence, magnitude and 

reasons for long-term variations of GPP. Therefore, the global influence of atmospheric CO2 on vegetation productivity 

remains uncertain, but VODCA2GPP allows to gain new perspectives on long-term GPP trends and might help to identify and 510 

quantify driving factors for increasing long-term primary productivity. 

 

Furthermore, VODCA2GPP can be used as a largely independent source of data for the intercomparison and validation of 

other existing or newly developed global GPP datasets and models. Currently, a multitude of global GPP products exists 

showing large inconsistencies among products (Zhang and Aizhong, 2021). Similar to other global GPP datasets, 515 

VODCA2GPP cannot be seen as a true reference but using it as additional reference might help to acquire a more 

comprehensive picture on the performance of other datasets especially in the context of long- and short-term variability in 

GPP.  

6 Data Availability 

The VODCA2GPP data can be accessed (CC BY-NC-SA 4.0) at TU Wien Research Data under 520 

https://doi.org/10.48436/1k7aj-bdz35 (Wild et al., 2021). 

7 Conclusion 

In this dataset paper we introduced VODCA2GPP, a long-term GPP data record which uses multi-sensor, multi-frequency 

microwave VODCA data and temperature data from ERA5-Land for the upscaling of in-situ GPP from FLUXNET2015. The 

comparison of VODCA2GPP with FLUXNET in-situ GPP and global state-of-the-art GPP datasets showed good 525 

correspondence between the products in both the spatial and temporal domain, but with varying performance differences across 

biomes and analysed timescales. In tropical and arid regions, VODCA2GPP has significantly higher values than the reference 

datasets. Arid and mountainous areas were found to have the largest uncertainties. The analysis of monthly anomalies exhibited 

various extreme events in VODCA2GPP that are also found in one or more existing product indicating high plausibility of 

VODCA2GPP derived anomalies. Furthermore, trends derived from VODCA2GPP contain several plausible patterns that 530 

https://doi.org/10.48436/1k7aj-bdz35
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match those derived from the TRENDY-v7 simulations but are not visible in both observational products and vice versa. This 

suggests that the novel microwave-based approach in VODCA2GPP has the potential to reveal novel findings about temporal 

dynamics in GPP at large scales that are not yet captured by other GPP products.  
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Appendix 535 

 

 

 

 

Figure A1: Mean annual in-situ GPP (FLUXNET) plotted against mean annual GPP from VODCA2GPP, FLUXCOM and MODIS 540 
for the respective grid cells. Mean annual GPP was computed from all available overlapping years and thus each station is 

represented by one dot. Red lines indicate the best linear fits determined by ordinary linear regression and the black lines represent 

the 1:1 lines. 
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 545 

Figure A2: GPP from FLUXNET plotted against GPP from VODCA2GPP, MODIS and FLUXCOM for the period 2002-2016 with 

monthly sampling. 
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 550 

 

Figure A3: Scatterplots of mean annual GPP for FLUXCOM, MODIS and VODCA2GPP for the period 2002-2016 per vegetation 

type. Vegetation types indicate the pre-dominant IGBP-vegetation type at the respective FLUXNET station.  

Abbreviations: CRO: Croplands; ENF: Evergreen Needleleaf Forests; DBF: Deciduous Broadleaf Forests; WET: Permanent 

Wetlands; WSA: Woody Savannas; MF: Mixed Forests; GRA: Grasslands; OSH: Open Shrublands; SAV: Savannas; EBF: 555 
Evergreen Broadleaf Forests 
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Figure A4: Hovmoeller diagrams of monthly GPP-anomalies for each dataset.  
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 560 
Figure A5: Global maps of yearly median GPP trends for the period 1988-2016 for VODCA2GPP and TRENDY-v7. White 

indicates non-significant trends.  

 

 

Figure A6: Exemplary collection of time series of in-situ FLUXNET GPP together with extracted time series from MODIS, 565 
FLUXCOM and VODCA2GPP. The stations were selected because of their high data availability for the respective landcover. The 

lines indicate the regression lines as obtained from the Theil-Sen slope estimation for yearly median GPP. The trends are 

computed for the common observation period with FLUXNET. The slope [g C m-2 yr-1] is depicted in the legend together with the 

respective 90% lower/upper confidence intervals. The depicted stations are:  

a) AU-Tum: Tumbarumba, Australia; Lat: -35.65 °N, Lon: 148.15 °E; Landcover: EBF 570 
b) DE-Tha: Tharandt, Germany; Lat: 50.96 °N, Lon: 13.57 °E; Landcover: ENF 

c) GF-Guy: Guyaflux, French Guiana; Lat: 5.28 °N, Lon: -52.93 °E; Landcover: EBF 

d)US-Ha1: Harvard Forest EMS Tower, United States; Lat: 42.54 °N, Lon: -72.17 °E; Landcover: DBF 
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Table B1: Overview of FLUXNET Tier1 v1 stations within the period 1991-2014 575 

FLUXNET ID Name Lon [°E] Lat [°N] Years used 

AR-SLu San Luis -66.46 -33.46 2009-2011 

AR-Vir Virasoro -56.19 -28.24 2010-2012 

AT-Neu Neustift 11.32 47.12 2002-2012 

AU-ASM Alice Springs 133.25 -22.28 2010-2013 

AU-Ade Adelaide River 131.12 -13.08 2007-2009 

AU-Cpr Calperum 140.59 -34.00 2010-2013 

AU-Cum Cumberland Plains 150.72 -33.61 2012-2013 

AU-DaP Daly River Savanna 131.32 -14.06 2008-2013 

AU-DaS Daly River Cleared 131.39 -14.16 2008-2013 

AU-Dry Dry River 132.37 -15.26 2008-2013 

AU-Emr Emerald, Queensland, Australia 148.47 -23.86 2011-2013 

AU-Fog Fogg Dam 131.31 -12.55 2006-2008 

AU-GWW Great Western Woodlands, Wester Australia, Australia 120.65 -30.19 2013-2014 

AU-RDF Red Dirt Melon Farm, Northern Territory 132.48 -14.56 2011-2013 

AU-Rig Riggs Creek 145.58 -36.65 2011-2013 

AU-Rob Robson Creek, Queensland, Australia 145.63 -17.12 2014 

AU-Tum Tumbarumba 148.15 -35.66 2001-2013 

AU-Whr Whroo 145.03 -36.67 2011-2013 

BE-Bra Brasschaat 4.52 51.31 2004-2013 

BE-Lon Lonzee 4.75 50.55 2004-2014 

BE-Vie Vielsalm 6.00 50.31 1996-2014 

BR-Sa3 Santarem-Km83-Logged Forest -54.97 -3.02 2000-2004 

CA-NS1 UCI-1850 burn site -98.48 55.88 2001-2005 

CA-NS3 UCI-1964 burn site -98.38 55.91 2001-2005 

CA-NS4 UCI-1964 burn site wet -98.38 55.91 2002-2005 

CA-NS5 UCI-1981 burn site -98.49 55.86 2002-2005 

CA-NS6 UCI-1989 burn site -98.96 55.92 2001-2005 

CA-NS7 UCI-1998 burn site -99.95 56.64 2002-2005 

CA-Qfo Quebec – Eastern Boreal, Mature Black Spruce -74.34 49.69 2003-2010 

CA-SF1 Saskatchewan – Western Boreal, forest burned in 1977 -105.82 54.49 2003-2006 

CA-SF2 Saskatchewan – Western Boreal, forest burned in 1989 -105.88 54.25 2001-2005 
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                                                 Continued from previous page    

FLUXNET ID Name Lon [°E] Lat [°N] Year used 

CA-SF3 Saskatchewan – Western Boreal, forest burned in 1998 -106.01 54.09 2001-2006 

CH-Cha Chamau 8.41 47.21 2006-2012 

CH-Fru Frübüel  8.54 47.12 2006-2012 

CH-Oe1 Oensingen grassland 7.73 47.29 2002-2008 

CN-Cha Changbaishan 128.10 42.40 2004-2005 

CN-Cng Changling 123.51 44.59 2007-2010 

CN-Dan Dangxiong 91.07 30.50 2004-2005 

CN-Din Dinghushan 112.54 23.17 2003-2005 

CN-Du2 Duolun_grassland (D01) 116.28 42.05 2006-2008 

CN-Ha2 Haibei Shrubland 101.33 37.61 2003-2005 

CN-HaM Haibei Alpine Tibet site 101.18 37.37 2002-2004 

CN-Qia Qianyanzhou 115.06 26.74 2003-2005 

CN-Sw2 Siziwang Grazed (SZWG) 111.90 41.79 2010-2012 

CZ-BK1 Bily Kriz forest 18.54 49.50 2004-2008 

CZ-BK2 Bily Kriz grassland 18.54 49.49 2004-2006 

DE-Akn Anklam 13.68 53.87 2009-2014 

DE-Gri Grillenburg 13.51 50.95 2004-2014 

DE-Hai Hainich 10.45 51.08 2000-2012 

DE-Kli Klingenberg 13.52 50.89 2004-2014 

DE-Lkb Lackenberg 13.30 49.10 2009-2013 

DE-Obe Oberbärenburg 13.72 50.78 2008-2014 

DE-RuS Selhausen Juelich 6.45 50.87 2011-2014 

DE-Spw Spreewald 14.03 51.89 2010-2014 

DE-Tha Tharandt 13.57 50-96 1996-2014 

DK-NuF Nuuk Fen -51.39 64.13 2008-2014 

DK-Sor Soroe 11.64 55.49 1996-2012 

ES-LgS Laguna Seca -2.97 37.10 2007-2009 

ES-Ln2 Lanjaron-Salvage logging -3.48 36.97 2009 

FI-Hyy Hyytiala 24.30 61.85 1996-2014 

FI-Jok Jokioinen 23.51 60.90 2000-2003 

FR-Gri Grignon 1.95 48.84 2004-2013 
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FLUXNET ID Name Lon [°E] Lat [°N] Year used 

FR-Pue Puechabon 3.60 43.74 2000-2013 

GF-Guy Guyaflux (French Guiana) -52.92 5.28 2004-2012 

IT-CA1 Castel d’Asso 1  12.03 42.38 2011-2013 

IT-CA2 Castel d’Asso 2 12.03 42.38 2011-2013 

IT-CA3 Castel d’Asso 3 12.02 42.38 2011-2013 

IT-Cp2 Castelporziano 2  12.36 41.70 2012-2013 

IT-Isp Ispra ABC-IS 8.63 45.81 2013-2014 

IT-Lav Lavarone 11.28 45.96 2003-2012 

IT-Noe Arca di Noé – Le Prigionette 8.15 40.61 2004-2012 

IT-PT1 Parco Ticino forest 9.06 45.20 2002-2004 

IT-Ren Renon 11.43 46.59 1998-2013 

IT-Ro1 Roccarespampani 1 11.93 42.41 2000-2008 

IT-Ro2 Roccarespampani 2 11.92 42.39 2003-2012 

IT-SR2 San Rossore 2 10.29 43.73 2013-2014 

IT-SRo San Rossore 10.28 43.73 1999-2012 

IT-Tor Torgnon 7.58 45.84 2008-2013 

JP-MBF Moshiri Birch Forest Site 142.32 44.39 2003-2005 

JP-SMF Seto Mixed Forest Site 137.08 35.26 2002-2006 

NL-Hor Horstermeer 5.07 52.24 2004-2011 

NL-Loo Loobos 5.74 52.17 1996-2013 

NO-Adv Adventdalen 15.92 78.19 2012-2014 

RU-Che Cherski 161.34 68.61 2002-2005 

RU-Cok Chokurdakh 147.49 70.83 2003-2013 

RU-Fyo Fyodorovskoye 32.92 56.46 1998-2013 

RU-Ha1 Hakasia steppe 90.00 54.73 2002-2004 

SD-Dem Demokeya 30.48 13.28 2005-2009 

US-AR1 ARM USDA UNL OSU Woodward Switchgrass 1 -99.42 36.43 2009-2012 

US-AR2 ARM USDA UNL OSU Woodward Switchgrass 2 -99.60 36.64 2009-2012 

US-ARM ARM Southern Great Plains site - Lamont -97.49 36.61 2003-2012 

US-Blo Blodgett Forest -120.63 38.90 1997-2007 

US-Ha1 Harvard Forest EMS Tower (HFR 1) -72.17 42.54 1991-2012 
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FLUXNET ID Name Lon [°E] Lat [°N] Year used 

US-Los Lost Creek -89.98 46.08 2000-2014 

US-MMS Morgan Monroe State Forest -86.41 39.32 1999-2014 

US-Me6 Metolius Young Pine Burn -121.61 44.32 2010-2012 

US-Myb Mayberry Wetland -121.77 38.05 2011-2014 

US-Ne1 Mead – irrigated continuous maize site -96.48 41.17 2001-2013 

US-Ne2 Mead – irrigated maize-soybean rotation site -96.47 41.16 2001-2013 

US-Ne3 Mead – rainfed maize-soybean roatation site  -96.44 41.18 2001-2013 

US-SRM Santa Rita Mesquite -110.87 31.82 2004-2014 

US-Syv Sylvania Wilderness Area -89.35 46.24 2001-2014 

US-Ton Tonzi Ranch -120.97 38.43 2001-2014 

US-Tw3 Twitchell Alfalfa -121.65 38.12 2013-2014 

US-UMd UMBS Disturbance -84.70 45.56 2007-2014 

US-Var Vaira Ranch-Ione -120.95 38.41 2000-2014 

US-WCr Willow Creek -90.08 45.81 1999-2014 

US-Whs Walnut Gulch Lucky Hills Shrub -110.05 31.74 2007-2014 

US-Wkg Walnut Gulch Kendall Grasslands -109.94 31.74 2004-2014 

ZM-Mon Mongu 23.25 -15.44 2007-2009 
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