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This is my second round of reviewing. The author’s responses confirmed my concerns, and this study 
or this dataset includes several important flaws which may substantially mislead the future studies in 
this filed. Therefore, I strongly suggest the authors seriously consider the method and the GPP 
dataset, and take the efforts to develop the reliable method. 

Response: Dear Referee, 

Many thanks for reviewing our manuscript again. We appreciate your feedback, and we are sorry 

that we could not settle your doubts regarding the VODCA2GPP dataset. 

First, the authors confirmed their estimate of global GPP reaches to 200 Pg C yr-1, which is almost 

double of the current estimates. Although the authors argued that their estimates are close to the 

estimates from Welp et al (2011) (150-175 Pg C yr-1) and Koffi et al. (2012) (146 Pg C yr-1). However, 

the estimate in this study also is higher than these two studies about higher 30%-50%. Besides, these 

two studies are based on atmospheric inversion methods to indirectly estimate GPP, and ecosystem 

respiration may highly impact their estimates to GPP. As the Welp et al (2011) claimed “best guess of 

150-175” of GPP. On contrary, MODIS and FLUXCOM used site-based GPP observations to constrain 

their estimates, and which provide the robust estimates of GPP compared to Welp and Koffi. 

Yes, global annual VODCA2GPP reaches 200 Pg C yr-1, which is indeed higher than observation-based 
GPP derived from MODIS or FLUXCOM. We agree that this positive bias suggests an overestimation 
of VODCA2GPP at a global scale, and we understand the concerns regarding this overestimation. We 
devoted a separate section (sect. 5.3) to this issue and discussed the drivers for this positive bias in 
respect to the optical remote sensing-based references in detail. Thus, we are aware of this issue and 
transparently inform about it. By no means we claim that the global estimates from our product are 
closer to the truth than other products. 

What we want to highlight again, however, is the fact that when comparing VODCA2GPP with in-situ 
GPP from FLUXNET we only find substantial overestimation in water-limited regions (e.g., open 
shrublands and savannas). For most other biomes, the comparison with in-situ GPP does not suggest 
an overestimation of VODCA2GPP. Furthermore, we want to emphasize that there is no consensus in 
estimates of global annual GPP among existing datasets (Anav et al. (2015)) which complicates a fair 
validation of global annual GPP estimates. Thus, we agree that VODCA2GPP derived global annual 
GPP are too high in some biomes (e.g., arid regions), which presumably also leads to an 
overestimation at a global scale, but the magnitude of this overestimation cannot be quantified 
reliably as estimates for global annual GPP are contradictory.  

The authors validated their GPP estimates at eddy covariance towers. VODCA2GPP are comparable 
to tower-based GPP as Fig. 1A shown. I am wondering that there are large differences over the global 



estimates. The method may have significant flaw that make it impossible to apply over global scale. 
Therefore, I strongly suggest the authors investigate the reliability of the method before producing 
global GPP dataset. As I pointed out that there are several unclear items in the model algorithms, 
which may induce large uncertainties for GPP estimates. For example, the response #5, the authors 
changed the definition of mdn(VOD) from landcover to vegetation density. It is totally confused what 
vegetation density means? By my knowledge, there is no concept of vegetation density, instead that 
we say Species Density, which is obvious different with the authors’ idea. It is my largest concern the 
authors failed to propose the robust physiological principle for using VOD to estimate GPP at all. 

Indeed, VODCA2GPP compares well with in-situ GPP from FLUXNET, which also indicates that 
VODCA2GPP can in principle be trusted. Also, the underlying method (the VOD2GPP model) is 
generally reliable, has been peer-reviewed by several experts, and was published in reputable 
journals (Teubner et al., 2018, 2019, 2021). 

As outlined in our revised manuscript, the mdn(VOD) term in the model formulations represents a 
static vegetation biomass component which helps the model to subtract larger structural vegetation 
elements (e.g., stems and branches) and thus makes the VOD2GPP model more sensitive to 
photosynthetically active parts of the vegetation. So to say, the additional term mdn(VOD) allows the 
model to differentiate between canopy types that have similar VOD dynamics but different above-
ground biomass. This is also visible in the partial dependency plot, where we assessed the influence 
of each input variable on the GPP estimates (Fig. 1 c). Regarding the nomenclature, we believe that 
vegetation density is a good term for intuitively describing the role of mdn(VOD) in the VOD2GPP 
model but we are open for other suggestions. As correctly suggested by the reviewer, species density 
is a different concept. 

 

Fig 1: Partial dependency plot for GPP and the input variables: VOD (a), 𝚫(𝑽𝑶𝑫) (b), mdn(VOD) (c), T2M (d). 

Dashed lines denote the 95% confidence interval. The interaction term between VOD and T2M is depicted as 3D 

surface which is bin-wise projected onto a 2D plane for visualization.  

In addition, the authors examined MODIS and FLUXCOM dataset against eddy covariance-based GPP. 
However, the results in this manuscript look quite different with previous reports. Especially, 
FLUXCOM is data-driven dataset, which should be compared with site-based GPP. However, the 
authors showed the underestimated GPP by FLUXCOM, which is quite different with previous studies 
and also difficulty to understand. 

The results of FLUXCOM GPP and MODIS GPP that we present may indeed differ from results 

presented in other studies, because of a different selection of ground data, and spatial and temporal 

subsetting. In general, however, our results are in line with what has been reported for FLUXCOM 

and MODIS GPP (e.g., underestimation of MODIS and FLUXCOM GPP in highly productive regions 

(Joiner et al., 2018; Anav et al., 2015; Turner et al., 2006)). Nevertheless, differences between our 

results and those of previous studies can arise for multiple reasons. First, we spatially aggregated 



FLUXCOM GPP and MODIS GPP to 0.25° to match VODCA2GPP’s resolution. This is most likely not the 

case for other studies and can thus lead to differences. Furthermore, we only considered pixels that 

are available in all three datasets (VODCA2GPP, MODIS GPP, and FLUXCOM GPP). Consequently, a 

certain share of available MODIS/FLUXCOM pixels, which are not available in VODCA2GPP, is not 

used in our comparisons but is included in other studies. Also, the observed time periods might differ 

between the studies, which further complicates a direct comparison. Considering these aspects, our 

results are not directly comparable with results from other studies. 

Second, the VODCA2GPP dataset showed the low performance both over spatial and temporal 
scales. The authors added the validations on model performance for reproducing interannual 
variability of GPP (response #9). However, the performance is quite low, and mean R2 value is only 
0.2 or even lower. By this low performance, I can not trust the capability of VODCA2GPP, and will not 
use it to conduct any further analyses. So, I still doubted why we still need VODCA2GPP dataset. The 
authors argued that we need other satellite data source besides optical data, but it is not a reason for 
accepting its low performance. 

We do not share the reviewer’s opinion that VODCA2GPP shows an overall low performance. The 
VODCA2GPP model performs reasonably well for reproducing 8-daily and monthly variations of GPP 
(Pearson’s r: 0.53 and 0.6). It is true that median Pearson’s r drops substantially at yearly sampling. 
This decrease, however, is explicable with extremely low availability of (FLUXNET) data points at this 
temporal scale. The average time span of FLUXNET time-series are only 7 years. When only 
considering significant correlations (p-value < 0.1) we find that median Pearson’s r reaches much 
higher values. The number of significant values for Pearson’s r at yearly sampling, however, drops to 
only 8.  

We updated Figure 5 by only including significant correlations and we added the number of 
significant Pearson’s r values in the caption to remind the reader about the relatively low 
expressiveness of this value. Furthermore, we added the following text: 
 
(Page: 13, Line 326): (…) It is to be noted that there are only 8 significant Pearson’s r values for yearly 
sampling which decreases the expressiveness of this value. This is explicable with the short 
observation period of most FLUXNET sites which might not exhibit interannual variability. (…) 

 

Figure 5: Site-based cross-validation for 8-daily, monthly, and yearly sampling of GPP from VODCA2GPP and 

FLUXNET.  RMSE, Bias and Pearson’s r were computed at each of the 10% of FLUXNET sites that were omitted 

during the respective training run. Non-significant Pearson correlation (p-value < 0.1) were ignored. The boxplots for 



Pearson’s r are based on the 71 (8-daily), 66 (monthly) and 8 (yearly sampling) significant values for Pearson’s r values. 

The whiskers of the boxplots extend to the 0.05/0.95 percentiles.   
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Compared to the last version, the manuscript is clearer now and fixes some problems. I still have a 

few concerns before considering the acceptance.  

Response: Dear Referee, 

Thank you very much for reviewing our manuscript again. We appreciate your feedback, and we are 

happy to address your concerns.  

Minor comments:  

1 Why does r drop with increase in time scale but RMSE does the opposite? You can add explanation 

in the end of line 383.  

We assume that this comment refers to the cross-validation results depicted in Fig. 5. It is true that 

Pearson’s r drops substantially at yearly sampling. The low Pearson’s r values at this timescale, 

however, are more likely caused by relatively short observation periods of FLUXNET GPP than by 

weak performance of VODCA2GPP. The average FLUXNET GPP time-series only covers approximately 

7 years and thus might only show little to no interannual variability resulting in a high number of 

non-significant correlations. In fact, the number of significant correlations (p-value < 0.1) is only 8 for 

yearly sampling. When removing all non-significant values from this analysis, median Pearson’s r 

increases substantially for yearly sampling (from ca. 0.17 to 0.69), while the other time scales (8-daily 

and monthly) are only slightly affected from the exclusion of non-significant correlations (cf. Fig 5). 

Excluding non-significant correlations also removes the contrary behavior of Pearson’s r and RMSE.  

We updated Figure 5 by only including significant correlations and we added the number of 
significant Pearson’s r values in the caption to remind the reader about the relatively low 
expressiveness of this value. Furthermore, we added the following text: 
 
(Page: 13, Line 326): (…) It is to be noted that there are only 8 significant Pearson’s r values for yearly 
sampling which decreases the expressiveness of this value. This is explicable with the short 
observation period of most FLUXNET sites which might not exhibit interannual variability. (…) 



 

Figure 5: Site-based cross-validation for 8-daily, monthly and yearly sampling of GPP from VODCA2GPP and 

FLUXNET.  RMSE, Bias and Pearson’s r were computed at each of the 10% of FLUXNET sites that were omitted 

during the respective training run. Non-significant Pearson correlation (p-value < 0.1) were ignored. The boxplots for 

Pearson’s r are based on the 71 (8-daily), 66 (monthly) and 8 (yearly sampling) significant values for Pearson’s r values. 

The whiskers of the boxplots extend to the 0.05/0.95 percentiles.   

 

2 Since the uncertainty metric is derived from the 10 VODCA2GPP models, you can also mention the 

source  of such uncertainty. Is it can be  regarded  as extrapolation as well?  

The uncertainty analysis is based on 10 VODCA2GPP models in which 10% percent of the station data 

was retained during each run. The results of this uncertainty analysis are depicted in Fig 1d and Fig 

2b. Fig. 1d suggests that the choice of stations influences the resulting GPP estimates. We find the 

lowest spread in the 10 models (i.e., lowest uncertainty) north of 20° N where also the majority of 

FLUXNET GPP stations are located. The Southern hemisphere, where only few in-situ stations are 

located, generally exhibits a higher spread (larger uncertainty) indicating a considerable sensitivity to 

the choice of stations. This emphasizes the need for a globally well distributed network of in-situ flux 

towers.  

Thank you for bringing up the extrapolation capabilities of the VODCA2GPP model which were tested 

through the site-based cross-validation. This analysis revealed that the VODCA2GPP model performs 

reasonably well at all time scales (Fig 5). The fact that higher correlations are found with global GPP 

from FLUXCOM and MODIS (median Pearson’s r: 0.75 and 077) indicates that FLUXNET stations might 

not be always representative for the 0.25° VOD pixels.  

We added the following text in the revised manuscript:  

Page: 11, Line: 286: (…) The lowest spread in the 10 models (i.e., the lowest uncertainty) is found 

north of 20°N where also the majority of FLUXNET GPP stations is located. The Southern hemisphere, 

where only few in-situ stations are located, generally exhibits a larger spread (higher uncertainty) 

indicating a considerable sensitivity of the model to the choice of stations. This emphasizes the need 

for a well distributed network of in-situ flux towers across all biomes. (…)  

3 You can also make comparison between your GPP uncertainty and that of other GPP datasets. 

Indeed, such VOD-GPP dataset is independent of optical-based one, but you really need remind the 

uncertainty in its application.  



Thank you for this suggestion. It is indeed important to also discuss and compare the uncertainties of 

other global GPP datasets in respect to uncertainties of VODCA2GPP. Uncertainties in optical remote 

sensing-based GPP are mostly associated with the used wavelength. Optical remote sensing is heavily 

influenced by weather and illumination conditions. Clouds often contaminate or prevent the 

observations which is presumably the main reason why the largest uncertainties for FLUXCOM and 

MODIS are found in the tropics where GPP is known to be underestimated (de Almeida et al., 2018; 

Jung et al., 2020). In contrast to this, VODCA2GPP shows very good correspondence for densely 

vegetated areas (e.g., Broadleaf evergreen forests) and is hardly affected by weather conditions. 

However, we do find comparatively high uncertainties in water-limited areas (e.g., savannas and 

open shrublands) which presumably originate from multiple sources (which are discussed in the 

manuscript). The site-based uncertainty analysis also revealed that VODCA2GPP exhibits large 

uncertainties in mountainous regions with high topographic complexity which has also been reported 

to decrease reliability of GPP estimates in other GPP products (Xie et al., 2021).  

Page: 18, Line: 418: (…) A comparison of uncertainties between VODCA2GPP and optical remote 

sensing based GPP (Xie et al., 2021) shows that in both cases topographic complexity decreases the 

reliability. Furthermore, the reliability of GPP estimates based on optical remote sensing is highly 

dependent on weather and illumination conditions. Clouds often contaminate or prevent the 

observations which is presumably the main reason why the largest uncertainties for FLUXCOM and 

MODIS are found in the wet tropics where GPP is known to be underestimated (de Almeida et al., 

2018; Jung et al., 2020). In contrast, VODCA2GPP shows good skill for densely vegetated areas, 

including broadleaf evergreen forests. On the other hand, the relatively high uncertainties of 

VODCA2GPP in water-limited regions have not been reported for FLUXCOM or MODIS GPP, indicating 

that these are VOD-specific and presumably caused by the abovementioned isohydric behavior of 

plants in arid regions. 

4 And a similar question to the last round, the process-based model cannot be treated as  ground  

truth. I don’t  think the  similarity  between  VODCA2GPP  and  TRENDY models can be an advantage.  

It is true, that process-based models cannot be treated as “true” reference or “ground truth”. The 

same applies to observation-based estimation approaches such as FLUXCOM or MODIS GPP. The 

source of data that comes the closest to actual “ground truth” is data from eddy covariance flux 

measurements. Therefore, our analysis and validations are first and foremost based on the 

comparison with in-situ estimates from FLUXNET. Due to the sparse and uneven distribution of 

FLUXNET stations, however, the comparison with other state-of-the-art GPP datasets such as TRENDY 

GPP is important to assess the validity of GPP estimates at a global scale. In various other GPP related 

studies, TRENDY GPP has served as reference data set for global patterns in GPP (e.g., O’Sullivan et 

al., 2020). Especially the evaluation of FLUXCOM GPP at global scale was largely based on the 

comparison with TRENDY GPP (e.g., Jung et al., 2020). We decided to add TRENDY GPP in our analysis 

not only to assess the validity of VODCAGPP trends and anomalies at global scale but also to highlight 

the diversity of GPP estimates that are currently available.  
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This a is an overall good manuscript, well written. The interest and complementary information of 

microwave data with respect to optical data for vegetation studies, in particular for the estimation of 

the Gross Primary Production is clear. 

However, I have a number of concerns and questions for the authors. 

Response: Dear Referee, 

Thank you very much for reviewing our manuscript and your overall positive feedback. We are happy 

to answer your questions and we believe that we can dispel your concerns.  

This GPP product comes from a VOD archive that it is produced as a "sub-product" of the ESA soil 

moisture Climate Change Initiative data set. In the CCI data set dense forest regions as masked 

because retrievals are not considered to be reliable, in particular those of AMSR-E, AMSR-2. Soil 

moisture and VOD are retrieved simultaneously, therefore why the retrievals are considered to be 

good for VODCA over those regions but not for SM CCI ? 

Thank you for this important remark and question. First of all, we want to mention that although soil 

moisture and VOD are retrieved simultaneously, the retrieval algorithm distinguishes between 

emitted radiance coming from the soil surface and that coming from vegetation. Thus, VOD and SM, 

although retrieved simultaneously, can and should be regarded as separate products. It is correct 

that CCI soil moisture data is masked over densely vegetated regions. This is done because in these 

regions the largest part of microwave emission is caused by vegetation and thus almost the entire 

signal (i.e. the measured brightness temperature) comes from the vegetation, making soil moisture 

retrievals unreliable, but not VOD retrievals. Yet, VOD tends to saturate for very dense vegetation 

making it less likely to distinguish variability. We also observe this tendency for saturation in 

VODCA2GPP in our analysis (e.g., Fig A6). Nevertheless, our landcover-based analysis of mean yearly 

GPP (Fig. A3) suggests that VODCA2GPP compares very well with FLUXNET in-situ GPP in densely 

vegetated regions (Pearson’s r: 0.89 for Evergreen Broadleaf Forest) which led us to the conclusion 

that VODCA2GPP is reliable also in regions with dense vegetation.  

This is indeed an important point, thus we added the following paragraph to the manuscript:  

Page: 19, Line: 440: (…) Furthermore, VOD retrievals exhibit a tendency for saturation in regions with 

very dense vegetation making it less likely to distinguish variability. A slight tendency for saturation 

was also observed for VODCA2GPP but the landcover based analysis exhibited a very high agreement 

between VODCA2GPP and in-situ GPP indicating high reliability of VODCA2GPP over densely 

vegetated regions. (…) 

VOD depends on frequency. What is the physical meaning of a rescaling by CDF matching? It is not 

rescaling apples (VOD at C band, for isntance) and oranges (VOD at K band, for instance)? Can the 



authors justify this approach and evaluate the impacts of this assumption into applications such as 

GPP estimation? 

  
Figure 2a: Temporal correlation between X-band- and C-band VODCA (left) and between X-band and Ku-band 

VODCA (right). Only spatially and temporally collocated data has been used. The correlations are based on the 

overlapping observation period (2002-01 – 2018-08). 

 

  
Figure 2b: Temporal correlation between MODIS LAI and X-band VODCA (left) and between MODIS LAI and 

VODCA CXKu (right). Only spatially and temporally collocated data has been used. The correlations are based on 

the overlapping observation period (2002-01 – 2018-08). 

Thank you for this critical question. Indeed, VOD depends on the observed wavelength domain. Low-

frequency observations such as those from L-band are sensitive to the water content in the whole 

vegetation, including the woody components, while high-frequency observations, such as C-, X-, and 

Ku-band, are more sensitive to the water content of the upper canopy layer (Li et al., 2021).  

VODCA CXKu incorporates only high-frequency VOD products, namely C-, X-, and Ku-band, all of 

which indicate upper canopy dynamics and are highly correlated with each other. This is shown in 

Figure 2a, where for all biomes but those with little inter- and intra-annual variability (deserts and 

humid tropics) correlations are very high. In this figure, we show the correlation of C- (left) and Ku-

band (right) with X-band VODCA, which has been used as scaling reference in the CDF-matching 

procedure. More so, in Figure 2b, we look at the agreement with MODIS LAI, which is an 

independent vegetation dataset related to leaf biomass (Tian et al., 2018). We can observe that the 

Spearman's R of MODIS LAI with X-band (left) and VODCA CXKu (right) are almost identical in all 

regions. This indicates that VODCA CXKu is very similar to the product used as scaling reference 

during CDF-matching, which is X-band.   

VODCA-X vs. VODCA-C VODCA-X vs. VODCA-Ku 

MODIS LAI vs. VODCA-X MODIS LAI vs. VODCA-CXKu 



However, VODCA CXKu exceeds the temporal length of the three single-frequency products, covering 

over 30 years of observation (1987 - 2020) and exhibits lower random error levels due to the merging 

approach employed. These features have led to an improved VODCA2GPP.  

Line 138: ERA-5 Land resolution is not 8 km but 9 km 

Thank you for making us aware of this. We revised this. 

(Page: 5, Line 138): (…) ERA5-Land is produced at a spatial resolution of 9 km (…) 

Line 187: I reckon that the dependency on time should be explicit in this equation or at least that the 

time scales at which those different VOD quantities are estimated should be explicit. Since VOD is 

approximately mdn(VOD)+delta(VOD) what is the real interest of adding a third term on VOD? 

Thank you for this comment. The time scale at which delta(VOD) is derived is indeed crucial. We 

already incorporated this information in chapter 3.3 (“Preprocessing”) but we agree that this term 

should already be explained at its first occurrence and in more detail. Thus, we added the following 

text (below Eq. 3.3) and removed the, now redundant, information from chapter 3.3: 

(Page: 7, Line: 191): ∆(VOD) is derived for each pixel (𝑥𝑖) by computing the difference between two 

consecutive VOD observations of the smoothed and 8-daily aggregated VOD Signal (Teubner et al. 

2019): 

𝛥(𝑉𝑂𝐷) = 𝑉𝑂𝐷𝑥𝑖,𝑡𝑗
− 𝑉𝑂𝐷𝑥𝑖,𝑡𝑗−1

 

The smoothing was performed in order to increase the robustness of the derivation and implemented 

using a Savitzky-Golay filter with a window size of 11 data points as suggested by Teubner et al. 

(2021).  

Thank you for the question regarding the VOD term. For the answer to this question, we would 

primarily like to refer you to Teubner et al. (2019) who provide a detailed derivation of the 

theoretical background of the VOD2GPP model where also the relationship between GPP and VOD, 

delta(VOD), and mdn(VOD) is discussed in detail. Here, we provide a summary of the VOD2GPP 

theory which is based on Teubner et al. (2019):  

For deriving the relationship between VOD and GPP we start with the relationship between GPP and 

ecosystem net uptake of carbon (𝑁𝑃𝑃) and autotrophic respiration (𝑅𝑎) (Bonan, 2008): 

𝐺𝑃𝑃 = 𝑅𝑎 + 𝑁𝑃𝑃,          (1) 

The VOD2GPP-model is essentially based on the assumption that 𝑅𝛼 can be expressed as differential 

equation (Ryan, 1990):  

𝑅𝛼 = 𝑎0  (
𝑑𝐵

𝑑𝑡
) + 𝑏0 𝐵,           (2) 

The terms 
𝑑𝐵

𝑑𝑡
  and 𝐵 denote biomass (𝐵) and temporal changes in biomass (

𝑑𝐵

𝑑𝑡
) and they are 

proportional to the two constituents of 𝑅𝛼, growth and maintenance respiration, respectively.  

NPP can be approximately written as:  

𝑁𝑃𝑃 ≈  (
𝑑𝐵

𝑑𝑡
) + 𝑙𝑜𝑠𝑠 𝑡𝑒𝑟𝑚𝑠,          (3) 

As the 𝑙𝑜𝑠𝑠 𝑡𝑒𝑟𝑚𝑠 only make a small fraction of NPP and are not directly reflected in VOD, they are 

neglected in the VOD2GPP-model (Teubner et al. 2019). By combining Eq. 1-3, we can express GPP 

via the following differential equation: 



𝐺𝑃𝑃 = 𝑁𝑃𝑃 + 𝑅𝛼  ≈ 𝑎 (
𝑑𝐵

𝑑𝑡
) + 𝑏 𝐵,         (4) 

Another assumption is that AGB can be expressed as a function of VOD:  

𝐴𝐺𝐵 =  𝑓(𝑉𝑂𝐷) = 𝑉𝑂�̃�          (5) 

Assuming that Biomass 𝐵 can be expressed as 𝐴𝐺𝐵, we can rewrite Eq. 4 and find the theoretical 

relationship between GPP and VOD: 

𝐺𝑃𝑃 = 𝑎 (
𝑑𝑉𝑂�̃�

𝑑𝑡
) + 𝑏 𝑉𝑂�̃� + 𝑐         (6) 

Eq. 2 shows that temporal changes in VOD (~
𝑑𝐵

𝑑𝑡
) are needed to represent growth respiration and 

NPP while the bulk VOD signal (~𝐵) is needed for representing the maintenance part of 𝑅𝛼. As 𝑅𝛼 

exhibits a high sensitivity to temperature (Ryan et al., 1997) we included 2m surface temperature in 

an interaction term with VOD (Teubner et al., 2021). 𝑀𝑑𝑛(𝑉𝑂𝐷) on the other hand corresponds 

approximately to the time-invariant offset c (Eq. 6) which is a static term and aids to convert VOD to 

GPP if the offset is not already represented in 𝑉𝑂𝐷. In other words, mdn(VOD) helps to make the 

VOD2GPP model more closely related to photosynthetically active parts of the vegetation by 

subtracting larger structural vegetation components (e.g., stems) which is also visible in Fig 1 c.   

 

Fig 1: Partial dependency plot for GPP and the input variables: VOD (a), 𝚫(𝑽𝑶𝑫) (b), mdn(VOD) (c), T2M (d). 

Dashed lines denote the 95% confidence interval. The interaction term between VOD and T2M is depicted as 3D 

surface which is projected bin-wise onto a 2D plane for visualization.  

Figure 4: it is atypical to show the reference data in the y-axis. It is confusing for the reader. I strongly 

suggest inverting the axis. In addition, the linear regression equation should be shown or at least the 

slope and the intercept should be given in addition to R, RMSE and bias. 

Thank you very much for making us aware of this. Having the reference data in the y-axis is indeed 

counter intuitive which is why we adapted our plots accordingly: 

We swapped the x/y-axis in each scatter plot where the reference data (i.e., FLUXNET GPP) was in 

the y-axis (Fig. 4, Fig. A1, Fig. A2, Fig. A3). We added the linear regression line and equation in Fig. 4 

and Fig. A2: 



 
Figure 4: GPP from FLUXNET plotted against GPP from VODCA2GPP, MODIS and FLUXCOM for the period 2002-

2016 with 8-daily sampling.  
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