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Abstract. Data on irrigation patterns and trends at field-level detail across broad extents is vital for assessing and managing 

limited water resources. Until recently, there has been a scarcity of comprehensive, consistent, and frequent irrigation maps 10 

for the U.S. Here we present the new Landsat-based Irrigation Dataset (LANID), which is comprised of 30-m resolution annual 

irrigation maps covering the conterminous U.S. (CONUS) for the period of 1997 – 2017.  The main dataset identifies the 

annual extent of irrigated croplands, pastureland, and hay for each year in the study period.  Derivative maps include layers on 

maximum irrigated extent, irrigation frequency and trends, and identification of formerly irrigated areas and intermittently 

irrigated lands. Temporal analysis reveals that 38.5 million hectares of croplands and pasture/hay have been irrigated, among 15 

which the yearly active area ranged from ~22.6 to 24.7 million hectares. The LANID products provide several improvements 

over other irrigation data including field-level details on irrigation change and frequency, an annual time step, and a collection 

of ~10,000 visually interpreted ground reference locations for the eastern U.S. where such data has been lacking.  Our maps 

demonstrated overall accuracy above 90 % across all years and regions, including in the more humid and challenging-to-map 

eastern U.S., marking a significant advancement over other products, whose accuracies ranged from 50 to 80 %. In terms of 20 

change detection, our maps yield per-pixel transition accuracy of 81 % and show good agreement with U.S. Department of 

Agriculture reports at both county and state levels. The described annual maps, derivative layers, and ground reference data 

provide users with unique opportunities to study local to nationwide trends, driving forces, and consequences of irrigation and 

encourage the further development and assessment of new approaches for improved mapping of irrigation especially in 

challenging areas like the eastern U.S. The annual LANID maps, derivative products, and ground reference data are available 25 

through https://doi.org/10.5281/zenodo.5548555 (Xie and Lark, 2021a). 

1 Introduction 

Irrigated agriculture is vital to global food security.  Irrigation helps stabilize farm production by enhancing land productivity 

that would otherwise be lower due to water limitations to plant growth.  In the U.S., approximately 14.6 percent of the total 

cropland is irrigated (USDA-NASS, 2019). Despite this relatively small proportion, irrigated agriculture plays a significantly 30 

https://doi.org/10.5281/zenodo.5
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disproportionate role in agriculture, accounting for major proportions of the economic value and environmental impacts; 

irrigated farms account for 54 percent of the total value of crop sales (USDA-NASS, 2021). However, agricultural irrigation 

uses over 40 percent of total freshwater withdrawals and 80 to 90 percent of consumptive water use in the U.S. (Dieter et al., 

2018; USDA, 2019). As a result, improved management and understanding of irrigation use and trends offers a key leverage 

point to improve the sustainability of U.S. agriculture.  35 

Knowledge of the spatial and temporal patterns of irrigation is a crucial first step to improve this understanding and 

management, and to help policymakers make decisions to support sustainable water use for crop production. However, the 

spatiotemporal patterns of irrigation and their impacts are not well understood, even for data-rich countries like the U.S. This 

lack of data and quality hampers a much larger body of research and applications, such as the modelling of land surface 

characteristics, climate and weather, and the growth of crops and other vegetation. For those applications that do incorporate 40 

irrigation modules, they are typically based on infrequently updated coarse-resolution global maps that cannot represent the 

precise locations of irrigated fields (Zaussinger et al., 2019; Ozdogan et al., 2010). As such, there is significant need for field-

relevant resolution maps of irrigated agricultural land and its temporal changes. The value of such detailed irrigation 

information is further magnified as society formulates strategies towards sustainable use of limited water resources from local 

to global scales under the context of increasing food and fuel demands, climate change and extremes, and population growth 45 

(Lark et al., 2015; Rosegrant et al., 2009; Seto et al., 2012; Seager et al., 2012; Mcdonald et al., 2011).  

Despite the growing importance of field-level irrigation information to a wide array of research questions and applications, 

currently available irrigation maps covering the entire or part of the Conterminous United States (CONUS) suffer from 

limitations related to spatial resolution, update frequency, geographical coverage, and mapping accuracy (Table 1). For 

example, the spatial resolution of all nationwide maps (except for LANID-US 2012) ranges from 250-m to kilometers, which 50 

is problematic for many local applications that require accurate field characterization (Wardlow and Callahan, 2014; Deines 

et al., 2017; Ozdogan and Gutman, 2008; Xie et al., 2019b; Brown and Pervez, 2014). Just as importantly, all these nationwide 

irrigation maps are infrequently updated and mapped at either a single date or at intervals of five years to decades (e.g., Shrestha 

et al. (2021), Brown and Pervez (2014) and Ozdogan and Gutman (2008)). Due to annual crop rotations, fallow practices, and 

climate variation, however, irrigation use and decision making are extremely dynamic.  Accordingly, more timely information 55 

is needed to understand changes in irrigation and the associated impacts including water use and availability.  

The recent years have witnessed an unprecedented development of land use/cover mapping owing to the increasing availability 

of high- to moderate-resolution remote sensing data and improvement of computing capacity (e.g., emergence of cloud 

computing platforms). While annual continental to global products of some land use/cover types have been created in a near 

operational manner (e.g., forest, water, and urban) (Hansen et al., 2013; Pekel et al., 2016; Gong et al., 2020), frequent fine-60 

scale irrigation mapping remains challenging due to the cryptic nature of the irrigation signal and the lack of ground reference 

data needed to train and validate machine learning and other classifiers.  The data gaps are particularly problematic in the 

midwestern and eastern U.S., where more abundant water resources have led to less concern and monitoring of irrigated land 

use.  
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Table 1. Currently available irrigation maps covering part to the entire CONUS. The boldfaced maps are compared with LANID in 65 
the Results section. (RF: random forest; RS: remote sensing) 

Products 
Spatial 
coverage Resolution Update frequency Methods/datasets Citations 

Global Irrigated Area 
Map (GIAM) 

Global 
10 km 
rescaled to 
1 km 

Single map, 2000 Spectral matching/RS data Thenkabail et al. (2009) 

Global Map of Irrigation 
Areas (GMIA) Global 10 km 

5-year, 1995, 2000, 
and 2005  

Spatial allocation/sub-
nation statistics & maps 

Siebert et al. (2005); 
Siebert et al. (2013) 

Synthesized map of global 
irrigated area 

Global 1 km Single map, 
covering 1999-2012 

Decision tree/RS, GMIA, 
& land cover maps 

Meier et al. (2018) 

Global Food-Support 
Analysis Data (GFSAD) Global 1 km Single map, 2010 

Spectral matching/RS time 
series Teluguntla et al. (2015) 

Global Land Cover Map 
(GlobCover) 

Global 300 m Single map, 2009 
Automatic classification/ 
RS time series 

Esa (2015) 

Global Land Cover 
Characteristics (GLCC) 

Global 1 km Single map, 1992 Hybrid compositing 
techniques/RS data 

Loveland et al. (2000) 

Global Rainfed, Irrigated 
and Paddy Croplands 
(GRIPC) 

Global 500 m Single map, 2005 Decision tree/RS, climate, 
& ag. inventory data 

Salmon et al. (2015) 

MODIS-based Irrigated 
Agriculture Dataset 
(MIrAD) 

CONUS 250 m 
5-year interval, 
2002-2017 

Thresholding/ag. Census 
& RS data 

Pervez and Brown 
(2010) 

MODIS-based Irrigation 
Fraction (MIF) CONUS 500 m Single map, 2001 

Decision tree/RS time 
series 

Ozdogan and Gutman 
(2008) 

USDA-NASS Irrigation 
Statistics 

U.S. County-
level 

5-year interval, 
1997-2017 

Surveys https://www.nass.usda.g
ov/AgCensus/index.php  

USGS-verified irrigated 
lands 

Western 
U.S. 

Field Vary across states, 
2002-2017 

Visual interpretation/RS & 
cropland inventory data 

Brandt et al. (2021) 

Landsat-based Irrigation 
Dataset 2012 (LANID 
2012) 

CONUS 30-m Single map, circa 
2012 

RF/RS, climate, & envi 
data 

Xie et al. (2019b) 

Annual Irrigation Maps 
– High Plain Aquifer 
(AIM-HPA) 

High 
Plains 
Aquifer 

30-m Annual, 1984-2017 
RF/RS, climate, & envi 
data 

Deines et al. (2019) 

IrrMapper 
Western 
CONUS 

30-m Annual, 1986-2018 
RF/RS, climate, & envi 
data 

Ketchum et al. (2020) 

 

This paper presents the newly created annual 30-m resolution irrigation maps and their comparisons with existing products. 

The maps (named LANID – Landsat-based Irrigation Dataset) cover CONUS for the years between 1997 and 2017, which 

were built upon a past effort of irrigation mapping for the year 2012 (Xie et al., 2019b), with key improvements in training 70 

sample generation, classification design, and accuracy assessment (Xie and Lark, 2021b). The maps presented here also include 

a newly mapped component – irrigated pasture and hay – that was not explicitly included in the preliminary version presented 

in Xie and Lark (2021b). In addition to the LANID maps, we present the collected ground truth data, which is particularly 

important for irrigation mapping efforts that require such a dataset to train or validate machine learning algorithms, especially 

https://www.nass.usda.gov/AgCensus/index.php
https://www.nass.usda.gov/AgCensus/index.php
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where it has not been available in the humid eastern U.S. Additional products include maps of irrigation frequency, maximum 75 

extent, irrigation trends, formerly and intermittent irrigated areas.  In the following sections, we briefly review the methods 

used to generate these data and then present our maps and their comparisons with existing products that cover the entire U.S.  

2 Methods 

Our new LANID product contains 21 annual maps that characterize irrigation status of croplands, pasture, and hay across 

CONUS for the years from 1997 to 2017. We first created annual maps of irrigated croplands (i.e., LANID_V1) using a 80 

supervised decision tree classification based on a novel training sample generation method and satellite-derived and 

environmental variables (see details in Xie and Lark (2021b)). Because LANID_V1 does not explicitly include irrigated 

pasture and hay, which is an important component of total irrigation particularly in the western U.S., we addressed this 

limitation by applying the same machine learning method but using different mask layers and areal reference for training 

sample generation and classification (Fig. 1). The maximum extent of pasture and hay for the west was derived from the USGS 85 

National Land Cover Database (NLCD) and USDA Cropland Data Layer (CDL), identifying pixels that had been classified as 

pasture/hay in NLCD or non-alfalfa hay in CDL within any year between 1992 and 2017. To reduce competition between this 

pasture and hay mask and the one used for irrigated cropland mapping, we removed those pixels that had been classified as 

irrigated cropland in LANID_V1.  The county-level areal reference of irrigated pasture and hay was calculated as the deficit 

of LANID_V1-based irrigated cropland area compared to USDA NASS reported area, which includes all types of irrigated 90 

agriculture.  

A key element of the LANID methodology is a novel way to generate training samples covering the entire country. To account 

for climate difference and mapping complexity, CONUS was divided into western and eastern states based on a climatic 

transition near the 100th meridian and training data were created corresponding to each region (Fig. 2). We used an automated 

method to generate training samples for the western states. For the years when USDA-NASS county-level irrigation statistics 95 

are available (i.e., 1997, 2002, 2007, 2012, and 2017), we adopted the thresholding method proposed by Xie et al. (2019b) to 

automate training sample generation, which assumed that irrigated lands appear greener than those that are rainfed. For non-

census years, optimal thresholds were estimated based on relationships of crop greenness between non-census and census 

years. The calibrated and estimated thresholds were used to segment yearly maximum Landsat-based greenness index (GI) 

and enhanced vegetation index (EVI) to derive two intermediate irrigation maps per year, which were overlaid to identify 100 

consistent classification as potential training samples. As a result, the generated potential training samples were evenly 

distributed across the western CONUS on a yearly basis.  

For the relatively humid eastern states, we visually collected samples through interpretation of multi-temporal very high-

resolution images, street views, and time-series Landsat data on Google Earth and Google Earth Engine, based on the 

appearance of irrigation infrastructure such as wells, pipes, center pivot towers, and circular field patterns. Detailed methods 105 

of sample generation are described in Xie and Lark (2021b). 
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Figure 1: Flowchart of mapping irrigated pasture and hay in western U.S. (a) generating the maximum extent of pasture/hay; (b) 
creating training samples, and (c) classification. Cropland mask refers to the maximum extent of non-pasture/hay cultivated land 
created in Xie and Lark (2021). 110 

The predictors generally consist of two categories – satellite data and environmental variables (Xie and Lark, 2021b). The 

primary satellite-derived variables were calculated from all available Landsat images within each year, including yearly 

maximum, median, and range composites of GI, EVI, and normalized difference water index (NDWI). Annual and late-season 

(May 1 to October 15) sum of MODIS-derived indices (i.e., EVI and land surface temperature) were also used as additional 

variables. Environmental variables included annual and late-season sum of irrigation-relevant climate variables (i.e., 115 

precipitation, temperature, partial pressure of water vapor), elevation and slope, soil water content, and distance to major rivers 

(Deines et al., 2017; Deines et al., 2019; Xu et al., 2019; Xie et al., 2019b). Altogether, there were 32 input features (25 for the 

years 1997-2000 when MODIS products were not available).  

Classification was implemented on Google Earth Engine, a cloud-computing platform that enables rapid accessing and 

processing of vast numbers of satellite images, climate data, and geophysical products (Gorelick et al. 2017). The classification 120 

was conducted annually per county using the widely used random forest classifier (Breiman 2001). The county-level 

classifications were mosaiced to create an initial time-series nationwide irrigation map, followed by logic and spatial filtering 

to remove possible false classification (see details in Xie and Lark (2021b)). 
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Figure 2: Map evaluation and comparison design and the distribution of test sample locations across the eastern CONUS. The NKOT 125 
region refers to Nebraska, Kansas, Oklahoma, and Texas, which covers the majority of the High Plains Aquifer. The red solid line 
represents the West-East division for classification only. 

3 Map evaluation and comparison design 

Comprehensive assessment of nationwide irrigation maps is not possible without adequate ground truth data, especially for the 

eastern U.S. Therefore, accuracy of many published irrigation maps covering CONUS have been poorly evaluated. We 130 

compared our LANID maps to existing nationwide irrigation-specific maps, including two binary maps (i.e., MIrAD and 

GIAM) and two maps of irrigation fraction (i.e., MIF and GMIA areal percentage equipped for irrigation) (Table 1). Other 

global maps that include irrigation-related classes, such as Global Land Cover Map and GFSAD, are not shown because they 

are not irrigation-specific and substantially under-represent irrigation extent across CONUS. In addition to coarser resolution 

nationwide maps, we also compared our maps with recently available 30-m resolution maps for the High Plain Aquifers and 135 

the eleven western states, i.e., AIM-HPA and IrrMapper, respectively.  

Map evaluation and comparison were conducted by using test samples from two sources that cover the majority area of CONUS 

– a published reference dataset from Ketchum et al. (2020) and an additional independent dataset that we collected for this 

study. The test samples from Ketchum et al. (2020) were collected through visual interpretation of field parcels based on 

irrigation clues from VHR images and crop greenness. The dataset has approximately 100,000 sample points, covering 11 140 
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western states (Fig. 2) for the whole study period of 1997-2017. Our independently collected validation samples 

(approximately 10,000 locations) covered the remaining areas except for Arkansas, Louisiana, and Mississippi. Lastly, we 

evaluated LANID’s capability to detect irrigation change from pixel to state scales. 

4 Results 

4.1 Irrigation samples across the eastern U.S. 145 

To validate our maps, we collected approximately 10,000 irrigation and rainfed samples for the east (~5,000 for each category) 

(Fig. 2). Each irrigation sample records a center pivot location and the presence of irrigation infrastructure during 1997-2017 

(Fig. 3). In addition, we measured the radius of each center pivot irrigation system, i.e., the distance from its center to its field 

boundary. Note that the length of corner arms (designed for corner irrigation) was not measured (e.g., Field #1 in Fig. 3). 

Stable non-irrigation samples record the locations with clear evidence of no irrigation infrastructure during the entire mapping 150 

period.  The average pivot radius for all samples collected in the Eastern CONUS was 330 meters, but distributed bimodally 

around approximately 200 and 400 meters, which correspond respectively to broader rectangular circumscribed crop fields of 

40 and 160 acres. 

 
Figure 3: Demonstration of center-pivot irrigation field collection using time-series very high-resolution (© Google Earth Pro 2021) 155 
and Landsat images. GI: greenness index. 
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4.2 Irrigation trends and changes 

Our LANID reveals a steady increase of irrigated area throughout CONUS, although there are some years with exceptional, 

lower values – for example, 2012 and 2002, years in which there were significant drought (Fig. 4) (Otkin et al., 2018). Overall, 

irrigation area has increased by around 1.5 million hectares (Mha) during the period, from ~23 Mha before 2000 to ~24.5 Mha 160 

in 2016 with an average annual increase of ~80,000 ha. Consistent with earlier findings, the Central Valley of California, the 

High Plains portion of Texas, South-Central Florida, as well as select western states (e.g., Utah, Colorado, Idaho, and 

Wyoming) experienced substantial irrigation loss during the period (per-state plots in Fig. 4). In contrast, irrigation increased 

in states across the Midwest (including Nebraska, North Dakota, and South Dakota), the Mississippi Alluvial Plain, and the 

East Coast. The largest gains occurred in Nebraska, Missouri, Michigan, Illinois, Arkansas, Mississippi, and Indiana, where 165 

irrigated area grew by over 100,000 ha per state.  

 
Figure 4: LANID-derived annual irrigation area by state, 1997-2017. The red line shows the East-West division in this study based 
on a climatic transition near the 100th meridian. Annual irrigation area per state is provided in Table A1. 

Our LANID-derived irrigation changes agree well with USDA-NASS Census-reported values (with R2 from 0.81 to 0.96), 170 

indicating that LANID and the USDA-NASS data are consistent in their detection of irrigation change at both county and state 

scales. Relative to the NASS data, however, our LANID maps predict slightly greater irrigated extent at the national level and 

slightly fewer net changes at both state and county levels, especially for the eastern CONUS (Fig. 5). 

Aggregating the annual LANID maps to a finer but still intermediate 6-km resolution can reveal more localized trends than 

state- or county-level data allow, while also accommodating for the field-level stochasticity and variations that often occur 175 
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within a single farm or shared water source (Fig. 6).  Such a resolution is particularly helpful for identifying small pockets of 

change with countervailing trends that would otherwise be masked or undetected.  For example, we found outlier locations of 

irrigation loss in the Mississippi Alluvial Plain and of irrigation gain in the central and southern High Plains Aquifer. 

 
Figure 5: LANID-derived irrigation changes vs. USDA-NASS reported area at the state (a) and county (b) scale. Irrigation change 180 
was calculated as the difference between mean area of years 2012 and 2017 and that of 1997 and 2002 (i.e., mean(irArea2012 + 
irArea2017) – mean(irArea1997 + irArea2002) where irAreayr refers to irrigation area of year yr). The USDA-NASS reported values of 
1997 is shown to represent irrigation area at the starting point of the study period. 
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Figure 6: LANID-derived irrigation gain from 1998-2007 to 2008-2017 at the 6km×6km scale. Per-grid value is calculated as the 185 
difference between mean irrigation area of 1998-2007 and that of 2008-2017 (i.e., meanIrArea2008-2017 - meanIrArea1998-2007, where 
irArea is LANID-aggregated irrigation area within a 6km×6km grid). Grids with absolute change < 2.5 % of are shown as 
background. 

Ultimately, when applied at the highest resolution, our LANID maps can be used to reliably characterize irrigation dynamics 

at sub-field to field level with overall accuracy and Kappa index of 81 % and 0.62, respectively (Table 2). For instance, sub-190 

field to field level expansions, losses, and interannual variations of irrigation that are detectable from LANID can be clearly 

observed in north Texas (Fig. 7a). Although such a level of change detection in more humid areas is not as effective as more 

arid states due to a weaker contrast between irrigated and rainfed fields, LANID still provides a reasonable and accurate 

characterization of irrigation change through time there as well, as shown in the example in Michigan (Fig. 7b). 

 195 
Figure 7: Demonstration of LANID-derived field-level irrigation frequency change for the northern Texas (a), and southwestern 
Michigan (b), respectively (highlighted in Fig. 6). Frequency change refers to the difference of number of years irrigated between 
1998-2007 and that of between 2008-2017 (i.e., irFreq2008-2017 - irFreq1998-2007, where irFreq is the number of years irrigated). 
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Table 2. Accuracy of change detection using LANID maps. Change is defined as frequency difference between the two sub-periods 
(i.e., 1998-2007 and 2008-2017) greater than 3 and the stable class refers to the value smaller or equaling to 3. Note non-agriculture 200 
is excluded from the stable class.  

  Reference  

  Stable Change User’s accuracy 

Classified 
Stable 187 63 75 % 

Change 13 137 91 % 
 Producer’s accuracy 94 % 69 %  

 Overall accuracy: 81 %; Kappa: 0.62 

4.3 Irrigated pasture and hay 

This study provides the first complete mapping and delineation of irrigated pasture and hay for the western U.S. (Fig. 8). In 

this region, forage and fodder crops provide valuable feed for livestock and irrigation is often necessary to cultivate certain 

species or attain viable yields.  This contrasts with pasture and hay in the eastern states, where annual precipitation and soil 205 

moisture is typically sufficient for robust production of grass-based forage and fodder.  Areas of irrigated pasture and hay have 

a pattern of land use distinct from that of irrigated croplands, as well as unique implications for water use and the environment. 
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Figure 8: Distribution of irrigated pasture and hay derived from LANID_V2 (presented in this study) in the western CONUS. The 
overview display shows irrigation frequency (i.e., the number of years a pixel is irrigated during 1997-2017). The highlighted areas 210 
under red rectangle represent areas of intensively irrigated pasture and hay that were not completely mapped in LANID_V1. (a) 
and (b) are example local views for western Wyoming and northeastern Nevada, respectively. 

Compared to the first version of LANID, which did not explicitly include irrigated pasture/hay, we found an average of 0.34 

Mha more irrigated land (i.e., more irrigated pasture and hay included in LANID_V2 compared to LANID_V1) for the years 

2013 to 2017, and a similarly larger amount (0.36 Mha) since the start of the study period.  This increase in irrigated extent is 215 

lower than that of the USDA Census of Agriculture’s estimate of 1 Mha of irrigated pasture – the only other spatial (but coarse) 

estimate of such irrigated land use (Sanderson et al., 2012).  The difference between our annual estimates and that of the 

Census data likely reflects the fact that a large portion of irrigated pasture and hay (especially alfalfa) had already been mapped 

in the first version of LANID. To confirm this, we further calculated a direct estimate of only irrigated pasture/hay as all 

irrigated pixels classified as pasture or hay in the NLCD or CDL and estimated an average area of 1.39 Mha across the years 220 

2008, 2011, 2013, and 2016. This estimate is 0.39 Mha higher than the 1 Mha reported by the Agricultural Census but includes 

both pasture and hay, whereas the Census estimate is for pasture only. 

4.4 Maximum extent, frequency, and formerly and intermittent irrigated land 

Across all types of irrigation – including cultivated cropland and pasture and hay – a total of 38.5 Mha of land were irrigated 

at least one time between 1997 and 2017, representing the maximum irrigated extent in the U.S. for our study period (Fig. 9a 225 

and Table 3).  Of these areas, just 24.2 Mha (62.8 %) were irrigated in 2017, and this annual utilization percentage ranged 

from 58.8 to 64.0 % over the full study period.  Across all pixels within the maximum irrigated extent, the mean annual 

irrigated frequency was 12.9 out of 21 years (Fig. 9b).  The distribution of irrigated frequency suggests many areas consist of 

stable, persistent irrigation, but that there also exists a substantial amount of land with intermittent irrigation use.  Those pixels 

with the very lowest irrigation frequency likely reflect locations where irrigation ceased very early in the study period or was 230 

first initiated very late in the study period, and/or areas of potential misclassification. 

Looking at the subset of lands that are no longer irrigated, we found 4 Mha of formerly irrigated land (i.e., not irrigated anytime 

in the most recent 3 years, 2015-2017, but that were irrigated at least 3 times prior) (Table 3).  This formerly irrigated land is 

primarily distributed across the western states (as showed in Fig. 6), and may reflect areas where insufficient water availability 

has limited the ongoing use, or where salination of soils, socioeconomic drivers, or other superseding factors have resulted in 235 

a cessation of irrigated agriculture.  Of these formerly irrigated areas, 71.6 % remain in crop production under rainfed 

conditions, primarily planted to corn (13.2 %), soybeans (12.3 %), and spring/winter wheat (12.2 %) as of 2017.  The remaining 

locations have either been abandoned from cultivated crop production altogether (26.3 %) or converted to urban use (2.1 %).  

Those areas for which an irrigated crop is no longer viable may represent an opportunity for farmers to transition to grassland-

based agriculture (Deines et al., 2020), for example via the introduction of pasture for livestock grazing or the harvesting of 240 

biomass for use as forage or cellulosic bioenergy feedstock (Robertson et al., 2017).  As climate change and decreasing 

freshwater availability continue to strain water resources, the total area of formerly irrigated lands is likely to increase, thereby 
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creating even further opportunity and greater need for alternative, drought resistant agricultural opportunities, such as those 

afforded by perennial feedstock production.  

 245 
Figure 9: The maximum irrigation extent (lands that have been irrigated at least once) and irrigation frequency (the number of 
irrigated years) across CONUS for the period 1997-2017. The inset in (b) shows the area of each frequency value. 

In addition to those locations where irrigation has ceased completely, we observed a substantial amount of land where irrigation 

remained active in the most recent years but where its use across time was discontinuous.  For example, we found 25.5 Mha 

of land across CONUS that had been irrigated spanning the whole study period (i.e., irrigated at least once for both 1997-1999 250 

and 2015-2017), where over half of that subset (i.e., 13.5 Mha) could be best described as intermittently irrigated (frequency 

≤ 18) (Table 3).  As opposed to those locations with continuous annual irrigation use or where irrigation has ceased altogether, 

these intermittently irrigated lands appear to remain in irrigated agriculture today yet rely on such irrigation use just 67 % 

(median value) of the time across the 21-year study period.  While further investigation is needed to better characterize these 

areas of partial irrigation use over time, it may be possible that they represent locations where irrigation is only supplemental 255 

(e.g., used only in dry years or when needed), shared among a single water source but rotated among multiple nearby fields, 

or used only in years with sufficient water availability or water application rights and allocations. Similar to formerly irrigated 

lands, these locations of intermittent irrigation application may present areas of opportunity or economic need for alternative, 

rainfed agriculture in non-irrigated years.  In such cases, drought tolerant annual crops like forage or energy sorghum could 

potentially provide economic opportunities for producers and limited further strain on local hydrology (Enciso et al., 2015; 260 

Mullet et al., 2014; Cui et al., 2018). 
Table 3. Statistics of irrigation area (in million hectares) across CONUS for the period 1997-2017. 

 Area Definition 

Average annual area 23.7 Mean annual irrigation area 

Maximum area 38.5 Irrigated at least once 

Formerly irrigated 4.0 Not irrigated anytime in 2015-2017, but irrigated at least 3 times prior 
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Long-term 

irrigation 

Intermittently 

irrigated 
13.5 

Irrigated at least once for both 1997-1999 and 2015-2017, and irrigation 

frequency ≤ 18 

Continuously 

irrigated 
12.0 

Irrigated at least once for both 1997-1999 and 2015-2017, and irrigation 

frequency > 18 

4.5 Comparisons with existing products 

Figure 10 presents the nationwide view of a single year LANID as well as other irrigation-specific products. The 30-m LANID 

2005 map was aggregated to 10-km resolution (Fig. 10b) for comparing with other coarser resolution maps. Across broad 265 

scales, all maps show similar irrigation hotspots of the High Plains Aquifer, the Central Valley Aquifer, the Mississippi Alluvial 

Plain, the Snake River Aquifer, and the East Coast. While it might be reasonable to conclude that all these coarse resolution 

maps can capture similar irrigation patterns at the national scale, regional views emphasize the details that are uniquely 

captured by LANID. For instance, LANID identifies fewer irrigated pixels at the eastern Columbia Plateau Aquifer than other 

maps, especially compared to MIF and GIAM (Fig. 11). In another example of the High Plains Aquifer, GIAM and MIF 270 

substantially overestimate irrigation extent in the western and central Kansas compared to both LANID and MIrAD (Fig. 12). 

Among all comparison products, MIrAD provides the most similarity of irrigation patterns as LANID in the arid to semi-arid 

West and Midwest.  

In more humid areas like the upper Midwest, our LANID map captures patterns that are considerably misclassified by other 

maps (Fig. 13). For example, GIAM and MIF omit the majority of irrigated fields in the region; MIrAD shows a clear 275 

administrative boundary effect and near random distribution of irrigation within each county. At 10 km resolution, GMIA 

provides similar patterns as LANID but exaggerates the overall irrigation extent.  

Locally, LANID shows a substantial improvement of spatial detail compared to other maps. For example, boundaries of center 

pivot and rectangular fields are clearly recognizable in LANID, while they are obscured even on the 250 m resolution MIrAD 

(insets (h) and (j) of Figs. 11 and 12). It is also evident that LANID shows comparable spatial details as other regional maps 280 

IrrMapper and AIM-HPA (inset (i) of Figs. 11 and 12) while still offering consistent and comprehensive coverage across the 

CONUS. 
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Figure 10: Nationwide views of different irrigation mapping products. LANID 2005 is aggregated to 1 km (a) and 10 km (d) 
resolution for comparison purpose. The LANID-derived irrigation frequency refers to the number of years a pixel is classified as 285 
“irrigated”. 
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Figure 11: Product comparison at the Columbia Plateau Aquifer in northern Oregon and southern Washington. In addition to the 
original 30-m LANID (a), the map is aggregated to 1 km and 10 km resolution for displays (d) and (g). (h)-(i) show the location 
highlighted in (a) (red rectangle). 290 
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Figure 12: Product comparison at the High Plains Aquifer. In addition to the original 30-m LANID (a), the map is aggregated to 1 
km and 10 km resolution for display (d) and (g). (h)-(i) show the location highlighted in (a) (red rectangle). 
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Figure 13: Product comparison in central Minnesota. In addition to the original 30-m LANID (a), the map is aggregated to 1 km 295 
and 10 km resolution for display (d) and (g). (h)-(i) show the location highlighted in (a) (red rectangle). 

At the state level, our LANID estimates are consistent with USDA-NASS reported data (Fig. 14b), although the agreement is 

weaker than that of products like MIrAD and GMIA, which both rely directly and exclusively on census data as areal reference 

(not shown in the figure). In contrast, MIF underestimates irrigated area at the state level (Fig. 14c), whereas GIAM 

substantially overestimates irrigation extent especially for the states with reported area greater than one million hectares (Fig. 300 

14d). 
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Figure 14: Comparisons of irrigated area between products at the nation (a) and state (b-d) level. (a) LANID-derived nationwide 
irrigation trend (dashed pink line) and irrigated area of other products; (b) USDA-NASS reported vs. LANID-estimated irrigation 
area for five census years; (c) USDA-NASS reported (2002) vs. MODIS-estimated (2001) irrigated area (adapted from Ozdogan and 305 
Gutman (2008)); (d) USDA-NASS reported (2002) vs. GIAM-estimated (2000) irrigated area. Note the GIAM-estimated nationwide 
irrigated area (39 million ha) is not shown in (a) due to its exceptionally high value. State-level comparisons between USDA-NASS 
and MIrAD-US and GMIA are not demonstrated because both products used census data as reference. 
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The results of pixel-based assessment further reveal the advantages of LANID over other nationwide maps (Table 4). We find 310 

that the overall accuracy is generally high for the NKOT region (i.e., Nebraska, Kansas, Oklahoma, and Texas) across all 

nationwide maps except for GIAM, with mean accuracy ranging from 78.9 % (MIF) to over 95 % (the LANID maps). 

Similarly, all maps show relatively high overall accuracy for the 11 western states, with values ranging from 82.6 % of MIF 

to 94.2 % of MIrAD. Despite these maps’ reasonable accuracy in the west and even Midwest, they incorrectly assign a 

considerable number of rainfed fields as irrigated possibly due to coarse resolution and their difficulty separating them in some 315 

areas such as the Columbia Plateau Aquifer (Fig. 11). For example, GIAM captures many low-density pixels in the west (Fig. 

15c); MIF overestimates the locations with irrigation fraction between 0 and 60 % (Fig. 15b); MIrAD maps irrigated pixels 

with median fraction around 80 % (Fig. 15a). 

 
Figure 15: Box plots showing irrigation fraction mapped in each product using LANID as reference. The western and eastern 320 
CONUS (separated by red line in Fig. 2) are shown as brown and green, respectively. The 30-m LANID maps were aggregated as 
irrigation fraction to match the spatial resolution of each product (e.g., 250-m for MIrAD). For binary maps MIrAD and GIAM, 
five thousand irrigated samples were stratified for both west and east; fifty samples were selected for each irrigation fraction from 
1 to 100 % (with increment of 1 %) in MIF and GMIA. The numbers on the horizontal axes of (b) and (d) refer to the maximum 
value of each bin. 325 
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In the eastern U.S., our LANID maps stand out with overall accuracy of 94.4 % – on par with their performance in the western 

U.S. – whereas other maps show accuracy below 60 %. The extremely low accuracy of MIrAD, MIF, and GIAM in the east is 

attributable to their missing of most irrigated cropland as well as frequent false identification of rainfed cropland as irrigated 

(see Fig. 13 as an example), as characterized by omission error rates over 80 % and commission error rates over 45 % for the 

“irrigated” and “non-irrigated” class, respectively. As a result, MIrAD maps irrigated pixels in the east that have a median 330 

irrigated fraction of about 50 % according to LANID (Fig. 15a); GIAM misclassifies a substantial number of low-density 

pixels (Fig. 15c); MIF substantially overestimates the locations with irrigation fraction beyond 30 % (Fig. 15b). 

We also compared our maps to AIM-HPA (i.e., Annual Irrigation Maps – High Plains Aquifer) (Deines et al., 2019), a dataset 

with the same spatial and temporal resolution as LANID but covering only the High Plains Aquifer. In this region, LANID 

performs comparably to the HPA-specific dataset, with overall accuracy of 95.9 % vs. 93.2 %, respectively, and Kappa values 335 

of 0.89 vs. 0.82.  

For a broader 11 western state region, our LANID maps show 92.8 % congruence (Kappa of 0.84) with the reference data from 

IrrMapper (Ketchum et al., 2020) compared to a 99.1 % (Kappa of 0.98) congruence of the IrrMapper product with its reference 

data. Such results follow in part from the methods of reference data utilization, as IrrMapper used 60 percent of the validation 

data used in our comparison for its classifier training.  Further differences between LANID and IrrMapper may stem from 340 

differences in sampled data and irrigated class definition.  For example, the IrrMapper point-based irrigation samples were 

stratified from verified fields that were digitized in years different from the time of irrigation verification, such that they likely 

capture permanently irrigated croplands well but may potentially include fields that are partially irrigated or fallowed in any 

given year. In addition, IrrMapper’s reference irrigation samples appear to include both irrigated croplands and other grass-

like lands, such as irrigated turfgrass and groundwater- or fluvial-subsidized grasslands and wetlands.  This broader and more 345 

variable pool of reference data may thus help explain additional observed differences, such as occasionally less distinct field 

boundaries in IrrMapper as compared with LANID and GI (e.g., lefthand portions of Fig. 11h-k) as well as the slightly higher 

apparent accuracy of MIrAD (which relies only on vegetation greenness) compared to LANID in the west when assessed 

against the IrrMapper reference data (Table 4).  Thus, while overall performances of LANID and other datasets are similar in 

overlapping regions like the HPA and the western states, differences in each product’s intent and class specificity will likely 350 

dictate preferences for specific user applications. 
Table 4. Confusion table of pixel-wise accuracy assessment. The overall accuracy, omission error (1 – Producer’s accuracy), and 
commission error (1 – User’s accuracy) are in percent. Accuracy values are averaged if multiple-year assessment was conducted. 
Parenthetical numbers represent the standard deviation. 

Maps Region Year Kappa Overall 
accuracy 

Omission error Commission error Sample 
size 

Irrigation 
sample Irrigated Non-irr Irrigated Non-irr 

LANID 

Westa 1997-2017 0.84 (0.07) 92.8 (3.5) 11.4 (6.9) 3.6 (1.0) 6.1 (4.9) 10.7 (8.9) 4433 2284 

NKOT 1997-2017 0.93 (0.02) 96.6 (0.8) 5.9 (1.4) 1.0 (0.2) 1.0 (0.2) 5.6 (1.3) 9994 5002 

East 1997-2017 0.89 (0.01) 94.4 (0.6) 10.7 (1.2) 0.5 (0.1) 0.6 (0.1) 9.7 (1.0) 10000 5000 

HPAb 1997-2017 0.89 (0.03) 95.9 (1.1) 4.7 (1.4) 2.3 (0.6) 0.7 (0.2) 13.0 (3.3) 5890 4479 
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MIrAD 

Westa 2002, 2007 0.84 (0.02) 94.2 (0.8) 10.3 (2.4) 4.3 (0.9) 11.2 (5.4) 4.3 (2.1) 3102 987 

NKOT 2002, 2007, 
2012, 2017 0.76 (0.05) 87.8 (2.5) 18.0 (4.4) 6.3 (0.7) 7.1 (1.0) 16.2 (3.4) 9967 5014 

East 2002, 2007, 
2012, 2017 0.16 (0.01) 58.0 (0.7) 82.3 (1.1) 1.7 (0.6) 8.7 (2.9) 45.6 (0.4) 10000 5000 

MIFc 

Westa 2001 0.49 82.6 47.8 7.4 29.9 14.6 3002 747 

NKOT 2001 0.58 78.9 27.2 14.9 17.0 24.3 9985 5001 

East 2001 0.12 55.9 83.6 4.6 21.9 46.7 10000 5000 

GIAM 

Westa 2000 0.72 87.6 23.5 6.2 12.6 12.3 3436 1234 

NKOT 2000 0.25 62.6 57.2 17.5 29.0 41.0 10040 5023 

Easta 2000 0.04 52.2 93.5 2.0 23.6 48.8 10000 5000 

AIM-HPA 
HPAb 1997-2017 0.82 (0.04) 93.2 (1.8) 6.9 (2.4) 6.4 (3.4) 2.1 (1.1) 18.6 (4.8) 5890 4479 

HPAd 1997-2017 - 92.7 (1.5) 14.0 (4.5) 3.1 (1.7) 8.5 (2.1) 8.5 (2.1) 1316 519 

IrrMapper Westa 1997-2017 0.98 (0.01) 99.1 (0.3) 0.3 (0.2) 1.4 (0.3) 2.4 (1.9) 0.3 (0.2) 4433 2284 

LANID2012 
NKOT 2012 0.84 92.0 10.1 5.8 6.0 9.8 9938 5002 

East 2012 0.49 74.4 49.4 1.9 3.7 33.5 10000 5000 
a Validation samples from Ketchum et al. (2020). Test samples for the years 1999, 2004, 2005, 2012, 2015, and 2017 were not used because 355 
of limited irrigated samples. b Validation samples from this study. c Irrigated pixels were set as fraction greater than 20 %. d Accuracy 
assessment reported by Deines et al. (2019). NKOT: Nebraska, Kansas, Oklahoma, and Texas. 

5 Discussion 

5.1 Uncertainty, limitations, and future improvements 

Both qualitative and quantitative assessments show extensive improvements of LANID compared to other currently available 360 

nationwide maps in terms of spatial detail and temporal frequency. Despite the advances, caution is still needed especially 

when applying the dataset at the scale of individual fields in the eastern U.S. For example, mapping accuracy in the MAP 

region is uncertain due to the absence of reference data and the difficulty of collecting aerial ground truth in the area. In 

addition, map accuracy in the humid East is slightly lower than in the arid and semi-arid West. The quality of maps might also 

vary over time due to availability of clear Landsat observations. For instance, fewer Landsat images in 2012 constrained map 365 

quality and scan-off effects of the ETM+ sensor might remain in some areas.  

We took several post-classification steps to improve mapping accuracy, which also introduces limitations to LANID. First, 

our minimum mapping unit of 5 acres (i.e., 23 Landsat pixels) improved mapping confidence but also excluded smaller 

irrigated fields, such as fragmented irrigated vegetable fields often found in suburban and peri-urban areas. Second, the 

assumption that fields equipped with irrigation systems tend to be cropped and irrigated frequently could have incorrectly 370 

masked out some irrigated fields historically under long-term and frequent fallow (e.g., irrigated – long-term fallow – irrigated). 

Lastly, our current version of LANID covers only the period of 1997 to 2017, which might be problematic for users who want 
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maps outside the study period. However, we hope to regularly update the existing dataset in the future to include the most 

recent years of available imagery, and, if able, extend the time series back in time through the duration of the Landsat record. 

Given these uncertainties and limitations, future generations of LANID could benefit from the following improvements. First, 375 

we anticipate using our temporally extendable methodology to routinely update LANID, such that coverage could extend prior 

to 1997 and up to the most recent year.  Efforts could also be made to enhance spatial detail (e.g., 10 m resolution) and mapping 

accuracy, particularly in the humid eastern U.S. where contrasts between irrigated and rainfed crop are obscure. This is 

practical for recent years when both the revisit frequency and spatial resolution of satellite observations are greatly improved.  

Lastly, implementation of an irrigation-specific change detection algorithm could help improve the identification and 380 

consistency of monitoring variations in irrigation over time.  

5.2. Potential applications 

Our annual 30-m resolution nationwide LANID maps may be valuable to local, state, and regional water governance bodies, 

agribusinesses, and the research community for a variety of applications including water use estimation, risk assessment, use 

as model input, and more. 385 

Our LANID maps could benefit water and agricultural managers by providing insights into irrigation changes (e.g., expansion 

and abandonment) at geographic and temporal scales relevant to decision-making. Our field-scale, wall-to-wall data will enable 

local and regional water management organizations, which may not otherwise have sufficient data or resources, to make better 

decisions that influence regional water availability. For example, state-level water managers and engineers who need to plan 

how much water to allocate for agriculture could utilize our irrigation distribution and change information to estimate demand. 390 

Policy makers may also use LANID to navigate future decision making and to evaluate federal agricultural, bioenergy, and 

conservation policies (Mccarthy et al., 2020; Lark, 2020).  

Our dataset may also be useful for agribusinesses and entities across agricultural supply chains. For example, our maps could 

be used by companies that seek to reduce risk from water scarcity within their supply chains or lower the water footprint of 

their sourced products (Brauman et al., 2020). Additional applications may include business decision-making and financial 395 

investment (Turral et al., 2010), precise field-level water use estimation and solutions (Sadler et al. 2005), and crop yield 

prediction and its water resilience (Troy et al., 2015).  

A key informant and collaborator in the development of our LANID maps has been the USGS, and the produced outputs may 

help support several ongoing USGS efforts, such as the National Water Census's efforts to provide water budgets at the 

watershed level (USGS, 2020c), the National Water-Use Information Program (NWUIP) dissemination of water use data 400 

(USGS, 2020a), and the Water Availability and Use Science Program (WAUSP) assessments of regional groundwater 

availability (USGS, 2020b). The research community within USGS also has high priority goals to improve quantification of 

crop consumptive water use and project future water use. Our improved estimates of irrigation location, extent, and dynamics 

could help refine evapotranspiration estimates of irrigated croplands, thereby improving estimates of agricultural water use 
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from field to aquifer scale and further supporting the ongoing expansion of detailed water use estimates across the continental 405 

U.S. (Senay et al., 2016; Senay et al., 2017).  

We also hope that our dataset will serve several needs in the broader research community, especially for those who study 

hydrology, agriculture, and the environment from local to nationwide scales. For example, our 30-m resolution irrigation data 

could be used to potentially improve the classification accuracy of or add irrigation status to existing USGS and USDA 

landcover maps (Brown et al., 2020; Lark et al., 2021; Wickham et al., 2021), investigate the relationships among irrigation 410 

changes and cropland expansion and abandonment (Lark et al., 2020; Yin et al., 2020), or explore the competition and 

biophysical interactions between irrigated agriculture and urban expansion (Xie et al., 2019a; Van Vliet, 2019; Bren D'amour 

et al., 2017). Users of previous coarser resolution irrigation datasets will also benefit from the improvements in spatial detail, 

product frequency, and map accuracy. Existing nationwide irrigation datasets like MIrAD have been accessed by hundreds of 

users in academia and government via the USGS EROS website (Brown and Pervez, 2014). These data have been incorporated 415 

into studies to evaluate trends in ground and surface water quality, model evapotranspiration and energy-water exchange at 

the surface boundary layer, and reveal locations at risk of unsustainable irrigation (Brown and Pervez, 2014; Pryor et al., 2016; 

Seyoum and Milewski, 2016; Jin et al., 2011; Zaussinger et al., 2019). Our 30-m data products will enhance similar types of 

applications and enable many others through the improved spatial and temporal resolution. To this extent, several organizations 

have begun using our previously published LANID 2012 for further research and development activities, despite there being 420 

only 1 of the presently described 21 annual years of data available; such applications should be further enabled by the current 

full suite of products and time periods. 

Lastly, our collected samples could help generate new threads of irrigation maps for the eastern U.S. Because insufficient 

ground reference data has long been a bottleneck to producing accurate classifiers for irrigation mapping, our verified locations 

could facilitate the development and evaluation of new models for irrigation detection, especially when other constraints are 425 

becoming relieved due to increasingly available high- to moderate-resolution remote sensing images, development of machine 

learning algorithms, and open access of cloud computing platforms. 

6. Data availability 

Our annual LANID maps, their byproducts (i.e., maximum irrigation extent, irrigation frequency, and per-pixel irrigation 

trends), ~10,000 manually collected ground reference data, and metadata can be accessed via 430 

https://doi.org/10.5281/zenodo.5548555 (Xie and Lark, 2021a). All maps are projected to the “Albers Conical Equal Area” 

projection at 30-m resolution except for the map of irrigation trends of 6-km.  

https://doi.org/10.5281/zenodo.5
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7 Conclusions 

This paper presents the only annual, nationwide fine-resolution maps of irrigation extent for the U.S., which are available for 

each year 1997-2017 and offer several improvements over other products. The increased resolution of the described LANID 435 

dataset sets a new standard in spatial detail at the CONUS extent, while the increased mapping frequency and multidecadal 

coverage enable characterization of irrigation dynamics. Our accuracy assessment shows that the LANID maps provide the 

most realistic depiction of irrigation extent across the country, with performance that matches or exceeds existing regional 

datasets.  

Moving forward, the LANID maps provide a foundation for refined representations of irrigation distribution and dynamics 440 

across the U.S. It is clear from recent research efforts that high quality, frequently updated data on fine-scale irrigation extent 

is immensely valuable for both the research and application user communities. With these needs in mind, our future intents 

and interests surrounding LANID may focus on: (1) routinely updating annual maps after 2017; (2) providing finer resolution 

maps of irrigation extent (e.g., 10m) by fusing multi-source imagery; and (3) improving mapping accuracy in the eastern 

CONUS. 445 

Appendices 

Table A1. The LANID-derived state-level irrigated area (in hectares) of each year between 1997 and 2017 (1997-2008).  

States 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 

Alabama 34535 39125 44618 37601 45173 42095 43512 48210 49533 56837 55946 

Arizona 379287 355684 352011 354327 353060 337113 351052 348990 349530 342038 326403 

Arkansas 1687799 1839858 1886084 1855790 1920171 1859224 1903682 1902655 1886089 1866404 1919269 

California 3380488 3151686 3149145 3156261 3184521 3314552 3187264 3172349 3206905 3197729 3094285 

Colorado 1210321 1121823 1127185 1114290 1108564 1000578 1102934 1105161 1100720 1070917 1121951 

Connecticut 302 807 807 829 910 970 851 801 1251 1108 1013 

Delaware 47054 49638 49591 53128 52042 49221 53965 54924 57305 56429 48586 

Florida 615570 547328 569116 568295 574083 640918 578654 578092 578447 574716 561719 

Georgia 366690 384742 434499 404428 428114 403744 416991 442892 448528 418726 457852 

Idaho 1385130 1352224 1339614 1336683 1311422 1319562 1323663 1340630 1340766 1339902 1319951 

Illinois 306516 295264 308291 318324 309793 302484 312484 322255 343074 372371 374335 

Indiana 168572 170884 170226 180406 169450 173272 212469 211910 211605 224793 221168 

Iowa 141592 146916 142392 129494 131310 134782 136684 158873 146813 140562 153320 

Kansas 1243244 1321112 1329850 1282021 1283028 1135702 1353488 1288916 1350727 1227553 1318920 

Kentucky 13104 13479 12991 12209 13955 13346 17538 19164 21688 25816 23551 

Louisiana 415211 451161 458231 442128 488285 428395 453754 432163 445974 438908 421933 

Maine 3644 4142 4983 4910 5629 4403 5167 5738 5731 7701 9487 

Maryland 46450 47965 44192 48584 53744 47490 50384 56148 56940 56354 50152 
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Massachusetts 4756 4250 5274 5216 5069 5258 5044 5629 5670 5920 4709 

Michigan 179126 174745 186417 202131 189431 189615 204443 210328 233991 256992 229009 

Minnesota 219513 223631 236929 233381 219645 236085 230768 240468 232043 225834 227401 

Mississippi 526481 529629 641770 570773 627065 567028 599802 568687 603644 517243 604432 

Missouri 480854 523644 559171 558573 600994 571590 605685 600251 610383 646444 632748 

Montana 754784 716614 730501 728447 753781 750609 734975 756981 743386 747750 764726 

Nebraska 3388881 3607761 3737425 3602001 3655262 3303885 3577851 3763770 3713858 3628089 3902377 

Nevada 255173 248903 249718 252576 252090 243633 255082 257084 255298 253798 243299 
New 
Hampshire 625 661 934 930 918 891 991 1065 1123 976 782 

New Jersey 25712 27451 28717 32253 30855 33095 31175 34197 33369 35184 30257 

New Mexico 323098 296609 314995 297562 310916 312938 304907 317588 313720 305273 324526 

New York 12503 14324 15970 18173 16761 18620 19341 20163 20029 21209 21336 

North Carolina 22569 22641 25847 26482 26672 30930 29181 27337 30732 35506 31644 

North Dakota 164616 179741 190039 192953 174264 185754 180438 201479 203502 186949 199093 

Ohio 6345 6091 6492 10584 9362 6949 7985 12980 13365 10487 11161 

Oklahoma 221859 230949 237608 240967 236309 218499 263921 260352 263092 236626 257870 

Oregon 693065 657674 674871 675721 678911 705284 681086 691636 672903 683382 686578 

Pennsylvania 2877 2648 2918 4303 4295 4006 4970 5664 5006 6213 5665 

Rhode Island 721 755 790 921 903 791 965 944 965 958 1039 

South Carolina 39571 38942 44011 45249 46390 45040 50078 53012 57992 61285 58224 

South Dakota 245846 251604 260802 241994 256887 227293 242316 257936 269721 250017 279162 

Tennessee 12096 18410 20843 21540 24923 25049 30954 26660 34988 37998 42068 

Texas 2037060 1832083 1970036 1886396 1902613 1935970 1894429 2020246 2042627 1883622 2061213 

Utah 447520 418494 414730 415852 412975 404106 408105 409668 411897 412424 420019 

Vermont 459 675 827 905 1143 918 1219 1048 1090 1508 1047 

Virginia 15675 17807 18575 23268 20898 22374 23122 25289 28893 28187 28249 

Washington 665353 650243 674586 666842 654969 695216 665695 687093 662436 672477 672925 

West Virginia 115 224 165 328 378 373 300 531 312 455 373 

Wisconsin 168788 169200 177363 175174 177969 176654 174700 179013 181334 183905 181335 

Wyoming 591280 549623 552916 552251 550526 520762 552083 546981 553945 546109 545747 

CONUS 2295283
0 

2270986
4 

2340506
6 

2298345
4 

2327642
8 

2264706
6 

2328614
7 

2367395
1 

2380294
0 

2330168
4 

2394885
5 

 
Table A1. Continued (2009-2017). 

States 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

Alabama 60139 63088 60198 68873 70572 74533 76987 81990 78022 80805 

Arizona 347354 345935 348800 347701 332402 345229 342976 347084 342758 374399 

Arkansas 1884322 1869713 1862017 1856051 1962000 1895565 1884232 1904854 1915934 2005406 

California 3188969 3183257 3210136 3193344 3034074 3150194 3098087 3165015 3171492 2993121 
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Colorado 1097294 1111432 1099495 1090921 982058 1069911 1090256 1085316 1079062 1058369 

Connecticut 1240 1146 946 1011 1167 766 1000 964 930 704 

Delaware 53855 58197 58583 57379 58263 63623 65377 66345 62686 59182 

Florida 571469 575663 574039 577377 533861 581562 577921 578069 575584 524110 

Georgia 454795 449800 443450 423956 456294 436233 440079 447356 427585 482965 

Idaho 1332914 1350822 1331055 1342894 1343860 1330616 1328663 1340649 1321842 1328081 

Illinois 373296 405632 391193 401018 388723 400631 422017 435894 425569 429765 

Indiana 232998 224904 251318 239992 219071 271049 269836 277084 274989 274193 

Iowa 165879 172773 171304 176592 152614 162926 171756 168785 181923 158593 

Kansas 1298163 1293371 1254278 1219387 1255779 1269960 1271563 1298644 1348197 1213904 

Kentucky 24637 24648 27565 26845 23918 34820 35942 40236 37892 37695 

Louisiana 457305 464418 461525 454552 474357 466391 480660 453071 456294 520158 

Maine 10911 9281 11768 13246 12731 13232 14101 12322 12993 12004 

Maryland 53551 64218 57960 57262 56885 65756 63208 64878 63111 62859 

Massachusetts 5127 5277 5190 5125 4462 4867 4829 4676 4710 4883 

Michigan 255967 249827 271441 280475 270287 298783 312146 319282 304834 307379 

Minnesota 246865 248258 259921 265191 265084 261758 276892 284753 289736 268822 

Mississippi 581096 592122 586089 574756 661108 607189 623127 586732 607843 727048 

Missouri 632621 677098 639719 630628 594163 663467 689456 714821 700031 757763 

Montana 755680 751866 765259 749722 709597 767409 752198 749607 734882 717839 

Nebraska 3809427 3795113 3812085 3906419 3599322 3788075 3890195 3938095 3916648 3932941 

Nevada 254701 253634 257118 254508 242259 255488 260470 263629 258504 261773 

New Hampshire 1136 979 998 1051 1052 1033 1086 989 824 841 

New Jersey 31874 32858 29627 32556 29711 29231 31729 30367 30056 27307 

New Mexico 302674 309613 322031 287084 267775 303436 309672 315822 314231 278521 

New York 22813 22985 21997 21375 19613 22087 21278 23348 21348 18062 

North Carolina 39903 44633 40770 48174 49348 54476 60055 61742 62867 60946 

North Dakota 192548 216921 222074 219590 208126 200636 237311 227049 208587 194485 

Ohio 12389 16820 15163 17568 16019 20830 19226 21596 20769 21797 

Oklahoma 241465 237963 255306 207626 222411 254679 253346 267197 280375 262775 

Oregon 679313 689700 683527 672638 601796 681881 686693 687199 693521 630691 

Pennsylvania 7463 5875 5829 5862 5100 5071 4593 4810 4193 3633 

Rhode Island 1055 899 873 996 903 931 947 973 907 825 

South Carolina 62819 60304 60997 70816 75314 78853 79582 78073 83985 83152 

South Dakota 282989 300158 316604 305400 247765 310061 311233 310428 306264 273417 

Tennessee 47716 50000 62366 72275 82320 95120 99624 105668 98550 95929 

Texas 1947439 1958584 2042729 1806539 1734962 1950095 1931265 1990790 1960109 1797103 

Utah 410925 413886 410487 415526 408438 409979 411089 407372 409971 404194 

Vermont 1343 1497 1467 1250 1429 1135 1024 1176 953 988 



28 
 

Virginia 29632 30258 26965 30214 28495 31826 31587 32060 31459 30626 

Washington 684029 689341 683064 675888 643850 688835 693133 687186 681781 649433 

West Virginia 532 521 413 562 291 511 614 462 381 515 

Wisconsin 197534 200655 213834 214935 208410 206657 216340 220279 222335 220264 

Wyoming 554241 556873 553396 552743 506874 553539 554765 555745 552047 535443 

CONUS 23902407 24082816 24182969 23875893 23064913 24180935 24400166 24660482 24579564 24185708 
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