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Abstract 31 

The increasing availability of high-quality remote sensing data and advanced technologies has 32 

spurred land cover mapping to characterize land change from local to global scales. However, 33 

most land change datasets either span multiple decades at a local scale or cover limited time over 34 

a larger geographic extent. Here, we present a new land cover and land surface change dataset 35 

created by the Land Change Monitoring, Assessment, and Projection (LCMAP) program over 36 

the conterminous United States (CONUS). The LCMAP land cover change dataset consists of 37 

annual land cover and land cover change products over the period 1985-2017 at 30-m resolution 38 

using Landsat and other ancillary data via the Continuous Change Detection and Classification 39 

(CCDC) algorithm. In this paper, we describe our novel approach to implement the CCDC 40 

algorithm to produce the LCMAP product suite composed of five land cover and five land 41 

surface change related products. The LCMAP land cover products were validated using a 42 

collection of ~ 25,000 reference samples collected independently across CONUS. The overall 43 

agreement for all years of the LCMAP primary land cover product reached 82.5%. The LCMAP 44 

products are produced through the LCMAP Information Warehouse and Data Store (IW+DS) 45 

and Shared Mesos Cluster systems that can process, store, and deliver all datasets for public 46 

access. To our knowledge, this is the first set of published 30-m annual land change datasets that 47 

include land cover, land cover change, and spectral change spanning from the 1980s to the 48 

present for the United States. The LCMAP product suite provides useful information for land 49 

resource management and facilitates studies to improve the understanding of terrestrial 50 

ecosystems and the complex dynamics of the Earth system. The LCMAP system could be 51 

implemented to produce global land change products in the future.   52 

 53 
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1 Introduction 61 

 62 

Changes in land cover and land surface are one of the greatest and most immediate influences on 63 

the Earth system, and these changes will continue in association with a surging human 64 

population and growing demand on land resources (Szantoi et al., 2020). Changes in land cover 65 

and ecosystems and their implications for global environmental change and sustainability are 66 

major research challenges for developing strategies to respond to ongoing global change while 67 

meeting development goals (Turner II et al., 2007). Unknowns related to the spatial extent and 68 

degrees of impacts of anthropogenic activities on natural systems and strategies to respond to 69 

ongoing global change hinder efforts to overcome sustainability challenges (Erb et al., 2017; 70 

Reid et al., 2010). An improved understanding of the complex and dynamic interactions between 71 

the various Earth system components, including humans and their activities, is critical for 72 

policymakers and scientists (Foley, 2005; Foley et al., 2011). To fully understand these processes 73 

and monitor these changes, accurate and frequently updated land cover information is essential 74 

for scientific research and to assist decision makers in responding to the challenges associated 75 

with competing land demands and land surface change.  76 

The characteristics of land surface fundamentally connect with the functioning of Earth’s 77 

terrestrial surface. Satellite observations have been used to observe the Earth’s surface and to 78 

characterize land cover and change from local to global scales. Remote sensing data allows us to 79 

obtain information over large areas in a practical and accurate manner. With advanced 80 

technologies and accumulating satellite data, countries and regions have produced multi-spatial 81 

and multi-temporal resolution land cover products (Chen et al., 2015; Gong et al., 2020; Hansen, 82 

2013; Homer et al., 2020; Li et al., 2020). A variety of land change mapping has been carried out 83 

to produce land cover and change products in the United States. Among these efforts are the 84 

widely known National Land Cover Database (NLCD) products. NLCD has provided 85 

comprehensive, general-purpose land cover mapping products at 30-m resolution since 2001 in 86 

the United States, and the products have been published and updated across more than a decade 87 

(Homer et al., 2020). NLCD provides Anderson Level II land cover classification (Anderson, 88 

1976) for the conterminous United States (CONUS) at approximately 2–3-year intervals. Other 89 

national-scale mapping projects focus on specific land cover themes. Among these are the 90 

Landscape Fire and Resource Management Planning Tools (LANDFIRE)   (Picotte et al., 2019), 91 
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which maps vegetation and fuels in support of wildfire management, and the Cropland Data 92 

Layer (Boryan et al., 2011) generated by the National Agricultural Statistics Service (NASS) of 93 

the United States Department of Agriculture (USDA). Due to the need to incorporate data from 94 

neighboring years, as well as extensive post-processing, ancillary dataset dependencies, and 95 

analyst-supported refinement, release dates for both LANDFIRE and NLCD products are 96 

typically several years subsequent to the nominal map year. Other products including national 97 

urban extent change and vegetation phenology data are available (Li et al., 2019; Li et al., 2020). 98 

These projects vary in how land change information is incorporated or expressed across product 99 

releases. Continuous data stacks allow for an increase in input features for land cover 100 

classification. Frequent data also provides the opportunity for near-real time change monitoring 101 

with frequently updated image acquisitions. The availability of land change information has led 102 

to approaches that attempt to monitor surface properties continuously through time (Franklin et 103 

al., 2015; Gong et al., 2019; Hermosilla et al., 2018; Homer et al., 2020; Kennedy et al., 2015; Li 104 

et al., 2020). Such approaches have several advantages over traditional image processing 105 

techniques based on small numbers of images (Bullock et al., 2020; Zhu and Woodcock, 2014b).  106 

Leveraging the increasingly massive amount of openly available, analysis-ready data products 107 

into the generation of operational land cover and land change information has been described as 108 

the new paradigm for land cover science (Wulder et al., 2018). The approach, which intended to 109 

use all available medium resolution remotely sensed data from the 1980s to the present, opened a 110 

door for the scientific community to integrate time series information to improve change 111 

detection and land cover characterization in a robust way. Furthermore, change events, when 112 

combined with knowledge of ecology settings or anticipation of a given process post-change, can 113 

accommodate consistent change observations and characterization of land cover. For example, 114 

forest areas that are cleared by wildfire or harvest activities typically transfer to non-forest 115 

herbaceous or shrub vegetation cover, followed by a succession of young tree stages, ultimately 116 

returning to a forest class.  Traditional change detection methods using limited observations may 117 

not have identified these changes if data were collected with a starting date prior to the change 118 

and an ending date that occurred after the transitional (non-tree) vegetation returned to tree 119 

cover. Therefore, incorporating change information into the land cover characterization process 120 

allows for insights regarding expected land cover class transitions related to successional 121 

processes, and likewise provides a mechanism to identify illogical class transitions and cause or 122 
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agent of change  (Kennedy et al., 2015; Wulder et al., 2018). The choice of a time series 123 

approach also allows missing data and phenological variations to be handled robustly (Friedl et 124 

al., 2010; Wulder et al., 2018).  125 

The Continuous Change Detection (CCD) and Classification (CCDC) algorithm (Zhu and 126 

Woodcock, 2014b; Zhu et al., 2015b) was developed to advance time series change detection by 127 

using all available Landsat data. The CCD algorithm uses robust methodology to identify when 128 

and how the land surface changes through time. The algorithm first estimates a time series model 129 

based on clear observations and then detects outliers by comparing model estimates and Landsat 130 

observations. The algorithm fits harmonic regression models through a Least Absolute Shrinkage 131 

and Selection Operator (LASSO) (Tibshirani, 1996) approach to every pixel over time to 132 

estimate the time series model defined by sine and cosine functions. New Landsat records are 133 

compared to predicted results, and if the observed data deviate beyond a set threshold for all 134 

records within a moving window period, then a model break is produced. The parameters used to 135 

fit the model are used as inputs for the cover classifier for land cover characterization.  136 

The original implementation of CCDC was written in the MATLAB programming language and 137 

had been implemented for a regional land cover change assessment in the eastern CONUS (Zhu 138 

and Woodcock, 2014b). The algorithm includes the automation of change detection/classification 139 

and can monitor changes for different land cover types. The implementation of CCDC into a 140 

large geographic extent still encounters several challenges: the availability of Landsat records 141 

and training datasets, the effectiveness of choosing good quality Landsat records, and the 142 

robustness to characterize land cover and change across various land cover types and conditions. 143 

In this paper, we outlined major efforts and challenges in the implementation of CCDC for the 144 

U.S. Geological Survey (USGS) Land Change Monitoring, Assessment, and Projection 145 

(LCMAP) initiative (Brown et al., 2020). LCMAP focuses on using CCD/CCDC with time series 146 

Landsat records and other ancillary information to produce annual land cover and change 147 

products from 1985 to the present for the United States. We focused on how LCMAP employed 148 

every observation in a time series of U.S. Landsat Analysis Ready Data (ARD) (Dwyer et al., 149 

2018) over a long period starting with the 1980s to determine whether change occurred at any 150 

given point in the observation record. The CCDC algorithm that was initially developed for 151 

abrupt change detection on the land surface was modified through lessons learned from the 152 



6 
 

prototype test to include both gradual land cover transition and abrupt land change so that the 153 

algorithm could be used in an operational setting with the goals of robust, repeatable, and 154 

geographically consistent results (Brown et al., 2020). The algorithm was further used to classify 155 

the pixel to indicate what land cover type(s) were observed before and after a detected change on 156 

the land surface. Classification in LCMAP was modified to improve representativeness of 157 

training data and reduce notable artifacts including misclassification of rare classes and dramatic 158 

increase in the amount of training data. The CCDC algorithm has since been translated into an 159 

open-source library as Python code. The full implementation joined the CCD Python library with 160 

the classification methodology in combination with data delivery/processing services made 161 

available through the LCMAP Information Warehouse and Data Store (IW+DS) and evolved as 162 

a national operational monitoring system.  163 

 164 

2 Data Sources 165 

The CCDC algorithm utilizes all available Landsat observations including surface reflectance, 166 

brightness temperature, and associated quality data to characterize the spectral responses of 167 

every pixel through harmonic regression model fits. The model fits are then used to categorize 168 

each pixel time series into temporal segments of stable periods and to estimate the dates at which 169 

the spectral time-series data diverge from past responses or patterns. The outcomes of model fits 170 

and other input data are then used for classification. The algorithm requires several input datasets 171 

to perform both change detection and classification. 172 

2.1 Landsat observations  173 

U.S. Landsat ARD have been processed to a minimum set of requirements and organized into a 174 

form that can be more directly and easily used for monitoring and assessing landscape change 175 

with minimal additional user effort. Landsat ARD Collection 1 provides consistent radiometric 176 

and geometric Landsat products across Landsat 4-5 Thematic Mapper (TM), Landsat 7 Enhanced 177 

Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) / Thermal 178 

Infrared Sensor (TIRS) instruments for use in time series analysis (Dwyer et al., 2018). Landsat 179 

ARD is organized in tiles, which are units of uniform dimension bounded by static corner points 180 

in a defined grid system (Fig. 1). An ARD tile is currently defined as 5,000 x 5,000 30-meter (m) 181 

pixels or 150 x 150-kilometer (km). To implement CCDC algorithms to produce LCMAP 182 
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Collection 1.0 land change products in CONUS, all available Landsat ARD records of surface 183 

reflectance and brightness temperature from the 1980s to 2017 were required.  184 

2.2 Land cover and ancillary datasets 185 

The CCDC algorithm employs every observation in a time series of Landsat data to determine 186 

whether change has occurred at any given time. The algorithm further classifies the time series to 187 

indicate what land cover types were observed before and after a detected change and further to 188 

generate LCMAP annual land cover products (Table 1). The land cover products are produced by 189 

using training data from NLCD in 2001. NLCD provides Anderson Level II (Anderson, 1976) 190 

land cover classification for CONUS and outlying areas (Homer et al., 2020). Spectral index and 191 

change metrics between cloud-corrected Landsat mosaics are used, among other information, to 192 

identify change pixels (Jin et al., 2013). These metrics allow NLCD to incorporate temporal and 193 

spectral trajectory information into both training data selection and final land cover 194 

classification. The NLCD land cover data is used in LCMAP as land cover training data.  195 

 196 

Ancillary data comprises two main source datasets: the USGS National Elevation Dataset (NED) 197 

(Gesch et al., 2002) 1 arc-second Digital Elevation Models (DEM), and a wetland potential index 198 

(WPI) layer created for NLCD 2011 land cover production (Zhu et al., 2016). The WPI layer is a 199 

ranking (0–8) of wetland likelihood from a comparison of the National Wetland Inventory 200 

(NWI), the U.S. Department of Agriculture Soil Survey Geographic Database (SSURGO) for 201 

hydric soils, and the NLCD 2006 wetlands land cover classes.  202 

 203 

3 Methodology 204 

As part of the operational LCMAP system, the original MATLAB version of the CCDC 205 

algorithm is converted to a format that meets the needs of large-scale land change detection and 206 

change characterization on an annual basis. Python is selected to replace MATLAB to implement 207 

the CCDC algorithm for LCMAP.  The CCD component of the CCDC algorithm is converted to 208 

create the Python-based CCD (PyCCD) library. The PyCCD library is a per-pixel algorithm, and 209 

the fundamental outputs are the spectral characterizations (segments) of the input data. There are 210 

several key components in PyCCD. The overall CCD procedures are summarized in Fig. 2. 211 

3.1 Data filtering and Harmonic modeling 212 
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The removal of invalid and cloud-contaminated data points is important for deriving model 213 

coefficients that accurately represent the phenology of the surface, and for the correct 214 

identification of model break points. The CCD algorithm uses Landsat ARD PIXELQA values to 215 

mask observations identified as cloud, cloud shadow, fill, or (in some cases) snow derived based 216 

on the Fmask 3.3 algorithm (Zhu et al., 2015a; Zhu and Woodcock, 2012). Additional cirrus and 217 

terrain occlusion bits are provided for Landsat 8 OLI-TIRS ARD that are not available in the 218 

Landsat 4–7 TM/ETM+ quality assessment band. To maintain consistency across the historical 219 

archive, the algorithm does not rely on these Landsat 8-only QA flags to filter out observations. 220 

Landsat ARD containing invalid or physically unrealistic data values are removed. For the 221 

surface reflectance bands, the valid data range is between 0 and 10000. Brightness temperature 222 

values, which in the ARD are stored as 10 × temperature (kelvin), are converted to 100 × °C and 223 

observations are filtered for values outside the range -9320 and 7070 (-93.2–70.7°C). This 224 

procedure rescales the brightness temperature values into a roughly similar numerical range as 225 

the surface reflectance bands. A multitemporal mask (Tmask) model (Zhu and Woodcock, 226 

2014a) is implemented first to remove additional outliers by using the multitemporal observation 227 

record to identify values that deviate from the overall phenology curve using a specific harmonic 228 

model to perform an initial fit to the phenology. Additional details are provided in the 229 

Supplementary materials S1. 230 

The filtered Landsat ARD is further operated to generate the time series fit by harmonic models 231 

whose sinusoidal components are frequency multiples of the base annual frequency. A constant 232 

and linear term characterizes the surface reflectance or brightness temperature offset value and 233 

overall slope, respectively. The full harmonic model is defined as follows:  234 

𝑝̂(𝑖, 𝑡) = 𝑐0,𝑖 +  𝑐1,𝑖𝑡 + ∑ (𝑎𝑛,𝑖 cos 𝜔𝑛𝑡 + 𝑏𝑛,𝑖 sin 𝜔𝑛𝑡)3
𝑛=1                                       (1) 235 

where ω is the base annual frequency (2π⁄T), t is the ordinal of the date when January 1 of the 236 

year zero has ordinal 1 (sometimes called Julian date), i is the ith Landsat band, an,i and bn,i are 237 

the estimated nth order harmonic coefficients for the ith Landsat band, c0,i and c1,i are the 238 

estimated intercept and slope coefficients for the ith Landsat band, and 𝑝̂(𝑖, 𝑡) is the predicted 239 

value for the ith Landsat band at ordinal date t. Model initialization and certain special-case 240 

regression fits such as at the beginning/end of the time series use the simple four-coefficient 241 
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model. Outside of these conditions, the selection of coefficient depends on the number of 242 

observations used for the regression. For a full model (eight coefficients), there must be at least 243 

24 observations covered by the regression. The fit parameters returned by PyCCD always 244 

include eight coefficient values including an intercept, with unused coefficients reported as 245 

zeroes.  246 

3.2 Regression models and change detection thresholds 247 

The best-fit coefficients for the time series model are calculated using a LASSO regression 248 

model (Tibshirani, 1996). In contrast to Ordinary Least Squares (OLS) that was used in the 249 

original CCDC development, LASSO penalizes the sum of the absolute values of coefficients, in 250 

some cases forcing a subset of the coefficients to zero. Together with the explicit limits enforced 251 

on the number of coefficients, this reduces instances of overfitting, including in cases when 252 

observations are too sparse or unevenly distributed in time to constrain the model to real 253 

phenological features. To detect change, the LASSO model checks CCD model breaks with 254 

respect to its last determined best-fit harmonic model.  255 

To correctly detect change, the algorithm distinguishes between a substantive deviation from 256 

model prediction and deviations that result from variability inherent in the data (due to 257 

incomplete atmospheric removal and/or other sources of natural variation) to detect change. The 258 

algorithm calculates two parameters related to dispersion, or scatter, to estimate the variability of 259 

data for each spectral band. The first one is a comparison root-mean-square-error (RMSE) that is 260 

the RMSE of the 24 observations covered by the model which are closest in day of year to the 261 

last observation in the “peek window,” or over all observations covered by the model if there are 262 

fewer than 24. This value is recalculated at each step of the time series. The second parameter 263 

(var) is used to measure the overall variability of the data values and is defined as the median of 264 

the absolute value of the differences between each observation and the ith successive 265 

observation, where i is the smallest value such that the majority of these observation pairs are 266 

separated by greater than 30 days, if possible (otherwise, i=1). The var is computed once at the 267 

beginning of the standard procedure, using all non-masked observations in the time series. 268 

Observations not yet incorporated into the model are evaluated as a group of no fewer than the 269 

𝑃𝐸𝐸𝐾_𝑆𝐼𝑍𝐸 parameter value; this is the “peek window,” which “slides” along the time series 270 
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one observation at a time. Each iteration, a value is calculated for each individual observation 271 

within the peek window, as follows: 272 

𝑚𝑎𝑔𝑛 =  ∑ (
𝑟𝑒𝑠𝑖𝑑𝑛, 𝑖

𝑚𝑎𝑥(𝑣𝑎𝑟𝑖,  𝑅𝑀𝑆𝐸𝑖)
)

2

𝑖∈𝐷

 (2) 

where, 𝑟𝑒𝑠𝑖𝑑𝑛, 𝑖 is the residual relative to the LASSO models for each band 𝑖, for each 273 

observation 𝑛 within the 𝑃𝐸𝐸𝐾_𝑆𝐼𝑍𝐸 window, 𝑣𝑎𝑟𝑖 and 𝑅𝑀𝑆𝐸𝑖 are the parameters of dispersion 274 

as described above, for each band 𝑖. This summation is carried out for all bands 𝑖 in the set of 275 

𝐷𝐸𝑇𝐸𝐶𝑇𝐼𝑂𝑁_𝐵𝐴𝑁𝐷𝑆 (𝐷). This produces a scalar magnitude, representing the deviation from 276 

model prediction across these bands, for each observation. The detection of a model break 277 

requires this value to be above the 𝐶𝐻𝐴𝑁𝐺𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 value for all observations in the 278 

window. This is separate from the value that is reported as a per-band magnitude when a change 279 

is detected in the time series. Change detection sensitivity depends on the value of change 280 

threshold. The 𝐶𝐻𝐴𝑁𝐺𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 is determined in Eqs. S2 and S3 in the Supplementary. 281 

If 𝑚𝑎𝑔𝑛 < 𝐶𝐻𝐴𝑁𝐺𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 for any 𝑛 in the 𝑃𝑒𝑒𝑘_𝑆𝑖𝑧𝑒 window, then add the most 282 

recent observation to the segment by shifting the 𝑃𝑒𝑒𝑘_𝑆𝑖𝑧𝑒 window one observation forward in 283 

the time series. If 𝑚𝑎𝑔𝑛 > 𝐶𝐻𝐴𝑁𝐺𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 for all 𝑛 in the 𝑃𝑒𝑒𝑘_𝑆𝑖𝑧𝑒 window, this is 284 

considered a spectral break.   285 

3.3 Permanent snow and insufficient clear observation procedures 286 

The permanent snow procedure indicates that too few clear (less than 25% of total observations) 287 

or water observations, which are identified from the QA band, exist to robustly detect change, 288 

and a large fraction of observations are snow. The algorithm will return at most one segment that 289 

fits through the entire time series and provide the filtered observations number at least twelve. 290 

The model will, under the default settings, fit only four coefficients (i.e., characterizing the 291 

reflectance and brightness temperature bands using only a simple harmonic with no higher 292 

frequency terms). Unlike other procedures, snow pixels are not filtered out and are fit as part of 293 

the annual pattern. This avoids overfitting the model to a seasonally sparse observation record. 294 

Similarly, for the insufficient clear observations determined by the QA band, the model will 295 

perform a LASSO regression fit for the entire time series using four coefficients. The model 296 

coefficients and RMSE from this regression are recorded. Additional parameters including the 297 

start, end, and observation count are also saved. Further, the change Boolean value is set to 0, 298 
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and the break day is recorded as the last observation date. The magnitude of change as zero for 299 

each band is also saved. 300 

3.4 Land cover classification 301 

The CCDC algorithm characterizes the land cover component of a pixel at any point using the 302 

LCMAP time series model approach from the Landsat 4–8 records. The classification of CCDC 303 

is accomplished for every pixel based on data from the time series models (e.g., model 304 

coefficients). Land cover classifications are generated on an annual basis, using July 1st as a 305 

representative date. A list of land cover classes and descriptions is provided in Table 1. Fig.3 306 

illustrates an overall classification approach.  307 

3.4.1 Classification algorithm 308 

We chose eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016) as the classification 309 

method. XGBoost is a scalable implementation of gradient tree boosting, which is a supervised 310 

learning method that can be used to develop a classification model when provided with an 311 

appropriate training dataset. Generally, for a given dataset, a tree ensemble model uses additive 312 

functions, which correspond to independent tree structures, to predict the land cover. The 313 

predictions from all trees are also normalized to the final class probabilities using the softmax 314 

function. The algorithm can handle sparse data and theoretically justify weighted quantile sketch 315 

for approximate learning. The resultant trained model can be applied to a larger dataset to 316 

generate predictions and probability scores which are the basis for LCMAP primary and 317 

secondary land cover types. The primary and secondary land cover confidence values are 318 

calculated from these scores. 319 

3.4.2 Training dataset 320 

The training data used in XGBoost for the LCMAP Collection 1.0 land cover products is from 321 

the USGS NLCD 2001 land cover product (Homer et al., 2020). To meet the LCMAP land cover 322 

legend, the NLCD data is first cross-walked to LCMAP classes, as shown in Fig.4 and Table 2. 323 

The use of NLCD data that was cross-walked to the LCMAP land cover legend as the training 324 

data will reduce uncertainties and improve the consistency of annual land cover change. For 325 

example, grass and shrub have different ecological functions. Their spectral signatures are 326 

distinct in some ecological regions but are very close in others, especially in the western 327 
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ecoregions of the conterminous United States (Underwood et al., 2007; Xian et al., 2013). Grass 328 

and shrub usually grow close together, making it difficult to separate them in thematic land 329 

cover. Combining these two cover classes can reduce uncertainties potentially caused by lack of 330 

spectral distinction in Landsat observations. Furthermore, the extent of each land cover in the 331 

cross-walked NLCD layer is eroded by one pixel. This step aims to reduce potential noise in the 332 

classifier by removing pixels that may be heavily mixed with different cover types, or whose 333 

land cover label may be less reliable. It also removes the narrow linear low-intensity developed 334 

pixels corresponding to road networks, which were found to have registration issues with 335 

Landsat ARD in some areas. 336 

 337 

3.4.3 Ancillary data 338 

Ancillary data used in the classification contains two main datasets: the DEM and the WPI layer. 339 

Three DEM derivative datasets are implemented as geographic references for land cover 340 

classification as ancillary data including topographic slope, aspect, and position index. The WPI 341 

is highly related to wetland distribution and has a potential to improve wetland classification in 342 

LCMAP. 343 

3.4.4 Classification procedures 344 

For each pixel, CCD segment data for the segment that includes the July 1st, 2001 date is used 345 

with training data to create classification models (Zhou et al., 2020; Zhu et al., 2016). Data 346 

generated from the CCD models are used to make the land cover classification because different 347 

land cover classes can have different shapes for the estimated time series models. The 348 

coefficients of the CCD models including the overall mean and model coefficients except 349 

intercepts can be used to estimate the intra-annual changes caused by phenology and sun angle 350 

differences for the ith Landsat band. The information obtained from the time series model is 351 

useful for land cover classification. The CCD model data used with training data include the 352 

model coefficients (except the intercepts) generated from surface reflectance and brightness 353 

temperature bands, the model RMSE value for each band, and an average intercept value that is 354 

calculated from average annual reflectance values for each band for the July 1, 2001 year. The 355 

model training procedure is conducted at the tile level, using random samples drawn from the 356 

targeted tile as well as the eight surrounding tiles to avoid not having enough training samples of 357 
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rare land cover types in the targeted tile. Cross-walked and eroded NLCD data are used for 358 

classification labels, while the CCD model outputs and ancillary data are provided as 359 

independent variables. Based on training data testing using different sample sizes, a target 360 

sample size of 20 million pixels from the extent of 3x3 ARD tiles is chosen, requiring 361 

approximately proportional representation of classes with the added constraint that no class be 362 

represented by fewer than 600,000 or more than 8 million samples. If there are fewer than 363 

600,000 samples available for a class, then all of the available samples are used without any 364 

oversampling. The XGBoost hyperparameters are selected as maximum tree depth 8, fast 365 

histogram optimized approximate greedy algorithm for tree method, multiclass logloss for 366 

evaluation metric, and maximum number of rounds 500.  367 

After the classification models in a given tile are trained, predictions are generated for each July 368 

1st date that has an associated CCD segment (Fig. 5). The prediction information is supplied to 369 

the production step for the creation of land cover. The process is repeated for each tile for the 370 

entire CONUS ARD extent. 371 

3.5 Validation data 372 

The LCMAP land cover product is validated using an independent reference dataset. The 373 

reference data, which consists of 24,971 30 m x 30 m pixels selected via a simple random 374 

sampling method over CONUS, is collected from these sample plots between 1985 and 2017. 375 

The TimeSync tool is used to efficiently display Landsat data for interpretation and to record 376 

these interpretations into a database (Cohen et al., 2010; Pengra et al., 2020b; Stehman et al., 377 

2021). TimeSync displays the input Landsat images in two basic ways: by annual time-series 378 

images and by pixel values plotted through time. For the image display, single 255 x 255-pixel 379 

subsets of Landsat images in the growing season are displayed in sequence from 1984 to 2018. 380 

Trained interpreters have access to all available images in each year to collect attributes in three 381 

basic categories: 1) land use, 2) land cover, and 3) change processes. Additional attribute details 382 

for the change processes, such as clear-cut and thinning associated with harvest events, are also 383 

collected. The interpreters manually label these attributes using Landsat 5, 7, and 8 imagery, 384 

high-resolution aerial photography, and other ancillary datasets (Cohen et al., 2010; Pengra et al., 385 

2020b). Interpreters also use ancillary data to support interpretation of Landsat and high-386 

resolution imagery, although Landsat data takes the highest weight of evidence. Recording the 387 
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full set of attributes in land use, land cover, and land change categories provides sufficient 388 

information to meet the needs of LCMAP as well as other potential users. Quality assurance and 389 

quality control (QA/QC) processes are also implemented to ensure the quality and consistency of 390 

the reference data among interpreters and over the time span of data collection (Pengra et al., 391 

2020b). Each reference sample is interpreted by a trained interpreter and about 60% of these 392 

pixels are interpreted independently by a second analyst.  Much of the QA/QC process relies on 393 

comparing the interpretations at these duplicated sample pixels. Duplicated sample pixels that 394 

have interpreter disagreement are evaluated in the QA/QC process, focusing on identifying 395 

issues with specific classes or interpreters, flagging sample pixels for further review and possible 396 

editing, and providing ongoing training and feedback to interpreters throughout the collection 397 

process.  QA/QC related reviews are also completed on sample pixels that show interpretation 398 

data such as uncommon and/or illogical land use and land cover combinations, multi-year 399 

disturbance processes, rare classes, or other opportunistically identified situations.  Interpreted 400 

attributes of sample pixels are edited, if necessary, to create the final attribute assignments for 401 

the reference data.  These final attributes are then cross-walked to a single LCMAP land cover 402 

class label, providing a single land cover reference label for each year of the time series for each 403 

sample pixel.  404 

The validation analysis protocols focus on estimating the confusion matrix and overall, user’s, 405 

and producer’s accuracy by comparing the reference data and product data labels. Overall 406 

accuracy and producer's accuracy as well as standard errors are produced using post stratified 407 

estimators (Card, 1982; Stehman, 2013). For accuracy estimates that are produced by combining 408 

multiple years of data, the sampling design is treated as a one-stage cluster sample where each 409 

pixel represents a cluster and each year of observation is the secondary sampling unit using 410 

cluster sampling standard error formulas (Pengra et al., 2020b; Stehman et al., 2021). The 411 

validation is only performed for primary land cover and change products, not for other LCMAP 412 

science products (Supplementary Section 4). 413 

3.6 Information warehouse and data store 414 

LCMAP adopts an information warehouse and data store (IW+DS) system that can expand 415 

storage solutions along with data access and discovery services running on the EROS Shared 416 

Mesos Cluster. The system provides different storage solutions to allow for flexibility in 417 
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choosing what best fits a dataset’s characteristics and currently comprises Apache Cassandra 418 

(https://cassandra.apache.org/ ) and Ceph ( https://ceph.io/ ) object storage. The services provide 419 

data ingest, retrieval, discovery, metadata, processing, and other functionalities. LCMAP 420 

maintains a copy of Landsat Collection 1 ARD and other similarly tiled ancillary datasets that 421 

are spatially subset within the IW+DS to allow efficient retrieval and to enable large-scale 422 

CCDC processing and other algorithmic work. The ingest process is designed to avoid bringing 423 

in ARD tile observations that are already present within the IW+DS, to keep the input consistent 424 

with any prior usage while allowing CCDC to bring in new observations as they are available. 425 

Algorithmic results, products, and other intermediate data are kept on the Ceph object store 426 

arranged using a prefix structure to label the identity of the data, with the actual object names 427 

incorporating spatial concepts such as tile and chip that is a small subset of a tile and contains 428 

100 by 100 30-m pixels. 429 

  430 

4 Results and Discussion 431 

 432 

The LCMAP primary land cover and change products were evaluated to outline annual land 433 

cover change from 1985 to 2017 in the conterminous Unites States. 434 

4.1 Collection 1.0 primary land cover distribution and change  435 

The CONUS primary land cover mapping result and the primary confidence in 2010 are shown 436 

in Fig. 6a and b, respectively. The land cover map illustrates distributions of different land cover 437 

types across CONUS. The primary confidence is above 90% for most land cover classes, 438 

suggesting that the classification models were created with high confidence for land cover 439 

mapping for most classes in most regions. Some vegetation transition (green in Fig. 6b) occurs 440 

mainly in the southeast region suggesting gradual tree recovery from disturbances associated 441 

with tree harvesting. Fig. 6c and d display numbers of land cover changes and spectral changes 442 

detected by the CCDC model between 1985 and 2017. The number of land cover changes 443 

represents how many times land cover has changed from one type to another for a specific pixel. 444 

However, the number of spectral changes denotes how many times the model has detected 445 

spectral changes in a CCD time series model where spectral observations have diverged from the 446 

model predictions. These changes could relate to a change in thematic land cover or might 447 
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represent more subtle conditional surface changes. The southeast region shows more frequent 448 

land cover changes in the 33 years (Fig. 6c). The western part of CONUS, however, contains 449 

more spectral changes than in the east (Fig.6d). The NLCD land change estimates also show 450 

similar change patterns between 2001 and 2016 (Homer et al., 2020). The different spatial 451 

patterns in the total number of land cover changes (Fig. 6c) and detected spectral changes (Fig. 452 

6d) suggest that not all changes lead to land cover change (e.g., drought and precipitation-related 453 

changes in vegetation or grassland fire). The large numbers of spectral change were mainly 454 

detected in the southern grassland area. 455 

Fig. 7 shows the temporal changes of areas for eight land cover classes from 1985 to 2017. 456 

Among all classes, grass/shrub, tree cover, and cropland were dominant land cover types, 457 

followed by wetland, water, developed, barren, and snow/ice. The land cover and change 458 

datasets show that developed land has a consistent increasing trend with an 8.4% increase while 459 

barren increased 9.1% between 1985 and 2017. Overall, the developed and barren areas 460 

increased 2.58×104 km2 and 8.56×103 km2, respectively. Other land cover categories do not have 461 

such increasing patterns. As for water, although fluctuating, it had a generally increasing trend. 462 

The area of wetland had a rapid decrease before 2000, following a relatively steady though 463 

fluctuating trend. Net wetland extent declined about 0.4% from 1985 to 2017. The grass/shrub 464 

and tree cover classes both experienced consistent increasing trends before 2008 and 1995, 465 

respectively, with areas reaching about 2.85×106 km2 for grass/shrub and 2.14×106 km2 for tree 466 

in these two years. These two land covers gradually decreased since then. Tree cover declines 467 

after 1996, showing a decreasing rate of 2.8% between 1985 and 2017. The cropland decreased 468 

from 1985 to 2008 and quickly increased after that. By 2017, the area of cropland reached a 469 

similar level of cropland area in 1988. Furthermore, most land cover changes are located in the 470 

southeast region where many pixels change more than one time. The changes detected by the 471 

CCD model suggest that landscape in the Midwest and west are more dynamic than in the east. 472 

Many areas experience multiple disturbances although most of these changes do not result in 473 

land cover transition. 474 

The south ARD tile outlined in Fig. 6(a) covers the northern Dallas region, and the spatial 475 

patterns of land cover and change are shown in more detail in Fig. 8. The land cover distributions 476 

in the region show that urban land expands considerably from 1985 (Fig. 8a), to 1990 (Fig. 8b), 477 
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and to 2016 (Fig. 8c). The land conversion was primarily from cropland and grass/shrub to 478 

developed land. Lake Ray Roberts was created in the late 1980s and captured in the land cover 479 

map (Fig. 8b&c). The lake and urban conversion are also visible in the change count from 1985 480 

to 2016 (Fig. 8g), which mainly show as blue, suggesting a one-time conversion. On the other 481 

hand, there is almost no change in the urban center (Fig. 8g). Fig. 8 (d-f) shows high 482 

classification confidence at the urban center, water, grass/shrub, and tree cover areas, whereas 483 

cropland has relatively low confidence, indicating frequent management activities over croplands 484 

in the regions. The total pixels of different change numbers suggest that one to two change times 485 

are dominant, although some pixels change more than three times (Fig. 8h). The land cover 486 

distributions in 1985, 1990, and 2017 show an increase in developed land and decreases in 487 

cropland and grass/shrub (Fig. 8i). 488 

The spatial patterns of land cover and change in the north ARD tile displayed in Fig. 6(a) in 489 

northern Wyoming are shown in Fig. 9. The tile covers most of Yellowstone National Park, in 490 

which tree, grass/shrub, and water are three dominant land cover types. Land cover in 1985, 491 

1990, and 2016 (Fig. 9a-c) changed from tree to grass/shrub and back to tree cover. The primary 492 

land cover confidence layers exhibit changes as decreasing vegetation from tree to grass/shrub 493 

and increasing vegetation from grass/shrub to tree (Fig. 9d-f). For those trees and water bodies 494 

that did not experience any disturbances, their magnitudes of confidence are relatively large. The 495 

change map suggests that most forest lands experienced at least one change and some areas 496 

changed multiple times (Fig. 9g). Most changes in forest lands were related to wildland fires that 497 

occurred in the region. In 1988, 50 fires burned a mosaic covering nearly 3213 km2 in 498 

Yellowstone as a result of extremely warm, dry, and windy weather (NPS, 2021). Trees regrew 499 

in some of the burn areas and these changes could occur more than once as shown in the change 500 

map that indicates at least two changes in these areas. The total pixels of different change 501 

frequencies suggest that one to two changes were dominant and very few pixels changed more 502 

than three times (Fig. 9h). The land cover distributions in 1985, 1990, and 2017 had increases in 503 

grass/shrub after 1985 and reductions in tree cover after that (Fig. 9i). 504 

4.2 Validation of land cover product  505 

The overall accuracy between the annual reference land cover label and the LCMAP annual land 506 

cover products was calculated as 82.5% (±0.22%, standard error) when summarized for all years.  507 
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Overall accuracy across the time series (1985-2017) varied within about 1.5% annually, ranging 508 

from a high of 83% in the late 1990s to about 82% in the late 2010s (Fig. 10). Per class 509 

accuracies across CONUS ranged between 43% and 96% for user’s accuracy (Table 3), with 510 

water showing the highest accuracy (96% ±0.5% user’s accuracy and 93% ±0.7% producer’s 511 

accuracy). Cropland has about 93% (±0.3%) producer’s accuracy and 70% (±0.6%) user’s 512 

accuracy. The lowest accuracies are observed for barren and wetland. The per class per year 513 

agreements show the accuracies vary slightly for each class in each year (Table 4). The 514 

variations of annual overall accuracy are within a range of about 1.5% across the time series. The 515 

slight decline in annual overall accuracy suggests that year-to-year trends may be a result of a 516 

complex interplay of temporal biases in the LCMAP algorithm, Landsat data quality and 517 

quantity, the model break detection accuracy of the LCMAP CCD, and errors in the training data 518 

used for the classification. For example, the change detection portion of the algorithm is known 519 

to be conservative in identifying land cover change. The CCD model assumes that the spectral 520 

variations of the land surface through time can be characterized with annual harmonic models 521 

and can be separated into discrete periods of time. Therefore, the model performs better when the 522 

short-term spectral variability of the land surface is low, the changes have a large spectral 523 

response, and the observational data density is high. Over time, the actual land cover may evolve 524 

away from the phenology represented by spectral models that may have missed one or more 525 

spectral breaks, which will impact accuracy especially when the land cover changes are 526 

persistent rather than cyclic, such as with an expanding urban footprint. Annual accuracy of 527 

Developed showed an upward trend in user accuracy (UA) and a downward trend in producer 528 

accuracy (PA) over time (Stehman et al., 2021). The increasing availability of high-resolution 529 

data used by the interpreters may have increased the likelihood of identifying features 530 

characteristic of Developed land that could not be identified earlier in the time series, leading to 531 

an increase in the proportion of Developed area estimated from the sample. Consequently, the 532 

increasing sensitivity of the reference interpretation to landscape features may account for the 533 

difference between the mapping and the reference data over time. Lower data density toward the 534 

beginning and end of the time series may decrease accuracy, which when combined with other 535 

factors, can contribute to the annual land cover overall accuracy across all years. 536 

4.3 Significance of the product 537 
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One of the biggest advances of LCMAP relative to conventional methods available to date is its 538 

approach of generating annual land change products by using the entire Landsat archive at a 539 

large geographic scale. Landsat ARD, which is the foundation for LCMAP, is effective and 540 

straightforward for tracking and characterizing the historical land changes at a pixel level over 541 

decades. Compared to conventional methods, detecting changes using all available observations 542 

enables us to date these changes as they occur. After change is detected, temporally consistent 543 

land cover products rather than stochastic changes in labels can be produced at annual intervals 544 

by conducting classification from CCD model segmented contributions 545 

The LCMAP product suite includes five land cover change and five land surface change science 546 

products. It represents a new paradigm that consistently and continuously provides a large 547 

volume of land change information for land change monitoring, land resource management, and 548 

scientific research. In addition to primary and secondary land cover before and after changes, 549 

change segments containing spectral change time and magnitude are provided to explore the 550 

changes in land condition and could meet various user communities’ needs. The LCMAP 551 

products can improve our understanding of causes, rates, and consequences of the land surface 552 

changes (Rover et al. 2020) such as forest changes caused by wildfire and insect outbreaks. 553 

By implementing the CCDC algorithm through a system engineering approach, LCMAP 554 

provides a fully automated framework for land change monitoring. The framework can also be 555 

updated to include the latest Landsat records so that it can be used for operational continuous 556 

monitoring in a large geographic extent (Brown et al. 2020). Therefore, when new observations 557 

become available, the framework can provide timely and consistent land cover characteristics to 558 

the public. 559 

4.4 Limitations and challenges 560 

Although LCMAP Collection 1.0 products have been proven to be successful in detecting 561 

various land surface changes to support research applications related to environment and ecology 562 

conditions, limitations and challenges exist. Utilizing Landsat ARD data as input provided 563 

consistent time series Landsat imagery with high level geometric and radiometric quality for 564 

implementing the CCDC method. Nevertheless, the densities of Landsat observation records 565 

varied greatly across space and time due to spatial differences in Landsat scene overlap and 566 

temporal coverage, as well as regional differences in contamination by clouds, cloud shadows, 567 
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and snow. The change detection accuracies of CCD models were highly influenced by the 568 

temporal frequency of available observations. Zhou et al. (2019) found that using harmonized 569 

Landsat-8 and Sentinel-2 (HLS) data increased the temporal frequency of the data and thus 570 

enhanced the ability to model seasonal variation and derived better change detection results than 571 

using Landsat data alone. Integrating multi-mission data could provide the opportunity to 572 

enhance change detection, especially for the land cover types that are highly dynamic or in 573 

frequently cloudy/snowy areas.  574 

Providing only eight general land cover classes and their changes in LCMAP Collection 1.0 575 

products limits the usage of the product in some applications that need a higher level of thematic 576 

land cover detail. For example, shrub and grass are two major vegetation types and have 577 

different ecological functions, but they are not delineated separately in LCMAP Collection 1.0 578 

products. Lack of measurement of grassland-shrub transition constrains the study of shrub 579 

encroachment, which is a symptom of land degradation. However, NLCD 2001 level I land 580 

cover product had different mapping accuracies for different land cover types in different 581 

ecological regions (Wickham et al., 2010). For example, the grass mapping accuracies were 582 

higher in the eastern regions than they were in most western mapping regions. The accuracies of 583 

shrub cover had similar variation patterns across CONUS. These accuracy variations suggest 584 

uncertainties of the products, especially in most western regions where grass and shrub are more 585 

difficult to be separated. Combining grass and shrub from the NLCD 2001 product reduced 586 

uncertainties introduced by the two individual components and made the accuracy of the 587 

grass/shrub product in LCMAP relatively high and consistent across CONUS (Stehman et al., 588 

2021). NLCD has established new efforts to improve mapping accuracies by adding innovative 589 

approaches for land cover classification and introducing continuous rangeland products in 590 

western CONUS for NLCD thematic land cover products since 2001 (Homer et al., 2020). The 591 

use of new NLCD products as the training data will support LCMAP to produce more land cover 592 

types including separating grass and shrub in the future. 593 

Adopting NLCD land cover product as the training data source efficiently provided abundant 594 

training samples to deliver land cover product with high classification accuracy. Selecting a 595 

sufficient size of training samples is important for CCDC models to obtain accurate 596 

classification. Previous land cover post-classification analysis suggested that the overall 597 
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classification accuracy increased when the training samples increased (Gong et al., 2020). The 598 

recent global land cover classification also suggested that the appropriate training sample size for 599 

a mapping extent of three 158 km x 158 km tiles should be larger than 60,000 (Zhang et al., 600 

2021). For the LCMAP land cover classification, a much larger training size was utilized to 601 

ensure that these training samples could represent landscape features in the classification tiles. 602 

However, these training data were randomly selected from the NLCD land cover product, 603 

suggesting errors could potentially be carried over to the training samples due to potential errors 604 

in the training source. Besides uncertainties in training data, some obvious challenges such as 605 

class definitional differences between pasture/hay and grassland between NLCD and LCMAP 606 

could potentially be carried over to the LCMAP land cover product. Improving training data by 607 

reducing uncertainties and potential errors in a more consistent and accurate way is critical to 608 

strengthen land cover classification and to improve the scientific quality of LCMAP products in 609 

the future. 610 

There are apparent shifts in some land cover types, especially in snow/ice and barren (Fig.7), and 611 

a decline in overall agreement (Fig.10) in 2017, the last year of the Collection 1.0 product. The 612 

last year’s product usually is provisional because limited Landsat observations are available at 613 

the end of a time series. The CCDC requires at least 24 clear observations to create full models 614 

for change detection and classification. Without sufficient clear observations, the algorithm 615 

could not produce model break accurately. Therefore, in the last year of a time series, the rule-616 

based assignment is implemented to label land cover for these pixels that do not have enough 617 

observations to build a time series model. Both primary and secondary land cover classes are 618 

assigned from the last identified primary and secondary classes.  619 

 620 

5 Data Availability 621 

The LCMAP products generated in this paper are available at https://earthexplorer.usgs.gov/ 622 

(LCMAP, 2021). All LCMAP land change products are mosaiced for the conterminous United 623 

States in the GeoTIFF format. Find exact data as described here at 624 

https://doi.org/10.5066/P9W1TO6E. The reference dataset used for the product validation is also 625 

available at https://www.sciencebase.gov/catalog/item/5e57e965e4b01d50924a93f6 626 

or  https://doi.org/10.5066/P98EC5XR (Pengra et al., 2020a).  627 

https://earthexplorer.usgs.gov/
https://doi.org/10.5066/P9W1TO6E
https://www.sciencebase.gov/catalog/item/5e57e965e4b01d50924a93f6
https://doi.org/10.5066/P98EC5XR


22 
 

 628 

6 Conclusions 629 

The continuous Landsat observations spanning from the 1980s to the present, new generations of 630 

change detection and classification models, and systems capable of processing large volume data 631 

are offering unprecedented opportunities to characterize land cover and detect land surface 632 

change consistently and accurately. Additionally, the collection of reference data used to validate 633 

land cover products provides validation result for each land cover category annually. To capture 634 

the variability of landscape condition and its responses to different disturbances, land cover and 635 

land surface change datasets need to be produced over a large geographic scale. LCMAP has 636 

produced a suite of land change product at 30-m resolution including the reference dataset in the 637 

United States. In that context, LCMAP was developed to generate an essential dataset to meet 638 

broad scientific research and resource management needs. Using the CCDC algorithm and 639 

Landsat ARD to determine whether change has occurred at any given point in the observation 640 

record, LCMAP produced annual land cover and change datasets for the conterminous United 641 

States in a robust manner. These new datasets and the novel production systems will allow for 642 

new generation of research and applications in connecting time series remote sensing 643 

observations with land surface change at a much finer scale than previously possible.  644 
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Caption of Table 

Table 1 LCMAP land cover product specifications 

Table 2 NLCD land cover cross-walked to LCMAP land cover 

Table 3. Confusion matrix for CONUS (all years combined) where cell entries represent percent 

of CONUS area. Overall accuracy is 82.5% (±0.22%). Standard errors for user's and producer's 

accuracies are shown in parentheses and n is the number of sample pixels for each row and 

column. 

Table 4 Overall per class agreement in percentage between 1985 and 2017 

Caption of Figure 

Figure 1 Landsat ARD tile grids for the conterminous U.S. 

Figure 2 Overall procedures of the CCD algorithm. 

Figure 3 The overall approach of land cover classification in CCDC. 

Figure 4. NLCD 2001 land cover (a), cross-walked LCMAP land cover classes (b), LCMAP land 

cover eroded by one pixel (c), zoomed in cross-walked land cover from NLCD 2001 (d), and 

zoomed in LCMAP land cover classes eroded by one pixel (e). The color legends represent 

NLCD land cover class and LCMAP primary land cover (LCPRI).  

Figure 5 CCD change detection and segmentation using Landsat blue, green, red, near-infrared, 

short-wave infrared (SWIR) 1, short-wave infrared (SWIR) 2, and thermal bands. Blue dots are 

all available clear Landsat records in each year. The horizontal lines in different colors represent 

land cover classes labeled by the algorithm. The vertical lines show model break dates. The back 

line is the model fits. The high-resolution images show landscape conditions in 2007 and 2013.  

Figure 6 Illustration of the LCMAP product: (a) Primary land cover in 2010, (b) Primary land 

cover confidence in 2010, (c) the frequency of land cover changes from 1985 to 2017, and (d) 

total number of spectral changes detected from 1985 to 2017. 

Figure 7 Areal variations of eight primary land cover types from 1985 to 2017 in CONUS. 

Figure 8 Primary land cover and confidences in 1985 (a) and (d), 1990 (b) and (e), 2016(c) and 

(f), change in 1985-2017 (g), the frequency of land cover change (x-axis) from 1985 to 2017 and 

numbers of total pixels (y-axis) of these changes of different change (h), and areas (y-axis) of 

different land cover (x-axis) in the three times for the ARD tile 16_14 (i). 

Figure 9 Primary land cover and confidences in 1985 (a) and (d), 1990 (b) and (e), 2016 (c) and 

(f), and change in 1985-2017 (g), the frequency of land cover change (x-axis) from 1985 to 2017 

and numbers of pixels (y-axis) of these changes (h), and areas (y-axis) of different land cover (x-

axis) in the three times for the ARD tile 9_6 (i). 

Figure 10 Overall agreement between LCMAP primary land cover and reference data across 

CONUS. The cross lines represent +/- one standard errors.  
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Table 1 LCMAP land cover product specifications 

Code Land Cover Class Description 

1 Developed Areas of intensive use with much of the land 

covered with structures (e.g., high-density 

residential, commercial, industrial, mining, or 

transportation), or less intensive uses where 

the land cover matrix includes vegetation, bare 

ground, and structures (e.g., low-density 

residential, recreational facilities, cemeteries, 

transportation/utility corridors, etc.), including 

any land functionality related to the developed 

or built-up activity. 

2 Cropland 

  

Land in either a vegetated or unvegetated state 

used in production of food, fiber, and fuels. 

This includes cultivated and uncultivated 

croplands, hay lands, orchards, vineyards, and 

confined livestock operations. Forest 

plantations are considered as forests or 

woodlands (Tree Cover class) regardless of 

the use of the wood products. 

3 Grass/Shrub Land predominantly covered with shrubs and 

perennial or annual natural and domesticated 

grasses (e.g. pasture), forbs, or other forms of 

herbaceous vegetation. The grass and shrub 

cover must comprise at least 10% of the area 

and tree cover is less than 10% of the area. 

4 Tree Cover Tree-covered land where the tree cover 

density is greater than 10%. Cleared or 

harvested trees (i.e. clearcuts) will be mapped 

according to current cover (e.g. Barren, 

Grass/Shrub). 

5 Water Bodies Areas covered with water, such as streams, 

canals, lakes, reservoirs, bays, or oceans. 

6 Wetland Lands where water saturation is the 

determining factor in soil characteristics, 

vegetation types, and animal communities. 

Wetlands are composed of mosaics of water, 

bare soil, and herbaceous or wooded vegetated 

cover. 

7 Ice and Snow  Land where accumulated snow and ice does 

not completely melt during the summer period 

(i.e. perennial ice/snow). 

8 Barren Land comprised of natural occurrences of 

soils, sand, or rocks where less than 10% of 

the area is vegetated. 
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Table 2 NLCD land cover cross-walked to LCMAP land cover 

NLCD Value LCMAP 

Value 

Water  Water 

Ice/Snow Ice and Snow 

Developed, open space; Developed, low intensity; Developed medium 

intensity; Developed, high intensity 

Developed 

Barren Barren 

Deciduous forest, Evergreen forest, Mixed forest Tree Cover 

Shrub/Scrub, Grassland/Herbaceous Grass/Shrub 

Hay/Pasture, Cultivated crops Cropland 

Woody wetland, Emergent herbaceous wetland Wetland 
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Table 3. Confusion matrix for CONUS (all years combined) where cell entries represent percent 

of CONUS area. Overall accuracy is 82.5% (±0.22%). Standard errors for user's and producer's 

accuracies are shown in parentheses and n is the number of sample pixels for each row and 

column. 

 

Map  Devel

. 

Crop. Grass 

/Shrub 

Tree Water Wetland Ice/ 

Snow 

Barren Total User 

(SE) 

  n   

Devel. 3.000   0.139 0.321 0.377 0.024 0.035  0.001 3.896 77 

(1.2) 

32102 

Crop. 0.918 16.527 5.061 0.799 0.027 0.368  0.003 23.702 70 

(0.6) 

195283 

Grass 

/Shrub 
0.368 0.757 30.649 2.599 0.045 0.229  0.332 34.980 88 

(0.3) 

288197 

Tree 0.340 0.143 1.414 23.387 0.049 0.579  0.006 25.917 90 

(0.3) 

213531 

Water 0.013 0.008 0.048 0.024 4.788 0.067  0.020 4.968 96 

(0.5) 

40932 

Wetland 0.062 0.129 0.361 0.944 0.172 3.688  0.001 5.357 69 

(1.3) 

44136 

Ice/Sno

w 
  0.004 0.004  0.004 0.012 0.004 0.028  43 

(18.7) 

231 

Barren 0.072 0.005 0.501 0.013 0.056 0.012   0.492 1.151 43 

(2.8) 

9485 

Total 4.772 17.707 38.358 28.149 5.162 4.981 0.012 0.859 100.00   

Prod 

(SE) 
63  

(1.3) 

93  

(0.3) 

80  

(0.4) 

83  

(0.4) 

93  

(0.7) 

74 

 (1.2) 

100 

(0) 

57  

(3.2) 

   

n 39319 145886 316027 231916 42530 41042 99 7078    
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Table 4 Overall per class agreement in percentage between 1985 and 2017 

Overall Per 

Class 

Agreement 

Developed Cropland Grass/Shrub Tree Water Wetland Snow/Ice Barren 

1985 66 80 83 87 95 72 60 49 

1986 67 80 83 87 95 72 60 49 

1987 68 80 83 86 95 72 60 49 

1988 68 80 83 87 95 72 60 49 

1989 68 80 84 87 95 72 60 48 

1990 68 80 84 87 95 72 60 48 

1991 68 80 84 87 95 72 60 49 

1992 69 80 84 87 95 71 60 50 

1993 69 80 84 87 95 71 60 49 

1994 69 80 84 87 95 71 60 49 

1995 70 80 84 87 95 72 60 49 

1996 69 80 84 87 95 72 60 48 

1997 70 80 84 87 95 72 60 49 

1998 70 80 84 87 94 72 60 48 

1999 70 80 84 87 95 72 60 48 

2000 70 80 84 87 95 72 60 48 

2001 70 80 84 87 95 72 60 49 

2002 70 80 84 86 95 72 60 49 

2003 70 80 84 87 94 71 60 48 

2004 69 80 84 86 94 71 60 48 

2005 70 80 84 86 94 71 60 49 

2006 70 79 84 86 94 71 60 49 

2007 70 79 84 86 94 71 60 50 

2008 70 79 84 86 94 71 60 49 

2009 70 79 84 86 94 71 60 49 

2010 70 79 84 86 94 71 60 50 

2011 70 79 84 86 94 71 60 51 

2012 70 79 83 86 94 71 60 50 

2013 69 79 83 86 94 71 60 50 

2014 69 79 83 86 94 71 60 50 

2015 69 79 83 86 94 71 60 50 

2016 69 79 83 86 94 71 60 50 

2017 69 78 83 85 94 70 60 49 
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Figure 1 Landsat ARD tile grids for the conterminous U.S. 
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Figure 2 Overall procedures of the CCD algorithm. 
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Figure 3 The overall approach of land cover classification in CCDC. 
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Figure 4. NLCD 2001 land cover (a), cross-walked LCMAP land cover classes (b), LCMAP land 

cover eroded by one pixel (c), zoomed in cross-walked land cover from NLCD 2001 (d), and 

zoomed in LCMAP land cover classes eroded by one pixel (e). The color legends represent 

NLCD land cover class and LCMAP primary land cover (LCPRI).  
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Figure 5 CCD change detection and segmentation using Landsat blue, green, red, near-infrared, 

short-wave infrared (SWIR) 1, short-wave infrared (SWIR) 2, and thermal bands. Blue dots are 

all available clear Landsat records in each year. The horizontal lines in different colors represent 

land cover classes labeled by the algorithm. The vertical lines show model break dates. The back 

line is the model fits. The high-resolution images show landscape conditions in 2007 and 2013.  
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Figure 6 Illustration of the LCMAP product: (a) Primary land cover in 2010, (b) Primary land 

cover confidence in 2010, (c) the frequency of land cover changes from 1985 to 2017, and (d) 

total number of spectral changes detected from 1985 to 2017. 
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Figure 7 Areal variations of eight primary land cover types from 1985 to 2017 in CONUS. 
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Figure 8 Primary land cover and confidences in 1985 (a) and (d), 1990 (b) and (e), 2016(c) and 

(f), change in 1985-2017 (g), the frequency of land cover change (x-axis) from 1985 to 2017 and 

numbers of pixels (y-axis) of these changes (h), and areas (y-axis) of different land cover (x-axis) 

in the three times for the ARD tile 16_14 (i). 
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Figure 9 Primary land cover and confidences in 1985 (a) and (d), 1990 (b) and (e), 2016 (c) and 

(f), and change in 1985-2017 (g), the frequency of land cover change (x-axis) from 1985 to 2017 

and numbers of pixels (y-axis) of these changes (h), and areas (y-axis) of different land cover (x-

axis) in the three times for the ARD tile 9_6 (i). 
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Figure 10 Overall agreement between LCMAP primary land cover and reference data across 

CONUS. The cross lines represent +/- one standard errors.  


