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Abstract  10 

Bed-material sediment particle size data, particularly for the median sediment particle size (D50), are critical for understanding 

and modeling riverine sediment transport. However, sediment particle size observations are primarily available at individual 

sites. Large-scale modeling and assessment of riverine sediment transport are limited by the lack of continuous regional maps 

of bed-material sediment particle size. We hence present a map of D50 over the contiguous U.S. in a vector format that 

corresponds to millions of river segments (i.e., flowlines) in the National Hydrography Dataset Plus (NHDplus) dataset. We 15 

develop the map in four steps: 1) collect and process the observed D50 data from 2577 U.S. Geological Survey stations or U.S. 

Army Corps of Engineers sampling locations; 2) collocate these data with the NHDplus flowlines based on their geographic 

locations, resulting in 1691 flowlines with collocated D50 values; 3) develop a predictive model using the eXtreme Gradient 

Boosting (XGBoost) machine learning method based on the observed D50 data and the corresponding climate, hydrology, 

geology and other attributes retrieved from the NHDplus dataset; 4) estimate the D50 values for flowlines without observations 20 

using the XGBoost predictive model. We expect this map to be useful for various purposes such as research in large-scale river 

sediment transport using model- and data-driven approaches, teaching of environmental and earth system sciences, planning 

and managing floodplain zones, etc. The map is available at http://doi.org/10.5281/zenodo.4921987 (Li et al., 2021). 
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1 Introduction 

Bed-material sediment particle size information is critical for understanding and modeling riverine sediment processes, 25 

including sediment erosion, entrainment, deposition, and transportation. Various sedimentology formulas have been proposed 

to quantify the sediment processes, with sediment particle size being a critical parameter in those formulas (Meyer-Peter and 

Müller, 1948; Einstein, 1950; Engelund and Hansen, 1967; Ackers and White, 1973; Van Rijn, 1984; Parker 1990; Garcia and 

Parker, 1991; Wu et al., 2000; An et al., 2021). Moreover, sediment particle size is a critical factor in riverine dynamics of 

heavy metal (Unda-Calvo et al., 2019; Zhang et al., 2020), nutrients (Xia et al., 2017; Glaser et al., 2020), microplastic 30 

(Corcoran et al., 2019; He et al., 2020), and fish habitats and benthic lives (Dalu et al., 2020; Rieck and Sullivian, 2020).  

The sediment transport modes can be classified into bed-material load and wash load (Garcia, 2008). The bed-material load 

consists of all sizes of particles existing in a river bed regardless of whether they are being transported along the bed (bedload) 

or in suspension (suspended load). Wash load consists of very fine particles (diameter less than 0.062 mm) that are always in 

suspension in the water and rarely reside on the bed (Garcia, 1975). Wash load is usually controlled by only land surface 35 

processes (soil erosion in hillslopes and transport from hillslopes into rivers), but not much by riverine hydraulic conditions 

(Garcia, 1975). In this study, we focus on the bed-material sediment particle size data that are critical in applying sediment 

transport formulas to estimate bed-material load. For example, the Engelund-Hansen equation estimates bed-material load, 

and median bed-material sediment particle size (denoted as D50, i.e., the size larger than 50% of sediment particles) is one of 

the most important parameters (Engelund and Hansen, 1967).  40 

Despite the importance of bed-material sediment particle size, such data has limited availability due to the expensive costs of 

measuring and analyzing such data. As one of the most data-rich countries in the world, the United States (U.S.) collects and 

disseminates the sediment particle size data mainly through two federal agencies: The U.S. Geological Survey (USGS) and 

the U.S. Army Corps of Engineers (USACE). USGS manages the most gauges and distributes the river-related measurements 

on the U.S. rivers. As of April 2021, there are 424948 stations with field/laboratory samples in the USGS water quality portal, 45 

among which 1.2% (4991) include bed-material sediment particle data for rivers over the contiguous U.S., and 0.5% (2277) 

have complete percentiles of bed-material sediment particle data to compute D50.  

Spatial approximation, i.e., interpolation or extrapolation, is a typical method to overcome data sparsity when there is no 

universal relationship between the variable of interest (e.g., D50) and other extensively available information. In the case of 

sediment particle size, a simple spatial approximation should be conducted within the same river system, assuming similar 50 

geological and hydrological settings. Here we denote a river system as the whole river network discharging to the ocean (or 

inland lakes) via the same outlet. Such a simple spatial approximation is nevertheless not feasible in many river systems, where 

there are few or no measurement data to support meaningful interpolation and extrapolation. Several studies have reported 

empirical relationships between bed-material sediment particle size with river channel characteristics (e.g., channel slope) and 

flow regimes (Niño, 2002; Zhang et al., 2017). Such relations are nonetheless site-specific and not universal enough to apply 55 

over various river systems.  
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An alternative approach is to establish complex correlations between sediment particle size and other data that are extensively 

available over the contiguous U.S. Such correlations can then be applied across the U.S. for predicting sediment particle size. 

Conventional linear or nonlinear regression methods usually require good prior knowledge of the mechanisms controlling 

sediment size distribution, and thus are not suitable for use to establish complex correlations when understanding of factors 60 

that control sediment size is somewhat limited. Machine learning offers an effective way forward because of its ability to 

establish nonlinear, complex predictive models without the prerequisite of sufficient process-based knowledge (Afan et al., 

2016).  

Therefore, our objective is to develop a spatial map of D50 over the contiguous U.S. rivers by establishing a predictive model 

between D50 and other extensively available hydroclimatological and geological data using state-of-the-art machine learning 65 

techniques. In the following, we describe the data in Section 2, introduce the machine learning model development in Section 

3, and present our results in Section 4. We also explain the limitations of our method in Section 5, potential usage of the D50 

map in Section 6, and data availability in Section 7. We finally conclude with Section 8.  

2 Data 

2.1 Bed-material sediment particle size observations 70 

The USGS sediment data are available to the public through the National Water Information System (NWIS) water quality 

data portal. There are 4991 USGS stations with at least one sample of bed-material sediment particle size, but only 2277 

stations have complete data to allow meaningful computation of D50, as shown in Figure 1a. The USACE sediment particle 

size data are available in a technical report by Gaines and Priestas (2016). Gaines and Priestas (2016) include the bed-material 

sediment particle size samples taken at 442 locations along the Mississippi River main stem between Head of Passes, Louisiana 75 

and Grafton, Illinois. We exclude locations without exact geographic coordinates and eventually yield 300 locations, as shown 

in Figure 1a. In total, we have 2577 locations with complete bed-material sediment particle size percentiles to allow for the 

D50 calculation. At each location, the sediment particle size might have been sampled more than once in different years, 

although almost half of the locations are sampled only once (see Figure 1b). Figure 1c shows the years that the latest samples 

were taken. About 94%  of these locations have been sampled after 1970.  80 

We compute the D50 values from the measured sediment particle size distributions in three steps: 1) the cumulative sediment 

size distribution curve is drawn with log-2-transformed sediment size following the concept of the Krumbein phi scale 

(Krumbein, 1934). 2) A linear interpolation is performed between the percentiles smaller and larger than the 50th percentile to 

obtain the D50 value. 3) For the stations with multiple sampling times, a representative D50 value is computed as the mean 

D50 value from all the sampling times. The D50 values calculated following this procedure are denoted as “observed D50 85 

values” to differentiate them from the predicted D50 values using machine learning techniques described later. Figure 1d 

shows the histogram of the computed D50 values in the Krumbein phi scale. About 75% of these D50 values are between 

0.0625 mm and 2.0 mm. Garcia (2008) suggested that a river can be a sand-bed or gravel-bed river if the D50 value is below 
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or above 2.0 mm. The D50 values computed from the observed sediment particle size distributions thus dominantly reflect 

sand-bed river conditions, while only approximately 25% are gravel-bed rivers.   90 

2.2 Predictive variables 

The predictive variables are retrieved from the NHDplus database (McKay et al., 2012) and additional attributes for the 

NHDPlus catchments from the ScienceBase dataset (Wieczorek et al., 2018). ScienceBase is a comprehensive scientific data 

and information management platform hosted by USGS (sciencebase.gov). In the medium resolution NHDplus, there are about 

2.7 million stream segments (average length of 1.93 km, denoted as flowlines from now on). NHDplus directly provides 138 95 

attributes of flowlines, most of which are descriptive instead of quantitative. We select eight quantitative attributes relevant to 

the channel geometry and hydrology, such as upstream drainage area, channel bed slope, mean annual flow velocity, sinuosity, 

etc. ScienceBase provides additional attributes related to the NHDplus watersheds (local drainage area corresponding to a 

single flowline) and associated upstream drainage areas in thirteen themes (Wieczorek et al., 2018). We select 68 

hydroclimatological and geological attributes from ScienceBase, such as climate, hydrologic, topographic, soil, and geologic 100 

conditions. In total, 76 attributes are selected as potential predictive variables for input to the machine learning algorithm. We 

provide a detailed list of these predictive variables in Supplimentary Table S1 and four illustrative maps in Supplementary 

Figure S1.  

We then establish the spatial correspondence between the observed D50 values and the 76 predictive variables. In NHDplus, 

there are ~26000 USGS stations associated with a portion of the flowlines through the common identifiers. This common 105 

identifier is unique for every flowline, but several USGS stations may be located on the same flowline and have the same 

common identifier. We match the 2277 USGS stations (with observed D50 values) with stations in NHDplus. Some of the 

2277 USGS stations are not included in NHDplus, so we obtain 1530 matching stations. The 300 USACE sampling locations 

are collocated with the flowlines via their geographic coordinates. Several USGS stations or USACE sampling locations may 

be on the same flowline. In that case, we assign the average of the D50 values of these USGS stations to the flowline. We 110 

further exclude a few flowlines with missing attribute values. Finally, we have a total of 1691 flowlines corresponding to the 

observed D50 values. In other words, in each of these 1691 flowlines, we have established a good correspondence between 

the observed D50 values and the 76 predictive attributes.  

3 Model Development 

Among various machine learning methods, eXtreme Gradient Boosting (XGBoost) is a version of the gradient tree boosting 115 

algorithm known for its high efficiency and superior performance in recent years (Chen and Guestrin, 2016; Zheng et al., 2019; 

Fan et al., 2021). Therefore, we adopt XGBoost to develop a predictive model with the Optuna optimization framework (Akiba 

et al., 2019) for tuning hyperparameters and the SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2016) for feature 

importance analysis and thus feature selection. More details are explained as follows. 
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3.1 XGBoost: eXtreme Gradient Boosting 120 

Tree boosting is a machine learning framework that combines weak learners to develop a strong learner, where the base learners 

are decision trees that are trained sequentially, with the latter focusing on mistakes made by the preceding one. Gradient 

boosting machines are a family of tree boosting techniques where errors are minimized by gradient descent algorithms. One 

of the most recent offspring of gradient boosting techniques is the XGBoost, a scalable end-to-end tree boosting system (Chen 

& Guestrin, 2016). It has been successfully utilized across a wide array of applications, such as snowpack estimation (Zheng 125 

et al., 2019) and water storage change in a large lake (Fan et al., 2021). XGBoost dataset is represented as 𝐷 =

{(𝑋𝑖 , 𝑌𝑖), 𝑖 =  1, 2, . . . , 𝑁}, where 𝑋𝑖 = [𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3, . . . , 𝑋𝑖𝑝] is a row vector with input features with real value elements and 

𝑌𝑖 𝜖 𝑅. The tree ensemble model employs M additive functions to predict the output of interest as 

�̂�𝑖  =  𝜙(𝑋𝑖)   = ∑ 𝑓𝑚(𝑋𝑖)

𝑀

𝑚=1

 , 𝑓𝑚 𝜖 Ϝ                                                   1 

where Ϝ is the space of regression trees. The model is trained in an additive manner by minimizing a regularized objective to 130 

learn the set of functions employed in the model. At each iteration, a differentiable convex loss function that measures the 

difference between the prediction �̂�𝑖  and the target 𝑌𝑖 is computed, and the model is also penalized for the complexity of the 

regression tree functions.  

3.2 Tuning Hyperparameters 

Tuning hyperparameters is a cumbersome task and is often performed by reducing the parameter search space through 135 

randomized search and applying a grid search on the reduced space. Alternatively, hyperparameter optimization frameworks 

like Hyperopt (Bergstra et al., 2013) and Optuna (Akiba et al., 2019) are commonly preferred since they can continually narrow 

down the bulky hyperparameter search space to an optimal space based on the preceding results.  This study implements 

Optuna with a Tree-structured Parzen Estimator (TPE) parameter sampling framework to obtain the optimal hyperparameter 

sets.  140 

The procedure for tuning hyperparameters relies on two major components: cross-validation and evaluation metrics. Cross-

validation measures the model's predictive power with a given hyperparameter set by dividing a dataset into folds. In 𝑘-fold 

cross-validation, the dataset is randomly split into 𝑘  mutually exclusive subsets of approximately equal size as,  𝐷 =

{𝐷1, 𝐷2, 𝐷3, . . . , 𝐷𝑘}. In each iteration 𝑘 − 1 folds of 𝐷 are used for training, and the remaining one is used for validation. The 

predictions resulting from a given set of hyperparameters are made by iterating through the folds, so the model is trained and 145 

validated 𝑘 times. Hence, 𝑘 model performance values and the mean value is reported as the model performance for this set 

of hyperparameters. Optuna allows the use of user-defined metrics for model evaluation during the 𝑘-fold cross-validation. 

Taking advantage of this structure, we use the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) as the model performance 

metric. 
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𝐾𝐺𝐸 =  1 − √(1 − 𝑟)2 + (1 −
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
)

2

+ (1 −
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
)

2

                                                    2 150 

where σ is the standard deviation, μ is the mean, and 𝑟 is the linear correlation between the observed and simulated series. A 

perfect agreement between observation and simulation gives the theoretical maximum KGE value at 1.0. The higher the KGE 

value, the closer the match between the observed and simulated series. KGE offers some advantages over commonly used 

metrics like root mean squared errors (RMSE) or coefficient of determination (R2) because: 1) it is not dominated by relatively 

large values; and 2) it simultaneously captures both the magnitude and phase differences between the observed and simulated 155 

series (Gupta et al., 2009). 

3.3 Feature Selection 

Feature selection is also an essential step in developing a simpler model that is still capable of reasonably predicting the target 

variable with fewer attributes. Feature importance is a technique of computing each predictive variable's degree of contribution 

towards the optimal prediction model, which can be used for determining feature selection. The approaches of computing 160 

feature importance scores include correlation coefficient, the coefficients calculated as part of decision trees, or advanced 

approaches like SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2016). In this study, we use the mean absolute 

SHAP values as feature importance measures. 

Initially, we begin with 76 predictive variables. For feature selection purposes, we add a new “predictor” of randomly generated 

real number values. We train the model and compare the feature importance scores (i.e., the mean absolute SHAP values) of 165 

all predictors. Then, all attributes with scores less than the random number attribute are dropped out. The procedure is repeated 

using the new set of predictors until the random number attribute is the least important feature.  Lastly, the remaining features 

are utilized for tuning the final optimal set of hyperparameter values. 

3.4 General Steps 

The general steps of the model development procedure are as follows. 170 

1. The predictors are scaled using the Minimum-Maximum scaler method, i.e., all features will be transformed into a 

range of [0,1]. The main advantage of having this bounded range normalization is that it can supress the effect of 

outliers. 

2. The dataset is randomly split into training (70%) and testing (30%) sets, respectively. Only the training data are used 

in steps 3 and 4, while the testing data are reserved for step 5. 175 

3. Optuna and k-fold (k=5) cross-validation are used for tuning hyperparameters, with a maximum tree of 5000 and an 

early stopping value of 50. The objective function for the hyperparameter optimization procedure is to maximize the 

mean Kling-Gupta Efficiency (KGE) value returned from the k-fold cross-validation. 
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4. Feature selection is performed as described in section 3.3, so step 3 is repeated with the new and smaller set of 

predictors. Steps 3 and 4 are repeated until no more predictor can be excluded. 180 

5. The final model is developed by fitting on the whole training data using the optimal hyperparameters, and evaluated 

using the testing data reserved in step 2. 

6. The model from step 5 is used to predict the D50 values for the contiguous U.S. river flowlines. 

4 Results 

We discuss our results in three steps: the subset of flowlines as the basis to formulate our predictive model, the development 185 

and validation of our predictive model, and the national D50 map derived based on the predictive model.   

4.1 Measured D50 

Figure 2 shows the 1691 flowlines with the associated observed D50 values. The Mississippi River has relatively denser 

measurements attributed to the USACE database, while the southwest (e.g., the Rio Grande) and the Great Basin have fewer 

measurements. Overall, the 1691 flowlines are distributed throughout the contiguous United States, providing a good spatial 190 

representation of the NHDplus flowlines. Similar to all observed D50 values in Figure 1d, most of the D50 values associated 

with the flowlines represent sand-bed rivers (D50 < 2.0 mm). Larger-D50 (> 2.0 mm) flowlines are mainly located in the 

basins of California, Upper Colorado, Missouri, Ohio and Upper Mississippi.  

4.2 Predictive Model 

4.2.1 Feature Selection 195 

After iterations of feature selection (procedure described in sections 3.3 and 3.4), 13 out of 76 predictive variables are 

eventually selected and shown in Table 1. These variables are identified as more significant than a random-number input vector 

based on the mean absolute SHAP value. 2 out of 8 channel characteristics and 11 out of 68 basin characteristics remain as the 

significant predictors (see Table 1 for description). The most important predictor is found to be the soil erodibility factor 

(TOT_KFACT), followed by average annual wet day (TOT_WDANN) and mean annual snow as a percent of total 200 

precipitation (TOT_PRSNOW). 

These three basin-related predictors rank higher than the two channel-related characteristics. Channel slope (Slope) and 

distance between flowline and the river mouth (Pathlength) are found to be the most important channel characteristics for 

predicting D50, which agrees with the downstream fining phenomena and sediment transport mechanisms (Nino, 2002). It is 

somewhat surprising that some hydraulic channel characteristics such as mean annual flow velocity are not included in the 205 

final feature selection. Studies on river hydraulics show relations between channel flow (i.e., velocity and water depth) and 

channel bed characteristics (i.e., slope and roughness), such as the Manning’s equation, Chezy’s law, etc., and channel bed 

roughness can be related to bed sediment size (Garcia, 2008). However, the feature selection with the XGBoost model and 
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SHAP value indicates that mean annual flow velocity may not be a good predictor for D50 in this case. A possible reason is 

that mean annual flow velocity is dependent on some of the selected parameters such as TOT_WDANN, Slope, etc., so 210 

excluding this variable avoids overfitting the data.  

It should be noted that the ranking of feature importance according to the mean absolute SHAP values is quite different from 

the correlation coefficients between D50 and predictors, as shown in Figure 3. TOT_KFACT and TOT_WDANN, the two 

most important features in Table 1, have correlation coefficients of only 0.08 and 0.06, respectively. TOT_PRSNOW has the 

strongest correlation with D50, with a correlation coefficient of 0.29. The scatter plots between D50 and all the selected features 215 

do not show any apparent relationship between D50 and any single feature (see Supplementary Figure S2). This indicates that 

the XGBoost model can reveal higher-order interactions among the predictors for better predictions. 

Although feature selection sheds light on the contribution of input variables to model outputs, a drawback of the machine 

learning technique is that it cannot explain mechanistically why selected features are more important than unselected ones. 

Therefore, the goal of feature selection is to find the best (i.e., most robust) input variables to feed the best model for D50 220 

predictions. If a different machine learning algorithm from XGBoost is used, the selected features, especially their rankings, 

can be different. Feature selection is dependent on the selection of the algorithm, so the selected features in this study should 

not be directly used in other models or studies. 

4.2.2 Model Hyperparameters and Performance 

Table 2 shows the tuned hyperparameters of the best XGBoost model that is trained using the 13 selected predictors and 70% 225 

of the training data set. For a detailed explanation of the hyperparameters please refer to Chen and Guestrin (2016). Figure 4 

shows the performance of the optimal XGBoost model on the training and testing data sets, respectively. Here we consider an 

optimal model based on two criteria: 1) the model performance is satisfactory in both the training and testing phases, ad 

indicated by good metrics values (e.g., KGE in this study), and 2) the model performance is relatively consistent between the 

training and testing phases. Here the optimal XGBoost model gives the KGE value 0.794 for training and 0.513 for testing. 230 

The testing value is above 0.5, suggesting satisfactory model performance (Gupta et al., 2009; Knoben et al., 2019). The 

performance on the testing data is noticeably worse than that on the training data, as expected. This difference is nevertheless 

acceptable given the complexity of the prediction problem. The relatively consistent model performance between the training 

and testing phase suggests that the model validation (via the testing phase) is successful.  

4.2.3 Model Uncertainty 235 

We carry out further analysis to shed light on how the modelling results may be sensitive to some of the key steps as outlined 

in Section 3.4. We focus on Steps 2 to 4 only because Steps 1 and 5 are standard practice and Step 6 is to utilize the modelling 

results.  
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For Step 2, the 2/3 (train) and 1/3(test) split is typical in machine learning for splitting training and testing data. This can be 240 

readjusted up to 4/5(train) and 1/5(test) if the total sample size is sufficiently large, which is nonetheless not the case here. For 

Step 3, the choice of k value is usually 5 or 10 depending on the training sample size. We use 5 since using 10 significantly 

reduces the number of samples per fold and the left-out sample will be too small for validation during cross-validation. 

Increasing k-fold to 6 or decreasing it to 4 still gives a similar satisfactory performance in both the training and testing phases, 

with training/testing KGE of 0.759/0.505 and 0.795/0.512 respectively. For Step 4, we evaluate the model sensitivity to each 245 

selected feature by dropping one of the 13 variables at a time and repeating the same modelling procedure for the remaining 

12 variables. Figure 5 shows that dropping the variables leads to the model performance dropping below KGE = 0.475 in the 

training phase for most features except for TOT_SATOF and TOT_WBM_TAV. Even with those two, the KGE difference 

between the training and testing phases increases from 0.28 to 0.36 by including them as predictors. Thus, all the variables 

remaining after feature selections play a significant role in the final model.  250 

4.3 National Map 

Using the developed machine learning model and NHDplus channel/basin characteristics data, we are able to produce a 

national map of bed sediment D50 values (Figure 6). To our best knowledge, it is the first of its kind D50 data for the whole 

contiguous U.S. The spatial pattern of D50 in Figure 6 are generally consistent with the observed D50 in Figure 2. High D50 

values are mostly distributed in the west coast, upper Missouri and Ohio regions, and low D50 values are concentrated in the 255 

east coast. The consistency between Figures 2 and 6 suggests that the observed D50 data are reasonably representative of the 

whole contiguous U.S., despite the sparse distribution. Given that the testing data set is independent of the training dataset, we 

expect that the error statistics derived for the testing data should be relatively consistent with the error statistics in applying 

the model to derive the national map of D50. 

5 Limitations of the method 260 

The predicted D50 values may be subject to several limitations despite using state-of-the-art machine learning techniques to 

develop the predictive model. These limitations include: 1) Limited data availability. Although the 1691 observed D50 values 

are adequately representative of the contiguous U.S. (i.e., consistent spatial patterns between Figures 2 and 6), limited data 

availability prevents us from establishing a separate predictive model for each river basin. For example, there is little observed 

D50 data in the Rio Grande and Great Basin, so the predicted D50 values over these basins should be used cautiously. 2) Our 265 

methodology is statistical in nature and lacks explicit process-based understanding. For example, Figure 4 shows the model 

tends to overestimate D50 for smaller D50 values (particularly < 0.25 mm) and underestimate D50 for larger D50 values 

(particularly > 1 mm). However, in various trials we have performed, the current result is closest to the 1:1 relationship based 

on both the KGE metric and visual check. Further process-based understanding of this systematic bias is beyond the scope of 

this study and left for a future work. 3) We have not explicitly incorporated the effects of lakes and reservoirs but rather 270 
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assumed these effects have been indirectly reflected in the NHDplus hydrologic attributes adopted in the predictive model.  As 

such, our predictive results are certainly not free from uncertainties. Therefore, we recommend using our D50 map for sediment 

modeling and assessment at the regional or national scales instead of local studies at the individual river segment.  

6 Potential usage 

The D50 map might be used for large-scale sediment transport modeling over the whole contiguous U.S., or a major river 275 

basin such as the Mississippi River basin. There is inevitably some uncertainty embedded in these maps sourced from the 

original D50 observations and NHDplus attributes, the XGBoost modeling, and the spatial extrapolation process. This 

uncertainty should be taken into account while evaluating the uncertainties in the model simulations.  

The D50 map may also be used to derive other important parameters for large-scale hydrological or hydraulic modeling. For 

instance, Manning’s roughness coefficient is an important parameter for river routing modeling. It is, however, largely 280 

empirical and hard to directly measure, hence not readily available at a regional or national scale. Previous studies have 

established some empirical relationships between Manning’s roughness coefficient and D50 for river channels (Coon, 1998; 

Gillen, 1996; Julien, 2002; Meyer-Peter & Müller, 1948). Thus, one might derive a map of Manning’s roughness coefficient 

over the contiguous U.S. based on the empirical relationship and the D50 maps. 

7 Data availability 285 

The national D50 map is freely available at http://doi.org/10.5281/zenodo.4921987 (Li et al., 2021). The input data are obtained 

from the USGS water quality portal (https://nwis.waterdata.usgs.gov/usa/nwis/qwdata), NHDplus 

(https://www.epa.gov/waterdata/nhdplus-national-data ) and ScienceBase (https://doi.org/10.5066/F7765D7V).     

8 Conclusions 

We develop a new national map of the median bed sediment particle size by combining the USGS sediment observations, the 290 

channel and watershed characteristics from NHDplus and ScienceBase, and state-of-the-art machine learning techniques. 

Despite the limitations, the map is highly valuable for sediment modeling and assessment at the regional and larger scales, 

which has not been feasible previously.  
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Table 1. Most important predictors according to the feature selection 

Predictor Description 

Mean 

Absolute 

SHAP Value 

TOT_KFACT Soil erodibility factor of Universal Soil Loss Equation 0.51 

TOT_WDANN Average annual number of wet days 0.46 

TOT_PRSNOW Mean annual snow as a percent of total precipitation 0.37 

Slope Channel bed slope for each flowline 0.36 

Pathlength 

Distance from the downstream end of a flowline to the end of the 

network (river mouth) 0.34 

TOT_RFACT R factor of Universal Soil Loss Equation 0.34 

TOT_SATOF Annual saturation overland flow as a percent of total runoff 0.33 

TOT_CONTACT 

Time it takes for water to drain along subsurface flow paths to the 

stream 0.31 

TOT_BASIN_SLOPE Average topographic slope within the upstream drainage area  0.30 

TOT_ELEV_MEAN Average surface elevation within the upstream drainage area 0.29 

AI 

Aridity index defined as the ratio of annual mean potential evaporation 

to annual mean precipitation 0.29 

TOT_WBM_TAV Average mean annual temperature within the upstream drainage area 0.29 

TOT_RUN Average annual runoff within the upstream drainage area 0.23 

Note: here we use the same names as those in the NHDplus attribute tables, but moderately revise the description using 

terminologies that can be understood by a broader audience 
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Table 2. Optimal value of the XGBoost model hyperparameters 400 

Hyperparameter Optimal Value Tuning Range 

learning_rate 0.825 [0,1] 

min_split_loss 1 [0,∞] 

max_depth 6 [0,∞] 

min_child_weight 58 [0,∞] 

max_delta_step 22 [0,∞] 

subsample 0.695 [0,1] 

colsample_bytree 0.712 [0,1] 

reg_lambda 26.821 [0,∞] 

reg_alpha 2.561 [0,∞] 

n_estimators 155 [1,∞] 
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 405 

 

Figure 1: Sediment sample stations. a. Location of USGS stations and USACE sampling locations; b. Number of samples at 

each station/location; c. sample year at each station/location; d. D50 values. 
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Figure 2. 1,691 flowlines with measured D50.  410 
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Figure 3. Correlation coefficients among D50 and the 13 selected predictors.  
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Figure 4: XGBoost model performance with the training (left) and testing (right) data sets. 420 
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Figure 5. Sensitivity of the XGBoost model to the selected features. The result shown in blue bars are obtained by dropping the 

corresponding labelled feature from the 13 selected features. The dashed red line represents the model performance with all 

variables. 425 
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Figure 6. Predicted D50 in ~2.7 million flowlines across the contiguous U.S. using the XGBoost model. 
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