
 

17 

 

Median bed-material sediment particle size across rivers in the 

contiguous U.S. 

Guta Wakbulcho Abeshu1, Hong-Yi Li1*, Zhenduo Zhu2*, Zeli Tan3, L. Ruby Leung3 

1Department of Civil & Environmental Engineering, University of Houston, Texas, 77204, USA 

2Department of Civil, Structural and Environmental Engineering, University at Buffalo, the State University of New York, 5 

New York, 14260, USA 

3Pacific Northwest National Laboratory, Washington, 99352, USA 

  

Correspondence to: Hong-Yi Li (hongyili.jadison@gmail.com) and Zhenduo Zhu (zhenduoz@buffalo.edu) 

Abstract  10 

Bed-material sediment particle size data, particularly for the median sediment particle size (D50), are critical for understanding 

and modeling riverine sediment transport. However, sediment particle size observations are primarily available at individual 

sites. Large-scale modeling and assessment of riverine sediment transport are limited by the lack of continuous regional maps 

of bed-material sediment particle size. We hence present a map of D50 over the contiguous U.S. in a vector format that 

corresponds to approximately 2.7 million river segments (i.e., flowlines) in the National Hydrography Dataset Plus (NHDPlus) 15 

dataset. We develop the map in four steps: 1) collect and process the observed D50 data from 2577 U.S. Geological Survey 

stations or U.S. Army Corps of Engineers sampling locations; 2) collocate these data with the NHDPlus flowlines based on 

their geographic locations, resulting in 1691 flowlines with collocated D50 values; 3) develop a predictive model using the 

eXtreme Gradient Boosting (XGBoost) machine learning method based on the observed D50 data and the corresponding 

climate, hydrology, geology and other attributes retrieved from the NHDPlus dataset; 4) estimate the D50 values for flowlines 20 

without observations using the XGBoost predictive model. We expect this map to be useful for various purposes, such as 

research in large-scale river sediment transport using model- and data-driven approaches, teaching environmental and earth 

system sciences, planning and managing floodplain zones, etc. The map is available at http://doi.org/10.5281/zenodo.4921987 

(Li, Abeshu et al., 2021). 

http://doi.org/10.5281/zenodo.4921987
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1 Introduction 25 

Bed-material sediment particle size information is critical for understanding and modeling riverine sediment processes, 

including sediment erosion, entrainment, deposition, and transportation. Various sedimentology formulas have been proposed 

to quantify the sediment processes, with sediment particle size being a critical parameter in those formulas (Meyer-Peter and 

Müller, 1948; Einstein, 1950; Engelund and Hansen, 1967; Ackers and White, 1973; Van Rijn, 1984; Parker 1990; Garcia and 

Parker, 1991; Wu et al., 2000; An et al., 2021). Moreover, sediment particle size is a critical factor in riverine dynamics of 30 

heavy metal (Unda-Calvo et al., 2019; Zhang et al., 2020), nutrients (Xia et al., 2017; Glaser et al., 2020), microplastic 

(Corcoran et al., 2019; He et al., 2020), and fish habitats and benthic lives (Dalu et al., 2020; Rieck and Sullivian, 2020).  

The sediment transport modes can be classified into bed-material load and wash load (Garcia, 2008). The bed-material load 

consists of all sizes of particles existing in a river bed regardless of whether they are being transported along the bed (bedload) 

or in suspension (suspended load). Wash load consists of very fine particles (diameter less than 0.062 mm) that are always in 35 

suspension in the water and rarely reside on the bed (Garcia, 2008). Wash load is usually controlled by only land surface 

processes (soil erosion in hillslopes and transport from hillslopes into rivers), but not much by riverine hydraulic conditions 

(Garcia, 2008). In this study, we focus on the bed-material sediment particle size data that are critical in applying sediment 

transport formulas to estimate bed-material load. For example, median bed-material sediment particle size (denoted as D50, 

i.e., the size larger than 50% of sediment particles) is one of the most important parameters in the Engelund-Hansen equation 40 

(Engelund and Hansen, 1967).  

Despite the importance of bed-material sediment particle size, such data has limited availability due to the expensive costs of 

measuring and analyzing such data. As one of the most data-rich countries in the world, the United States (U.S.) collects and 

disseminates the sediment particle size data mainly through two federal agencies: The U.S. Geological Survey (USGS) and 

the U.S. Army Corps of Engineers (USACE). USGS manages the most gauges and distributes the river-related measurements 45 

on the U.S. rivers. As of April 2021, there are 424948 stations with field/laboratory samples in the USGS water quality portal, 

among which 1.2% (3644) include bed-material sediment particle data for rivers over the contiguous U.S., and 0.6% (2277) 

have complete percentiles of bed-material sediment particle data for computing D50.  

Spatial approximation, i.e., interpolation or extrapolation, is a typical method to overcome data sparsity when there is no 

universal relationship between the variable of interest (e.g., D50) and other extensively available information. In the case of 50 

sediment particle size, a simple spatial approximation should be conducted within the same river system, assuming similar 

geological and hydrological settings. Here we denote a river system as the whole river network discharging to the ocean (or 

inland lakes) via the same outlet. Such a simple spatial approximation is nevertheless not feasible in many river systems, where 

there are few or no measurement data to support meaningful interpolation and extrapolation. Several studies have reported 

empirical relationships between bed-material sediment particle size with river channel characteristics (e.g., channel slope) and 55 

flow regimes (Niño, 2002; Zhang et al., 2017). Such relations are nonetheless site-specific and not universal enough to apply 

over various river systems.  
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An alternative approach is to establish complex correlations between sediment particle size and other data that are extensively 

available over the contiguous U.S. Such correlations can then be applied across the U.S. for predicting sediment particle size. 

Conventional linear or nonlinear regression methods usually require good prior knowledge of the mechanisms controlling 60 

sediment size distribution, and thus are not suitable for use to establish complex correlations when understanding of factors 

that control sediment size is somewhat limited. Machine learning offers an effective way forward because of its ability to 

establish nonlinear, complex predictive models without the prerequisite of sufficient process-based knowledge (Afan et al., 

2016).  

Therefore, our objective is to develop a spatial map of D50 over the contiguous U.S. rivers by establishing a predictive model 65 

between D50 and other extensively available hydroclimatological and geological data using state-of-the-art machine learning 

techniques. In the following, we describe the data in Section 2, introduce the machine learning model development in Section 

3, and present our results in Section 4. We also explain the limitations of our method in Section 5, potential usage of the D50 

map in Section 6, and data availability in Section 7. We finally conclude with Section 8.  

2 Data 70 

2.1 Bed-material sediment particle size observations 

The USGS sediment data are available to the public through the National Water Information System (NWIS) water quality 

data portal. There are 3644 USGS stations with at least one sample of bed-material sediment particle size, but only 2277 

stations have complete data to allow meaningful computation of D50, as shown in Figure 1a. There are 1367 USGS stations 

with incomplete percentiles of bed-material sediment particle data, which can be divided into three groups: 1) 1183 stations 75 

have no effective percentiles provided; 2) 147 stations have only percentiles above the 50th percentile; 3) 37 stations have only 

percentiles below the 50th percentile. Therefore, we neglect these data in further analysis. 

The USACE sediment particle size data are available in a technical report by Gaines and Priestas (2016). Gaines and Priestas 

(2016) include the bed-material sediment particle size samples taken at 442 locations along the Mississippi River main stem 

between Head of Passes, Louisiana and Grafton, Illinois. We exclude the locations without exact geographic coordinates and 80 

eventually yield 300 locations, as shown in Figure 1a. In total, we have 2577 locations with complete bed-material sediment 

particle size percentiles to allow for the D50 calculation. At each location, the sediment particle size might have been sampled 

more than once at different times, although almost half of the locations are sampled only once (see Figure 1b for the histogram 

and Figure S1a for the spatial map). For about 94% of these stations, the latest samples were taken after the 1970s (see Figure 

1c for the histogram and Figure S1b for the spatial map). We calculated the coefficient of variation (CV) for the 760 stations 85 

that have at least 5 samples over time. For the rest of the stations, the number of samples is too small for meaningful calculation 

of CV. For most of these 760 stations, the CV values range between 0.3 and 1.2, with a median of approximately 0.6 (see 

Figure S2). The small CV values indicate the good stability of D50 (at the same location) over time.  
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We compute the D50 values from the measured sediment particle size distributions in three steps: 1) the cumulative sediment 

size distribution curve is drawn with log-2-transformed sediment size (in mm) following the concept of the Ψ scale (Parker 90 

and Andrews, 1985). 2) A linear interpolation is performed between the percentiles smaller and larger than the 50th percentile 

to obtain the D50 value. 3) For the stations with multiple sampling times, a representative D50 value is computed as the mean 

D50 value from all the sampling times. We take the mean as a representative D50 to simply account for possible uncertainties 

in sampling and measurement. Although the sampling and measurement procedures are carefully designed (Edwards & 

Glysson, 1999), it is practically impossible to avoid uncertainties in such sampling and measurement procedures. Thus, we 95 

believe a representative D50 can be better estimated by taking a mean. The D50 values calculated following this procedure are 

denoted as "observed D50 values" to differentiate them from the predicted D50 values using machine learning techniques 

described later. Figure 1d shows the histogram of the computed D50 values in the Ψ scale. About 75% of these D50 values are 

between 0.0625 mm and 2.0 mm. It is suggested that a river can be a sand-bed or gravel-bed river if the D50 value is below or 

above 2.0 mm (Garcia, 2008). The D50 values computed from the observed sediment particle size distributions thus mostly 100 

reflect sand-bed river conditions, while only approximately 25% are gravel-bed rivers.   

One might wonder how the sites with observed D50 values are distributed between small and large streams (e.g., whether or 

not smaller streams have more observed D50 data than larger streams). We use stream order (Figure S3a, b) and upstream 

drainage area (Figure S3c, d) as the indicators of stream size and examine the distributions of flowline lengths (Figure S3a, c) 

and D50 samples (Figure S3b, d), respectively. The total flowline length increases with the stream size (i.e., stream order or 105 

drainage area), which is expected since overall larger rivers have longer lengths. Interestingly, the number of D50 stations 

follows a bell distribution except for the largest stream order or drainage area, which is primarily due to the USACE 

measurements on the lower Mississippi River (198 sample locations). Therefore, there is no clear indication that larger or 

smaller streams dominate the D50 data points.  

2.2 Predictive variables 110 

The predictive variables are retrieved from the NHDPlus database (McKay et al., 2012) and additional attributes for the 

NHDPlus catchments from the ScienceBase dataset (Wieczorek et al., 2018). ScienceBase is a comprehensive scientific data 

and information management platform hosted by USGS (sciencebase.gov). In the medium resolution NHDPlus, there are about 

2.7 million stream segments (average length of 1.93 km, denoted as flowlines from now on). NHDPlus directly provides 138 

attributes of flowlines, most of which are descriptive instead of quantitative. We select eight quantitative attributes relevant to 115 

the channel geometry and hydrology, such as upstream drainage area, channel bed slope, mean annual flow velocity, sinuosity, 

etc. ScienceBase provides additional attributes related to the NHDPlus watersheds (local drainage area corresponding to a 

single flowline) and associated upstream drainage areas in thirteen themes (Wieczorek et al., 2018). We select 68 

hydroclimatological and geological attributes from ScienceBase, such as climate, hydrologic, topographic, soil, and geologic 

conditions. In total, 76 attributes are selected as potential predictive variables for input to the machine learning algorithm. We 120 

about:blank
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provide a detailed list of these predictive variables in Supplementary Table S1 and four illustrative maps in Supplementary 

Figure S4.  

We then establish the spatial correspondence between the observed D50 values and the 76 predictive variables. In NHDPlus, 

there are ~26000 USGS stations associated with a portion of the flowlines through the common identifiers. This common 

identifier is unique for every flowline, but several USGS stations may be located on the same flowline and have the same 125 

common identifier. We match the 2277 USGS stations that have observed D50 values with stations in NHDPlus. Some of the 

2277 USGS stations are not included in NHDPlus, so we obtain 1530 matching stations. The 300 USACE sampling locations 

are collocated with the flowlines via their geographic coordinates. There are 12 flowlines with 2 sampling locations and 2 

flowlines with 3 sampling locations. In those cases, we assign the average of the D50 values of these USGS stations to the 

flowline. The mean length of the 14 flowlines is 6.63 km. In such a length, only two or three sampling locations cannot capture 130 

the spatial variability in a meaningful way. Therefore, we simply calculate the average without making further assumptions. 

We further exclude a few flowlines with missing attribute values. Finally, we have a total of 1691 flowlines corresponding to 

the observed D50 values, as shown in Figure 2. As such, in each of these 1691 flowlines, we have established a good 

correspondence between the observed D50 values and the 76 predictive attributes.  

3 Model Development 135 

Among various machine learning methods, eXtreme Gradient Boosting (XGBoost) is a version of the gradient tree boosting 

algorithm known for its high efficiency and superior performance in recent years (Chen and Guestrin, 2016; Zheng et al., 2019; 

Fan et al., 2021). The relations between the input predictors (e.g., watershed characteristics) and D50 are too complex to be 

established with traditional linear regression or dimensionless analysis methods. Therefore, we adopt XGBoost to develop a 

predictive model with the Optuna optimization framework (Akiba et al., 2019) for tuning hyperparameters and the SHapley 140 

Additive exPlanations (SHAP) (Lundberg and Lee, 2017) for feature importance analysis and thus feature selection. We also 

consider the representativeness of input predictors in the feature selection. More details are explained as follows. 

3.1 XGBoost: eXtreme Gradient Boosting 

Tree boosting is a machine learning framework that combines weak learners to develop a strong learner, where the base learners 

are decision trees that are trained sequentially, with the latter focusing on mistakes made by the preceding one. Gradient 145 

boosting machines are a family of tree boosting techniques. One of the most recent offspring of gradient boosting techniques 

is the XGBoost, a scalable end-to-end tree boosting system (Chen & Guestrin, 2016). It has been successfully utilized across 

a wide array of applications, such as snowpack estimation (Zheng et al., 2019) and water storage change in a large lake (Fan 

et al., 2021). XGBoost dataset is represented as 𝐷 = {(𝑋𝑖, 𝑌𝑖), 𝑖 =  1, 2, . . . , 𝑁}, where 𝑋𝑖 = [𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3, . . . , 𝑋𝑖𝑝] is a row 

vector with input features with real value elements and 𝑌𝑖 𝜖 𝑅. The tree ensemble model employs M additive functions to 150 

predict the output of interest as 



 

17 

 

𝑌̂𝑖  =  𝜙(𝑋𝑖)   = ∑ 𝑓𝑚(𝑋𝑖)

𝑀

𝑚=1

 , 𝑓𝑚 𝜖 Ϝ                                                   1 

where Ϝ is the space of regression trees. The model is trained in an additive manner by minimizing a regularized objective to 

learn the set of functions employed in the model. At each iteration, a differentiable convex loss function that measures the 

difference between the prediction 𝑌̂𝑖  and the target 𝑌𝑖 is computed, and the model is also penalized for the complexity of the 155 

regression tree functions.  

3.2 Tuning Hyperparameters 

Tuning hyperparameters is a cumbersome task and is often performed by reducing the parameter search space through 

randomized search and applying a grid search on the reduced space. Alternatively, hyperparameter optimization frameworks 

like Hyperopt (Bergstra et al., 2015) and Optuna (Akiba et al., 2019) are commonly preferred since they can continually narrow 160 

down the bulky hyperparameter search space to an optimal space based on the preceding results.  This study implements 

Optuna with a Tree-structured Parzen Estimator (TPE) parameter sampling framework to obtain the optimal hyperparameter 

sets.  

The procedure for tuning hyperparameters relies on two major components: cross-validation and evaluation metrics. Cross-

validation measures the model's predictive power with a given hyperparameter set by dividing a dataset into folds. In 𝑘-fold 165 

cross-validation, the dataset is randomly split into 𝑘  mutually exclusive subsets of approximately equal size as,  𝐷 =

{𝐷1, 𝐷2, 𝐷3, . . . , 𝐷𝑘}. In each iteration, 𝑘 − 1 folds of 𝐷 are used for training, and the remaining one is used for validation. The 

predictions resulting from a given set of hyperparameters are made by iterating through the folds, so the model is trained and 

validated 𝑘 times. Hence, 𝑘 model performance values and the mean value is reported as the model performance for this set 

of hyperparameters. Optuna allows the use of user-defined metrics for model evaluation during the 𝑘-fold cross-validation. 170 

Taking advantage of this structure, we use the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) as the model performance 

metric. 

𝐾𝐺𝐸 =  1 − √(1 − 𝑟)2 + (1 −
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
)

2

+ (1 −
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
)

2

                                                    2 

where σ is the standard deviation, μ is the mean, and 𝑟 is the linear correlation between the observed and simulated series. A 

perfect agreement between observation and simulation gives the theoretical maximum KGE value at 1.0. The higher the KGE 175 

value, the closer the match between the observed and simulated series. KGE offers some advantages over commonly used 

metrics like root mean squared errors (RMSE) or the coefficient of determination (R2) because 1) it is not dominated by 

relatively large values; and 2) it simultaneously captures both the magnitude and phase differences between the observed and 

simulated series (Gupta et al., 2009).  
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3.3 Feature Selection 180 

Feature selection is also an essential step in developing a simpler model that is still capable of reasonably predicting the target 

variable with fewer attributes. Feature importance is a technique of computing each predictive variable's degree of contribution 

towards the optimal prediction model, which can be used for determining feature selection. The approaches of computing 

feature importance scores include correlation coefficient, the coefficients calculated as part of decision trees, or advanced 

approaches like SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017). In this study, we use the mean absolute 185 

SHAP values as feature importance measures. Initially, we begin with 76 predictive variables. For feature selection purposes, 

we add a new "predictor" of randomly generated real number values. We train the model and compare the feature importance 

scores (i.e., the mean absolute SHAP values) of all predictors. Then, all attributes with scores less than the random number 

attribute are dropped out. The procedure is repeated using the new set of predictors until the random number attribute is the 

least important feature.   190 

Then, we further examine the representativeness of the data by comparing the ranges of the selected features between the D50-

available data and the nationwide data. We use the 2.5th and 97.5th percentiles to represent the lower and higher ends of ranges 

in the available data. We do not directly use the absolute min/max values to avoid the impacts of outliers. We then calculate 

the percentage of the nationwide data below the 2.5th percentile of the available data. A percentage value of no more than 10% 

indicates a good match of lower ends between the available and nationwide data. Similarly, we calculate the percentage of the 195 

nationwide data above the 97.5th percentile of the available data. A percentage value of no more than 10% indicates a good 

match of upper ends between the available and nationwide data. Taking together, for any feature, if more than 80% of the 

nationwide data are located within the 2.5th and 97.5th percentiles of the available data, we consider that the available data is 

sufficiently representative of the nationwide data for this specific feature. Otherwise, a feature is considered non-representative 

thus is removed from model development. Lastly, the remaining features are utilized for tuning the final optimal set of 200 

hyperparameter values. 

3.4 General Steps 

The general steps of the model development procedure are as follows and illustrated in Figure 3. 

1. The predictors are scaled using the Minimum-Maximum scaler method, i.e., all features will be transformed into a 

range of [0,1]. The main advantage of having this bounded range normalization is that it can suppress the effect of 205 

outliers. 

2. The dataset is randomly split into training (70%) and testing (30%) sets, respectively. Only the training data are used 

in steps 3 and 4, while the testing data are reserved for step 5. 

3. Optuna and k-fold (k=5) cross-validation are used for tuning hyperparameters, with a maximum tree of 5000 and an 

early stopping value of 50. The objective function for the hyperparameter optimization procedure is to maximize the 210 

mean Kling-Gupta Efficiency (KGE) value returned from the k-fold cross-validation. 
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4. Feature selection is performed as described in section 3.3, so step 3 is repeated with the new and smaller set of 

predictors. Steps 3 and 4 are repeated until no more predictors can be excluded. 

5. The final model is developed by fitting on the whole training data using the optimal hyperparameters, and evaluated 

using the testing data reserved in step 2. 215 

6. The model from step 5 is used to predict the D50 values for the contiguous U.S. river flowlines. 

4 Results 

We discuss our results in three steps: the subset of flowlines as the basis to formulate our predictive model, the development 

and validation of our predictive model, and the national D50 map derived based on the predictive model.   

4.1 Measured D50 220 

Figure 2 shows the 1691 flowlines with the associated observed D50 values. The Mississippi River has relatively denser 

measurements attributed to the USACE database, while the southwest (e.g., the Rio Grande) and the Great Basin have fewer 

measurements. Overall, the 1691 flowlines are distributed throughout the contiguous United States, providing a good spatial 

representation of the NHDPlus flowlines. Similar to all observed D50 values in Figure 1b, most of the D50 values associated 

with the flowlines represent sand-bed rivers (D50 < 2.0 mm). Larger-D50 (> 2.0 mm) flowlines are mainly located in the 225 

basins of California, Upper Colorado, Missouri, Ohio and Upper Mississippi.  

4.2 Predictive Model 

4.2.1 Feature Selection 

After iterations of feature selection (procedure described in sections 3.3 and 3.4), 12 out of 76 predictive variables, or 

predictors, are eventually selected. Firstly, 13 variables are identified as more significant than a random-number input vector 230 

based on the mean absolute SHAP value, as shown in Table 1. 2 out of 8 channel characteristics and 11 out of 68 basin 

characteristics remain as the significant predictors (see Table 1 for description). The most important predictor is found to be 

the soil erodibility factor (Soil_erod_factor), followed by average annual wet day (Ann_wet_days) and mean annual snow as 

a percent of total precipitation (Ann_snow_perc). 

These three basin-related predictors rank higher than the two channel-related characteristics. Channel slope (Slope) and 235 

distance between flowline and the river mouth (Chan_length) are found to be the most important channel characteristics for 

predicting D50, which agrees with the downstream fining phenomena and sediment transport mechanisms (Nino, 2002). It is 

somewhat surprising that some hydraulic channel characteristics such as mean annual flow velocity are not included in the 

final feature selection. Studies on river hydraulics show relations between channel flow (i.e., velocity and water depth) and 

channel bed characteristics (i.e., slope and roughness), such as the Manning's equation, Chezy's law, etc., and channel bed 240 

roughness can be related to bed sediment size (Garcia, 2008). However, the feature selection with the XGBoost model and 
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SHAP value indicates that mean annual flow velocity may not be a good predictor for D50 in this case. A possible reason is 

that mean annual flow velocity is dependent on some of the selected features such as Ann_wet_days, Slope, etc., so excluding 

this variable avoids overfitting the data.  

It should be noted that the ranking of feature importance according to the mean absolute SHAP values is quite different from 245 

the correlation coefficients between D50 and predictors, as shown in Figure 4. Soil_erod_factor and Ann_wet_days, the two 

most important features in Table 1, have correlation coefficients of only 0.08 and 0.06, respectively. Ann_snow_perc has the 

strongest correlation with D50, with a correlation coefficient of 0.29. The individual scatter plots between D50 and each of the 

selected features do not show any apparent relationship between D50 and any single feature (see Supplementary Figure S5), 

indicating that there might exist some higher-order interactions among the predictors which the traditional regression analysis 250 

cannot reveal. 

We further examine the representativeness of the 1691 flowlines with observed D50 values of the rest flowlines included in 

the NHDPlus database in terms of the ranges of the 13 features. For convenience, we denote the subset of NHDPlus data 

associated with the 1691 flowlines as D50-available, and the whole NHDPlus database as nationwide. For most of the 13 

features, the percentages of the nationwide data that are beyond the lower or higher ends of the D50-availableare no more than 255 

10%, except for channel slope, i.e., "Channel_mean_slope". Table 2 also lists the relative difference in the 25th, 50th and 75th 

percentiles between the D50-available and nationwide data. For instance, for the 25th percentile, we calculated the relative 

difference as the ratio of the difference between the 25th percentile of the D50-available data and that of the nationwide data 

over the average between the 25th percentile of the D50-available data and that of the nationwide data. This relative difference 

is less than 0.5 for most of the features, again except for "Channel_mean_slope". For a better visual illustration, Figure 5 shows 260 

the cumulative distribution functions (CDFs) and corresponding 5th-, 25th-, 50th-, 75th-, and 95th-percentiles. The CDFs are 

close between the D50-available and nationwide data, except for "Channel_mean_slope". A similar message can be seen from 

the box plots in Figure S6. In addition, we would like to point out that the 1691 sampling stations we use to train and test our 

model are located across the whole contiguous U.S., hence geographically representative. Therefore, we conclude that the 

1691 flowlines with observed D50 values are representative enough of all the flowlines nationwide in terms of the 12 input 265 

predictors, except for "Channel_mean_slope". 

We remove "Channel_mean_slope" and use the remaining 12 predictors to develop the final model, following the same model 

training and testing procedures as before. Figure 6 shows the comparison of model performances between the previous and 

new models. The model performance metrics are similar. Actually, R2 became slightly better in both training (0.834 vs. 0.830) 

and testing (0.405 vs. 0.367), while KGE became slightly worse in training (0.775 vs. 0.794) but better in testing (0.527 vs. 270 

0.513). The slight decrease of KGE in training data is reasonable since the model hyperparameter tuning was based on the 

objective of maximizing KGE, and losing one predictor will slightly reduce the space of parameter tuning. Nevertheless, now 

the KGE value in the testing phase is closer to that in the training phase. 

Although feature selection sheds light on the contribution of input variables to model outputs, a drawback of the machine 

learning technique is that it cannot explain mechanistically why selected features are more important than unselected ones. 275 
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Therefore, the goal of feature selection is to find the best (i.e., most robust) input variables to feed the best model for D50 

predictions. If a different machine learning algorithm from XGBoost is used, the selected features, especially their rankings, 

can be different. Feature selection is dependent on the selection of the algorithm, so the selected features in this study should 

not be directly used in other models or studies. In the 12 selected predictors, only one is directly related to the channel 

processes. The remaining 11 are all land features, and their mechanistic connections with D50 are rather mysterious at this 280 

stage, which could be considered as empirical evidence on the likely causal, yet highly complicated relationships between D50 

and the land features, and hopefully inspire future studies to shed light on the underlying mechanisms. 

4.2.2 Model Hyperparameters and Performance 

Table 3 shows the tuned hyperparameters of the best XGBoost model that is trained using the 12 selected predictors and 70% 

of the training data set. For a detailed explanation of the hyperparameters please refer to Chen and Guestrin (2016). Figure 6 285 

shows the performance of the optimal XGBoost model on the training and testing data sets, respectively. Here we consider an 

optimal model based on two criteria: 1) the model performance is satisfactory in both the training and testing phases, and 

indicated by good metrics values (e.g., KGE in this study), and 2) the model performance is relatively consistent between the 

training and testing phases. Here the optimal XGBoost model gives the KGE value 0.75 for training and 0.528 for testing. The 

testing value is above 0.5, suggesting satisfactory model performance (Gupta et al., 2009; Knoben et al., 2019). The 290 

performance on the testing data is noticeably worse than that on the training data, as expected. This difference is nevertheless 

acceptable given the complexity of the prediction problem. The relatively consistent model performance between the training 

and testing phase suggests that the model validation (via the testing phase) is successful. 

   

4.2.3 Model Sensitivity Analysis 295 

We carry out further analysis to shed light on how the modeling results may be sensitive to some of the key steps as outlined 

in Section 3.4. We focus on Steps 2 to 4 only because Steps 1 and 5 are standard practice, and Step 6 utilizes the modeling 

results.  

For Step 2, the 2/3 (train) and 1/3(test) split is typical in machine learning for splitting training and testing data. This can be 

readjusted up to 4/5(train) and 1/5(test) if the total sample size is sufficiently large, which is nonetheless not the case here. For 300 

Step 3, we test the sensitivity on the choices of model performance metrics and k value, respectively. For the model 

performance metrics, we have also tried NSE and R2 and found that using KGE gave better model performance (Figure S7) 

due to two reasons: 1) a much smaller percentage of bias (PBIAS) and 2) visually better alignment between the simulated and 

observed D50 values along the 1:1 line. The choice of k value is usually 5 or 10 depending on the training sample size. We 

use 5 since using 10 significantly reduces the number of samples per fold, and the left-out sample will be too small for 305 

validation during cross-validation. Increasing k-fold to 6 or decreasing it to 4 still gives a similar satisfactory performance in 

both the training and testing phases, with training/testing KGE of 0.759/0.505 and 0.795/0.512, respectively. For Step 4, we 
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evaluate the model sensitivity to each selected feature by dropping one of the 12 variables at a time and repeating the same 

modeling procedure for the remaining 12 variables. Figure 7 shows that dropping the variables leads to the model performance 

dropping below KGE 0.5 during the testing phase in most cases. The change in testing phase KGE ranges between 4 – 22 %. 310 

The largest changes are observed when dropping R_factor and Mean_elev. Even with those two, the KGE difference between 

the training and testing phases increases from 0.28 to 0.36 by including them as predictors. Thus, all the variables remaining 

after feature selections play a significant role in the final model.  

4.3 National Map 

Using the developed machine learning model and NHDPlus channel/basin characteristics data, we are able to produce a 315 

national map of bed sediment D50 values (Figure 8). The spatial pattern of D50 in Figure 8 are generally consistent with the 

observed D50 in Figure 2. High D50 values are mostly distributed in the west coast, upper Missouri and Ohio regions, and low 

D50 values are concentrated in the east coast. The consistency between Figures 2 and 8 suggests that the observed D50 data 

are reasonably representative of the whole contiguous U.S., despite the sparse distribution. Given that the testing data set is 

independent of the training dataset, we expect that the error statistics derived for the testing data should be relatively consistent 320 

with the error statistics in applying the model to derive the national map of D50. To our best knowledge, it is the first-of-its-

kind D50 data for the whole contiguous U.S. Such a D50 map is mostly valuable to support the parameterization of large-scale 

sediment modelling at the regional or national scale, which has been very challenging, if not impossible, before this map.  

5 Limitations of the method 

The predicted D50 values may be subject to several limitations despite using state-of-the-art machine learning techniques to 325 

develop the predictive model. These limitations include (1) Limited data availability. Although the 1691 observed D50 values 

are adequately representative of the contiguous U.S. (i.e., consistent spatial patterns between Figures 3 and 8), limited data 

availability prevents us from establishing a separate predictive model for each river basin. For example, there is little observed 

D50 data in the Rio Grande and Great Basin, so the predicted D50 values over these basins should be used cautiously. (2) Our 

methodology is statistical in nature and lacks explicit process-based understanding. For example, Figure 6 shows the model 330 

tends to overestimate D50 for smaller D50 values (particularly < 0.25 mm) and underestimate D50 for larger D50 values 

(particularly > 1 mm). However, in various trials we have performed, the current result is closest to the 1:1 relationship based 

on both the KGE metric and visual check. Further process-based understanding of this systematic bias is beyond the scope of 

this study because it would require a) a highly-integrated, process-based model that considers at least sediment erosion, 

deposition and transport processes in both hillslopes and channels, and b) well-designed numerical experiments to isolate the 335 

dominant processes and controlling factors. (3) We have not explicitly incorporated the effects of lakes and reservoirs but 

rather assumed these effects have been indirectly reflected in the NHDPlus hydrologic attributes adopted in the predictive 

model. (4) The bed sediment at the gage station may not always be representative of the reach. Edwards and Glysson (1999) 
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characterized how most of the bed sediment samples were collected and composited at a cross-section by the USGS over the 

years. Gage stations are established at cross-sections in the stream where flow measurements are convenient and with 340 

conditions conducive to high-quality flow measurements – the issue of whether the bed sediment composition represents the 

reach is generally not taken into account when the gage station location is established. As such, our predictive results are 

certainly not free from uncertainties. Therefore, we recommend using our D50 map for sediment modeling and assessment at 

the regional or national scales instead of local studies at the individual river segment.  

6 Potential usage 345 

The D50 map might be used for large-scale sediment transport modeling over the whole contiguous U.S., or a major river 

basin such as the Mississippi River basin. For example, we have tested the usage of the new D50 dataset within a large-scale 

suspended sediment modeling framework (Li, Tan et al., 2021), and our successful model validation against the USGS 

observed suspended sediment load over multiple stations suggests the good value of such a national scale D50 dataset. There 

is inevitably some uncertainty embedded in this map sourced from the original D50 observations and NHDPlus attributes, the 350 

XGBoost modeling, and the spatial extrapolation process. This uncertainty should be taken into account while utilizing this 

map for regional-scale assessment or modeling.  

 

7 Data availability 

The national D50 map is freely available at http://doi.org/10.5281/zenodo.4921987 (Li, Abeshu et al., 2021). The input data 355 

are obtained from the USGS water quality portal (https://nwis.waterdata.usgs.gov/usa/nwis/qwdata), NHDPlus 

(https://www.epa.gov/waterdata/nhdplus-national-data ) and ScienceBase (https://doi.org/10.5066/F7765D7V).     

8 Conclusions 

We develop a new national map of the median bed sediment particle size by combining the USGS sediment observations, the 

channel and watershed characteristics from NHDPlus and ScienceBase, and state-of-the-art machine learning techniques. 360 

Despite the limitations, the map is highly valuable for sediment modeling and assessment at the regional and larger scales, 

which has not been feasible previously.  
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Table 1. Most important predictors according to the feature selection 

Predictor 

Description 

Mean 

Absolute 

SHAP Value 

(w/ Slope) 

Mean 

Absolute 

SHAP Value 

(w/o Slope) 

Name used in this 

study 

Name in NHDPlus 

Basin_slope TOT_Basin_slope 
Average topographic slope within the 

upstream drainage area  
0.30 0.42 

Ann_runoff TOT_RUN 
Average annual runoff within the 

upstream drainage area 
0.23 0.41 

Chan_length Pathlength 

Distance from the downstream end of 

a flowline to the end of the network 

(river mouth) 

0.34 0.39 

Ann_snow_perc TOT_PRSNOW 
Mean annual snow as a percent of total 

precipitation 
0.37 0.37 

Aridity_index AI 

Aridity index defined as the ratio of 

annual mean potential evaporation to 

annual mean precipitation 

0.29 0.37 

Ann_wet_days TOT_WDANN Average annual number of wet days 0.46 0.36 

Mean_temp TOT_WBM_TAV 
Average mean annual temperature 

within the upstream drainage area 
0.29 0.35 

R_factor TOT_RFACT 
R factor of Universal Soil Loss 

Equation 
0.34 0.35 

T_Qsub TOT_CONTACT 
Time it takes for water to drain along 

subsurface flow paths to the stream 
0.31 0.34 

Mean_elev TOT_ELEV_MEAN 
Average surface elevation within the 

upstream drainage area 
0.29 0.31 

Qsat_to_Qtotal TOT_SATOF 
Annual saturation overland flow as a 

percent of total runoff 
0.33 0.27 

Soil_erod_factor TOT_KFACT 
Soil erodibility factor of Universal Soil 

Loss Equation 
0.51 0.22 

Channel_mean_slope Slope Channel Slope 0.36  

Note: here we use the same names as those in the NHDPlus attribute tables, but moderately revise the description using 

terminologies that can be understood by a broader audience.  
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Table 2: Comparison of the ranges and percentiles of 13 input features between the D50-available and nationwide 455 

datasets. 

 

Attributes 

Percent of nationwide data that  Relative difference in percentiles between the 

D50-available and nationwide data 

below 2.5th of the 

D50-available data 

above 97.5th of the 

D50-available data 

25th  50th  75th  

Soil_erod_factor 5.1 3.4 0.07 0.03 0.03 

R_factor 6.9 10.2 0.22 0.09 0.44 

Ann_wet_days 2.8 3.1 0.01 0.07 0.03 

Ann_snow_perc 0.0 3.9 0.71 0.20 0.12 

Channel_mean_slope 0.0 19.9 1.72 1.44 1.43 

Chan_length 2.3 5.2 0.07 0.21 0.04 

Ann_runoff 4.3 1.6 0.00 0.28 0.23 

Qsat_to_Qtotal 0.0 7.1 2.00 0.13 0.38 

T_Qsub 6.2 3.1 0.68 0.59 0.37 

Basin_slope 9.3 4.8 0.17 0.04 0.10 

Mean_elev 9.9 2.5 0.35 0.27 0.22 

Aridity_index 2.6 6.5 0.07 0.14 0.03 

Mean_temp 4.5 8.6 0.02 0.12 0.18 
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Table 3. Optimal value of the XGBoost model hyperparameters 

Hyperparameter Optimal Value Tuning Range 

learning_rate 0.442 [0,1] 

min_split_loss 11 [0,∞] 

max_depth 7 [0,∞] 

min_child_weight 21 [0,∞] 

max_delta_step 41 [0,∞] 

subsample 0.408 [0,1] 

colsample_bytree 0.741 [0,1] 

reg_lambda 0.311 [0,∞] 

reg_alpha 4.054 [0,∞] 

n_estimators 178 [1,∞] 
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 475 

Figure 1: Sediment sample stations. a. Locations of 2277 USGS stations and 300 USACE sampling locations; b. Number of samples 

at each station/location; c. Histogram of latest sample years; d. Histogram of D50 values in the Ψ scale (log2D50, D50 in mm). 
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Figure 2. 1691 flowlines with measured D50.  
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Figure 3: Flowchart for XGBoost training and prediction. 
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 500 

 

Figure 4. Correlation coefficients among D50 and the 12 selected predictors.  
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 505 

Figure 5: Comparison of the cumulative distribution function (CDF) of 13 features between training data and all flowlines (i.e., 

NHDPlus). 
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Figure 6: XGBoost model performance with the training (left) and testing (right) data sets. Comparison of model performances 

using 13 features (a, b) and 12 features (c,d; after removing "Channel_Mean_Slope"). 510 
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Figure 7. Sensitivity of the XGBoost model to the selected features. The result shown in blue bars are obtained by dropping the 

corresponding labelled feature from the 13 selected features. The dashed red line represents the model performance with all 

variables. 515 
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Figure 8. Predicted D50 in ~2.7 million flowlines across the contiguous U.S. using the XGBoost model. 


