10

15

|20

Median bed-material sediment particle size across rivers in the

contiguous U.S.

Guta Wakbulcho Abeshu?, Hong-Yi Li*", Zhenduo Zhu?, Zeli Tan3, L. Ruby Leung?
1Department of Civil & Environmental Engineering, University of Houston, Texas, 77204, USA

2Department of Civil, Structural and Environmental Engineering, University at Buffalo, the State University of New York,
New York, 14260, USA

3pacific Northwest National Laboratory, Washington, 99352, USA

Correspondence to: Hong-Yi Li (hongyili.jadison@gmail.com) and Zhenduo Zhu (zhenduoz@buffalo.edu)
Abstract

Bed-material sediment particle size data, particularly for the median sediment particle size (D50), are critical for understanding
and modeling riverine sediment transport. However, sediment particle size observations are primarily available at individual
sites. Large-scale modeling and assessment of riverine sediment transport are limited by the lack of continuous regional maps
of bed-material sediment particle size. We hence present a map of D50 over the contiguous U.S. in a vector format that
corresponds to miHiens-efapproximately 2.7 million river segments (i.e., flowlines) in the National Hydrography Dataset Plus
(NHDplusNHDPIus) dataset. We develop the map in four steps: 1) collect and process the observed D50 data from 2577 U.S.

Geological Survey stations or U.S. Army Corps of Engineers sampling locations; 2) collocate these data with the

NHBplusNHDPIus flowlines based on their geographic locations, resulting in 1691 flowlines with collocated D50 values; 3)
develop a predictive model using the eXtreme Gradient Boosting (XGBoost) machine learning method based on the observed
D50 data and the corresponding climate, hydrology, geology and other attributes retrieved from the NHBplusNHDPIus dataset;
4) estimate the D50 values for flowlines without observations using the XGBoost predictive model. We expect this map to be
useful for various purposes, such as research in large-scale river sediment transport using model- and data-driven approaches,
teaching ef-environmental and earth system sciences, planning and managing floodplain zones, etc. The map is available at
http://doi.org/10.5281/zen0do.4921987 (Li, Abeshu et al., 2021).
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1 Introduction

Bed-material sediment particle size information is critical for understanding and modeling riverine sediment processes,
including sediment erosion, entrainment, deposition, and transportation. Various sedimentology formulas have been proposed
to quantify the sediment processes, with sediment particle size being a critical parameter in those formulas (Meyer-Peter and
Mdiller, 1948; Einstein, 1950; Engelund and Hansen, 1967; Ackers and White, 1973; Van Rijn, 1984; Parker 1990; Garcia and
Parker, 1991; Wu et al., 2000; An et al., 2021). Moreover, sediment particle size is a critical factor in riverine dynamics of
heavy metal (Unda-Calvo et al., 2019; Zhang et al., 2020), nutrients (Xia et al., 2017; Glaser et al., 2020), microplastic
(Corcoran et al., 2019; He et al., 2020), and fish habitats and benthic lives (Dalu et al., 2020; Rieck and Sullivian, 2020).

The sediment transport modes can be classified into bed-material load and wash load (Garcia, 2008). The bed-material load
consists of all sizes of particles existing in a river bed regardless of whether they are being transported along the bed (bedload)
or in suspension (suspended load). Wash load consists of very fine particles (diameter less than 0.062 mm) that are always in
suspension in the water and rarely reside on the bed (Garcia, 19752008). Wash load is usually controlled by only land surface
processes (soil erosion in hillslopes and transport from hillslopes into rivers), but not much by riverine hydraulic conditions
(Garcia, 49752008). In this study, we focus on the bed-material sediment particle size data that are critical in applying sediment
transport formulas to estimate bed-material load. For example,-the-Engelund-Hansen-equation-estimates-bed-material-load;
and median bed-material sediment particle size (denoted as D50, i.e., the size larger than 50% of sediment particles) is one of

the most important parameters in the Engelund-Hansen equation (Engelund and Hansen, 1967).

Despite the importance of bed-material sediment particle size, such data has limited availability due to the expensive costs of
measuring and analyzing such data. As one of the most data-rich countries in the world, the United States (U.S.) collects and
disseminates the sediment particle size data mainly through two federal agencies: The U.S. Geological Survey (USGS) and
the U.S. Army Corps of Engineers (USACE). USGS manages the most gauges and distributes the river-related measurements
on the U.S. rivers. As of April 2021, there are 424948 stations with field/laboratory samples in the USGS water quality portal,
among which 1.2% (49913644) include bed-material sediment particle data for rivers over the contiguous U.S., and 0.56%
(2277) have complete percentiles of bed-material sediment particle data te-cemputefor computing D50.

Spatial approximation, i.e., interpolation or extrapolation, is a typical method to overcome data sparsity when there is no
universal relationship between the variable of interest (e.g., D50) and other extensively available information. In the case of
sediment particle size, a simple spatial approximation should be conducted within the same river system, assuming similar
geological and hydrological settings. Here we denote a river system as the whole river network discharging to the ocean (or
inland lakes) via the same outlet. Such a simple spatial approximation is nevertheless not feasible in many river systems, where
there are few or no measurement data to support meaningful interpolation and extrapolation. Several studies have reported
empirical relationships between bed-material sediment particle size with river channel characteristics (e.g., channel slope) and
flow regimes (Nifio, 2002; Zhang et al., 2017). Such relations are nonetheless site-specific and not universal enough to apply

over various river systems.
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An alternative approach is to establish complex correlations between sediment particle size and other data that are extensively
available over the contiguous U.S. Such correlations can then be applied across the U.S. for predicting sediment particle size.
Conventional linear or nonlinear regression methods usually require good prior knowledge of the mechanisms controlling
sediment size distribution, and thus are not suitable for use to establish complex correlations when understanding of factors
that control sediment size is somewhat limited. Machine learning offers an effective way forward because of its ability to
establish nonlinear, complex predictive models without the prerequisite of sufficient process-based knowledge (Afan et al.,
2016).

Therefore, our objective is to develop a spatial map of D50 over the contiguous U.S. rivers by establishing a predictive model
between D50 and other extensively available hydroclimatological and geological data using state-of-the-art machine learning
techniques. In the following, we describe the data in Section 2, introduce the machine learning model development in Section
3, and present our results in Section 4. We also explain the limitations of our method in Section 5, potential usage of the D50

map in Section 6, and data availability in Section 7. We finally conclude with Section 8.

2 Data
2.1 Bed-material sediment particle size observations

The USGS sediment data are available to the public through the National Water Information System (NWIS) water quality
data portal. There are 49913644 USGS stations with at least one sample of bed-material sediment particle size, but only 2277
stations have complete data to allow meaningful computation of D50, as shown in Figure 1a. There are 1367 USGS stations

with incomplete percentiles of bed-material sediment particle data, which can be divided into three groups: 1) 1183 stations

have no effective percentiles provided; 2) 147 stations have only percentiles above the 50" percentile; 3) 37 stations have only

percentiles below the 50" percentile. Therefore, we neglect these data in further analysis.

The USACE sediment particle size data are available in a technical report by Gaines and Priestas (2016). Gaines and Priestas
(2016) include the bed-material sediment particle size samples taken at 442 locations along the Mississippi River main stem
between Head of Passes, Louisiana and Grafton, Illinois. We exclude_the locations without exact geographic coordinates and
eventually yield 300 locations, as shown in Figure 1a. In total, we have 2577 locations with complete bed-material sediment
particle size percentiles to allow for the D50 calculation. At each location, the sediment particle size might have been sampled
more than once inat different yearstimes, although almost half of the locations are sampled only once (see Figure 1b}—Figure
1e-shews for the yearsthat-histogram and Figure Sla for the spatial map). For about 94% of these stations, the latest samples
were taken—Abeut-94%of theselocations-have-been-sampled after 1970the 1970s (see Figure 1c for the histogram and Figure

S1b for the spatial map). We calculated the coefficient of variation (CV) for the 760 stations that have at least 5 samples over

time. For the rest of the stations, the number of samples is too small for meaningful calculation of CV. For most of these 760

stations, the CV values range between 0.3 and 1.2, with a median of approximately 0.6 (see Figure S2). The small CV values

indicate the good stability of D50 (at the same location) over time.
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We compute the D50 values from the measured sediment particle size distributions in three steps: 1) the cumulative sediment
size distribution curve is drawn with log-2-transformed sediment size (in mm) following the concept of the Krumbein-phiV’
scale (Krumbein,-1934Parker and Andrews, 1985). 2) A linear interpolation is performed between the percentiles smaller and

larger than the 50" percentile to obtain the D50 value. 3) For the stations with multiple sampling times, a representative D50

value is computed as the mean D50 value from all the sampling times. We take the mean as a representative D50 to simply

account for possible uncertainties in sampling and measurement. Although the sampling and measurement procedures are

carefully designed (Edwards & Glysson, 1999), it is practically impossible to avoid uncertainties in such sampling and

measurement procedures. Thus, we believe a representative D50 can be better estimated by taking a mean. The D50 values

calculated following this procedure are denoted as <"observed D50 values™" to differentiate them from the predicted D50
values using machine learning techniques described later. Figure 1d shows the histogram of the computed D50 values in the
Krumbeinphil scale. About 75% of these D50 values are between 0.0625 mm and 2.0 mm. Gareia-{2008)1t is suggested that
a river can be a sand-bed or gravel-bed river if the D50 value is below or above 2.0 mm:-_(Garcia, 2008). The D50 values
computed from the observed sediment particle size distributions thus deminantlymostly reflect sand-bed river conditions, while
only approximately 25% are gravel-bed rivers.

One might wonder how the sites with observed D50 values are distributed between small and large streams (e.g., whether or

not smaller streams have more observed D50 data than larger streams). We use stream order (Figure S3a, b) and upstream

drainage area (Figure S3c, d) as the indicators of stream size and examine the distributions of flowline lengths (Figure S3a, ¢)

and D50 samples (Figure S3b, d), respectively. The total flowline length increases with the stream size (i.e., stream order or

drainage area), which is expected since overall larger rivers have longer lengths. Interestingly, the number of D50 stations

follows a bell distribution except for the largest stream order or drainage area, which is primarily due to the USACE

measurements on the lower Mississippi River (198 sample locations). Therefore, there is no clear indication that larger or

smaller streams dominate the D50 data points.

2.2 Predictive variables

The predictive variables are retrieved from the NHBplusNHDPIus database (McKay et al., 2012) and additional attributes for
the NHDPIus catchments from the ScienceBase dataset (Wieczorek et al., 2018). ScienceBase is a comprehensive scientific
data and information management platform hosted by USGS (sciencebase.gov). In the medium resolution NHBplusNHDPIus,
there are about 2.7 million stream segments (average length of 1.93 km, denoted as flowlines from now on). NHBplusNHDPIus
directly provides 138 attributes of flowlines, most of which are descriptive instead of quantitative. We select eight quantitative
attributes relevant to the channel geometry and hydrology, such as upstream drainage area, channel bed slope, mean annual
flow velocity, sinuosity, etc. ScienceBase provides additional attributes related to the NHBplisNHDPIus watersheds (local
drainage area corresponding to a single flowline) and associated upstream drainage areas in thirteen themes (Wieczorek et al.,
2018). We select 68 hydroclimatological and geological attributes from ScienceBase, such as climate, hydrologic, topographic,

soil, and geologic conditions. In total, 76 attributes are selected as potential predictive variables for input to the machine
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learning algorithm. We provide a detailed list of these predictive variables in Supphmentary-Supplementary Table S1 and four
illustrative maps in Supplementary Figure S154.

We then establish the spatial correspondence between the observed D50 values and the 76 predictive variables. In
NHBplusNHDPIus, there are ~26000 USGS stations associated with a portion of the flowlines through the common identifiers.
This common identifier is unique for every flowline, but several USGS stations may be located on the same flowline and have
the same common identifier. We match the 2277 USGS stations {withthat have observed D50 values) with stations in
NHDBPplusNHDPIus. Some of the 2277 USGS stations are not included in NHBplusNHDPIus, so we obtain 1530 matching
stations. The 300 USACE sampling locations are collocated with the flowlines via their geographic coordinates. SeveralJSGS
stations-or-USACEThere are 12 flowlines with 2 sampling locations may-be-on-the-same-flowline.and 2 flowlines with 3
sampling locations. In that-casethose cases, we assign the average of the D50 values of these USGS stations to the flowline.

The mean length of the 14 flowlines is 6.63 km. In such a length, only two or three sampling locations cannot capture the

spatial variability in a meaningful way. Therefore, we simply calculate the average without making further assumptions. We

further exclude a few flowlines with missing attribute values. Finally, we have a total of 1691 flowlines corresponding to the
observed D50 values—-otherwerds, as shown in Figure 2. As such, in each of these 1691 flowlines, we have established a

good correspondence between the observed D50 values and the 76 predictive attributes.

3 Model Development

Among various machine learning methods, eXtreme Gradient Boosting (XGBoost) is a version of the gradient tree boosting
algorithm known for its high efficiency and superior performance in recent years (Chen and Guestrin, 2016; Zheng et al., 2019;

Fan et al., 2021). The relations between the input predictors (e.g., watershed characteristics) and D50 are too complex to be

established with traditional linear regression or dimensionless analysis methods. Therefore, we adopt XGBoost to develop a

predictive model with the Optuna optimization framework (Akiba et al., 2019) for tuning hyperparameters and the SHapley
Additive exPlanations (SHAP) (Lundberg and Lee, 26162017) for feature importance analysis and thus feature selection. We

also consider the representativeness of input predictors in the feature selection. More details are explained as follows.

3.1 XGBoost: eXtreme Gradient Boosting

Tree boosting is a machine learning framework that combines weak learners to develop a strong learner, where the base learners
are decision trees that are trained sequentially, with the latter focusing on mistakes made by the preceding one. Gradient
boosting machines are a family of tree boosting techniques-where-errors-are-mintmized-by-gradient-descent-algerithms.. One
of the most recent offspring of gradient boosting techniques is the XGBoost, a scalable end-to-end tree boosting system (Chen
& Guestrin, 2016). It has been successfully utilized across a wide array of applications, such as snowpack estimation (Zheng

et al., 2019) and water storage change in a large lake (Fan et al., 2021). XGBoost dataset is represented as D =
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{(X,Y),i= 1,2,...,N}, where X; = [X;1, X3, Xi3,..., Xip| is @ row vector with input features with real value elements and

Y; € R. The tree ensemble model employs M additive functions to predict the output of interest as

fo= 60D =) fulXd,  fueF 1
m=1

where F is the space of regression trees. The model is trained in an additive manner by minimizing a regularized objective to
learn the set of functions employed in the model. At each iteration, a differentiable convex loss function that measures the
difference between the prediction ¥; and the target Y; is computed, and the model is also penalized for the complexity of the

regression tree functions.

3.2 Tuning Hyperparameters

Tuning hyperparameters is a cumbersome task and is often performed by reducing the parameter search space through
randomized search and applying a grid search on the reduced space. Alternatively, hyperparameter optimization frameworks
like Hyperopt (Bergstra et al., 20432015) and Optuna (Akiba et al., 2019) are commonly preferred since they can continually
narrow down the bulky hyperparameter search space to an optimal space based on the preceding results. This study implements
Optuna with a Tree-structured Parzen Estimator (TPE) parameter sampling framework to obtain the optimal hyperparameter
sets.

The procedure for tuning hyperparameters relies on two major components: cross-validation and evaluation metrics. Cross-
validation measures the model's predictive power with a given hyperparameter set by dividing a dataset into folds. In k-fold
cross-validation, the dataset is randomly split into k mutually exclusive subsets of approximately equal size as, D =
{D,D,,Ds,...,D;}. In each iteration, k — 1 folds of D are used for training, and the remaining one is used for validation. The
predictions resulting from a given set of hyperparameters are made by iterating through the folds, so the model is trained and
validated k times. Hence, k model performance values and the mean value is reported as the model performance for this set
of hyperparameters. Optuna allows the use of user-defined metrics for model evaluation during the k-fold cross-validation.
Taking advantage of this structure, we use the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) as the model performance

metric.

_ 2 Osim\ Usim\*
KGE =1— |(1-7r)2+(1- +(1-=2 2
obs Hobs
where ¢ is the standard deviation, x is the mean, and 7 is the linear correlation between the observed and simulated series. A
perfect agreement between observation and simulation gives the theoretical maximum KGE value at 1.0. The higher the KGE
value, the closer the match between the observed and simulated series. KGE offers some advantages over commonly used
metrics like root mean squared errors (RMSE) or the coefficient of determination (R?) because: 1) it is not dominated by
relatively large values; and 2) it simultaneously captures both the magnitude and phase differences between the observed and

simulated series (Gupta et al., 2009).
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3.3 Feature Selection

Feature selection is also an essential step in developing a simpler model that is still capable of reasonably predicting the target
variable with fewer attributes. Feature importance is a technique of computing each predictive variable's degree of contribution
towards the optimal prediction model, which can be used for determining feature selection. The approaches of computing
feature importance scores include correlation coefficient, the coefficients calculated as part of decision trees, or advanced
approaches like SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 20462017). In this study, we use the mean
absolute SHAP values as feature importance measures.

_Initially, we begin with 76 predictive variables. For feature selection purposes, we add a new <"predictor>" of randomly
generated real number values. We train the model and compare the feature importance scores (i.e., the mean absolute SHAP
values) of all predictors. Then, all attributes with scores less than the random number attribute are dropped out. The procedure
is repeated using the new set of predictors until the random number attribute is the least important feature. Lasthystheremaining

Then, we further examine the representativeness of the data by comparing the ranges of the selected features between the D50-

available data and the nationwide data. We use the 2.5th and 97.5th percentiles to represent the lower and higher ends of ranges

in the available data. We do not directly use the absolute min/max values to avoid the impacts of outliers. We then calculate

the percentage of the nationwide data below the 2.5th percentile of the available data. A percentage value of no more than 10%

indicates a good match of lower ends between the available and nationwide data. Similarly, we calculate the percentage of the

nationwide data above the 97.5th percentile of the available data. A percentage value of no more than 10% indicates a good

match of upper ends between the available and nationwide data. Taking together, for any feature, if more than 80% of the

nationwide data are located within the 2.5th and 97.5th percentiles of the available data, we consider that the available data is

sufficiently representative of the nationwide data for this specific feature. Otherwise, a feature is considered non-representative

thus is removed from model development. Lastly, the remaining features are utilized for tuning the final optimal set of

hyperparameter values.

3.4 General Steps

The general steps of the model development procedure are as follows and illustrated in Figure 3.

1. The predictors are scaled using the Minimum-Maximum scaler method, i.e., all features will be transformed into a
range of [0,1]. The main advantage of having this bounded range normalization is that it can supresssuppress the
effect of outliers.

2. The dataset is randomly split into training (70%) and testing (30%) sets, respectively. Only the training data are used
in steps 3 and 4, while the testing data are reserved for step 5.
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3. Optuna and k-fold (k=5) cross-validation are used for tuning hyperparameters, with a maximum tree of 5000 and an
early stopping value of 50. The objective function for the hyperparameter optimization procedure is to maximize the
mean Kling-Gupta Efficiency (KGE) value returned from the k-fold cross-validation.

4. Feature selection is performed as described in section 3.3, so step 3 is repeated with the new and smaller set of
predictors. Steps 3 and 4 are repeated until no more predictorpredictors can be excluded.

5. The final model is developed by fitting on the whole training data using the optimal hyperparameters, and evaluated
using the testing data reserved in step 2.

6. The model from step 5 is used to predict the D50 values for the contiguous U.S. river flowlines.

4 Results

We discuss our results in three steps: the subset of flowlines as the basis to formulate our predictive model, the development

and validation of our predictive model, and the national D50 map derived based on the predictive model.

4.1 Measured D50

Figure 2 shows the 1691 flowlines with the associated observed D50 values. The Mississippi River has relatively denser
measurements attributed to the USACE database, while the southwest (e.g., the Rio Grande) and the Great Basin have fewer
measurements. Overall, the 1691 flowlines are distributed throughout the contiguous United States, providing a good spatial
representation of the NHBplusNHDPIus flowlines. Similar to all observed D50 values in Figure 2d1b, most of the D50 values
associated with the flowlines represent sand-bed rivers (D50 < 2.0 mm). Larger-D50 (> 2.0 mm) flowlines are mainly located

in the basins of California, Upper Colorado, Missouri, Ohio and Upper Mississippi.
4.2 Predictive Model

4.2.1 Feature Selection

After iterations of feature selection (procedure described in sections 3.3 and 3.4), 1312 out of 76 predictive variables, or
predictors, are eventually selected-and-shewn-inTFable-1-—TFhese. Firstly, 13 variables are identified as more significant than a

random-number input vector based on the mean absolute SHAP value-, as shown in Table 1. 2 out of 8 channel characteristics

and 11 out of 68 basin characteristics remain as the significant predictors (see Table 1 for description). The most important
predictor is found to be the soil erodibility factor (Soil_erod_factorFOTKFACT), followed by average annual wet day
(Ann_wet_daysTOTFWDBANN) and mean annual snow as a percent of total precipitation (FOT—PRSNOWANN_snow_perc).
These three basin-related predictors rank higher than the two channel-related characteristics. Channel slope (Slope) and
distance between flowline and the river mouth (PathlengthChan_length) are found to be the most important channel
characteristics for predicting D50, which agrees with the downstream fining phenomena and sediment transport mechanisms
(Nino, 2002). It is somewhat surprising that some hydraulic channel characteristics such as mean annual flow velocity are not
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included in the final feature selection. Studies on river hydraulics show relations between channel flow (i.e., velocity and water
depth) and channel bed characteristics (i.e., slope and roughness), such as the Manning’sManning's equation, Chezy’sChezy's
law, etc., and channel bed roughness can be related to bed sediment size (Garcia, 2008). However, the feature selection with
the XGBoost model and SHAP value indicates that mean annual flow velocity may not be a good predictor for D50 in this
case. A possible reason is that mean annual flow velocity is dependent on some of the selected parametersfeatures such as
TOTWDANNANN_wet_days, Slope, etc., so excluding this variable avoids overfitting the data.

It should be noted that the ranking of feature importance according to the mean absolute SHAP values is quite different from
the correlation coefficients between D50 and predictors, as shown in Figure 3—FOT—KFACT4. Soil_erod factor and

FOTWDBANNANN_wet_days, the two most important features in Table 1, have correlation coefficients of only 0.08 and 0.06,
respectively. FOT-PRSNOWANN_snow_perc has the strongest correlation with D50, with a correlation coefficient of 0.29.
The_individual scatter plots between D50 and alleach of the selected features do not show any apparent relationship between
D50 and any single feature (see Supplementary Figure S2)—This-indicatesSh), indicating that theXGBeest-model-can
revealthere might exist some higher-order interactions among the predictors fer—better—predictionswhich the traditional

regression analysis cannot reveal.

We further examine the representativeness of the 1691 flowlines with observed D50 values of the rest flowlines included in

the NHDPIlus database in terms of the ranges of the 13 features. For convenience, we denote the subset of NHDPIlus data

associated with the 1691 flowlines as D50-available, and the whole NHDPIlus database as nationwide. For most of the 13

features, the percentages of the nationwide data that are beyond the lower or higher ends of the D50-availableare no more than

10%, except for channel slope, i.e., "Channel _mean_slope". Table 2 also lists the relative difference in the 25th, 50th and 75th

percentiles between the D50-available and nationwide data. For instance, for the 25th percentile, we calculated the relative

difference as the ratio of the difference between the 25th percentile of the D50-available data and that of the nationwide data

over the average between the 25th percentile of the D50-available data and that of the nationwide data. This relative difference

is less than 0.5 for most of the features, again except for "Channel _mean_slope". For a better visual illustration, Figure 5 shows
the cumulative distribution functions (CDFs) and corresponding 5th-, 25th-, 50th-, 75th-, and 95th-percentiles. The CDFs are

close between the D50-available and nationwide data, except for "Channel _mean_slope". A similar message can be seen from

the box plots in Figure S6. In addition, we would like to point out that the 1691 sampling stations we use to train and test our

model are located across the whole contiguous U.S., hence geographically representative. Therefore, we conclude that the

1691 flowlines with observed D50 values are representative enough of all the flowlines nationwide in terms of the 12 input

predictors, except for "Channel _mean_slope".

We remove "Channel _mean_slope" and use the remaining 12 predictors to develop the final model, following the same model

training and testing procedures as before. Figure 6 shows the comparison of model performances between the previous and

new models. The model performance metrics are similar. Actually, R? became slightly better in both training (0.834 vs. 0.830)
and testing (0.405 vs. 0.367), while KGE became slightly worse in training (0.775 vs. 0.794) but better in testing (0.527 vs.

0.513). The slight decrease of KGE in training data is reasonable since the model hyperparameter tuning was based on the
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objective of maximizing KGE, and losing one predictor will slightly reduce the space of parameter tuning. Nevertheless, now

the KGE value in the testing phase is closer to that in the training phase.

Although feature selection sheds light on the contribution of input variables to model outputs, a drawback of the machine
learning technique is that it cannot explain mechanistically why selected features are more important than unselected ones.
Therefore, the goal of feature selection is to find the best (i.e., most robust) input variables to feed the best model for D50
predictions. If a different machine learning algorithm from XGBoost is used, the selected features, especially their rankings,
can be different. Feature selection is dependent on the selection of the algorithm, so the selected features in this study should

not be directly used in other models or studies._In the 12 selected predictors, only one is directly related to the channel

processes. The remaining 11 are all land features, and their mechanistic connections with D50 are rather mysterious at this

stage, which could be considered as empirical evidence on the likely causal, yet highly complicated relationships between D50

and the land features, and hopefully inspire future studies to shed light on the underlying mechanisms.

4.2.2 Model Hyperparameters and Performance

Table 23 shows the tuned hyperparameters of the best XGBoost model that is trained using the 1312 selected predictors and
70% of the training data set. For a detailed explanation of the hyperparameters please refer to Chen and Guestrin (2016). Figure
46 shows the performance of the optimal XGBoost model on the training and testing data sets, respectively. Here we consider
an optimal model based on two criteria: 1) the model performance is satisfactory in both the training and testing phases, adand
indicated by good metrics values (e.g., KGE in this study), and 2) the model performance is relatively consistent between the
training and testing phases. Here the optimal XGBoost model gives the KGE value 0.79475 for training and 0.533528 for
testing. The testing value is above 0.5, suggesting satisfactory model performance (Gupta et al., 2009; Knoben et al., 2019).
The performance on the testing data is noticeably worse than that on the training data, as expected. This difference is
nevertheless acceptable given the complexity of the prediction problem. The relatively consistent model performance between

the training and testing phase suggests that the model validation (via the testing phase) is successful.

4.2.3 Model UneertaintySensitivity Analysis

We carry out further analysis to shed light on how the medeHingmodeling results may be sensitive to some of the key steps as
outlined in Section 3.4. We focus on Steps 2 to 4 only because Steps 1 and 5 are standard practice, and Step 6 iste-utiizeutilizes

the medellingmodeling results.

For Step 2, the 2/3 (train) and 1/3(test) split is typical in machine learning for splitting training and testing data. This can be
readjusted up to 4/5(train) and 1/5(test) if the total sample size is sufficiently large, which is nonetheless not the case here. For

Step-3-theFor Step 3, we test the sensitivity on the choices of model performance metrics and k value, respectively. For the

model performance metrics, we have also tried NSE and R% and found that using KGE gave better model performance (Figure
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S7) due to two reasons: 1) a much smaller percentage of bias (PBIAS) and 2) visually better alignment between the simulated

and observed D50 values along the 1:1 line. The choice of k value is usually 5 or 10 depending on the training sample size.

We use 5 since using 10 significantly reduces the number of samples per fold, and the left-out sample will be too small for
validation during cross-validation. Increasing k-fold to 6 or decreasing it to 4 still gives a similar satisfactory performance in
both the training and testing phases, with training/testing KGE of 0.759/0.505 and 0.795/0.512, respectively. For Step 4, we
evaluate the model sensitivity to each selected feature by dropping one of the 4312 variables at a time and repeating the same
meodelingmodeling procedure for the remaining 12 variables. Figure 57 shows that dropping the variables leads to the model
performance dropping below KGE =0.445-n5 during the trainingtesting phase ferin most features-exceptfor-cases. The change
in testing phase KGE ranges between 4 — 22 %. The largest changes are observed when dropping R_factorFOFSATOF and
FOTWBM-TAVMean_elev. Even with those two, the KGE difference between the training and testing phases increases

from 0.28 to 0.36 by including them as predictors. Thus, all the variables remaining after feature selections play a significant

role in the final model.

4.3 National Map

Using the developed machine learning model and NHBplusNHDPlus channel/basin characteristics data, we are able to produce
a national map of bed sediment D50 values (Figure 68).
contiguousU-S--The spatial pattern of D50 in Figure 68 are generally consistent with the observed D50 in Figure 2. High D50
values are mostly distributed in the west coast, upper Missouri and Ohio regions, and low D50 values are concentrated in the

east coast. The consistency between Figures 22 and 68 suggests that the observed D50 data are reasonably representative of
the whole contiguous U.S., despite the sparse distribution. Given that the testing data set is independent of the training dataset,
we expect that the error statistics derived for the testing data should be relatively consistent with the error statistics in applying
the model to derive the national map of D50. To our best knowledge, it is the first-of-its-kind D50 data for the whole contiguous

U.S. Such a D50 map is mostly valuable to support the parameterization of large-scale sediment modelling at the regional or

national scale, which has been very challenging, if not impossible, before this map.

5 Limitations of the method

The predicted D50 values may be subject to several limitations despite using state-of-the-art machine learning techniques to
develop the predictive model. These limitations include: (1) Limited data availability. Although the 1691 observed D50 values
are adequately representative of the contiguous U.S. (i.e., consistent spatial patterns between Figures 23 and 68), limited data
availability prevents us from establishing a separate predictive model for each river basin. For example, there is little observed
D50 data in the Rio Grande and Great Basin, so the predicted D50 values over these basins should be used cautiously. (2) Our
methodology is statistical in nature and lacks explicit process-based understanding. For example, Figure 46 shows the model

tends to overestimate D50 for smaller D50 values (particularly < 0.25 mm) and underestimate D50 for larger D50 values
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(particularly > 1 mm). However, in various trials we have performed, the current result is closest to the 1:1 relationship based
on both the KGE metric and visual check. Further process-based understanding of this systematic bias is beyond the scope of
this study and-left-fora-future-work-—because it would require a) a highly-integrated, process-based model that considers at

least sediment erosion, deposition and transport processes in both hillslopes and channels, and b) well-designed numerical

experiments to isolate the dominant processes and controlling factors. (3) We have not explicitly incorporated the effects of
lakes and reservoirs but rather assumed these effects have been indirectly reflected in the NHDplus-hydrelogic-attributes
adopted-in-the-predictive-medel-NHDPIlus hydrologic attributes adopted in the predictive model. (4) The bed sediment at the

gage station may not always be representative of the reach. Edwards and Glysson (1999) characterized how most of the bed

sediment samples were collected and composited at a cross-section by the USGS over the years. Gage stations are established

at cross-sections in the stream where flow measurements are convenient and with conditions conducive to high-guality flow

measurements — the issue of whether the bed sediment composition represents the reach is generally not taken into account

when the gage station location is established. As such, our predictive results are certainly not free from uncertainties. Therefore,

we recommend using our D50 map for sediment modeling and assessment at the regional or national scales instead of local

studies at the individual river segment.

6 Potential usage

The D50 map might be used for large-scale sediment transport modeling over the whole contiguous U.S., or a major river

basin such as the Mississippi River basin. For example, we have tested the usage of the new D50 dataset within a large-scale

suspended sediment modeling framework (Li, Tan et al., 2021), and our successful model validation against the USGS

observed suspended sediment load over multiple stations suggests the good value of such a national scale D50 dataset. There

is inevitably some uncertainty embedded in these—mapsthis map sourced from the original D50 observations and

NHBplusNHDPIus attributes, the XGBoost modeling, and the spatial extrapolation process. This uncertainty should be taken

into account while evaluating-the-uncertaintiesin-the-model-simulationsutilizing this map for regional-scale assessment or
modeling.
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7 Data availability

The national D50 map is freely available at http://doi.org/10.5281/zen0d0.4921987 (Li, Abeshu et al., 2021). The input data
are obtained from the USGS water quality portal (https://nwis.waterdata.usgs.gov/usa/nwis/qwdata), NHBplasNHDPIus
(https://www.epa.gov/waterdata/nhdplus-national-data ) and ScienceBase (https://doi.org/10.5066/F7765D7V).

8 Conclusions

We develop a new national map of the median bed sediment particle size by combining the USGS sediment observations, the
channel and watershed characteristics from NHDBplusNHDPlus and ScienceBase, and state-of-the-art machine learning
techniques. Despite the limitations, the map is highly valuable for sediment modeling and assessment at the regional and larger

scales, which has not been feasible previously.
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500 Table 1. Most important predictors according to the feature selection

Predictor Mean Mean
. ; Absolute Absolute
NameTn1 N?DPHB&%t Description SHAP SHAP
TOT-KFACTName | Ui | Seil | Value_(w/ Value (w/o
used in this study Egquatien Slope) Slope)
Average topographic slope within
Basin_slope TOT_WDANNBAasin_slope | the upstream drainage area Average | 0.4630 0.42
annual-number-of wet days
MeanAverage annual shew—as—a
Ann_runoff TOT_PRSNOWRUN percent—of-totalprecipitationrunoff | 0.3723 0.41
within the upstream drainage area
Slope Channel-bed-slope for-each-flowline 836
Distance from the downstream end
Chan_length Pathlength of a flowline to the end of the | 0.34 0.39
network (river mouth)
TOT-RFACT
Ann_snow_perc TOT_SATOFPRSNOW flowMean annual snow as a percent | 0.3337 0.37
of total runeffprecipitation
TOT-CONTACT
TOT_BASIN-SLOPE
TOTELEV-MEAN
Avridity index defined as the ratio of
Avridity_index Al annual mean potential evaporation | 0.29 0.37
to annual mean precipitation
| Ann_wet_days TOT_WDANN Average annual number of wet days | 0.46 0.36
Mean_temp TOT_WBM_TAV Average mean annual temperature |, ,q 0.35
within the upstream drainage area
| R factor TOT REACT R factor of Universal Soil Loss 034 035

Equation
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505

Time it takes for water to drain

T _Qsub TOT _CONTACT along subsurface flow paths to the | 0.31 0.34
stream
Average  annual—runeffsurface

Mean_elev TOT_RUNELEV_MEAN | elevation within the upstream | 0.2329 0.31

drainage area

Annual saturation overland flow as

Qsat_to_Qtotal TOT SATOF 0.33 0.27
— a percent of total runoff

Soil erod factor TOT KEACT So!l erodibility 'factor of Universal 051 0.22

I — E— Soil Loss Equation

Channel_mean_slope | Slope Channel Slope 0.36

Note: here we use the same names as those in the NHBplusNHDPIus attribute tables, but moderately revise the description

using terminologies that can be understood by a broader audience.

Table2.Table 2: Comparison of the ranges and percentiles of 13 input features between the D50-available and

nationwide datasets.

Percent of nationwide data that Relative difference in_percentiles between the
Attributes ID50-available and nationwide data
below 2.5th of thelabove 97.5th of the]25th 50th 75th
ID50-available data |D50-available data
Soil erod factor 5.1 3.4 0.07 0.03 0.03
R_factor 6.9 110.2 0.22 0.09 0.44
Ann_wet_days 2.8 3.1 0.01 0.07 0.03
Ann_snow_perc 0.0 3.9 0.71 0.20 0.12
Channel _mean_slope 0.0 19.9 1.72 11.44 1.43
Chan_length 2.3 5.2 0.07 0.21 0.04

17




Ann_runoff 4.3 1.6 0.00 0.28 0.23
Qsat_to_Qtotal 0.0 7.1 2.00 0.13 0.38
T _Qsub 6.2 3.1 0.68 0.59 0.37
Basin_slope 9.3 4.8 0.17 0.04 0.10
Mean_elev 9.9 2.5 0.35 0.27 0.22
Aridity index 2.6 6.5 0.07 0.14 0.03
Mean_temp 4.5 8.6 0.02 0.12 0.18

510

515

520 Table 3. Optimal value of the XGBoost model hyperparameters

Hyperparameter | Optimal Value

Tuning Range

learning_rate 0.825442 [0,1]
min_split_loss 111 [0,00]
max_depth 67 [0,00]

17




min_child_weight 5821 [0,00]
max_delta_step 2241 [0,00]
subsample 0.695408 [0,1]
colsample_bytree 0742741 [0,1]
reg_lambda 26-8210.311 [0,00]
reg_alpha 2:5614.054 [0,00]
n_estimators 155178 [1,00]
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Figure 1: Sediment sample stations. a. LecatienLocations of 2277 USGS stations and 300 USACE sampling locations; b. Number of
samples at each station/location; c. Histogram of latest sample year-at-each-station/locationyears; d. Histogram of D50 values-_in the

W scale (log2D50, D50 in mm).
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550 Figure 3; Flowchart for XGBoost training and prediction.
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Soil_erod_factor A
Ann_wet_days -
Ann_snow_perc 0.32 [-0.086
Chan_length 0.144 |-0.231(0.151
R factor 10.454/0.294 | -0.05
Qsat_to_Qtotal - 0.280]0.467 | -0.16
T Qsub 0.043 [0.083 |0.044 [0.149}-0.014| 0.28
Basin slope .312[-0.213)-0.259]-0.251{0.294 [-0.001|-0.031
Mean_elev A -0.57 0.353
Aridity _index A -0.149|0.097 [-0.561(-0.465|0.311
Mean_ temp £0.515/-0.013|0.097 |0.432 .0’455
Ann_ runoff - -0.321/0.207 |-0.076{0.508 | 0.36 |-0.454
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560 Figure 4. Correlation coefficients among D50 and the 1312 selected predictors.
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XGBoost Predicted Log2(D50) [mm]

Training (n = 1183)

KGE =0.794
R-squared = 0.830
PBAIS = 2.131

] I 1

2 0 2 4
Actual Log2(D50)[mm]
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XGBoost Predicted Log2(D50) [mm]

Test (n = 508)

KGE =0.513
R-squared = 0.367
PBIAS = -1 .?SP

Actual Log2(D50)[mm]
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Figure 6: XGBoost model performance with the training (left) and testing (right) data sets._Comparison of model performances

using 13 features (a, b) and 12 features (c,d; after removing ""Channel Mean Slope"").
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575 Figure 57. Sensitivity of the XGBoost model to the selected features. The result shown in blue bars are obtained by dropping the
corresponding labelled feature from the 13 selected features. The dashed red line represents the model performance with all
variables.
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Figure 68. Predicted D50 in ~2.7 million flowlines across the contiguous U.S. using the XGBoost model.
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