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Abstract  10 

Bed-material sediment particle size data, particularly for the median sediment particle size (D50), are critical for understanding 

and modeling riverine sediment transport. However, sediment particle size observations are primarily available at individual 

sites. Large-scale modeling and assessment of riverine sediment transport are limited by the lack of continuous regional maps 

of bed-material sediment particle size. We hence present a map of D50 over the contiguous U.S. in a vector format that 

corresponds to millions ofapproximately 2.7 million river segments (i.e., flowlines) in the National Hydrography Dataset Plus 15 

(NHDplusNHDPlus) dataset. We develop the map in four steps: 1) collect and process the observed D50 data from 2577 U.S. 

Geological Survey stations or U.S. Army Corps of Engineers sampling locations; 2) collocate these data with the 

NHDplusNHDPlus flowlines based on their geographic locations, resulting in 1691 flowlines with collocated D50 values; 3) 

develop a predictive model using the eXtreme Gradient Boosting (XGBoost) machine learning method based on the observed 

D50 data and the corresponding climate, hydrology, geology and other attributes retrieved from the NHDplusNHDPlus dataset; 20 

4) estimate the D50 values for flowlines without observations using the XGBoost predictive model. We expect this map to be 

useful for various purposes, such as research in large-scale river sediment transport using model- and data-driven approaches, 

teaching of environmental and earth system sciences, planning and managing floodplain zones, etc. The map is available at 

http://doi.org/10.5281/zenodo.4921987 (Li, Abeshu et al., 2021). 

http://doi.org/10.5281/zenodo.4921987
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1 Introduction 25 

Bed-material sediment particle size information is critical for understanding and modeling riverine sediment processes, 

including sediment erosion, entrainment, deposition, and transportation. Various sedimentology formulas have been proposed 

to quantify the sediment processes, with sediment particle size being a critical parameter in those formulas (Meyer-Peter and 

Müller, 1948; Einstein, 1950; Engelund and Hansen, 1967; Ackers and White, 1973; Van Rijn, 1984; Parker 1990; Garcia and 

Parker, 1991; Wu et al., 2000; An et al., 2021). Moreover, sediment particle size is a critical factor in riverine dynamics of 30 

heavy metal (Unda-Calvo et al., 2019; Zhang et al., 2020), nutrients (Xia et al., 2017; Glaser et al., 2020), microplastic 

(Corcoran et al., 2019; He et al., 2020), and fish habitats and benthic lives (Dalu et al., 2020; Rieck and Sullivian, 2020).  

The sediment transport modes can be classified into bed-material load and wash load (Garcia, 2008). The bed-material load 

consists of all sizes of particles existing in a river bed regardless of whether they are being transported along the bed (bedload) 

or in suspension (suspended load). Wash load consists of very fine particles (diameter less than 0.062 mm) that are always in 35 

suspension in the water and rarely reside on the bed (Garcia, 19752008). Wash load is usually controlled by only land surface 

processes (soil erosion in hillslopes and transport from hillslopes into rivers), but not much by riverine hydraulic conditions 

(Garcia, 19752008). In this study, we focus on the bed-material sediment particle size data that are critical in applying sediment 

transport formulas to estimate bed-material load. For example, the Engelund-Hansen equation estimates bed-material load, 

and median bed-material sediment particle size (denoted as D50, i.e., the size larger than 50% of sediment particles) is one of 40 

the most important parameters in the Engelund-Hansen equation (Engelund and Hansen, 1967).  

Despite the importance of bed-material sediment particle size, such data has limited availability due to the expensive costs of 

measuring and analyzing such data. As one of the most data-rich countries in the world, the United States (U.S.) collects and 

disseminates the sediment particle size data mainly through two federal agencies: The U.S. Geological Survey (USGS) and 

the U.S. Army Corps of Engineers (USACE). USGS manages the most gauges and distributes the river-related measurements 45 

on the U.S. rivers. As of April 2021, there are 424948 stations with field/laboratory samples in the USGS water quality portal, 

among which 1.2% (49913644) include bed-material sediment particle data for rivers over the contiguous U.S., and 0.56% 

(2277) have complete percentiles of bed-material sediment particle data to computefor computing D50.  

Spatial approximation, i.e., interpolation or extrapolation, is a typical method to overcome data sparsity when there is no 

universal relationship between the variable of interest (e.g., D50) and other extensively available information. In the case of 50 

sediment particle size, a simple spatial approximation should be conducted within the same river system, assuming similar 

geological and hydrological settings. Here we denote a river system as the whole river network discharging to the ocean (or 

inland lakes) via the same outlet. Such a simple spatial approximation is nevertheless not feasible in many river systems, where 

there are few or no measurement data to support meaningful interpolation and extrapolation. Several studies have reported 

empirical relationships between bed-material sediment particle size with river channel characteristics (e.g., channel slope) and 55 

flow regimes (Niño, 2002; Zhang et al., 2017). Such relations are nonetheless site-specific and not universal enough to apply 

over various river systems.  
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An alternative approach is to establish complex correlations between sediment particle size and other data that are extensively 

available over the contiguous U.S. Such correlations can then be applied across the U.S. for predicting sediment particle size. 

Conventional linear or nonlinear regression methods usually require good prior knowledge of the mechanisms controlling 60 

sediment size distribution, and thus are not suitable for use to establish complex correlations when understanding of factors 

that control sediment size is somewhat limited. Machine learning offers an effective way forward because of its ability to 

establish nonlinear, complex predictive models without the prerequisite of sufficient process-based knowledge (Afan et al., 

2016).  

Therefore, our objective is to develop a spatial map of D50 over the contiguous U.S. rivers by establishing a predictive model 65 

between D50 and other extensively available hydroclimatological and geological data using state-of-the-art machine learning 

techniques. In the following, we describe the data in Section 2, introduce the machine learning model development in Section 

3, and present our results in Section 4. We also explain the limitations of our method in Section 5, potential usage of the D50 

map in Section 6, and data availability in Section 7. We finally conclude with Section 8.  

2 Data 70 

2.1 Bed-material sediment particle size observations 

The USGS sediment data are available to the public through the National Water Information System (NWIS) water quality 

data portal. There are 49913644 USGS stations with at least one sample of bed-material sediment particle size, but only 2277 

stations have complete data to allow meaningful computation of D50, as shown in Figure 1a. There are 1367 USGS stations 

with incomplete percentiles of bed-material sediment particle data, which can be divided into three groups: 1) 1183 stations 75 

have no effective percentiles provided; 2) 147 stations have only percentiles above the 50th percentile; 3) 37 stations have only 

percentiles below the 50th percentile. Therefore, we neglect these data in further analysis. 

The USACE sediment particle size data are available in a technical report by Gaines and Priestas (2016). Gaines and Priestas 

(2016) include the bed-material sediment particle size samples taken at 442 locations along the Mississippi River main stem 

between Head of Passes, Louisiana and Grafton, Illinois. We exclude the locations without exact geographic coordinates and 80 

eventually yield 300 locations, as shown in Figure 1a. In total, we have 2577 locations with complete bed-material sediment 

particle size percentiles to allow for the D50 calculation. At each location, the sediment particle size might have been sampled 

more than once inat different yearstimes, although almost half of the locations are sampled only once (see Figure 1b). Figure 

1c shows for the years that histogram and Figure S1a for the spatial map). For about 94% of these stations, the latest samples 

were taken. About 94%  of these locations have been sampled after 1970the 1970s (see Figure 1c for the histogram and Figure 85 

S1b for the spatial map). We calculated the coefficient of variation (CV) for the 760 stations that have at least 5 samples over 

time. For the rest of the stations, the number of samples is too small for meaningful calculation of CV. For most of these 760 

stations, the CV values range between 0.3 and 1.2, with a median of approximately 0.6 (see Figure S2). The small CV values 

indicate the good stability of D50 (at the same location) over time.  
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We compute the D50 values from the measured sediment particle size distributions in three steps: 1) the cumulative sediment 90 

size distribution curve is drawn with log-2-transformed sediment size (in mm) following the concept of the Krumbein phiΨ 

scale (Krumbein, 1934Parker and Andrews, 1985). 2) A linear interpolation is performed between the percentiles smaller and 

larger than the 50th percentile to obtain the D50 value. 3) For the stations with multiple sampling times, a representative D50 

value is computed as the mean D50 value from all the sampling times. We take the mean as a representative D50 to simply 

account for possible uncertainties in sampling and measurement. Although the sampling and measurement procedures are 95 

carefully designed (Edwards & Glysson, 1999), it is practically impossible to avoid uncertainties in such sampling and 

measurement procedures. Thus, we believe a representative D50 can be better estimated by taking a mean. The D50 values 

calculated following this procedure are denoted as “"observed D50 values”" to differentiate them from the predicted D50 

values using machine learning techniques described later. Figure 1d shows the histogram of the computed D50 values in the 

Krumbein phiΨ scale. About 75% of these D50 values are between 0.0625 mm and 2.0 mm. Garcia (2008)It is suggested that 100 

a river can be a sand-bed or gravel-bed river if the D50 value is below or above 2.0 mm. (Garcia, 2008). The D50 values 

computed from the observed sediment particle size distributions thus dominantlymostly reflect sand-bed river conditions, while 

only approximately 25% are gravel-bed rivers.   

One might wonder how the sites with observed D50 values are distributed between small and large streams (e.g., whether or 

not smaller streams have more observed D50 data than larger streams). We use stream order (Figure S3a, b) and upstream 105 

drainage area (Figure S3c, d) as the indicators of stream size and examine the distributions of flowline lengths (Figure S3a, c) 

and D50 samples (Figure S3b, d), respectively. The total flowline length increases with the stream size (i.e., stream order or 

drainage area), which is expected since overall larger rivers have longer lengths. Interestingly, the number of D50 stations 

follows a bell distribution except for the largest stream order or drainage area, which is primarily due to the USACE 

measurements on the lower Mississippi River (198 sample locations). Therefore, there is no clear indication that larger or 110 

smaller streams dominate the D50 data points.  

2.2 Predictive variables 

The predictive variables are retrieved from the NHDplusNHDPlus database (McKay et al., 2012) and additional attributes for 

the NHDPlus catchments from the ScienceBase dataset (Wieczorek et al., 2018). ScienceBase is a comprehensive scientific 

data and information management platform hosted by USGS (sciencebase.gov). In the medium resolution NHDplusNHDPlus, 115 

there are about 2.7 million stream segments (average length of 1.93 km, denoted as flowlines from now on). NHDplusNHDPlus 

directly provides 138 attributes of flowlines, most of which are descriptive instead of quantitative. We select eight quantitative 

attributes relevant to the channel geometry and hydrology, such as upstream drainage area, channel bed slope, mean annual 

flow velocity, sinuosity, etc. ScienceBase provides additional attributes related to the NHDplusNHDPlus watersheds (local 

drainage area corresponding to a single flowline) and associated upstream drainage areas in thirteen themes (Wieczorek et al., 120 

2018). We select 68 hydroclimatological and geological attributes from ScienceBase, such as climate, hydrologic, topographic, 

soil, and geologic conditions. In total, 76 attributes are selected as potential predictive variables for input to the machine 

about:blank


 

17 

 

learning algorithm. We provide a detailed list of these predictive variables in Supplimentary Supplementary Table S1 and four 

illustrative maps in Supplementary Figure S1S4.  

We then establish the spatial correspondence between the observed D50 values and the 76 predictive variables. In 125 

NHDplusNHDPlus, there are ~26000 USGS stations associated with a portion of the flowlines through the common identifiers. 

This common identifier is unique for every flowline, but several USGS stations may be located on the same flowline and have 

the same common identifier. We match the 2277 USGS stations (withthat have observed D50 values) with stations in 

NHDplusNHDPlus. Some of the 2277 USGS stations are not included in NHDplusNHDPlus, so we obtain 1530 matching 

stations. The 300 USACE sampling locations are collocated with the flowlines via their geographic coordinates. Several USGS 130 

stations or USACEThere are 12 flowlines with 2 sampling locations may be on the same flowline.and 2 flowlines with 3 

sampling locations. In that casethose cases, we assign the average of the D50 values of these USGS stations to the flowline. 

The mean length of the 14 flowlines is 6.63 km. In such a length, only two or three sampling locations cannot capture the 

spatial variability in a meaningful way. Therefore, we simply calculate the average without making further assumptions. We 

further exclude a few flowlines with missing attribute values. Finally, we have a total of 1691 flowlines corresponding to the 135 

observed D50 values. In other words, as shown in Figure 2. As such, in each of these 1691 flowlines, we have established a 

good correspondence between the observed D50 values and the 76 predictive attributes.  

3 Model Development 

Among various machine learning methods, eXtreme Gradient Boosting (XGBoost) is a version of the gradient tree boosting 

algorithm known for its high efficiency and superior performance in recent years (Chen and Guestrin, 2016; Zheng et al., 2019; 140 

Fan et al., 2021). The relations between the input predictors (e.g., watershed characteristics) and D50 are too complex to be 

established with traditional linear regression or dimensionless analysis methods. Therefore, we adopt XGBoost to develop a 

predictive model with the Optuna optimization framework (Akiba et al., 2019) for tuning hyperparameters and the SHapley 

Additive exPlanations (SHAP) (Lundberg and Lee, 20162017) for feature importance analysis and thus feature selection. We 

also consider the representativeness of input predictors in the feature selection. More details are explained as follows. 145 

3.1 XGBoost: eXtreme Gradient Boosting 

Tree boosting is a machine learning framework that combines weak learners to develop a strong learner, where the base learners 

are decision trees that are trained sequentially, with the latter focusing on mistakes made by the preceding one. Gradient 

boosting machines are a family of tree boosting techniques where errors are minimized by gradient descent algorithms.. One 

of the most recent offspring of gradient boosting techniques is the XGBoost, a scalable end-to-end tree boosting system (Chen 150 

& Guestrin, 2016). It has been successfully utilized across a wide array of applications, such as snowpack estimation (Zheng 

et al., 2019) and water storage change in a large lake (Fan et al., 2021). XGBoost dataset is represented as 𝐷 =
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{(𝑋𝑖 , 𝑌𝑖), 𝑖 =  1, 2, . . . , 𝑁}, where 𝑋𝑖 = [𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3, . . . , 𝑋𝑖𝑝] is a row vector with input features with real value elements and 

𝑌𝑖 𝜖 𝑅. The tree ensemble model employs M additive functions to predict the output of interest as 

𝑌̂𝑖  =  𝜙(𝑋𝑖)   = ∑ 𝑓𝑚(𝑋𝑖)

𝑀

𝑚=1

 , 𝑓𝑚 𝜖 Ϝ                                                   1 155 

where Ϝ is the space of regression trees. The model is trained in an additive manner by minimizing a regularized objective to 

learn the set of functions employed in the model. At each iteration, a differentiable convex loss function that measures the 

difference between the prediction 𝑌̂𝑖  and the target 𝑌𝑖 is computed, and the model is also penalized for the complexity of the 

regression tree functions.  

3.2 Tuning Hyperparameters 160 

Tuning hyperparameters is a cumbersome task and is often performed by reducing the parameter search space through 

randomized search and applying a grid search on the reduced space. Alternatively, hyperparameter optimization frameworks 

like Hyperopt (Bergstra et al., 20132015) and Optuna (Akiba et al., 2019) are commonly preferred since they can continually 

narrow down the bulky hyperparameter search space to an optimal space based on the preceding results.  This study implements 

Optuna with a Tree-structured Parzen Estimator (TPE) parameter sampling framework to obtain the optimal hyperparameter 165 

sets.  

The procedure for tuning hyperparameters relies on two major components: cross-validation and evaluation metrics. Cross-

validation measures the model's predictive power with a given hyperparameter set by dividing a dataset into folds. In 𝑘-fold 

cross-validation, the dataset is randomly split into 𝑘  mutually exclusive subsets of approximately equal size as,  𝐷 =

{𝐷1, 𝐷2, 𝐷3, . . . , 𝐷𝑘}. In each iteration, 𝑘 − 1 folds of 𝐷 are used for training, and the remaining one is used for validation. The 170 

predictions resulting from a given set of hyperparameters are made by iterating through the folds, so the model is trained and 

validated 𝑘 times. Hence, 𝑘 model performance values and the mean value is reported as the model performance for this set 

of hyperparameters. Optuna allows the use of user-defined metrics for model evaluation during the 𝑘-fold cross-validation. 

Taking advantage of this structure, we use the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) as the model performance 

metric. 175 

𝐾𝐺𝐸 =  1 − √(1 − 𝑟)2 + (1 −
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
)

2

+ (1 −
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
)

2

                                                    2 

where σ is the standard deviation, μ is the mean, and 𝑟 is the linear correlation between the observed and simulated series. A 

perfect agreement between observation and simulation gives the theoretical maximum KGE value at 1.0. The higher the KGE 

value, the closer the match between the observed and simulated series. KGE offers some advantages over commonly used 

metrics like root mean squared errors (RMSE) or the coefficient of determination (R2) because: 1) it is not dominated by 180 

relatively large values; and 2) it simultaneously captures both the magnitude and phase differences between the observed and 

simulated series (Gupta et al., 2009).  
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3.3 Feature Selection 

Feature selection is also an essential step in developing a simpler model that is still capable of reasonably predicting the target 

variable with fewer attributes. Feature importance is a technique of computing each predictive variable's degree of contribution 185 

towards the optimal prediction model, which can be used for determining feature selection. The approaches of computing 

feature importance scores include correlation coefficient, the coefficients calculated as part of decision trees, or advanced 

approaches like SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 20162017). In this study, we use the mean 

absolute SHAP values as feature importance measures. 

 Initially, we begin with 76 predictive variables. For feature selection purposes, we add a new “"predictor”" of randomly 190 

generated real number values. We train the model and compare the feature importance scores (i.e., the mean absolute SHAP 

values) of all predictors. Then, all attributes with scores less than the random number attribute are dropped out. The procedure 

is repeated using the new set of predictors until the random number attribute is the least important feature.  Lastly, the remaining 

features are utilized for tuning the final optimal set of hyperparameter values. 

Then, we further examine the representativeness of the data by comparing the ranges of the selected features between the D50-195 

available data and the nationwide data. We use the 2.5th and 97.5th percentiles to represent the lower and higher ends of ranges 

in the available data. We do not directly use the absolute min/max values to avoid the impacts of outliers. We then calculate 

the percentage of the nationwide data below the 2.5th percentile of the available data. A percentage value of no more than 10% 

indicates a good match of lower ends between the available and nationwide data. Similarly, we calculate the percentage of the 

nationwide data above the 97.5th percentile of the available data. A percentage value of no more than 10% indicates a good 200 

match of upper ends between the available and nationwide data. Taking together, for any feature, if more than 80% of the 

nationwide data are located within the 2.5th and 97.5th percentiles of the available data, we consider that the available data is 

sufficiently representative of the nationwide data for this specific feature. Otherwise, a feature is considered non-representative 

thus is removed from model development. Lastly, the remaining features are utilized for tuning the final optimal set of 

hyperparameter values. 205 

3.4 General Steps 

The general steps of the model development procedure are as follows and illustrated in Figure 3. 

1. The predictors are scaled using the Minimum-Maximum scaler method, i.e., all features will be transformed into a 

range of [0,1]. The main advantage of having this bounded range normalization is that it can supresssuppress the 

effect of outliers. 210 

2. The dataset is randomly split into training (70%) and testing (30%) sets, respectively. Only the training data are used 

in steps 3 and 4, while the testing data are reserved for step 5. 
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3. Optuna and k-fold (k=5) cross-validation are used for tuning hyperparameters, with a maximum tree of 5000 and an 

early stopping value of 50. The objective function for the hyperparameter optimization procedure is to maximize the 

mean Kling-Gupta Efficiency (KGE) value returned from the k-fold cross-validation. 215 

4. Feature selection is performed as described in section 3.3, so step 3 is repeated with the new and smaller set of 

predictors. Steps 3 and 4 are repeated until no more predictorpredictors can be excluded. 

5. The final model is developed by fitting on the whole training data using the optimal hyperparameters, and evaluated 

using the testing data reserved in step 2. 

6. The model from step 5 is used to predict the D50 values for the contiguous U.S. river flowlines. 220 

4 Results 

We discuss our results in three steps: the subset of flowlines as the basis to formulate our predictive model, the development 

and validation of our predictive model, and the national D50 map derived based on the predictive model.   

4.1 Measured D50 

Figure 2 shows the 1691 flowlines with the associated observed D50 values. The Mississippi River has relatively denser 225 

measurements attributed to the USACE database, while the southwest (e.g., the Rio Grande) and the Great Basin have fewer 

measurements. Overall, the 1691 flowlines are distributed throughout the contiguous United States, providing a good spatial 

representation of the NHDplusNHDPlus flowlines. Similar to all observed D50 values in Figure 1d1b, most of the D50 values 

associated with the flowlines represent sand-bed rivers (D50 < 2.0 mm). Larger-D50 (> 2.0 mm) flowlines are mainly located 

in the basins of California, Upper Colorado, Missouri, Ohio and Upper Mississippi.  230 

4.2 Predictive Model 

4.2.1 Feature Selection 

After iterations of feature selection (procedure described in sections 3.3 and 3.4), 1312 out of 76 predictive variables, or 

predictors, are eventually selected and shown in Table 1. These. Firstly, 13 variables are identified as more significant than a 

random-number input vector based on the mean absolute SHAP value., as shown in Table 1. 2 out of 8 channel characteristics 235 

and 11 out of 68 basin characteristics remain as the significant predictors (see Table 1 for description). The most important 

predictor is found to be the soil erodibility factor (Soil_erod_factorTOT_KFACT), followed by average annual wet day 

(Ann_wet_daysTOT_WDANN) and mean annual snow as a percent of total precipitation (TOT_PRSNOWAnn_snow_perc). 

These three basin-related predictors rank higher than the two channel-related characteristics. Channel slope (Slope) and 

distance between flowline and the river mouth (PathlengthChan_length) are found to be the most important channel 240 

characteristics for predicting D50, which agrees with the downstream fining phenomena and sediment transport mechanisms 

(Nino, 2002). It is somewhat surprising that some hydraulic channel characteristics such as mean annual flow velocity are not 
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included in the final feature selection. Studies on river hydraulics show relations between channel flow (i.e., velocity and water 

depth) and channel bed characteristics (i.e., slope and roughness), such as the Manning’sManning's equation, Chezy’sChezy's 

law, etc., and channel bed roughness can be related to bed sediment size (Garcia, 2008). However, the feature selection with 245 

the XGBoost model and SHAP value indicates that mean annual flow velocity may not be a good predictor for D50 in this 

case. A possible reason is that mean annual flow velocity is dependent on some of the selected parametersfeatures such as 

TOT_WDANNAnn_wet_days, Slope, etc., so excluding this variable avoids overfitting the data.  

It should be noted that the ranking of feature importance according to the mean absolute SHAP values is quite different from 

the correlation coefficients between D50 and predictors, as shown in Figure 3. TOT_KFACT4. Soil_erod_factor and 250 

TOT_WDANNAnn_wet_days, the two most important features in Table 1, have correlation coefficients of only 0.08 and 0.06, 

respectively. TOT_PRSNOWAnn_snow_perc has the strongest correlation with D50, with a correlation coefficient of 0.29. 

The individual scatter plots between D50 and alleach of the selected features do not show any apparent relationship between 

D50 and any single feature (see Supplementary Figure S2). This indicatesS5), indicating that the XGBoost model can 

revealthere might exist some higher-order interactions among the predictors for better predictionswhich the traditional 255 

regression analysis cannot reveal. 

We further examine the representativeness of the 1691 flowlines with observed D50 values of the rest flowlines included in 

the NHDPlus database in terms of the ranges of the 13 features. For convenience, we denote the subset of NHDPlus data 

associated with the 1691 flowlines as D50-available, and the whole NHDPlus database as nationwide. For most of the 13 

features, the percentages of the nationwide data that are beyond the lower or higher ends of the D50-availableare no more than 260 

10%, except for channel slope, i.e., "Channel_mean_slope". Table 2 also lists the relative difference in the 25th, 50th and 75th 

percentiles between the D50-available and nationwide data. For instance, for the 25th percentile, we calculated the relative 

difference as the ratio of the difference between the 25th percentile of the D50-available data and that of the nationwide data 

over the average between the 25th percentile of the D50-available data and that of the nationwide data. This relative difference 

is less than 0.5 for most of the features, again except for "Channel_mean_slope". For a better visual illustration, Figure 5 shows 265 

the cumulative distribution functions (CDFs) and corresponding 5th-, 25th-, 50th-, 75th-, and 95th-percentiles. The CDFs are 

close between the D50-available and nationwide data, except for "Channel_mean_slope". A similar message can be seen from 

the box plots in Figure S6. In addition, we would like to point out that the 1691 sampling stations we use to train and test our 

model are located across the whole contiguous U.S., hence geographically representative. Therefore, we conclude that the 

1691 flowlines with observed D50 values are representative enough of all the flowlines nationwide in terms of the 12 input 270 

predictors, except for "Channel_mean_slope". 

We remove "Channel_mean_slope" and use the remaining 12 predictors to develop the final model, following the same model 

training and testing procedures as before. Figure 6 shows the comparison of model performances between the previous and 

new models. The model performance metrics are similar. Actually, R2 became slightly better in both training (0.834 vs. 0.830) 

and testing (0.405 vs. 0.367), while KGE became slightly worse in training (0.775 vs. 0.794) but better in testing (0.527 vs. 275 

0.513). The slight decrease of KGE in training data is reasonable since the model hyperparameter tuning was based on the 
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objective of maximizing KGE, and losing one predictor will slightly reduce the space of parameter tuning. Nevertheless, now 

the KGE value in the testing phase is closer to that in the training phase. 

Although feature selection sheds light on the contribution of input variables to model outputs, a drawback of the machine 

learning technique is that it cannot explain mechanistically why selected features are more important than unselected ones. 280 

Therefore, the goal of feature selection is to find the best (i.e., most robust) input variables to feed the best model for D50 

predictions. If a different machine learning algorithm from XGBoost is used, the selected features, especially their rankings, 

can be different. Feature selection is dependent on the selection of the algorithm, so the selected features in this study should 

not be directly used in other models or studies. In the 12 selected predictors, only one is directly related to the channel 

processes. The remaining 11 are all land features, and their mechanistic connections with D50 are rather mysterious at this 285 

stage, which could be considered as empirical evidence on the likely causal, yet highly complicated relationships between D50 

and the land features, and hopefully inspire future studies to shed light on the underlying mechanisms. 

4.2.2 Model Hyperparameters and Performance 

Table 23 shows the tuned hyperparameters of the best XGBoost model that is trained using the 1312 selected predictors and 

70% of the training data set. For a detailed explanation of the hyperparameters please refer to Chen and Guestrin (2016). Figure 290 

46 shows the performance of the optimal XGBoost model on the training and testing data sets, respectively. Here we consider 

an optimal model based on two criteria: 1) the model performance is satisfactory in both the training and testing phases, adand 

indicated by good metrics values (e.g., KGE in this study), and 2) the model performance is relatively consistent between the 

training and testing phases. Here the optimal XGBoost model gives the KGE value 0.79475 for training and 0.513528 for 

testing. The testing value is above 0.5, suggesting satisfactory model performance (Gupta et al., 2009; Knoben et al., 2019). 295 

The performance on the testing data is noticeably worse than that on the training data, as expected. This difference is 

nevertheless acceptable given the complexity of the prediction problem. The relatively consistent model performance between 

the training and testing phase suggests that the model validation (via the testing phase) is successful.  

   

4.2.3 Model UncertaintySensitivity Analysis 300 

We carry out further analysis to shed light on how the modellingmodeling results may be sensitive to some of the key steps as 

outlined in Section 3.4. We focus on Steps 2 to 4 only because Steps 1 and 5 are standard practice, and Step 6 is to utilizeutilizes 

the modellingmodeling results.  

 

For Step 2, the 2/3 (train) and 1/3(test) split is typical in machine learning for splitting training and testing data. This can be 305 

readjusted up to 4/5(train) and 1/5(test) if the total sample size is sufficiently large, which is nonetheless not the case here. For 

Step 3, theFor Step 3, we test the sensitivity on the choices of model performance metrics and k value, respectively. For the 

model performance metrics, we have also tried NSE and R2 and found that using KGE gave better model performance (Figure 
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S7) due to two reasons: 1) a much smaller percentage of bias (PBIAS) and 2) visually better alignment between the simulated 

and observed D50 values along the 1:1 line. The choice of k value is usually 5 or 10 depending on the training sample size. 310 

We use 5 since using 10 significantly reduces the number of samples per fold, and the left-out sample will be too small for 

validation during cross-validation. Increasing k-fold to 6 or decreasing it to 4 still gives a similar satisfactory performance in 

both the training and testing phases, with training/testing KGE of 0.759/0.505 and 0.795/0.512, respectively. For Step 4, we 

evaluate the model sensitivity to each selected feature by dropping one of the 1312 variables at a time and repeating the same 

modellingmodeling procedure for the remaining 12 variables. Figure 57 shows that dropping the variables leads to the model 315 

performance dropping below KGE = 0.475 in5 during the trainingtesting phase forin most features except for cases. The change 

in testing phase KGE ranges between 4 – 22 %. The largest changes are observed when dropping R_factorTOT_SATOF and 

TOT_WBM_TAVMean_elev. Even with those two, the KGE difference between the training and testing phases increases 

from 0.28 to 0.36 by including them as predictors. Thus, all the variables remaining after feature selections play a significant 

role in the final model.  320 

4.3 National Map 

Using the developed machine learning model and NHDplusNHDPlus channel/basin characteristics data, we are able to produce 

a national map of bed sediment D50 values (Figure 68). To our best knowledge, it is the first of its kind D50 data for the whole 

contiguous U.S. The spatial pattern of D50 in Figure 68 are generally consistent with the observed D50 in Figure 2. High D50 

values are mostly distributed in the west coast, upper Missouri and Ohio regions, and low D50 values are concentrated in the 325 

east coast. The consistency between Figures 22 and 68 suggests that the observed D50 data are reasonably representative of 

the whole contiguous U.S., despite the sparse distribution. Given that the testing data set is independent of the training dataset, 

we expect that the error statistics derived for the testing data should be relatively consistent with the error statistics in applying 

the model to derive the national map of D50. To our best knowledge, it is the first-of-its-kind D50 data for the whole contiguous 

U.S. Such a D50 map is mostly valuable to support the parameterization of large-scale sediment modelling at the regional or 330 

national scale, which has been very challenging, if not impossible, before this map.  

5 Limitations of the method 

The predicted D50 values may be subject to several limitations despite using state-of-the-art machine learning techniques to 

develop the predictive model. These limitations include:  (1) Limited data availability. Although the 1691 observed D50 values 

are adequately representative of the contiguous U.S. (i.e., consistent spatial patterns between Figures 23 and 68), limited data 335 

availability prevents us from establishing a separate predictive model for each river basin. For example, there is little observed 

D50 data in the Rio Grande and Great Basin, so the predicted D50 values over these basins should be used cautiously. (2) Our 

methodology is statistical in nature and lacks explicit process-based understanding. For example, Figure 46 shows the model 

tends to overestimate D50 for smaller D50 values (particularly < 0.25 mm) and underestimate D50 for larger D50 values 



 

17 

 

(particularly > 1 mm). However, in various trials we have performed, the current result is closest to the 1:1 relationship based 340 

on both the KGE metric and visual check. Further process-based understanding of this systematic bias is beyond the scope of 

this study and left for a future work. because it would require a) a highly-integrated, process-based model that considers at 

least sediment erosion, deposition and transport processes in both hillslopes and channels, and b) well-designed numerical 

experiments to isolate the dominant processes and controlling factors. (3) We have not explicitly incorporated the effects of 

lakes and reservoirs but rather assumed these effects have been indirectly reflected in the NHDplus hydrologic attributes 345 

adopted in the predictive model. NHDPlus hydrologic attributes adopted in the predictive model. (4) The bed sediment at the 

gage station may not always be representative of the reach. Edwards and Glysson (1999) characterized how most of the bed 

sediment samples were collected and composited at a cross-section by the USGS over the years. Gage stations are established 

at cross-sections in the stream where flow measurements are convenient and with conditions conducive to high-quality flow 

measurements – the issue of whether the bed sediment composition represents the reach is generally not taken into account 350 

when the gage station location is established. As such, our predictive results are certainly not free from uncertainties. Therefore, 

we recommend using our D50 map for sediment modeling and assessment at the regional or national scales instead of local 

studies at the individual river segment.  

6 Potential usage 

The D50 map might be used for large-scale sediment transport modeling over the whole contiguous U.S., or a major river 355 

basin such as the Mississippi River basin. For example, we have tested the usage of the new D50 dataset within a large-scale 

suspended sediment modeling framework (Li, Tan et al., 2021), and our successful model validation against the USGS 

observed suspended sediment load over multiple stations suggests the good value of such a national scale D50 dataset. There 

is inevitably some uncertainty embedded in these mapsthis map sourced from the original D50 observations and 

NHDplusNHDPlus attributes, the XGBoost modeling, and the spatial extrapolation process. This uncertainty should be taken 360 

into account while evaluating the uncertainties in the model simulationsutilizing this map for regional-scale assessment or 

modeling.  

The D50 map may also be used to derive other important parameters for large-scale hydrological or hydraulic modeling. For 

instance, Manning’s roughness coefficient is an important parameter for river routing modeling. It is, however, largely 

empirical and hard to directly measure, hence not readily available at a regional or national scale. Previous studies have 365 

established some empirical relationships between Manning’s roughness coefficient and D50 for river channels (Coon, 1998; 

Gillen, 1996; Julien, 2002; Meyer-Peter & Müller, 1948). Thus, one might derive a map of Manning’s roughness coefficient 

over the contiguous U.S. based on the empirical relationship and the D50 maps. 
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7 Data availability 

The national D50 map is freely available at http://doi.org/10.5281/zenodo.4921987 (Li, Abeshu et al., 2021). The input data 370 

are obtained from the USGS water quality portal (https://nwis.waterdata.usgs.gov/usa/nwis/qwdata), NHDplusNHDPlus 

(https://www.epa.gov/waterdata/nhdplus-national-data ) and ScienceBase (https://doi.org/10.5066/F7765D7V).     

8 Conclusions 

We develop a new national map of the median bed sediment particle size by combining the USGS sediment observations, the 

channel and watershed characteristics from NHDplusNHDPlus and ScienceBase, and state-of-the-art machine learning 375 

techniques. Despite the limitations, the map is highly valuable for sediment modeling and assessment at the regional and larger 

scales, which has not been feasible previously.  
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Table 1. Most important predictors according to the feature selection 500 

Predictor 

Description 

Mean 

Absolute 

SHAP 

Value (w/ 

Slope) 

Mean 

Absolute 

SHAP 

Value (w/o 

Slope) 
TOT_KFACTName 

used in this study 

Name in NHDPlusSoil 

erodibility factor of 

Universal Soil Loss 

Equation 

Basin_slope TOT_WDANNBasin_slope 

Average topographic slope within 

the upstream drainage area Average 

annual number of wet days 

0.4630 0.42 

Ann_runoff TOT_PRSNOWRUN 

MeanAverage annual snow as a 

percent of total precipitationrunoff 

within the upstream drainage area 

0.3723 0.41 

Slope Channel bed slope for each flowline 0.36 

Chan_length Pathlength 

Distance from the downstream end 

of a flowline to the end of the 

network (river mouth) 

0.34 0.39 

TOT_RFACT R factor of Universal Soil Loss Equation 0.34 

Ann_snow_perc TOT_SATOFPRSNOW 

Annual saturation overland 

flowMean annual snow as a percent 

of total runoffprecipitation 

0.3337 0.37 

TOT_CONTACT 

Time it takes for water to drain along subsurface 

flow paths to the stream 0.31 

TOT_BASIN_SLOPE 

Average topographic slope within the upstream 

drainage area  0.30 

TOT_ELEV_MEAN 

Average surface elevation within the upstream 

drainage area 0.29 

Aridity_index AI 

Aridity index defined as the ratio of 

annual mean potential evaporation 

to annual mean precipitation 

0.29 0.37 

Ann_wet_days TOT_WDANN Average annual number of wet days 0.46 0.36 

Mean_temp TOT_WBM_TAV 
Average mean annual temperature 

within the upstream drainage area 
0.29 0.35 

R_factor TOT_RFACT 
R factor of Universal Soil Loss 

Equation 
0.34 0.35 



 

17 

 

T_Qsub TOT_CONTACT 

Time it takes for water to drain 

along subsurface flow paths to the 

stream 

0.31 0.34 

Mean_elev TOT_RUNELEV_MEAN 

Average annual runoffsurface 

elevation within the upstream 

drainage area 

0.2329 0.31 

Qsat_to_Qtotal TOT_SATOF 
Annual saturation overland flow as 

a percent of total runoff 
0.33 0.27 

Soil_erod_factor TOT_KFACT 
Soil erodibility factor of Universal 

Soil Loss Equation 
0.51 0.22 

Channel_mean_slope Slope Channel Slope 0.36  

Note: here we use the same names as those in the NHDplusNHDPlus attribute tables, but moderately revise the description 

using terminologies that can be understood by a broader audience.  

 

 

 505 

 

 

Table 2.Table 2: Comparison of the ranges and percentiles of 13 input features between the D50-available and 

nationwide datasets. 

 

Attributes 

Percent of nationwide data that  Relative difference in percentiles between the 

D50-available and nationwide data 

below 2.5th of the 

D50-available data 

above 97.5th of the 

D50-available data 

25th  50th  75th  

Soil_erod_factor 5.1 3.4 0.07 0.03 0.03 

R_factor 6.9 10.2 0.22 0.09 0.44 

Ann_wet_days 2.8 3.1 0.01 0.07 0.03 

Ann_snow_perc 0.0 3.9 0.71 0.20 0.12 

Channel_mean_slope 0.0 19.9 1.72 1.44 1.43 

Chan_length 2.3 5.2 0.07 0.21 0.04 
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Ann_runoff 4.3 1.6 0.00 0.28 0.23 

Qsat_to_Qtotal 0.0 7.1 2.00 0.13 0.38 

T_Qsub 6.2 3.1 0.68 0.59 0.37 

Basin_slope 9.3 4.8 0.17 0.04 0.10 

Mean_elev 9.9 2.5 0.35 0.27 0.22 

Aridity_index 2.6 6.5 0.07 0.14 0.03 

Mean_temp 4.5 8.6 0.02 0.12 0.18 
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Table 3. Optimal value of the XGBoost model hyperparameters 520 

Hyperparameter Optimal Value Tuning Range 

learning_rate 0.825442 [0,1] 

min_split_loss 111 [0,∞] 

max_depth 67 [0,∞] 
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min_child_weight 5821 [0,∞] 

max_delta_step 2241 [0,∞] 

subsample 0.695408 [0,1] 

colsample_bytree 0.712741 [0,1] 

reg_lambda 26.8210.311 [0,∞] 

reg_alpha 2.5614.054 [0,∞] 

n_estimators 155178 [1,∞] 
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 530 

Figure 1: Sediment sample stations. a. LocationLocations of 2277 USGS stations and 300 USACE sampling locations; b. Number of 

samples at each station/location; c. Histogram of latest sample year at each station/locationyears; d. Histogram of D50 values. in the 

Ψ scale (log2D50, D50 in mm). 
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Figure 2. 1,6911691 flowlines with measured D50.  
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Figure 3: Flowchart for XGBoost training and prediction. 550 
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Figure 4. Correlation coefficients among D50 and the 1312 selected predictors.  560 
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Figure 4  

Figure 5: Comparison of the cumulative distribution function (CDF) of 13 features between training data and all flowlines (i.e., 

NHDPlus). 
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Figure 6: XGBoost model performance with the training (left) and testing (right) data sets. Comparison of model performances 570 
using 13 features (a, b) and 12 features (c,d; after removing "Channel_Mean_Slope"). 
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Figure 57. Sensitivity of the XGBoost model to the selected features. The result shown in blue bars are obtained by dropping the 575 
corresponding labelled feature from the 13 selected features. The dashed red line represents the model performance with all 

variables. 
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 580 

Figure 68. Predicted D50 in ~2.7 million flowlines across the contiguous U.S. using the XGBoost model. 
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