December 6, 2021

MS. Ref. No. essd-2021-201

“Median bed-material sediment particle size across rivers in the contiguous U.S.”

Dear editor and reviewers,

The authors would like to thank the reviewers for your time and constructive comments. We are
glad that all three reviewers seem to agree about the importance and challenge of the study. The
main concern across all reviewers is how well the ranges of input features of training data
represent those of the nationwide data, which we agree is very important to look into. To address
that, first, we performed a careful, statistical comparison of the 13 input features between the
training data and the nationwide data, finding that for 12 out of 13 features the training data are
adequately representative of the nationwide data, except for “CHANNEL_MEAN_SLOPE”. Then
we removed “CHANNEL_MEAN_SLOPE” and used the remaining 12 input features to train a
new model. It turned out that the new model performance was similar to the previous one in both
the training and testing phases. Therefore, we decided to use the new model with the 12 input
features and regenerated our results correspondingly. We have also included here some
additional analyses or figures to address the other major comments from the reviewers.

Overall, we believe that we have successfully addressed the reviewers’ major comments. We
have also responded to each of the minor comments. Our point-to-point responses are listed
below, where our responses are in blue color and the reviewers’ comments are in black color.
Please note that the line numbers we provide in the below are corresponding to the revised
manuscript with the changes tracked, not the clean version.

Reviewer #1:

https://essd.copernicus.org/preprints/essd-2021-201#RC1

The authors have attempted to solve an important problem of increasing resolution of available
sediment D50 in contiguous USA. The authors should be lauded for attempting to tackle this
problem using a unique approach of predicting D50 for regions that lacked measurements using a
Gradient-Boosting based machine learning method. The paper is well written, though the
presentation can be improved. The approach taken by the authors is unique, though I don’t think


https://essd.copernicus.org/preprints/essd-2021-201#RC1

the resultant synthetic dataset generated meets the standards of the measured datasets usually
published in this journal. | say this because, it is well known that a ML model’s predictive
capability is constrained by the range of values present within the training data-set. Even if a
trained model shows decent prediction capability for the testing data-set, there is no guarantee
that the model will be able to predict correctly for cases that have input parameter values beyond
the range of the training data. When the authors synthetically generated the data for the whole
US using a model trained using (extremely sparse) 2577 spatial locations, they didn’t mention
about the range of values for the input parameters in the 26000 flowlines, which were later used
to generate the synthetic dataset. | would recommend the authors to submit this paper to a
different journal, e.g. WRR, Advances in Water Resources, Geoscientific Model Development,
JGRE, etc., and increase the discussion about why the 13 parameters that SHAP value indicate to
be the ones most responsible for determining the D50 of sediment at a stream location. As the
above statement about the dataset suitability for the journal could be deemed subjective, | leave
the final decision on suitability of the synthetically generated dataset for ESSD to the Editors.
Going ahead, I will only comment on the technical and presentation issues of the paper. Please
find detailed comments in the attached document.

Response: We thank the reviewer for the laud and comments.

We agree that “a ML model’s predictive capability is constrained by the range of values present
within the training data-set”. First, per the reviewer’s suggestion, we have compared the ranges
of the 13 input parameters between the training data and the nationwide data, as shown in Table
2. In Table 2, for each of the 13 features, we used the 2.5th and 97.5th percentiles to represent
the lower and higher ends of ranges in the training data. We did not directly use the absolute
min/max values to avoid the impacts of outliers. We then calculated the percentage of the
nationwide data that is below the 2.5th percentile of the training data, and considered a
percentage value no more than 10% indicates a good match of lower ends between the training
and nationwide data. Similarly, we calculated the percentage of the nationwide data that is above
the 97.5th percentile of the training data, and considered a percentage value no more than 10%
indicates a good match of upper ends between the training and nationwide data. Taking together,
for any feature, if more than 80% of the nationwide data are located within the 2.5th and 97.5th
percentiles of the training data, we consider that the training data is sufficiently representative of
the nationwide data for this specific feature. As shown in Table 2, for most features the
percentages of the nationwide data that are beyond the lower or higher ends of the training data
are no more than 10%, except for channel slope, i.e., “CHANNEL_MEAN_SLOPE”. Therefore,
for 12 out of 13 features, the training data are representative of nationwide data.

Table 2 also lists the relative difference in the 25th, 50th and 75th percentiles between the
training and nationwide data. For instance, for the 25th percentile, we calculated the relative
difference as the ratio of the difference between the 25th percentile of the training data and that
of the nationwide data over the average between the 25th percentile of the training data and that



of the nationwide data. This relative difference is less than 0.5 for most of the features, again
except for “CHANNEL_MEAN_SLOPE”, further suggesting that the training data’s good
representativeness of the nationwide data. For better visual illustration, Figure 5 shows the
cumulative distribution functions (CDFs) and corresponding 5th-, 25th-, 50th-, 75th-, and 95th-
percentiles, and Figure S6 shows the box plots. In addition, we would like to point out that the
1691 sampling stations we used to train and test our model are located across the whole
contiguous U.S., hence geographically representative. Therefore, we conclude that the training
data are representative enough of all the flowlines nationwide in terms of the 12 input
parameters, except for “CHANNEL_MEAN_SLOPE”.

We removed “CHANNEL_MEAN_SLOPE” and used the remaining 12 parameters to develop a
new model, following the same model training and testing procedures as before. Figure R3
below shows the comparison of model performances between the previous and new models. The
model performance metrics are very similar. Actually, R? became slightly better in both training
(0.834 vs. 0.830) and testing (0.405 vs. 0.367), while KGE became slightly worse in training
(0.775 vs. 0.794) but better in testing (0.527 vs. 0.513). The slight decrease of KGE in training
data is reasonable since the model hyperparameter tuning was based on the objective of
maximizing KGE and losing one parameter will slightly reduce the space of parameter tuning.
Nevertheless, now the KGE value in the testing phase is closer to that in the training phase.

In summary, we think we have successfully addressed the reviewer’s primary concern by
performing the statistical comparison between the training and nationwide data, and rerunning
the ML model using the further refined selection of input parameters. In the revised manuscript,
we plan to add those comparisons and discussion, which we believe will substantially elevate our
study.

Regarding the reviewer’s comment on the suitability of our manuscript for ESSD, we did
carefully consider various journals and then decided that ESSD was most suitable for our study.
Most importantly, there have been articles published at ESSD that are similar to ours, i.e.,
generating a dataset at a regional or global scale from a relatively small number of local/point
observations. Here’re two very recent examples:
https://essd.copernicus.org/articles/13/4881/2021/;
https://essd.copernicus.org/articles/13/3453/2021/essd-13-3453-2021.html.

Action: We added lines 144-145, 195-204, and 257-278.

1) In line 35 and later, the authors cite “Garcia, 1975”. There is not citation in the
references to match it.


https://essd.copernicus.org/articles/13/4881/2021/
https://essd.copernicus.org/articles/13/4881/2021/
https://essd.copernicus.org/articles/13/4881/2021/
https://essd.copernicus.org/articles/13/3453/2021/essd-13-3453-2021.html
https://essd.copernicus.org/articles/13/3453/2021/essd-13-3453-2021.html
https://essd.copernicus.org/articles/13/3453/2021/essd-13-3453-2021.html

Response: It should be Garcia, 2008.

Action: We fixed it in the revised manuscript, lines 36 and 38.
2) Please re-write line 38 to make it clearer.

Action: We re-wrote lines 39-41.

3) In line 61, the authors talk about how ML based approaches can allow establishment of
successful predictive models without sufficient process-based knowledge. This has proven to be
true in different fields; though in others, utilizing ML without a process-based understanding has
also led to erroneous models that lack generalizability. Oftentimes the difference between
success and failure of a ML model is based on the amount of data available for training the
model. The authors in the current study have attempted to develop a generalized model for
predicting sediment D50 in the USA, based on different channel and catchment properties. It is
hard to fathom that this could be achieved based on a dataset with only about 2600 data points,
without any prior input about the processes involved.

Response: For developing a generalized model for predicting D50, as discussed above, it is
critical whether or not the ranges of input parameters of the training data are representative for
those of the river reaches across the nation. With Table 2 and Figures 5, S6 and 6, we believe the
training data used in our revised ML model, although not a great amount, represent reasonably
well the nationwide data. Also, the testing data are effective for ML approaches in order to check
how well predictive the ML model is. Lastly, we actually did invest quite some efforts in the
traditional, regression-type of methods. We first examined the causal relationships between D50
and each variable, for example, stream order, channel slope, mean annual flow, mean flow
velocity, channel sinuosity, channel hydraulic geometries etc. However, there has been too much
scattering in each of these relationships (hence uncertainty; see Figure S5), preventing the
subsequent regression analysis. Therefore, we eventually decided to rely on the ML methods due
to lack of explicit understanding of physics. Our rationale is that, the traditional regression or
dimensionless analysis techniques may not work in generating a large-scale spatial map of D50,
and ML offers a great opportunity for us to move forward, i.e., as pointed out by the 2nd
reviewer, making some useful progress instead of keeping waiting.

Action: We added Figure S5 in Supplement Material and modified lines 253-256.

4) In line 72, the authors mention that the dataset has some points with only a single
sediment size value. The authors could try to see if they can utilize this extra data, even though
D50 calculation is not possible. Maybe the data can be used for further validation of the model.

Response: We have looked into those USGS stations with some sediment particle size
measurements but D50 calculation is not possible. There are 1367 USGS stations with



incomplete percentiles of bed-material sediment particle data, which can be divided into three
groups: 1) 1183 stations have no effective percentiles provided; 2) 147 stations have only
percentiles above the 50" percentile; 3) 37 stations have only percentiles below the 50™
percentile. We feel that Therefore, we neglect these data in further analysis.

Action: We added above clarification in lines 74-77.

5) Please include more information in the caption of figure 1a, e.g. things like how many
locations are actually shown on the map. Also, data that is shown as histograms (1b,c),
could/should be represented spatially on the map. This would provide the readers additional
information about the spatial variation of different aspects of the data.

Action: We added the location information in the caption of Figure 1. For the data shown as
histograms (Fig. 1b,c), we plotted the data spatially as maps in Supplement Material Figure S1.
We also modified lines 83-86.

6) In all the locations that have multiple values of D50 reported in time, what is the
variability in the D50 value over time? Even though the timescale across which the D50 data was
collected is smaller than geomorphological timescales, it is important to check for the variability
in order to be sure that the data was collected at stable stream-reaches. Also, what is the
scientific basis for calculating a representative D50 by taking a mean?

Response: We calculated the coefficient of variation (CV) for the 760 stations that have at least 5
samples over time. For the rest of stations, the number of samples are too small for meaningful
calculation of CV. Figure S2 in Supplement Material shows that for most of these 760 stations
the CV values range between 0.3 and 1.2 with the median of approximately 0.6. The small CV
values indicate the good stability of D50 (at the same location) over time. We took the mean as a
representative D50 to simply account for possible uncertainties in sampling and measurement.
Although the sampling and measurement procedures were carefully designed (see Edwards and
Glysson methods document https://pubs.usgs.gov/twri/twri3-c2/, as suggested by reviewer #2), it
is practically impossible to avoid uncertainties in such sampling and measurement procedures.
Thus, we believe a representative D50 can be better estimated by taking a mean.

Action: We added above clarification in lines 86-89.

7) In line 109, the authors mention that if there are multiple sediment sampling locations for
a flowline, they assigned a simple average to come up with the representative D50 for the
flowline. This approach is simplistic, as this will work if all the sampling points on a flowline are
equidistant. The authors should devise a method that accounts for the relative spatial location of
each sampling location, else the representative D50 will be inaccurate.


https://pubs.usgs.gov/twri/twri3-c2/

Response: We agree with the reviewer that D50 probably changes spatially within a flowline.
We did the simple average for two reasons: 1) Only a very small number of flowlines have more
than one sampling locations. To be exact, there are only 12 flowlines with 2 sampling locations
and another 2 flowlines with 3 sampling locations. 2) The mean length of the 14 flowlines is
6.63km. In such a length, only two or three sampling locations cannot capture the spatial
variability in a meaningful way. Therefore, we simply calculated the average without making
further assumptions.

Action: We added above clarification in lines 94-97.

8) Starting at line 115, the authors mention two studies, specifically Chen and Guestrin
(2016) and Zheng et al. (2019), to argue that the ML method they have used is appropriate for
the current study. It should be pointed out that even though the XGBoost method that the
aforementioned studies used performed admirably, the model developed in those studies were for
specific locations. Chen and Guestrin’s used it for snowpack spatial patterns in the Sierra Nevada
of California, and Zheng et al. used it for predicting water storage changes of a specific lake
Inner Mongolia plateau. On the other hand the authors are trying to develop a general model for
the whole of the USA. Thus, the suitability of the adopted ML technique is debatable.

Response: We agree that the suitability of XGBoost or any ML technique cannot be guaranteed
based on the success of other studies on different problems. As discussed above, we have
ensured that the training data we used are representative for the whole U.S. The sampling
locations of the training data spread over most of the U.S., hence geographically representative
as well. Lastly, a practical way to check whether or not it is suitable is by applying the method
and evaluating its performance with testing data. In our results the model performance in the
testing phase is sufficiently close to that in the training phase, further indicating that our ML
model is suitable for the other places in the U.S.

9) The use of KGE as the model performance parameter is interesting, especially as the
KGE values for the testing dataset is relatively much better than the traditional R?. Though, KGE
itself is fraught with issues (Onyutha, 2020). So it would be informative if the authors also
provide model performance quantification using Nash-Sutcliffe efficiency, CMA (Onyutha,
2020), etc.

Response: In fact, we have used KGE, NSE and R? as the model performance parameters (hence
objective functions). Based on a visual check of the patterns we obtained (see Figure S7), we feel
that using KGE gives better patterns, i.e., the dots are more aligned with the 1:1 line as indicated
by the percentage of bias (PBIAS).

Action: We added Figure S7 in Supplement Material and lines 307-310. Per the reviewers’
suggestion, we also added more metrics in Figure 6, including CMA.



10)  Once the possible model input parameters has been reduced to 13 parameters (2 channel
and 11 basin characteristics), the figures that show results for them (e.g. Fig. 3) should use names
of the parameters that are intuitively understandable, rather than something that one has to look
up a table (table 1) to recollect. So, please redo the figures.

Action: We used new names that are more intuitively understandable in Tables 1 and 2, Figures
4,5,and 7.

11)  The authors through this exercise of statistically trying to find the most relevant
parameters are onto something very interesting and informative. Though, the study isn’t
complete without a detailed discussion about why or how the parameters that the model zeros
onto are physically connected to the process of sediment D50 formation. Doing this, the reader
will have more confidence in the model’s predictions and will be a step towards generalization.

Response: It would be indeed interesting to explore and reveal how these parameters are
physically connected to the processes of D50 formation. Unfortunately, we believe that such a
study (maybe even a few studies are needed) is beyond the scope of our current study because it
would require 1) a highly-integrated, process-based model that considers at least sediment
erosion, deposition and transport processes in both hillslopes and channels, and 2) well-designed
numerical experiments to isolate the dominant processes and controlling factors. The relations
between the input parameters (e.g. watershed characteristics) and D50 are too complex to be
revealed with traditional linear regression or dimensionless analysis methods (In fact, we did
spend some time on it as well but have not been successful). Therefore, we decided to use
XGBoost due to its satisfactory performance without invoking the related physics explicitly.
However, an unpleasant compromise comes along with the XGBoost model is its limitation of
explainability (and this is true for other machine learning models).

Action: We added above clarification in lines 141-142, 284-287, and 341-343.

12) In line 215, the authors mention that despite lack of any obvious one-on-one correlation
between the 13 model input parameters and the D50, they believe the XGBoost model will be
able to capture the “high-order interactions” among the input parameters. The authors do not
provide any proof to indicate the accuracy of this statement. KGE > 0.5 for the testing dataset is
encouraging, though on the other hand dismal R? (< 0.38) clearly indicates the large amount of
dispersion in the model prediction. Thus there is no indication that the model has been able to
accurately capture the general trends and processes that decide sediment D50 at a stream-reach.
Thus, using this model to synthetically generate possible D50 values is USA, which can then be
used to model large-scale hydraulic and geomorphological processes is fraught with issues.



Response: We thank the reviewer for the interesting discussion. In deriving a dataset (with
spatial or temporal inter- or extrapolation), one traditional way is to have sufficient process-
based understanding first and then derive the data based on the understanding, which is the path
that the reviewer is suggesting, and unfortunately, has not been working in this specific issue of
deriving a large-scale D50 dataset (not for lack of trying), otherwise this would have not been a
long-standing challenge. In our 12 selected parameters, only 1 is directly related to the channel
processes. The remaining 11 are all land parameters and their mechanistic connections with D50
are rather mysterious at this stage. This fact partially explains why the traditional way has not
been working (certainly not for lack of trying), and we have to rely on the ML methods. That
said, what we are presenting in this study could be used as empirical evidence on the likely
causal, yet highly complicated relationships between D50 and the land parameters, and hopefully
inspire future studies to shed light on the underlying mechanisms. We have tested the usage of
the new D50 dataset within a large-scale suspended modeling framework (see
https://hess.copernicus.org/preprints/hess-2021-491/), and our successful model validation
against the USGS observed suspended sediment load over multiple stations suggests the good
value of such a D50 dataset.

Action: We added description about the performance of a large-scale suspended sediment
modeling study that used the data from this paper in lines 355-357.

13)  The authors suggest that the predicted D50 values can be used for producing a map of
Manning’s roughness coefficient for different streams and reaches in the USA. This is
hydraulically incorrect. Yes, there are certain stream reaches where D50 is a good indicator of
the Manning’s roughness coefficient, on the other hand there are many different scenarios under
which this will fail. For example, if a stream has vegetation within its flood-plane, the Manning’s
roughness coefficient will be substantially higher than what the D50 of the channel will predict.
Thus, the authors should either remove any mention of Manning’s roughness coefficient
calculation from the D50 map, or mention the circumstances under which the prediction of
Manning’s roughness coefficient will be inaccurate.

Response: We agree predicting Manning’s roughness coefficient using D50 will be problematic
so we decided to remove this.

Action: We deleted lines 362-367.



Reviewer #2:

https://essd.copernicus.org/preprints/essd-2021-201#RC2

The authors have taken up an important and interesting problem of estimating D50 in streams
across the United States, when limited data exists to make these estimates. | think the data set
and analysis is publishable and will be of use to the scientific community, despite the inherent
uncertainties in the estimates in stream systems where little or no training data is available. The
data used for the analysis has been collected for many years, and if the community waits until
sufficient data is present to train the estimation model more accurately, we will be waiting for a
very long time. With this being said, I think the authors need to provide more clarification
regarding where their model estimates can be considered stronger and where they should be
considered weaker; also some discussion regarding the representativeness of bed sediment data
at gauge stations is warranted.

Response: We appreciate the reviewer’s positive and constructive comment. We have addressed
the specific comments as below.

My biggest concern is that smaller streams may have more limited training data than exists for
larger streams, and the D50 estimates for these smaller streams will involve greater uncertainty.
This is based on the following: (a) a greater percentage of large streams are gaged by the USGS
than small streams; (b) most of the data that does exist has D50 in the sand range — this suggests
that smaller, steeper first and second order streams that are more likely to be gravel/cobble
bedded are poorly represented in the data set, even though these smaller streams may dominate
the total length of streams in the database. To clarify this issue as to whether my concern is
founded, it would be helpful for the authors to provide a figure with two histograms for
comparison: (1) a histogram that bins the stream database data according to stream size (x-axis)
and analyzes total length of stream in each bin (y-axis); (2) a histogram that utilizes the same
stream size (x-axis) bins and analyzes the number of D50 data points in each bin (y-axis). The
variable chosen to represent stream size will need to be a surrogate such as upstream catchment
area of the reach (totdasgkm) or stream order (streamorde) attributes. If that analysis confirms
that my concern is founded, my recommendation will probably be that the analysis should be
stratified into a dataset with higher confidence (larger streams) and a separate dataset with lower
confidence (smaller streams).

Response: This is indeed a constructive comment. We plotted the histograms as the reviewer
suggested (see Figure S3). For stream size, we quantified it using stream order (Fig. S3a,b) and
upstream drainage area (Fig. S3c,d), respectively. Interestingly, smaller streams do not dominate
total flowline length. Instead, the total flowline length of each stream order generally increases as
stream size increases. The number of D50 stations follows a bell distribution except for the


https://essd.copernicus.org/preprints/essd-2021-201#RC2

largest stream order or drainage area, which is primarily due to the USACE measurements on the
lower Mississippi River (198 sample locations). Therefore, there’s no clear indication that the
D50 data points are dominated by either larger or smaller streams. Our additional analysis here
thus gives more confidence in the way the training data are treated in our study. In the revised
manuscript, we will add some discussion on the possible impact of larger/smaller streams. We
hope these additional analysis and discussion can satisfactorily address the reviewer’s concern.

Action: We added lines 104-111 and Figure S3 in Supplement Material.

Secondly, I think some discussion is warranted regarding what the D50 data at the gauge stations
represents. Gage stations are established at cross sections in the stream where flow
measurements are convenient and with conditions conducive to high quality flow measurements
— the issue of whether the bed sediment composition represents the reach is generally not taken
into account when the gage station location is established. A large percentage of gage stations are
at bridges. Due to flow constriction at flood stage, bridge sections are more likely to be subject to
significant scour and fill — thus, with the bed sediment being more representative of the pool than
the riffle or cross-over in a reach. Particularly in gravel-bedded streams, the difference in bed
sediment composition between the pool and the riffle can be substantial. This does not invalidate
the data; the analysis just needs to be clear that the bed sediment at the gage station may not
always be representative of the reach, which will help the user of the data understand its
limitations. |1 would recommend citing the Edwards and Glysson methods document
(https://pubs.usgs.gov/twri/twri3-c2/), which probably best characterizes how most of the bed
sediment samples were collected and composited at a cross section by the USGS over the years.
A short conversation with Molly Wood or Tim Straub of the USGS would also be useful to
inform your discussion of these issues.

Action: Good suggestion. We added lines 345-350 to discuss this issue.
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Reviewer #3:

https://doi.org/10.5194/essd-2021-201-RC3

The authors of this paper use machine learning techniques to calculate the median sediment
particle size (D50) in U.S. streams. The scarcity of in situ measurements and continuous regional
maps make this a worthwhile challenge. A total of 2577 D50 measurements and 76 predictive
attributes were used to train a machine learning model and subsequently generate a D50 map for
the contiguous U.S. The machine learning model used is a Gradient Boosting variant called
XGBoost, its hyperparameters were optimised using the Optuna framework. The model is further
improved by trimming the input features through iterative calculation of their feature importance
scores. While the main contribution of this work seems to be the resulting National D50 map, |
consider the clearly documented ML approach along with a couple of insightful comments on the
use of said algorithms to be at least as valuable. The article is well written and organised and for
the most part seems methodically sound, at least from my machine learning point of view.

Response: We appreciate the reviewer’s positive and constructive comment. We have addressed
the specific comments as below.

My first major remark concerns the actual usefulness of the final data product when taking the
model performance into consideration: although the KGE might be an established performance
metric in the field of hydrology, the testing R2 metric does not point to great predictive accuracy.
Ultimately, the model usefulness should be assessed by experts in the field of hydrology (which |
am not) and an extended discussion on different performance metrics (including some that
facilitate physical interpretability like RMSE) would help with this assessment.

Response: This concern about R? and RMSE metrics is similar to reviewer #1’s comment #9. In
a nutshell, we have used R? and NSE as the objective functions in addition to KGE, and
eventually decided to go with KGE for seemingly better effectiveness. We have also tested the
usefulness of our dataset within a large-scale suspended sediment modeling framework (see
https://hess.copernicus.org/preprints/hess-2021-491/). For more details, please refer to our
responses above to Reviewer #1.

Action: We added Figure S7 in Supplement Material and lines 307-310.

My second major remark regards a possible sample bias and echoes that of the second reviewer
albeit from a data focused point of view. The large disparity in counts shown in Fig. 1d) as well
as the fact that over 10% of the samples were measured at the same source (USACE Mississippi
River main stem) make the question of data representativeness an important one. Along the

11
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histogram suggested by the second reviewer, | would suggest a dedicated discussion on how
XGBoost handles skewed datasets and their impact on prediction performance.

Response: The additional analyses based on the Reviewer #2’s suggestion show that there is no
obvious sampling bias between the larger and smaller streams.

Action: We added discussion on the possible sampling biases as pointed out by Reviewer #2
(e.g., impacts of bridge sections) and echoed by Reviewer #3 in lines 345-350.

Beyond this two points, | think the articles makes a good use of the existing data and a well-
informed use of machine learning to produce a new data product, and | would like to see this
research published.

Response: We appreciate the reviewer’s positive comment.

Further minor comments:
Line 85: Is the averaging of samples over time the best way to handle multiple values?

Response: Averaging samples is based on the fact there’s no significant variability in D50
sampled over time for most stations as shown in Figure R5. Please refer to our responses to
Reviewer #1°s comment #6 for detailed discussion on D50’s temporal variability.

Lines 122-123: This sentence is problematic: while gradient boosting does descend a gradient in
some way, it does not make use of the Gradient Descent algorithm (Curry, Haskell B., 1944)
most machine learning users associate with the concept. Might be worth reformulating or

clarifying.
Action: We modified line 149 to clarify this issue.

Lines 170-184: A flowchart would be a welcome addition and a good way convey this
information at glance.

Action: We added a flowchart as Figure 3.
Lines 187-193: 4.1 would fit better in the Data section.

Response: We tend to keep this subsection in the Results section because treatment of the
training data is an important step and the training data are not the same as those raw data. We
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feel keeping it here can help avoid confusion and clearly indicate that the training data (e.g.,
Figure 2) could be different if choosing different treatments.

Lines 208-209: What is the mean annual flow velocity SHAP value and how does it compare to
other predictions? Were there any other interesting predictive variables eliminated? A table
analogous to Table 1 before feature selection might be useful for this discussion.

Response: The feature selection using SHAP is an iterative procedure so we actually don’t have
a single SHAP value for the mean annual flow velocity. We agree with the reviewer that there
might be some interesting predictive variables eliminated during our selection procedure due to
the low SHAP values. Interestingly, in our final 12 selected predictive variables, 11 are not
riverine variables, but hydroclimatological or landscape properties. In fact, we actually did try to
examine the individual relationship between D50 and each of some seemingly important,
candidate predictive variables, for example, mean annual flow velocity, stream order, channel
slope, mean annual flow, channel sinuosity, channel hydraulic geometries etc. However, we
could not find any clear pattern or relationship due to too much uncertainty (scattering),
preventing the subsequent regression analysis.

Line 235: A title like “Model Sensitivity Analysis” might be more suitable.
Action: Agree. We changed it in line 300.
Line 285: Could also move to the Data section.

Response: This section of “Data Availability” is required by ESSD. Please see the instructions
here: https://www.earth-system-science-data.net/submission.html

Figure 1a): Seems unnecessary, conveys very little information and could be better described in
words (sentence in lines 188-189) or included in Figure with distinct markers.

Response: The intention of this subfigure was to indicate the locations of sampling data from two
sources (USGS and USACE). We have thought about merging this info into Figure 2, i.e., using
distinct markers but eventually decided not to do so for two reasons: 1) Some people care about
such info, e.g., Reviewer #1; 2) Figures 1 and 2 actually display different geometric features, i.e.,
the former displays points (USGS stations) and the latter displays lines (flowlines).

Figure 1b): X-axis seems half empty and smaller counts are unreadable. Consider reformatting.
Action: We changed the y-axis to be log-scale.
Figure 3: Consider flipping the X- or Y- axis order, so as to have a more natural “1.00 diagonal”

Action: Done.
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