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November 9, 2021 

 

MS. Ref. No. essd-2021-201 

“Median bed-material sediment particle size across rivers in the contiguous U.S.” 

 

Dear editor and reviewers, 

The authors would like to thank the reviewers for your time and constructive comments. We are 

glad that all three reviewers seem to agree about the importance and challenge of the study. The 

main concern across all reviewers is how well the ranges of input features of training data 

represent those of the nationwide data, which we agree is very important to look into. To address 

that, first, we performed a careful, statistical comparison of the 13 input features between the 

training data and the nationwide data, finding that for 12 out of 13 features the training data are 

adequately representative of the nationwide data, except for “CHANNEL_MEAN_SLOPE”. Then 

we removed “CHANNEL_MEAN_SLOPE” and used the remaining 12 input features to train a 

new model. It turned out that the new model performance was similar to the previous one in both 

the training and testing phases. Therefore, we decided to use the new model with the 12 input 

features and regenerated our results correspondingly. We have also included here some 

additional analyses or figures to address the other major comments from the reviewers.  

Overall, we believe that we have successfully addressed the reviewers’ major comments. We 

have also responded to each of the minor comments. Our point-to-point responses are listed 

below, where our responses are in blue color and the reviewers’ comments are in black color.  

 

Reviewer #1: 

https://essd.copernicus.org/preprints/essd-2021-201#RC1 

The authors have attempted to solve an important problem of increasing resolution of available 

sediment D50 in contiguous USA. The authors should be lauded for attempting to tackle this 

problem using a unique approach of predicting D50 for regions that lacked measurements using a 

Gradient-Boosting based machine learning method. The paper is well written, though the 

presentation can be improved. The approach taken by the authors is unique, though I don’t think 

the resultant synthetic dataset generated meets the standards of the measured datasets usually 

published in this journal. I say this because, it is well known that a ML model’s predictive 

https://essd.copernicus.org/preprints/essd-2021-201#RC1
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capability is constrained by the range of values present within the training data-set. Even if a 

trained model shows decent prediction capability for the testing data-set, there is no guarantee 

that the model will be able to predict correctly for cases that have input parameter values beyond 

the range of the training data. When the authors synthetically generated the data for the whole 

US using a model trained using (extremely sparse) 2577 spatial locations, they didn’t mention 

about the range of values for the input parameters in the 26000 flowlines, which were later used 

to generate the synthetic dataset. I would recommend the authors to submit this paper to a 

different journal, e.g. WRR, Advances in Water Resources, Geoscientific Model Development, 

JGRE, etc., and increase the discussion about why the 13 parameters that SHAP value indicate to 

be the ones most responsible for determining the D50 of sediment at a stream location. As the 

above statement about the dataset suitability for the journal could be deemed subjective, I leave 

the final decision on suitability of the synthetically generated dataset for ESSD to the Editors. 

Going ahead, I will only comment on the technical and presentation issues of the paper. Please 

find detailed comments in the attached document.  

 

Response: We thank the reviewer for the laud and comments.  

We agree that “a ML model’s predictive capability is constrained by the range of values present 

within the training data-set”. First, per the reviewer’s suggestion, we have compared the ranges 

of the 13 input parameters between the training data and the nationwide data, as shown in Table 

R1. In Table R1, for each of the 13 features, we used the 2.5th and 97.5th percentiles to represent 

the lower and higher ends of ranges in the training data. We did not directly use the absolute 

min/max values to avoid the impacts of outliers. We then calculated the percentage of the 

nationwide data that is below the 2.5th percentile of the training data, and considered a 

percentage value no more than 10% indicates a good match of lower ends between the training 

and nationwide data. Similarly, we calculated the percentage of the nationwide data that is above 

the 97.5th percentile of the training data, and considered a percentage value no more than 10% 

indicates a good match of upper ends between the training and nationwide data. Taking together, 

for any feature, if more than 80% of the nationwide data are located within the 2.5th and 97.5th 

percentiles of the training data, we consider that the training data is sufficiently representative of 

the nationwide data for this specific feature. As shown in Table R1, for most features the 

percentages of the nationwide data that are beyond the lower or higher ends of the training data 

are no more than 10%, except for channel slope, i.e., “CHANNEL_MEAN_SLOPE”. Therefore, 

for 12 out of 13 features, the training data are representative of nationwide data.   

Table R1 also lists the relative difference in the 25th, 50th and 75th percentiles between the 

training and nationwide data. For instance, for the 25th percentile, we calculated the relative 

difference as the ratio of the difference between the 25th percentile of the training data and that 

of the nationwide data over the average between the 25th percentile of the training data and that 
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of the nationwide data. This relative difference is less than 0.5 for most of the features, again 

except for “CHANNEL_MEAN_SLOPE”, further suggesting that the training data’s good 

representativeness of the nationwide data. For better visual illustration, Figure R1 below shows 

the box plots. Figure R2 shows the cumulative distribution functions (CDFs) and corresponding 

5th-, 25th-, 50th-, 75th-, and 95th-percentiles. In addition, we would like to point out that the 

1691 sampling stations we used to train and test our model are located across the whole 

contiguous U.S., hence geographically representative. Therefore, we conclude that the training 

data are representative enough of all the flowlines nationwide in terms of the 12 input 

parameters, except for “CHANNEL_MEAN_SLOPE”. 

 

Table R1: Comparison of the ranges and percentiles of 13 input features between the training 

and nationwide datasets. 

 

Attributes 

Percent of nationwide 

data that  

Relative difference in 

percentiles between 

the training and 

nationwide data 

below 

2.5th of 

training 

data 

above 

97.5th of 

training 

data 

25th  50th  75th  

TOT_KFACT 5.1 3.4 0.07 0.03 0.03 

TOT_RFACT 6.9 10.2 0.22 0.09 0.44 

TOT_WDANN 2.8 3.1 0.01 0.07 0.03 

TOT_PRSNOW 0 3.9 0.71 0.20 0.12 

CHANNEL_MEAN_SL

OPE 

0 19.9 1.72 1.44 1.43 

PATHLENGTH 2.3 5.2 0.07 0.21 0.04 

TOT_RUN7100 4.3 1.6 0 0.28 0.23 

TOT_SATOF 0 7.1 2 0.13 0.38 

TOT_CONTACT 6.2 3.1 0.68 0.59 0.37 

TOT_BASIN_SLOPE 9.3 4.8 0.17 0.04 0.10 

TOT_ELEV_MEAN 9.9 2.5 0.35 0.27 0.22 

AI 2.6 6.5 0.07 0.14 0.03 

TOT_WBM_TAV 4.5 8.6 0.02 0.12 0.18 
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Figure R1: Box plots for the comparison of the ranges of 13 parameters between training 

data and all flowlines (i.e., NHD+). 
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Figure R2: Comparison of the cumulative distribution function (CDF) of 13 parameters 

between training data and all flowlines (i.e., NHD+). 
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We removed “CHANNEL_MEAN_SLOPE” and used the remaining 12 parameters to develop a 

new model, following the same model training and testing procedures as before. Figure R3 

below shows the comparison of model performances between the previous and new models. The 

model performance metrics are very similar. Actually, R2 became slightly better in both training 

(0.834 vs. 0.830) and testing (0.405 vs. 0.367), while KGE became slightly worse in training 

(0.775 vs. 0.794) but better in testing (0.527 vs. 0.513). The slight decrease of KGE in training 

data is reasonable since the model hyperparameter tuning was based on the objective of 

maximizing KGE and losing one parameter will slightly reduce the space of parameter tuning. 

Nevertheless, now the KGE value in the testing phase is closer to that in the training phase.  

 

Figure R3: Comparison of model performances using 13 parameters (R3a, b) and 12 

parameters (R3c,d; after removing “Channel_Mean_Slope”). 
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In summary, we think we have successfully addressed the reviewer’s primary concern by 

performing the statistical comparison between the training and nationwide data, and rerunning 

the ML model using the further refined selection of input parameters. In the revised manuscript, 

we plan to add those comparisons and discussion, which we believe will substantially elevate our 

study. 

Regarding the reviewer’s comment on the suitability of our manuscript for ESSD, we did 

carefully consider various journals and then decided that ESSD was most suitable for our study. 

Most importantly, there have been articles published at ESSD that are similar to ours, i.e., 

generating a dataset at a regional or global scale from a relatively small number of local/point 

observations. Here’re two very recent examples: 

https://essd.copernicus.org/articles/13/4881/2021/; 

https://essd.copernicus.org/articles/13/3453/2021/essd-13-3453-2021.html. 

 

1)                In line 35 and later, the authors cite “Garcia, 1975”. There is not citation in the 

references to match it.  

Response: It should be Garcia, 2008. We will fix it in the revised manuscript. 

2)                Please re-write line 38 to make it clearer. 

Response: Will do.  

3)                In line 61, the authors talk about how ML based approaches can allow establishment of 

successful predictive models without sufficient process-based knowledge. This has proven to be 

true in different fields; though in others, utilizing ML without a process-based understanding has 

also led to erroneous models that lack generalizability.  Oftentimes the difference between 

success and failure of a ML model is based on the amount of data available for training the 

model. The authors in the current study have attempted to develop a generalized model for 

predicting sediment D50 in the USA, based on different channel and catchment properties. It is 

hard to fathom that this could be achieved based on a dataset with only about 2600 data points, 

without any prior input about the processes involved. 

Response: For developing a generalized model for predicting D50, as discussed above, it is 

critical whether or not the ranges of input parameters of the training data are representative for 

those of the river reaches across the nation. With Table R1 and Figures R1, R2 and R3, we 

believe the training data used in our revised ML model, although not a great amount, represent 

reasonably well the nationwide data. Also, the testing data are effective for ML approaches in 

order to check how well predictive the ML model is. Lastly, we actually did invest quite some 

efforts in the traditional, regression-type of methods. We first examined the causal relationships 

https://essd.copernicus.org/articles/13/4881/2021/
https://essd.copernicus.org/articles/13/4881/2021/
https://essd.copernicus.org/articles/13/4881/2021/
https://essd.copernicus.org/articles/13/3453/2021/essd-13-3453-2021.html
https://essd.copernicus.org/articles/13/3453/2021/essd-13-3453-2021.html
https://essd.copernicus.org/articles/13/3453/2021/essd-13-3453-2021.html
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between D50 and each variable, for example, stream order, channel slope, mean annual flow, 

mean flow velocity, channel sinuosity, channel hydraulic geometries etc. However, there has 

been too much scattering in each of these relationships (hence uncertainty), preventing the 

subsequent regression analysis. Therefore, we eventually decided to rely on the ML methods due 

to lack of explicit understanding of physics. Our rationale is that, the traditional regression or 

dimensionless analysis techniques may not work in generating a large-scale spatial map of D50, 

and ML offers a great opportunity for us to move forward, i.e., as pointed out by the 2nd 

reviewer, making some useful progress instead of keeping waiting.  

4)                In line 72, the authors mention that the dataset has some points with only a single 

sediment size value. The authors could try to see if they can utilize this extra data, even though 

D50 calculation is not possible. Maybe the data can be used for further validation of the model. 

Response: This is a very interesting idea. We will certainly give it a try during the revision 

phase. 

5)                Please include more information in the caption of figure 1a, e.g. things like how many 

locations are actually shown on the map. Also, data that is shown as histograms (1b,c), 

could/should be represented spatially on the map. This would provide the readers additional 

information about the spatial variation of different aspects of the data. 

Response: We have added the location information in the caption of Figure 1a, i.e., 300 red 

points from USACE and 2277 blue points from USGS. For the data shown as histograms (Fig. 

1b,c), we also plotted the data used in the histograms spatially as the maps below (Figure R4). 
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Figure R4: Spatial maps of the data in the histograms (Fig. 1b,c), i.e., sample count (upper 

panel) and latest sample year (lower panel). 

6)                In all the locations that have multiple values of D50 reported in time, what is the 

variability in the D50 value over time? Even though the timescale across which the D50 data was 

collected is smaller than geomorphological timescales, it is important to check for the variability 

in order to be sure that the data was collected at stable stream-reaches. Also, what is the 

scientific basis for calculating a representative D50 by taking a mean? 

Response: We calculated the coefficient of variation (CV) for the 760 stations that have at least 5 

samples over time. For the rest of stations, the number of samples are too small for meaningful 

calculation of CV. Figure R5 shows that for most of these 760 stations the CV values range 

between 0.3 and 1.2 with the median of approximately 0.6. The small CV values indicate the 

good stability of D50 (at the same location) over time. We took the mean as a representative D50 

to simply account for possible uncertainties in sampling and measurement. Although the 

sampling and measurement procedures were carefully designed (see Edwards and Glysson 

methods document https://pubs.usgs.gov/twri/twri3-c2/, as suggested by reviewer #2), it is 

practically impossible to avoid uncertainties in such sampling and measurement procedures. 

Thus, we believe a representative D50 can be better estimated by taking a mean. 

https://pubs.usgs.gov/twri/twri3-c2/
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Figure R5: Distribution of the coefficient of variation (CV) for the 760 stations that have at 

least 5 samples over time. 

7)                In line 109, the authors mention that if there are multiple sediment sampling locations for 

a flowline, they assigned a simple average to come up with the representative D50 for the 

flowline. This approach is simplistic, as this will work if all the sampling points on a flowline are 

equidistant. The authors should devise a method that accounts for the relative spatial location of 

each sampling location, else the representative D50 will be inaccurate. 

Response: We agree with the reviewer that D50 probably changes spatially within a flowline. 

We did the simple average for two reasons: 1) Only a very small number of flowlines have more 

than one sampling locations. To be exact, there are only 12 flowlines with 2 sampling locations 

and another 2 flowlines with 3 sampling locations. 2) The mean length of the 14 flowlines is 

6.63km. In such a length, only two or three sampling locations cannot capture the spatial 

variability in a meaningful way. Therefore, we simply calculated the average without making 

further assumptions.  

 

8)                Starting at line 115, the authors mention two studies, specifically Chen and Guestrin 

(2016) and Zheng et al. (2019), to argue that the ML method they have used is appropriate for 

the current study. It should be pointed out that even though the XGBoost method that the 

aforementioned studies used performed admirably, the model developed in those studies were for 

specific locations. Chen and Guestrin’s used it for snowpack spatial patterns in the Sierra Nevada 

of California, and Zheng et al. used it for predicting water storage changes of a specific lake 

Inner Mongolia plateau. On the other hand the authors are trying to develop a general model for 

the whole of the USA. Thus, the suitability of the adopted ML technique is debatable.  
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Response: We agree that the suitability of XGBoost or any ML technique cannot be guaranteed 

based on the success of other studies on different problems. With Figures R1, R2, R3 and Table 

R1, we have ensured that the training data we used are representative for the whole U.S. The 

sampling locations of the training data spread over most of the U.S., hence geographically 

representative as well. Lastly, a practical way to check whether or not it is suitable is by applying 

the method and evaluating its performance with testing data. In our results the model 

performance in the testing phase is sufficiently close to that in the training phase, further 

indicating that our ML model is suitable for the other places in the U.S.  

9)                The use of KGE as the model performance parameter is interesting, especially as the 

KGE values for the testing dataset is relatively much better than the traditional R2. Though, KGE 

itself is fraught with issues (Onyutha, 2020). So it would be informative if the authors also 

provide model performance quantification using Nash-Sutcliffe efficiency, CMA (Onyutha, 

2020), etc.  

Response: In fact, we have used KGE, NSE and R2 as the model performance parameters (hence 

objective functions). Based on a visual check of the patterns we obtained (see below Figure R6 

and previous Figure R3), we feel that using KGE gives better patterns, i.e., the dots are more 

aligned with the 1:1 line as indicated by the percentage of bias (PBIAS). Per the reviewers’ 

suggestion, we also added more metrics in the figure, including CMA.  
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Fig. R6: ML modeling using different objective functions. 
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10)            Once the possible model input parameters has been reduced to 13 parameters (2 channel 

and 11 basin characteristics), the figures that show results for them (e.g. Fig. 3) should use names 

of the parameters that are intuitively understandable, rather than something that one has to look 

up a table (table 1) to recollect. So, please redo the figures.  

Response: Good suggestion. Will redo the figures with more intuitive names for the parameters 

in the revision phase.  

11)            The authors through this exercise of statistically trying to find the most relevant 

parameters are onto something very interesting and informative. Though, the study isn’t 

complete without a detailed discussion about why or how the parameters that the model zeros 

onto are physically connected to the process of sediment D50 formation. Doing this, the reader 

will have more confidence in the model’s predictions and will be a step towards generalization. 

Response: It would be indeed interesting to explore and reveal how these parameters are 

physically connected to the processes of D50 formation. Unfortunately, we believe that such a 

study (maybe even a few studies are needed) is beyond the scope of our current study because it 

would require 1) a highly-integrated, process-based model that considers at least sediment 

erosion, deposition and transport processes in both hillslopes and channels, and 2) well-designed 

numerical experiments to isolate the dominant processes and controlling factors. The relations 

between the input parameters (e.g. watershed characteristics) and D50 are too complex to be 

revealed with traditional linear regression or dimensionless analysis methods (In fact, we did 

spend some time on it as well but have not been successful). Therefore, we decided to use 

XGBoost due to its satisfactory performance without invoking the related physics explicitly. 

However, an unpleasant compromise comes along with the XGBoost model is its limitation of 

explainability (and this is true for other machine learning models).  

12)            In line 215, the authors mention that despite lack of any obvious one-on-one correlation 

between the 13 model input parameters and the D50, they believe the XGBoost model will be 

able to capture the “high-order interactions” among the input parameters. The authors do not 

provide any proof to indicate the accuracy of this statement. KGE > 0.5 for the testing dataset is 

encouraging, though on the other hand dismal R2 (< 0.38) clearly indicates the large amount of 

dispersion in the model prediction. Thus there is no indication that the model has been able to 

accurately capture the general trends and processes that decide sediment D50 at a stream-reach. 

Thus, using this model to synthetically generate possible D50 values is USA, which can then be 

used to model large-scale hydraulic and geomorphological processes is fraught with issues. 

Response: We thank the reviewer for the interesting discussion. In deriving a dataset (with 

spatial or temporal inter- or extrapolation), one traditional way is to have sufficient process-

based understanding first and then derive the data based on the understanding, which is the path 

that the reviewer is suggesting, and unfortunately, has not been working in this specific issue of 

deriving a large-scale D50 dataset (not for lack of trying), otherwise this would have not been a 
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long-standing challenge. In our 12 selected parameters, only 1 is directly related to the channel 

processes. The remaining 11 are all land parameters and their mechanistic connections with D50 

are rather mysterious at this stage. This fact partially explains why the traditional way has not 

been working (certainly not for lack of trying), and we have to rely on the ML methods. That 

said, what we are presenting in this study could be used as empirical evidence on the likely 

causal, yet highly complicated relationships between D50 and the land parameters, and hopefully 

inspire future studies to shed light on the underlying mechanisms. We have tested the usage of 

the new D50 dataset within a large-scale suspended modeling framework (see 

https://hess.copernicus.org/preprints/hess-2021-491/), and our successful model validation 

against the USGS observed suspended sediment load over multiple stations suggests the good 

value of such a D50 dataset.  

13)            The authors suggest that the predicted D50 values can be used for producing a map of 

Manning’s roughness coefficient for different streams and reaches in the USA. This is 

hydraulically incorrect. Yes, there are certain stream reaches where D50 is a good indicator of 

the Manning’s roughness coefficient, on the other hand there are many different scenarios under 

which this will fail. For example, if a stream has vegetation within its flood-plane, the Manning’s 

roughness coefficient will be substantially higher than what the D50 of the channel will predict. 

Thus, the authors should either remove any mention of Manning’s roughness coefficient 

calculation from the D50 map, or mention the circumstances under which the prediction of 

Manning’s roughness coefficient will be inaccurate.  

Response: Good point. We will include the circumstances where predicting Manning’s 

roughness coefficient using D50 will be inaccurate and should be corrected to reflect the other 

factors such as vegetation.  
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Reviewer #2: 

https://essd.copernicus.org/preprints/essd-2021-201#RC2 

The authors have taken up an important and interesting problem of estimating D50 in streams 

across the United States, when limited data exists to make these estimates. I think the data set 

and analysis is publishable and will be of use to the scientific community, despite the inherent 

uncertainties in the estimates in stream systems where little or no training data is available. The 

data used for the analysis has been collected for many years, and if the community waits until 

sufficient data is present to train the estimation model more accurately, we will be waiting for a 

very long time. With this being said, I think the authors need to provide more clarification 

regarding where their model estimates can be considered stronger and where they should be 

considered weaker; also some discussion regarding the representativeness of bed sediment data 

at gauge stations is warranted. 

Response: We appreciate the reviewer’s positive and constructive comment. We have addressed 

the specific comments as below. 

  

My biggest concern is that smaller streams may have more limited training data than exists for 

larger streams, and the D50 estimates for these smaller streams will involve greater uncertainty. 

This is based on the following: (a) a greater percentage of large streams are gaged by the USGS 

than small streams; (b) most of the data that does exist has D50 in the sand range – this suggests 

that smaller, steeper first and second order streams that are more likely to be gravel/cobble 

bedded are poorly represented in the data set, even though these smaller streams may dominate 

the total length of streams in the database. To clarify this issue as to whether my concern is 

founded, it would be helpful for the authors to provide a figure with two histograms for 

comparison: (1) a histogram that bins the stream database data according to stream size (x-axis) 

and analyzes total length of stream in each bin (y-axis); (2) a histogram that utilizes the same 

stream size (x-axis) bins and analyzes the number of D50 data points in each bin (y-axis). The 

variable chosen to represent stream size will need to be a surrogate such as upstream catchment 

area of the reach (totdasqkm) or stream order (streamorde) attributes. If that analysis confirms 

that my concern is founded, my recommendation will probably be that the analysis should be 

stratified into a dataset with higher confidence (larger streams) and a separate dataset with lower 

confidence (smaller streams). 

Response: This is indeed a constructive comment. We plotted the histograms as the reviewer 

suggested (see Figure R7). For stream size, we quantified it using stream order (Fig. R7a,b) and 

upstream drainage area (Fig. R7c,d), respectively.  Interestingly, smaller streams do not 

dominate total flowline length. Instead, the total flowline length of each stream order generally 

increases as stream size increases. The number of D50 stations follows a bell distribution except 

https://essd.copernicus.org/preprints/essd-2021-201#RC2
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for the largest stream order or drainage area, which is primarily due to the USACE 

measurements on the lower Mississippi River (198 sample locations). Therefore, there’s no clear 

indication that the D50 data points are dominated by either larger or smaller streams. Our 

additional analysis here thus gives more confidence in the way the training data are treated in our 

study. In the revised manuscript, we will add some discussion on the possible impact of 

larger/smaller streams. We hope these additional analysis and discussion can satisfactorily 

address the reviewer’s concern. 

 

 

Figure R7: Distributions of total channel length (6a,c) and number of D50 samples (6b,d) 

within different classes of stream orders (6a,b) and drainage areas (6c,d). For Fig. 6c,d, 

Drainage area class corresponds to categories of streams based on drainage areas, i.e., Class 

1,<=10sqkm; Class 2, 10~100sqkm; Class 3, 100~1000sqkm; Class 4, 1000~1e+4sqkm; Class 

5, 1e+4~1e+5sqkm; Class 6,1e5~1e+6sqkm; Class 7, > 1e+6sqkm. 

 

Secondly, I think some discussion is warranted regarding what the D50 data at the gauge stations 

represents. Gage stations are established at cross sections in the stream where flow 

measurements are convenient and with conditions conducive to high quality flow measurements 
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– the issue of whether the bed sediment composition represents the reach is generally not taken 

into account when the gage station location is established. A large percentage of gage stations are 

at bridges. Due to flow constriction at flood stage, bridge sections are more likely to be subject to 

significant scour and fill – thus, with the bed sediment being more representative of the pool than 

the riffle or cross-over in a reach. Particularly in gravel-bedded streams, the difference in bed 

sediment composition between the pool and the riffle can be substantial. This does not invalidate 

the data; the analysis just needs to be clear that the bed sediment at the gage station may not 

always be representative of the reach, which will help the user of the data understand its 

limitations. I would recommend citing the Edwards and Glysson methods document 

(https://pubs.usgs.gov/twri/twri3-c2/), which probably best characterizes how most of the bed 

sediment samples were collected and composited at a cross section by the USGS over the years. 

A short conversation with Molly Wood or Tim Straub of the USGS would also be useful to 

inform your discussion of these issues. 

Response: Very good suggestion. We will add discussion about the sediment sampling 

considerations and describe the related limitations in the revised manuscript. Thanks for 

suggesting the reference by Edwards and Glysson. We will cite it.  
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Reviewer #3: 

https://doi.org/10.5194/essd-2021-201-RC3 

The authors of this paper use machine learning techniques to calculate the median sediment 

particle size (D50) in U.S. streams. The scarcity of in situ measurements and continuous regional 

maps make this a worthwhile challenge. A total of 2577 D50 measurements and 76 predictive 

attributes were used to train a machine learning model and subsequently generate a D50 map for 

the contiguous U.S. The machine learning model used is a Gradient Boosting variant called 

XGBoost, its hyperparameters were optimised using the Optuna framework. The model is further 

improved by trimming the input features through iterative calculation of their feature importance 

scores. While the main contribution of this work seems to be the resulting National D50 map, I 

consider the clearly documented ML approach along with a couple of insightful comments on the 

use of said algorithms to be at least as valuable. The article is well written and organised and for 

the most part seems methodically sound, at least from my machine learning point of view.  

Response: We appreciate the reviewer’s positive and constructive comment. We have addressed 

the specific comments as below. 

 

My first major remark concerns the actual usefulness of the final data product when taking the 

model performance into consideration: although the KGE might be an established performance 

metric in the field of hydrology, the testing R2 metric does not point to great predictive accuracy. 

Ultimately, the model usefulness should be assessed by experts in the field of hydrology (which I 

am not) and an extended discussion on different performance metrics (including some that 

facilitate physical interpretability like RMSE) would help with this assessment.  

Response: This concern about R2 and RMSE metrics is similar to reviewer #1’s comment #9. In 

a nutshell, we have used R2 and NSE as the objective functions in addition to KGE, and 

eventually decided to go with KGE for seemingly better effectiveness. We have also tested the 

usefulness of our dataset within a large-scale suspended sediment modeling framework (see 

https://hess.copernicus.org/preprints/hess-2021-491/). For more details, please refer to our 

responses above to Reviewer #1.  

My second major remark regards a possible sample bias and echoes that of the second reviewer 

albeit from a data focused point of view. The large disparity in counts shown in Fig. 1d) as well 

as the fact that over 10% of the samples were measured at the same source (USACE Mississippi 

River main stem) make the question of data representativeness an important one. Along the 

histogram suggested by the second reviewer, I would suggest a dedicated discussion on how 

XGBoost handles skewed datasets and their impact on prediction performance. 

https://doi.org/10.5194/essd-2021-201-RC3
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Response: The additional analyses based on the Reviewer #2’s suggestion show that there is no 

obvious sampling bias between the larger and smaller streams. We will add some discussion on 

the possible sampling biases as pointed out by Reviewer #2 (e.g., impacts of bridge sections) and 

echoed by Reviewer #3. It is a good suggestion to add discussion on how XGBoost handles 

skewed datasets. We will add it. 

Beyond this two points, I think the articles makes a good use of the existing data and a well-

informed use of machine learning to produce a new data product, and I would like to see this 

research published.  

Response: We appreciate the reviewer’s positive comment.  

 

Further minor comments: 

Line 85: Is the averaging of samples over time the best way to handle multiple values? 

Response: Averaging samples is based on the fact there’s no significant variability in D50 

sampled over time for most stations as shown in Figure R5. Please refer to our responses to 

Reviewer #1’s comment #6 for detailed discussion on D50’s temporal variability. 

Lines 122-123: This sentence is problematic: while gradient boosting does descend a gradient in 

some way, it does not make use of the Gradient Descent algorithm (Curry, Haskell B., 1944) 

most machine learning users associate with the concept. Might be worth reformulating or 

clarifying. 

Response: Will clarify in the revised manuscript. 

Lines 170-184: A flowchart would be a welcome addition and a good way convey this 

information at glance. 

Response: Will add a flowchart in the revised manuscript. 

Lines 187-193: 4.1 would fit better in the Data section. 

Response: We tend to keep this subsection in the Results section because treatment of the 

training data is an important step and the training data are not the same as those raw data. We 

feel keeping it here can help avoid confusion and clearly indicate that the training data (e.g., 

Figure 2) could be different if choosing different treatments. 

Lines 208-209: What is the mean annual flow velocity SHAP value and how does it compare to 

other predictions? Were there any other interesting predictive variables eliminated? A table 

analogous to Table 1 before feature selection might be useful for this discussion. 
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Response: The feature selection using SHAP is an iterative procedure so we actually don’t have 

a single SHAP value for the mean annual flow velocity. We agree with the reviewer that there 

might be some interesting predictive variables eliminated during our selection procedure due to 

the low SHAP values. Interestingly, in our final 12 selected predictive variables, 11 are not 

riverine variables, but hydroclimatological or landscape properties. In fact, we actually did try to 

examine the individual relationship between D50 and each of some seemingly important, 

candidate predictive variables, for example, mean annual flow velocity, stream order, channel 

slope, mean annual flow, channel sinuosity, channel hydraulic geometries etc. However, we 

could not find any clear pattern or relationship due to too much uncertainty (scattering), 

preventing the subsequent regression analysis.  We will add a table of all 76 features before the 

selection.  

Line 235: A title like “Model Sensitivity Analysis” might be more suitable. 

Response: Agree. Will change it in the revised manuscript.  

Line 285: Could also move to the Data section. 

Response: This section of “Data Availability” is required by ESSD. Please see the instructions 

here: https://www.earth-system-science-data.net/submission.html  

Figure 1a): Seems unnecessary, conveys very little information and could be better described in 

words (sentence in lines 188-189) or included in Figure with distinct markers. 

Response: The intention of this subfigure was to indicate the locations of sampling data from two 

sources (USGS and USACE). We have thought about merging this info into Figure 2, i.e., using 

distinct markers but eventually decided not to do so for two reasons: 1) Some people care about 

such info, e.g., Reviewer #1; 2) Figures 1 and 2 actually display different geometric features, i.e., 

the former displays points (USGS stations) and the latter displays lines (flowlines).  

Figure 1b): X-axis seems half empty and smaller counts are unreadable. Consider reformatting. 

Response: This is due to the variability of sample times as most stations only sampled once or 

several times, while few stations sampled over 100 times. We will change the y-axis to be log-

scale. 

Figure 3: Consider flipping the X- or Y- axis order, so as to have a more natural “1.00 diagonal” 

Response: Will do. 

https://www.earth-system-science-data.net/submission.html

