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Abstract. A long-term AVHRR snow cover extent (SCE) product from 1981 until 2019 over China has 15 

been generated by the snow research team in the Northwest Institute of Eco-Environment and Resources 

(NIEER), Chinese Academy of Sciences. The NIEER AVHHR SCE product has a spatial resolution of 

5-km and a daily temporal resolution. It is a completely gap-free product, which is produced through a 

series of processes such as the quality control, cloud detection, snow discrimination and gap-filling 

(GF). A comprehensive validation based on ground snow-depth measurements during snow seasons in 20 

China showed an the overall accuracy of 87.4%, a producer’s accuracy of 81.0%, a user’s accuracy of 

81.3%, and a Cohen’s kappa value of 0.717. Another validation regarding higher-resolution snow maps 

derived from Landsat-5 Thematic Mapper (TM) images demonstrated an overall accuracy of 87.3%, a 

producer’s accuracy of 86.7%, a user’s accuracy of 95.7%, and a Cohen’s kappa value of 0.695. These 

accuracies were significantly higher than those of currently existing AVHRR products. For example, 25 

compared with the well-known JASMES AVHRR product, the overall accuracy increased approximately 

15 percent, the omission error dropped from 60.8% to 19.7%, the commission error dropped from 31.9% 

to 21.3%, and the CK value increased by more than 114 percent. The new AVHRR product is now 

already available at https://dx.doi.org/10.11888/Snow.tpdc.271381 (Hao et al., 2021). 
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1 Introduction 

Snow cover is closely bound up with our climate. On the one hand, owing to snow’s unique optical 

properties (high albedo), it can affect the surface radiation budget severely, and thereby our climate 

systems significantly (Warren, 1982; Huang et al. 2019). On the other hand, changes in climate in turn 

affect global and regional snow covers. With the continuous warming of the global climate, snow cover 35 

on the Earth has been shrinking evidently over the past several decades (Barnett et al., 2005; Bormann et 

al., 2018). Therefore, long-term snow cover data are not only particularly important for climate research, 

but are also an indispensable indicator of climate change. 

Remote sensing is a widely used tool for monitoring snow cover extent (SCE) globally and regionally at 

various spatial and temporal resolutions (Konig et al., 2001; Dozier and Painter, 2004; Frei et al., 2012; 40 

Wang et al., 2014) since the beginning of the satellite era in the 1960s. The Northern Hemisphere Weekly 

Snow Cover and Sea Ice Extent (NHSCE) product provide weekly SCE with spatial resolutions of about 

190 km from 1966 to 1997 (Robinson et al., 1993). Although the time coverage is long, the NHSCE 

product has a low spatio-temporal resolution, hand-drawn snow line maps, and incomplete spatial 

coverage due to swath gaps or cloud obscuration, largely restricting its application in climate research. 45 

With the development of satellite sensors, SCE products with a high spatial resolution for China have 

been issued in the last decades, such as the Interactive Multi-sensor Snow and Ice Mapping System (IMS), 

which provides daily SCE with spatial resolutions of 24 km, 4 km, and 1km from 1997 to the present 

(Helfrich et al., 2007; Ramsay, 1998). The Moderate Resolution Imaging Spectroradiometer (MODIS) 

provides daily SCE with a spatial resolution of 500 m from 2000 to the present (Hall et al., 2002; Riggs 50 

et al., 2017). The Fengyun daily SCE products have a spatial resolution of 1 km from 2003 to the present 

(Min et al., 2021). These SCE datasets have good quality with a high spatio-temporal resolution, but their 

short period is insufficient to create a climatological baseline of snow cover. 

The Japan Aerospace Exploration Agency (JAXA) recently issued the long-term SCE product JASMES 

with a spatial resolution of 5 km throughout the Northern Hemisphere. This product consists of satellite-55 

derived daily, weekly, and half-monthly averaged global snow covers derived from 5 km resampled 

radiance data of AVHRR Global Area Coverage (GAC) radiance data onboard NOAA series satellites 

(1978-2001) and MODIS onboard Terra & Aqua satellites (2000–the present) (Hori et al., 2017). 

Although the JASMES product presented a long time series and significantly enhanced spatial and 
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temporal resolution, several shortcomings have been found. (1) The JASMES product uses AVHHR 60 

before 2000 and MODIS data after 2000. Although calibrated by the authors, the bandwidths of the two 

sensors are not consistent, and using the same algorithms for both can cause discontinuities in the data. 

(2) Previous work showed that the JASMES snow product has an excessive cloud mask, which could 

cause a considerable number of snow pixels to be misidentification as cloud pixels (Wang et al., 2018). 

(3) JASMES snow algorithm tended to underestimate snow in China, especially on the Qinghai-Tibet 65 

Plateau (Wang et al., 2018). (4）Finally, JASMES SCE exhibits incomplete spatial coverage caused by 

clouds and data gaps. These shortcomings limit its application in snow monitoring and climate studies in 

China. Thus, China still lacks a high-quality, long-term SCE product with complete spatial coverage for 

climate research. 

Therefore, a new daily 5-km gap-free AVHRR snow cover extent product for China was produced based 70 

on the Google Earth Engine platform from 1981 to 2019. The new product provides a long time series of 

SCE with high quality for China and makes six improvements. (1) The Climate Data Record (CDR) of 

AVHRR Surface Reflectance (SR) is used as a data source after 2000 rather than MODIS to ensure 

product continuity. (2) Considering sensor attenuation of Band 11 before and after 2000, the algorithm 

chooses different training samples and discriminant thresholds separately. (3) An improved cloud 75 

detection test and new thresholds are obtained by a volume of training data，which can solve the 

snow/cloud confusion. (4) A multi-level decision tree for the snow discrimination algorithm is applied，

which significantly improves snow discrimination accuracy. (5) Improved gap-filling (GF) strategies are 

adopted to obtain complete snow coverage. (6) Land surface temperature reanalysis is used to exclude the 

false snow identification. Due to these improvements, the new AVHRR SCE product may serve as a 80 

baseline record for climate and other related applications. 

2 Datasets and preprocessing  

2.1 AVHRR surface reflectance CDR 

The NOAA Climate Data Record (CDR) of AVHRR Surface Reflectance Version 4 (AVHRR SR V4) 

was used as basic input data. AVHRR SR V4 is generated using AVHRR Global Area Coverage (GAC) 85 

Level 1b data through geolocation, calibration, and atmospheric correction, and has latitudinal and 

longitudinal dimensions of 3600×7200, covering the globe at 0.05° spatial resolution (Vermote et al., 



 

4 

 

2014). The dataset contains surface reflectance, brightness, temperatures, and quality control flags for 

the period between June 24, 1981, and May 16, 2019. Google established the Google Earth Engine 

(GEE) cloud computing platform in 2012. GEE enables the quick access of massive amounts of 90 

remote sensing data without downloading it, which could support scientific analysis and 

visualization of geospatial datasets with petabyte-scale (Gorelick，2012). In this study, all AVHRR 

SR V4 images were processed by the GEE cloud platform. The reflectance, brightness, and 

temperature data were described in Table 1. The quality control flags are summarized in Table 3. 

2.2 Landsat-5 TM snow map 95 

This study used two groups of Landsat-5 Thematic Mapper (TM) maps across China from 1985-2013. 

The first group was used as “true” values to acquire the training data of AVHRR surface reflectance. TM 

snow maps were produced by the improved “SNOMAP” algorithm developed by Chen et al. (2020) for 

the snow season (beginning on November 1 through March 31 of the following year). Each map 

contained three classes, namely snow, non-snow, and cloud. Considering sensor attenuation before and 100 

after 2000, the algorithm chose different TM images separately. Table 2 shows the number of Landsat-5 

TM scenes used for training before and after 2000. The second group of maps was used as ground “true” 

values to evaluate the AVHRR SCE product. A total of 9 Landsat-5 TM snow maps were used as the 

validation dataset (Fig.1). To ensure reliability and representativeness, the training and validating 

samples were evenly distributed in three major seasonally snow-covered regions across China, 105 

including North Xinjiang, Northeast China, and the Qinghai-Tibet Plateau. 

2.3 AVHRR Training Samples 

Snow and non-snow training samples from the AVHRR were generated from spatially and temporally 

(same day) collocated AVHRR surface reflectance along with the Landsat-5 snow maps. Cloud training 

samples came from AVHRR surface reflectance with Landsat-5 cloud flags during summer (June 1 to 110 

August 31). The training samples before 2000 included 71.7 thousand snow samples, 80.4 thousand non-

snow samples, and 8.3 thousand cloud samples. Samples after 2000 included 7.3 million snow samples, 

8.4 million non-snow samples, and 4.4 thousand cloud samples. 
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2.4 Ground snow-depth measurements 

Ground snow-depth measurements provided by the China Meteorological Administration (CMA) were 115 

used to validate the AVHRR SCE products. Daily snow depth was measured near the stations using a 

professional meter ruler. All measurements were conducted at 08:00 Beijing time when the fractional 

snow cover in the field of view was more than 50% (C.M.A, 2003). Validation CMA stations were 

carefully selected because too many non-snow samples can affect the accuracy of the assessment. To 

ensure the validation reliability, the selected CMA stations had ≥ 20 days with true snow (>1cm) at 120 

the CMA site per snow season (Metsämäki, 2016). Finally, a total of 191 meteorological stations at 38-

year periods (from 1981 to 2019; Fig.1) were used to validate the AVHRR SCE products. The available 

CMA stations were evenly distributed across the three major seasonally snow-covered regions in China. 

2.5 Ancillary data 

Che et al. (2008) and Dai et al. (2015) generated snow-depth data by using an inter-sensor calibration of 125 

multiple satellites' passive-microwave observations, which provides daily, 0.25-degree snow-depth data 

for China from 1979 to 2020. This data set of long-term daily snow depth in China is available at 

http://data.tpdc.ac.cn. This data set was used as a supplement to the gap-filling strategies. We used the 

land surface temperature (LST) daily product to alleviate the cloud/snow confusion by averaging the 

hourly ERA 5 land climate reanalysis dataset on the GEE platform (Muñoz Sabater, 2019). Digital 130 

Elevation Model (DEM) data were used as auxiliary data in the cloud and snow discrimination algorithm, 

mask, and validation. The SRTM DEM product has an original resolution of 90 m and is also available 

on the GEE. To match with AVHRR products, these products were resampled or aggregated into 5 km. 

3 Methodology  

Figure 2 shows the different steps in the generation of the NIEER AVHRR SCE product. Starting with 135 

AVHRR surface reflectance version 4 (AVHRR SR V4) data on the GEE platform, valid observations 

were selected first by the quality control flags of AVHRR SR V4. Then, an improved cloud detection 

algorithm was developed to distinguish cloudy, water, and clear pixels. Third, clear pixels were 

determined as snow-covered or not by a multi-level decision tree, generating a set of AVHRR preliminary 

SCE records. Fourth, the gaps caused by clouds or invalid observations in the preliminary SCE record 140 

http://data.tpdc.ac.cn/
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were filled with a set of gap-filling techniques, including HRMF-based interpolation and snow-depth 

interpolation. Finally, postprocessing based on land surface temperature and DEM was conducted to 

exclude false snow identifications. 

 

3.1 Quality control of AVHRR 145 

Only observations valid in all AVHRR channels were employed to generate SCE records directly using 

the quality control bit flags of AVHRR SR V4. Table 3 shows all the quality control information from 

AVHRR SR V4 and its usage in this study. After quality control processing, the valid pixels were used 

as input for retrieval, and the invalid pixels were regarded as gap pixels. 

3.2 Cloud detection algorithm 150 

In this study, we could not directly adopt the cloudy flags of AVHRR SR V4 due to the obvious cloud 

overestimation (Chen et al., 2018).  

As in previous studies (Hori et al., 2007; Hori et al., 2017; Stamnes et al., 2007; Yamanouchi et al., 1987), 

the following eight variables were used in the cloud detection test: SR1, SR2, SR3, BT11, the reflectance 

differences between SR1 and SR2 (SR1-SR2), the brightness temperature (BT) differences between 155 

BT37 and BT11 (BT37-BT11), the BT differences between BT11 and BT12 (BT11-BT12), and the 

normalized difference vegetation index (NDVI). The calculation of the NDVI is based on formula (1). 

For cloud detection, “BT37-BT11” was used as the primary test. 

2 1

1 2

SR SR
NDVI

SR SR

−
=

+
 ,             (1) 

We adopted the cloud test scheme by Hori et al. (2017), but the critical threshold value of BT37-BT11 160 

was adjusted. As earlier thresholds of BT37-BT11 used a stronger cloud discrimination algorithm and 

ignored the cloud/snow confusion problem, further optimization was needed to minimize 

misclassification and the omission of clouds. Therefore, we focused on optimizing the cloud algorithm 

thresholds. Using the Landsat-5 TM maps for the true values, we trained the frequency distribution 

characteristics of BT37-BT11 for cloud and snow samples from AVHRR SR. Table 4 shows the cloud 165 

discrimination schemes, with ten cloud detection schemes and four non-cloud schemes. With A1 type as 

an example, Fig. 3 shows the optimal BT37-BT11 determination scheme. Fig. 3 (a) presents the BT37-

BT11 frequency distribution of cloud and snow training samples from AVHRR before 2000, and Fig. 3 
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(b) presents the variation of the overall accuracy at different BT37-BT11 thresholds. Optimum accuracy 

(84.76%) occurred at the cross-point of snow and cloud frequency distributions, with a BT37-BT11 170 

threshold of 14.5 K. This cross-point also represents a compromise for cloud omission (10.49%) and 

commission error (19.92%). Thus, the final threshold value was 14.5 K according to the optimal OA, 

which means that a pixel is classified as a cloud when BT37-BT11>14.5K. Following the same procedure, 

the optimal BT37-BT11 thresholds were obtained from AVHRR data before and after 2000, as listed in 

Table 4. 175 

3.3 Snow discrimination algorithm 

According to the previous snow classifications with AVHHR data (Hori et al., 2007; Hori et al., 2017; 

Stamnes et al., 2007; Yamanouchi et al., 1987), snow discrimination test variables included SR1, BT11, 

the reflectance ratio between SR3 and SR2 (SR3/SR2), reflectance differences between SR3 and SR2 

(SR3-SR2), NDVI, the normalized difference snow index (NDSI), and BT differences between BT11 180 

and BT12 (BT11-BT12). For snow discrimination, the NDSI was one of the primary tests. The NDSI is 

usually calculated using the Green (around a wavelength of 0.50μm) and shortwave infrared (around a 

wavelength of 1.60 μm) bands. As there were no shortwave infrared observations around 1.60 μm in 

AVHRR SR V4, we used the reflectance at 3.7 μm for an NDSI-like calculation, following Hori et al. 

(2017). The calculation of NDSI is shown in formula (2). 185 

1 3

1 3

SR SR
NDSI

SR SR

−
=

+
 ,            （2） 

To improve the snow discrimination under clear-skies, all decision rules were re-adjusted according to 

the training samples from high-resolution snow maps. We developed a three-level decision tree algorithm, 

which obtained the optimal threshold values from the training data. Using Landsat-5 TM data as true 

values, we obtained the frequency distribution characteristics of each band from AVHRR data in the 190 

snow and non-snow areas at SR1, BT11, SR3/SR2, SR3-SR2, NDVI, and NDSI. Figure 4 shows the 

flowchart of the three-level decision tree snow discrimination algorithm. 

1) First-level decision tree 

SR1, BT11 combined with DEM, and SR3/SR2, were chosen as first-level discriminators. The main 

purpose of the first-level decision tree is to exclude pixels that are definitely non-snow pixels. Snow has 195 

high reflectance in the SR1 band and low brightness temperature in the thermal infrared BT11 band.  



 

8 

 

Since the ability of SR3/SR2 to distinguish snow is lower than that of SR3-SR2 in our training test, 

SR3/SR2 was chosen as a first-level discriminator. Based on the frequency distributions of snow and 

non-snow pixels for the first-level discriminators for Landsat-5 TM maps, a confidence level of 95% of 

snow samples was set to obtain the threshold value of certain non-snow pixels. As shown in Table 5, for 200 

the samples before 2000, SR1 was >0.14 and BT11<274 K when DEM<1300 m, BT11 was <281 K when 

DEM≥1300 m, and SR3/SR2<0.50 were the possible snow images, while the remaining pixels were 

non-snow pixels. The potential snow pixels were used as input for the second-level decision tree. 

2) Second-level decision tree  

NDVI and SR3-SR2 were chosen as second-level discriminators. The second-level decision tree was 205 

mainly used to obtain certain snow pixels from the possible snow pixels. Based on the frequency 

distributions of snow and non-snow pixels from potential snow pixels processed by the first-level 

decision tree, a confidence level of 99% of non-snow samples was set to obtain the threshold value of 

certain snow pixels. For the samples before 2000, a pixel was classified as certain snow when NDVI was 

< -0.16 or SR3-SR2 < -0.81 (Table 5). Other pixels were considered the potential snow pixels and were 210 

used as input for the third-level decision tree. 

3) Third-level decision tree 

NDSI was used as the third-level discriminator due to its excellent discrimination ability of snow cover 

and other land covers. Based on the frequency distributions of potential snow pixels derived from the 

second-level decision tree, the optimal NDSI threshold value was calculated by a method similar to that 215 

of the cloud test. Figure 4 shows the optimal NDSI scheme. Fig.5 (a) presents the NDSI frequency 

distribution histogram of snow and non-snow pixels. The cross-point of snow and non-snow that has the 

highest overall accuracy (85.87%) was chosen as the optimal NDSI threshold (0.73), as shown in Fig 

5(b). The cross-point also represents a compromise for the snow omission (15.83%) and commission 

error (13.03%). Thus, pixels with NDSI>0.73 were identified as snow for the samples before 2000. 220 

Following the same strategy, optimal snow discrimination threshold values were obtained from AVHRR 

data before and after 2000 (Table 5). Using the above-mentioned algorithm, we produced the AVHRR 

preliminary SCE record for China based on the AVHRR SR V4. 
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3.4 Gap-filling strategies  

For daily AVHRR preliminary SCE records, gaps due to frequent cloud obscuration or swath gaps 225 

remained serious. Two gap-filling strategies described below were used to generate a spatially complete 

daily AVHRR SCE record. 

3.4.1 HMRF-based spatio-temporal modeling 

Here, we present a spatio-temporal modeling technique for filling up gap pixels in daily snow cover 

estimates based on the time series of AVHRR preliminary SCE records. The spatio-temporal modeling 230 

technique integrated AVHRR preliminary SCE record spatial and temporal contextual information within 

a Hidden Markov Random Field (HMRF) model (Melgani and Serpico, 2003). Initially, Huang et al. 

(2018) utilized HMRF based spectral information, spatio-temporal information, and environmental 

information to reclassify snow and non-snow classes in MODIS snow products. In our study, we only 

used spatio-temporal information for filling gap pixels. The core of this method is computing the spatio-235 

temporal cubic energy function for every gap from the neighborhood pixels and further classifying the 

gap pixels as snow pixels, non-snow pixels, or still gap pixels using 

( ) ( , ) =T n st n sp tpU U N N  ,            (3) 

where 
T
U is the total energy function of belonging to the class of 

n
  (n=2, 

1
denotes snow and 

2

denotes non-snow), and 
st
U   is the spatio-temporal neighborhood cubic energy function. 

sp
N   and 240 

tp
N   denote the spatial neighborhood and temporal neighborhood centered with the gap pixel, 

respectively. 

Figure 6 illustrates our gap-filling process based on the HMRF technique. For a given gap at the center, 

we first calculated U(β1) and U(β2) based on a spatio-temporal, surrounding cube with 3 rows × 3 columns 

× 3 days. If U(β1) was > U(β2), gap pixels were classified as snow pixels. Otherwise, they were classified 245 

as non-snow pixels. If U(β1) = U(β2) or there were not sufficient valid pixels for calculating U(βn), we 

extended the spatio-temporal neighborhood to 3 rows × 3 columns × 5 days. If there were still insufficient 

valid pixels, the spatio-temporal neighborhood was expanded to 5 rows × 5 columns × 5 days. If the 

strategy above failed, gap pixels were maintained. 
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The HMRF-based modeling provided a rigorous interpolation framework for optimally integrating 250 

spatial-temporal contexts. To test the effect of HMRF-based interpolation for gap pixels, we used the 

monthly average gap ratio of the AVHRR preliminary SCE record from 1981 to 2019 before and after 

HMRF-based interpolation (table 6). The gap ratio of the AVHRR preliminary SCE record before 

HMRF-based interpolation was within 40% –60% (average: 47.8%), and the gap ratio after HMRF-based 

interpolation ranged between 0.2% and 6.4% (average: 2.7%). Almost 90% of gap pixels could be 255 

reduced. The HMRF-based spatio-temporal model significantly improved the practicability of the 

AVHRR SCE product. 

3.4.2 Interpolation based on passive microwave snow-depth data 

Although most gap pixels were filled after interpolating the HMRF-based spatio-temporal model, there 

were still ~6% gaps left in the daily SCE data. Therefore, a fusion method combining the passive 260 

microwave daily snow-depth data and the AVHRR snow cover data was performed for these residual 

gap pixels. The passive microwave daily snow-depth data (25 km) were resampled to the same cell size 

as the AVHRR data (5 km) by the nearest neighbor interpolation method. If collocated snow depth was 

≥ 2-cm, the gap was considered a snow pixel. Otherwise, it was considered a non-snow pixel (Hao et 

al., 2019). 265 

3.5 Postprocessing based on surface temperature and DEM 

Because of their similar optical properties, ice-cloud pixels are sometimes mistaken for snow pixels, 

which results in artifact snow covers in Southern China even during summer, where and when snow is 

impossible. Referencing the MODIS algorithm, the postprocessing adopts LST products of ERA5 

reanalysis and DEM to eliminate these snow pixels. The corresponding thresholds are given as below: 270 

the pixel is reclassified as snow-free when LST is ≥ 275 K, and DEM is ≤ 1300 km, or LST is ≥ 

281 K, and DEM is ≥ 1300 km. 

4 Accuracies of the NIEER AVHRR SCE product  

4.1 Metrics of accuracy evaluation 

A confusion matrix similar to that given in Table 7 is used to assess all associated AVHRR SCE data in 275 

this study. Four kinds of accuracy metrics were used in this study, following previous studies (Dong et 
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al., 2014; Zhang et al., 2019), including the OA, the producer’s accuracy (PA), the user’s accuracy (UA), 

and Cohen’s kappa (CK) value. The OA is the fraction of the correctly detected cases and all cases. The 

PA measures the probability of correctly detected snow cases by AVHRR in the actual snow cases. The 

UA measures the proportion of true snow cases in all the detected snow cases by AVHRR. The sum of 280 

PA and omission error equals one, and the sum of UA and commission error equals one. (Arsenault et 

al., 2014). CK value is an overall measurement of the agreement and is considered a more robust metric 

than OA (Cohen, 1960; Powers and Ailab, 2011). 

4.2 Validation with ground snow-depth measurements 

As mentioned before, we used 38-year CMA ground snow-depth measurements at 191 stations to validate 285 

the new NIEER AVHRR SCE product. Table 8 presents an overview of the validation results. The OA 

was up to 87.4%. The PA value (81.0%) was close to the UA value (81.3%), which indicated that the 

algorithm sensibly performed a trade-off between the omission error (19.0%) and commission error 

(18.7%). In addition, the CK value was 0.717. According to the guidelines presented by Landis and Koch 

(1977), this would place the level of agreement as “substantial”. All reveal on a whole the new NIEER 290 

AVHRR product is accurate and has a good agreement with measurements of CMA stations.  

To validate the stability and reliability of the NIEER AVHRR SCE product, Fig.7 presents the four 

accuracy metrics’ annual fluctuation over the past 38 years. The OA ranged within 80%–90%, the PA 

and UA ranged within 70%–90%, and the CK value ranged from 0.61 to 0.8. Several considerable annual 

fluctuations mainly occurred in 1993, 1994, and 2017, which were mainly caused by the poor quality of 295 

raw satellite data rather than the algorithm. In summary, the product maintained a higher precision with 

small annual fluctuations，which indicated the effectiveness and stability of the training framework with 

different thresholds before and after 2000. 

Figure 8 further details accuracy metrics at each CMA station. According to this figure, the OAs had 

high values, within 80%–90%, at most stations across China, but the PA, UA, and CK had low values 300 

with a clear spatial inconsistency. We found that the product performed well in North Xinjiang and the 

north of Northeast China where the stable snow was widely distributed. In contrast, the accuracy was 

relatively low on the Qinghai-Tibet Plateau, the Loess Plateau, in the Northeast of Inner Mongolia, and 

in the South of Northeast China, where snowpacks may be unstable due to patchy snow-cover features, 

rugged terrains, or rapid melt even in winter. 305 
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4.3 Validation with Landsat-5 TM SCE maps 

The measurements from CMA stations can provide time-continuous validation. However, the “point to 

area” evaluation method ignores the spatial heterogeneity of satellite images within one pixel (Huang et 

al., 2011). The snow condition of an individual CMA station may not represent the larger area viewed 

by AVHRR. The “area to area” method using higher-resolution images has pointed out a good way to 310 

assess snow spatial distribution of the AVHRR SCE product. 

In this study, 9 Landsat-5 snow maps were used to further evaluate the NIEER AVHRR product. Table 

9 gives the validation results of our maps versus the Landsat-5 TM SCE maps. The OA was as high as 

87.3%. The high UA and low PA revealed that the product had a slight tendency to underestimate the 

snow cover extent. The CK value (0.695) of the ‘area to area’ method also demonstrated ‘substantial’ 315 

agreement, which was close to that of the ground measurements validation (0.717). Therefore, no matter 

the point of view (ground measurements) or area of view (Landsat-5 SCE maps), the NIEER AVHRR 

product was accurate. In general，the NIEER AVHRR SCE product is promising to better serve the 

climatic and other related studies in China. 

Figure 9 further displays three intuitional examples demonstrating the detailed differences between 320 

NIEER AVHRR SCE maps and Landsat-5 SCE reference maps. The three images (serial number “C1, 

C5, and C8”) were located in Northeast China, the Qinghai-Tibet Plateau, and North Xinjiang, 

respectively. It was clear that the NIEER AVHRR SCE maps agree much better with higher-resolution 

snow maps in a wide range of snow-covered areas. However, in the boundaries of snow-covered areas, 

the NIEER AVHRR SCE maps failed to identify most snow pixels in the Landsat-5 SCE maps, which 325 

could be explained by the low ability of our product to detect low fractional snow-covered pixels.   

5 Discussion 

5.1 Uncertainties of the NIEER AVHRR SCE product 

The validation based on both CMA stations and Landsat TM images indicated that the NIEER AVHRR 

SCE product performs well for large and deep snow-covered areas. To explore the uncertainties of our 330 

product in the thin snow-covered areas, we set different snow depth (SD) thresholds based on CMA 

measurements to further evaluate the NIEER AVHRR SCE product. Figure 10 shows the accuracy 
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metrics of the product under different SD thresholds (SD≥1 cm, SD≥2 cm, SD≥3 cm, SD≥4 cm, and 

SD≥5 cm).  

The results showed that the OA, UA, and CK values of the product decreased with increasing SD 335 

thresholds. The PA values of the product increased with the increasing SD threshold. As SD increased, 

the UA presented a sharply decreasing trend and PA presented a slightly increasing trend. On a whole, 

OA and CK values showed a significant decreasing trend. Our algorithm performed well at lower SD 

thresholds, which indicated the product has a better recognition ability for shallow snow.  

According to the snow cover temporal distribution feature in China, three seasonal snow periods were 340 

defined, i.e., the snow accumulation period, stable snow period, and snow melting period. The snow 

accumulation period is November. The stable snow period ranges from the beginning of December of 

the year to the end of February, and the snow melting period is March. Figure 11 presents the accuracy 

results of the NIEER AVHRR SCE product in different snow periods. The OAs of the accumulation 

period (87.7%), stable period (86.7%) and melting period (89.0%) showed a similar response. However, 345 

the PAs, UAs and CK values of the accumulation and melting periods were markedly lower than those 

of the stable snow period. The product had the highest omission errors (29.5%) during the accumulation 

period because of the mixed pixels in the early snowfall seasons but had the highest commission error 

(30.3%) during the melting period due to the influence of wet snow. 

5.2 Comparison of NIEER AVHRR and JASMES SCE product 350 

To more objectively assess our product, we compared the NIEER AVHRR SCE product with the 

JASMES SCE product. Since the JASMES SCE product was only generated by AVHRR data from 1981 

to 1999, comparisons were made against the same ground snow-depth reference measurements in 19 

snow seasons (1981-1999). Table 10 lists the comparison of the accuracy metrics. Our products 

performed well, with OA, PA, UA, and CK values of 86.1%, 80.3%, 78.7%, and 0.690, respectively. The 355 

JASMES SCE product performed much worse, with total OA, PA, UA, and CK values amounting to 

71.8%, 39.2%, 68.1%, and 0.321, respectively. Thus, our product clearly outperformed the JASMES 

product. Relative to the JASMES SCE product, the NIEER AVHRR OA increased approximately 15 

percent, the omission error dropped from 60.8% to 19.7%, the commission error dropped from 31.9% to 

21.3%, and the CK value increased by more than 114%. The JASMES product markedly underestimated 360 

the snow in China. In addition, there were about 50 thousand validation samples in our product and only 
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about 36 thousand SD measurements in that of the JASMES product. Thus, our product should fill more 

gap pixels than JASMES. On the whole, the snow and cloud detection algorithm and the gap-filling 

strategy of our product performed better than those of JASMES. 

To better figure out the spatial distribution difference between the two sets of products, comparison maps 365 

were constructed for November 15, 1985. Figure 12 presents the two SCE maps and their difference. 

There were significant differences in mapped snow extent between the two maps in the three major 

seasonal snow regions in China, i.e., North Xinjiang, Northeast China, and the Qinghai-Tibet Plateau. 

Our product mapped more snow in North Xinjiang, the Qinghai-Tibet Plateau, and the non-forest area in 

the Northeast of China than JASMES. The most considerable discrepancy occurred on the Qinghai-Tibet 370 

Plateau, where our product identified more snow-covered areas than JASMES. JASMES maps had more 

snow in the forested area of Northeast China than our product. Three improvements contributed to this 

phenomenon. First, the proposed snow algorithm improved snow discrimination accuracy and reduced 

omission errors largely. Second, the cloud detection algorithm effectively improved the cloud-snow 

confusion, which identified the snow pixels that were misidentified as cloud pixels in the JASMES. 375 

Thirdly, the gap-filling strategy provided complete spatial coverage of snow cover. 

6 Data availability 

The NIEER AVHRR SCE product was named in a manner of NIEER_GF AVHRR 

SCE_yyyymmdd_DAILY_5km_V01 (V01 denotes the first version). It has a spatial resolution of 5 km 

and a daily temporal resolution. It spans latitude 16-56°N and longitude 72-142°E, and now is freely 380 

accessible at https://dx.doi.org/10.11888/Snow.tpdc.271381 (Hao et al., 2021). Detailed information on 

the product is listed in Table 11. The values in the product are classified as non-snow (0), snow from 

AVHRR (1), snow from HMRF (2), snow from SD (3), water (4), and filled value (255). 

 

 385 

7 Conclusions 

This study generated a daily AVHRR SCE product with a spatial resolution of 5 km across China from 

1981 to 2019 by the snow research team in the NIEER, Chinese Academy of Sciences. The NIEER 
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AVHRR SCE product used a multi-level decision tree algorithm for cloud and snow discrimination and 

an improved GF technique. The product was validated using snow depth measurements provided by the 390 

China Meteorological Administration and higher spatial resolution SCE maps derived from Landsat-5 

TM. 

The OA of the NIEER AVHRR product was 87.4%, a high accuracy, while the PA and UA were 81.0% 

and 81.3%, respectively. The PA and UA were similar, showing that the algorithm of the NIEER 

AVHRRA product performed a trade-off between commission and omission errors. The CK value was 395 

0.717, which indicated that the product had an agreement level of “Substantial”. Considering the 

limitations of point-to-area validation, the overall OA, PA, UA, and CK values were 87.3%, 86.7%, 

95.7%, and 0.695, respectively, using Landsat-5 TM area-to-area, which showed the same trend of 

accuracy as the point validation. Therefore, no matter the point of view or area of view, our AVHRR 

SCE product had high accuracy. 400 

The performance of the NIEER AVHRR product in China was compared with the existing JASMES 

AVHRR SCE product. The OA, PA, UA, and CK values of the NIEER product were 86.1%, 80.3%, 

78.7%, and 0.690, and those of JASMES were 71.8%, 39.2%, 68.1%, and 0.321. Compared with the 

JASMES product, the NIEER product’s OA increased approximately 15 percent, the omission error 

dropped from nearly 60% to 19.7%, the commission error dropped from 31.9% to 21.3%, and the CK 405 

value increased by more than 114%. Accordingly, the NIEER AVHRR product had a higher accuracy 

than the JASMES product. Furthermore, the NIEER product provides a completely gap-free product for 

China, permitting its wide applications. 

Finally, we assessed the behavior of the NIEER AVHRR product during the snow accumulation, stable 

snow, and melting periods. The SCE performed best during the stable period, and the product was more 410 

accurate in the snow accumulation than the melting period. In general, the algorithm had a relatively high 

ability to identify shallower snow, but some uncertainties existed in patchy snow areas, regarding thinner 

snow, and in rugged terrain areas. As a long-term record, the dataset will provide a valuable data source 

for analyzing the influence of climate changes on the cryosphere on multiple time scales. 
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Table 1: The details of spectral bands from CDR of AVHRR Surface Reflectance (Version 4) from GEE 

platform. 540 

GEE Band  Abbreviation Wavelength (μm) Description  

SREFL_CH1 SR1 0.58-0.68 Surface Reflectance at 0.64um 

SREFL_CH2 SR2 0.725-1.00 Surface Reflectance at 0.86um 

SREFL_CH3 SR3 3.55-3.93 Surface Reflectance at 3.75um  

BT_CH3 BT37 3.55-3.93 Brightness temperature at 3.75um  

BT_CH4 BT11 10.30-11.30 Brightness temperature at 11.0um  

BT_CH6 BT12 11.50-12.50 Brightness temperature at 12.0um 
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Table 2: The number of training scenes using Landsat-5 TM 

Type of sample Number of Landsat-5 TM scenes Time period 

Snow samples 

1293 Before 2000 

6695 After 2000 

Non-snow samples 

1670 Before 2000 

5774 After 2000 

Cloud samples 

79 Before 2000 

125 After 2000 
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 545 

Figure 1: The geographic location of study area and the spatial distribution of major snow-covered regions, 

climate stations and Lansat-5 validation dataset. The elevation data were derived from Shuttle Radar 

Topography Mission (SRTM). 
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Figure 2: Generation flowchart of NIEER AVHRR snow cover extent product (NIEER AVHRR SCE) 
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Table 3: The descriptions of quality control of AVHRR SR V4 

Bitmask Description Use or no use 

15 Polar flag (latitude over 60 degrees (land) or 50 degrees 

(ocean)) 

No use 

14 BRDF-correction issues No use 

13 RHO3 value is invalid No use 

12 Channel 5 value is invalid Use 

11 Channel 4 value is invalid Use 

10 Channel 3 value is invalid Use 

9 Channel 2 value is invalid Use 

8 Channel 1 value is invalid Use 

7 Channel 1-5 are valid Use 

6 Pixel is at night (height solar zenith) Use 

5 Pixel is over dense dark vegetation No use 

4 Pixel is over sunglint No use 

3 Pixel is over water Use 

2 Pixel contains cloud shadow No use 

1 Pixel is cloudy No use 

0 Unused No use 

 555 
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Figure 3: The frequency distribution of BT37-BT11 and optimal threshold acquisition of snow and cloud from 

A1 before 2000. Figure 3(a) shows the frequency distribution of snow and cloud on AVHRR, and Figure 3(b) 560 

shows the determination of optimal threshold for cloud detection. 
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Table 4: Cloud detection tests and the corresponding thresholds. Target A indicates high and cold land 

(elevation > 300m and BT11 < 260 K), which have four types: A1~A4; Target B indicates the remaining land, 

which includes ten types: B11~B10. The cloud detection test was conducted from the top of the list to the 565 

bottom for each target. If the switch of the cloudy flag was “on”, the pixel was set to cloudy when the threshold 

tests met the conditions listed on the right-hand side. If the switch was “off”, the pixel identified as cloudy in 

the previous tests was reset to clear. 

Target 

Target 

serial 

number 

Switch 
Elevation 

(m) 
SR1 SR2 SR3 

SR1-

SR2 
NDVI BT11(K) 

Before 

2000 

BT37-

BT11(K) 

After 

2000 

BT37-

BT11(K) 

BT11-

BT12(K) 

A: High or 

cold land 

DEM>300 and 

BT11<260K） 

A1 On <3000      ≥240 >14.5 >19.5  

A2 On ≥3000      ≥240 >15.5 >20  

A3 On       <240 >21.0 >31  

A4 On    >0.1 >0.02   >25.5 >33.5  

B ：Other 

land 

DEM<300 or 

BT11>=260K 

B1 On       <260 >14 >16  

B2 On     
>-

0.02 
 <310 >10.5 >16.5  

B3 On  >0.3   
>-

0.02 
 <293 >11.5 >17.5  

B4 On   >0.4  
>-

0.03 
 <293 >11.5 >18.0 >-1 

B5 On   >0.4    <278 >11.5 >19.5 >-1 

B6 On  >0.3  >0.02    >11.5 >18  

B7 Off      >0.5 >288    

B8 Off       >310    

B9 Off >1000 <0.4   
<-

0.04 
 >275    

B10 Off     
<-

0.04 
 >300    

 

  570 
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Figure 3: The flowchart of a three-level decision tree snow discrimination algorithm for NIEER AVHRR SCE 

product. 
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575 

 
Figure 5: NDSI frequency distribution histogram and optimal threshold acquisition of snow and non-snow 

before 2000. (a) is the frequency distribution of snow and non-snow on AVHRR, and (b) is the optimal NDSI 

threshold value. 

  580 



 

30 

 

Table 5: Snow discrimination algorithm and its threshold values. 

Target Snow 
 

SR1 BT11(K) 
Elevation 

(m) 
SR3/SR2 SR3-SR2 NDVI NDSI 

A: 

Before 

2000 

Snow1 
 >0.14 <274 <1300 <0.5 <-0.81   

 >0.14 <281 ≥1300 <0.5 <-0.81   

Snow2 
 >0.14 <274 <1300 <0.5  <-0.16  

 >0.14 <281 ≥1300 <0.5  <-0.16  

Snow3 
 >0.14 <274 <1300 <0.5 ≥-0.81 ≥-0.16 >0.73 

 >0.14 <281 ≥1300 <0.5 ≥-0.81 ≥-0.16 >0.73 

B: After 

2000 

Snow1 
 >0.14 <275 <1300 <0.56 <-0.77   

 >0.14 <281 ≥1300 <0.56 <-0.77   

Snow2 
 >0.14 <275 <1300 <0.56  <-0.05  

 >0.14 <281 ≥1300 <0.56  <-0.05  

Snow3 
 >0.14 <275 <1300 <0.56 ≥-0.77 ≥-0.05 >0.65 

 >0.14 <281 ≥1300 <0.56 ≥-0.77 ≥-0.05 >0.65 
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Figure 6: Diagram of the HMRF-based gap-filling process used in the study. 
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Table 6: The monthly average gap ratio of AVHRR preliminary SCE record in China before and after 

HMRF-based spatio-temporal interpolation from 1981 to 2019. 

Month Gap ratio before interpolation (%) Gap ratio after interpolation of HMRF 

(%) 

1 51.4  2.0  

2 55.2  2.7 

3 57.0  2.5  

4 52.1  0.9  

5 50.3  1.0  

6 48.1 0.8 

7 46.0  1.3 

8 40.1 0.2  

9 39.5  2.4  

10 39.8  5.6 

11 44.0  6.0 

12 49.6  6.4 

Average 47.8 2.7 
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Table 7: Description of a confusion matrix of snow classification between NIEER AVHRR SCE product and 

truth value that reference ground snow-depth measurements or Landsat-5 TM SCE maps. 590 

Note: SS, SN, NS and NN are all numbers. SS reps the number of cases that AVHRR predicts Snow and the ground 

snow-depth measures Snow. SS reps the number of cases that AVHRR predicts Non-snow and the ground snow-

depth measures Non-snow. SN reps the number of cases that AVHRR predicts Non-snow while the ground snow-

depth measures snow. NS reps the number of cases that AVHRR predicts Snow while the ground snow-depth 

measures Non-snow. 595 

  

  NIEER AVHRR SCE product 

Snow Non-snow 

Ground snow-

depth  

Snow SS SN 

Non-snow NS NN 

Overall Accuracy (OA) +
=
SS NN

OA
T

 

Producer’s Accuracy (PA) =
+

SS
PA

SS SN
 

User’s Accuracy (UA)  =
+

SS
UA

SS NS
 

Cohen’s Kappa coefficient (CK). −
=

−1

OA P
CK

P
 

 Where, = + + +T SS SN NS NN  

   + + + +
=  +    
   

SS NS SS SN NN NS NN SN
P

T T T T
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Table 8: A confusion matrix for NIEER AVHRR SCE maps versus ground snow-depth measurements 

 NIEER AVHRR SCE  

                Class Snow Non-snow 

Ground snow-depth measurements 
Snow 282239 66167 

Non-snow 64759 622381 

OA 87.4% 

PA 81.0% 

UA 81.3% 

CK 0.717 
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 600 

Figure 7: Accuracy fluctuations of NIEER AVHRR product base on ground snow-depth measurements in the 

past 38 years. 
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 605 

Figure 8: Point-based accuracy results of NIEER AVHRR product: (a) OA; (b) PA; (c) UA; (d) CK. The snow 

depth of 191 climate stations used is provided by the China Meteorological Administration (CMA). OA, PA, 

UA and CK represent overall accuracy, producer’s accuracy, user’s accuracy, and Cohen’s Kappa coefficient. 
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Table 9: The accuracy of NIEER AVHRR SCE maps versus Landsat-5 TM SCE maps. C1~C8 denotes the 610 

different Landsat-5 TM SCE.  

Path/row 

Serial 

number 

Date 

Cloud 

percentage 

Snow 

percentage 

OA PA UA CK 

116028 C1 19970312 2.0% 77.2% 87.9% 88.3% 95.9% 0.678  

121024 C2 20160319 1.8% 96.4% 98.1% 100.0% 98.1% 1 

135038 C3 19961109 1.0% 66.5% 79.5% 81.0% 87.9% 0.552  

137039 C4 19961123 2.0% 50.7% 78.2% 65.7% 88.5% 0.566  

142027 C5 19870323 0.0% 96.1% 97.2% 100.0% 97.2% 0.036  

143027 C6 20051110 2.0% 48.6% 93.1% 86.7% 99.8% 0.863  

147029 C7 20160222 1.1% 89.0% 90.6% 91.4% 98.0% 0.587  

147029 C8 19970217 2.0% 88.3% 89.8% 90.9% 97.7% 0.560  

Total 89.4% 90.2% 96.1% 0.713 
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Figure 9: Comparison of Landsat reference image with NIEER AVHRR SCE images. (a) is located in 

Northeast China on Mar. 12st, 1997;(b) is located in Qinghai-Tibet Plateau on Nov. 9st, 1996; (c) is located in 615 

North Xinjiang on Nov. 10st, 2005. 
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Figure 10: Histogram of accuracy results of NIEER AVHRR SCE product under different snow depth 620 

thresholds. 

  



 

40 

 

 
Figure 11: Histogram of accuracy results of NIEER AVHRR SCE product in different snow periods, including 

accumulation period, stable period, melting period  625 
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Table 10: The confusion matrix and accuracy results of NIEER AVHRR and JASMES SCE product based 

on snow depth measurements from CMA. OA, PA, UA and CK. 

  NIEER AVHRR SCE JASMES SCE 

Ground snow-depth measurements 

Class Snow Non-snow Snow Non-Snow 

Snow 134260 32946 50335 78148 

 Non-snow 36367 295890 23594 209149 

OA 86.1% 71.8% 

PA 80.3% 39.2% 

UA 78.7% 68.1% 

CK 0.690 0.321 

  630 
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Figure 12: Comparison of snow cover maps between the NIEER AVHRR and JASMES SCE map on 

November 15, 1985. (a) is NIEER AVHRR SCE map; (b) is JASMES SCE map; (c) comparison between the 635 

two snow maps. 
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Table 11: The description of NIEER AVHRR SCE product  

Classification values Description 

Snow 1 Snow from AVHRR 

 2 Snow from HMRF 

 3 Snow from SD 

Non-snow 0 Non-Snow form AVHRR 

Water 4  

Filling value 255 Filling value 

 


