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Abstract. The Tibetan Plateau and its surroundings, also known as the Third Pole, play an important role in the regional and 

global climate and hydrological cycle. Carbonaceous aerosols (CAs), including black carbon (BC) and organic carbon (OC), 

can directly or indirectly absorb and scatter solar radiation, and change the energy balance on Earth. CAs, along with other 

atmospheric pollutants (e.g., mercury), can be frequently transported over long distances into the inland Tibetan Plateau. 25 

During the last decade, a coordinated monitoring network and research program on Atmospheric Pollution and Cryospheric 

Change (APCC) has been gradually setup and continuously operated within the Third Pole regions to investigate the linkage 

between atmospheric pollutants and cryospheric change. This paper presents a systematic dataset of BC, OC, water soluble 

organic carbon (WSOC), and water insoluble organic carbon (WIOC) from aerosols (20 stations), glaciers (17 glaciers, 

including samples from surface snow/ice, snowpit, and two ice cores), snow cover (2 stations continuous observed, and 138 30 

locations surveyed once), precipitation (6 stations), and lake sediment cores (7 lakes) collected across the Third Pole, based 

on APCC program. These data were created based on online (in-situ) and laboratory measurements. High-resolution (daily 

scale) atmospheric equivalent BC concentrations were obtained by using an Aethalometer (AE-33) in the Mt. Everest 

(Qomolangma) region, which can provide a new insight into the mechanism of BC transportation over the Himalayas. Spatial 

distributions of BC, OC, WSOC and WIOC from aerosols, glaciers, snow cover, and precipitation indicated different features 35 

among the different regions of the Third Pole, which were mostly influenced by emission sources, transport pathways, and 

deposition processes. Historical records of BC from ice cores and lake sediment cores revealed the strength of human activities 
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impacts since the industrial revolution. BC isotopes from glaciers and aerosols identified the relative contributions of biomass 

and fossil fuel combustion to BC deposition on the Third Pole. Mass absorption cross section of BC and WSOC from aerosol, 

glaciers, snow cover, and precipitation samples were also provided. This updated dataset is released to the scientific 40 

communities focusing on atmospheric science, cryospheric science, hydrology, climatology and environmental science. The 

related datasets are presented in the form of excel files. These files are available to download from the State Key Laboratory 

of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences at Lanzhou 

(https://doi.org/10.12072/ncdc.NIEER.db0114.2021, Kang and Zhang, 2021). 

Keywords. Black carbon, Organic carbon, Aerosol, Glacier, Ice core, Lake sediment cores, Tibetan Plateau 45 

 

Abbreviations. 

TP  Tibetan Plateau 

BC  black carbon (referred as a general concept; also equivalent to elemental carbon (EC) for the samples of aerosols, lake sediment cores, 

and glacier surface snow and snowpits; detected by the thermal-optical method using modified protocol) 50 

EC  elemental carbon (aerosol samples measured by the thermal-optical method using the standard IMPROVE_A protocol) 

eBC  equivalent black carbon, measured by a real-time optical instrument (Aethalometer model AE-33) 

rBC  refractory black carbon (detected by the Single Particle Soot Photometer, SP2) 

OC  organic carbon (referred to as total organic carbon from the filtered aerosol samples detected by the thermal-optical method) 

WSOC  water soluble organic carbon (referred to dissolved organic carbon in the samples of glacier, snow cover, and precipitation; also 55 

referred to as the water soluble portion of OC from filtered aerosol samples; detected by a total organic carbon analyser) 

WIOC  water insoluble organic carbon (referred to as insoluble organic carbon from the filtered glacier, snow cover, and precipitation 

samples, detected by the thermal-optical method) 

MAC  mass absorption cross section 
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1 Introduction 60 

With high elevations (average > 4000 m a.s.l.), the Tibetan Plateau (TP)and its surroundings, known as the Third Pole, plays 

an important role in the Earth’s climate through its complex topography (Yao et al., 2019). Due to the wide distributions of 

mountain glaciers, snow cover, permafrost and seasonally frozen ground, the TP and its surroundings are also known as the 

Asian Water Tower (Immerzeel et al., 2010; Yao et al., 2012), which are the source regions of several large Asian rivers (e.g., 

Yellow, Yangtze, Brahmaputra, Ganges, and Indus rivers etc.). The TP is particularly sensitive to climate change and regional 65 

anthropogenic forcing, and currently has been experiencing significant warming (Chen et al., 2015; Gao et al., 2019; Huss and 

Hock, 2019; IPCC, 2021; Kang et al., 2010; Ramanathan et al., 2007a; Ramanathan and Carmichael, 2008; Xu et al., 2009; 

You et al., 2021). Recent rapid cryospheric changes (e.g., glacier melting, permafrost thawing, snow cover declining) on the 

TP profoundly affect the regional water cycle and ecosystems (Brun et al., 2020; Chen et al., 2019a; Kang et al., 2015; 

Immerzeel et al., 2019; Nie et al., 2019; Sun et al., 2021; Yao et al., 2012, 2019; Zhang et al., 2020a).  70 

Due to the harsh environment and poor accessibility, observed data on the TP are still scares, which limits the effective 

investigation, verification, and calibration of reanalysis data and modelling simulations (Qian et al., 2015; You et al., 2020). 

In particular, studies on atmospheric carbonaceous components (e.g., black carbon, BC; organic carbon, OC) have gained wide 

attentions, due to the fact that they can directly or indirectly absorb or scatter solar radiation at the surface, alternately interact 

with the nucleation of clouds, and influence the precipitation efficiency (Bond et al., 2013; IPCC, 2013; Ji et al., 2016; 75 

Ramanathan et al., 2005; Ramanathan and Carmichael, 2008; Ramachandran et al., 2020; Yang et al., 2020). These 

carbonaceous aerosols (CAs) have substantially influenced the climate and environmental changes on Earth (Kang et al., 2020; 

Li et al., 2017a; Xu et al., 2012; Chen et al., 2019b; Zhang et al., 2017a; Zhang et al., 2012). The TP has recently been polluted 

by anthropogenic emissions mainly from long-range atmospheric transport, especially during the pre-monsoon when the 

aerosols accumulated and combined with westerlies and local mountain valley breeze (Cong et al., 2015; Kang et al., 2019; 80 

Painicker et al., 2021; Yang et al., 2018). Although the atmospheric environment over the TP is minimally disturbed by local 

anthropogenic activities because of the sparse population and limited industries (Cong et al., 2013; Kang et al., 2019), local 

emissions from booming tourism traffic or domestic fossil fuel/biomass burning also potentially contributed to the climatic 

and environmental changes (Li et al., 2018a). The investigations of CAs from various environmental media in the TP will 

improve our understanding of recent environmental changes and their impact on rapid cryospheric melting under climate 85 

warming. 

The glaciers provide natural archives of climate and environmental information (Jouzel, 2013; Thompson, 2000; Yao et 

al., 2006). Historical BC records from the Tibetan glacier ice cores revealed the impact of anthropogenic emissions, with BC 

concentrations increased by 2−3 times since the 1950s (Kaspari et al., 2011; Wang et al., 2015, 2020). Light absorbing BC and 

OC (including water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC)) deposited on the glacier 90 

and snow cover induced surface darkening and enhanced melting (Flanner et al., 2007; Kang et al., 2020; Lau and Kim, 2018; 

Santra et al., 2019; Xu et al., 2009; Zhang et al., 2020b). Estimates indicated that BC in snow resulted in accelerated glacier 
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melt by approximately 15−20% in the southeast/central TP and Central Asia (Li et al., 2020; Zhang et al., 2017, 2020b), and 

reduced snow cover duration by 3−4 days across the TP and 3−6 days in Northern Xinjiang (Zhang et al., 2018a; Zhong et al., 

2019). Meanwhile, WSOC in snow may also contribute to glacier melting (Hu et al., 2018; Gao et al., 2020), due to their light 95 

absorption property equal to approximately 10% of that by BC in the northern TP and Northern Xinjiang (Yan et al., 2016; 

Zhang et al., 2019). The isotopic signatures of BC in glacier and modelling results constrained BC sources in the TP, which 

indicated that BC was predominately derived from fossil fuel combustion (>60%) in the northern TP. Meanwhile in the 

southern TP, comparable contributions from fossil fuel (46%) and biomass (54%) combustion to BC were observed (Li et al., 

2016a; Yang et al., 2018; Zhang et al., 2017a). WSOC in precipitation can provide carbon to the ecosystems (Li et al., 2018b). 100 

It was reported that the average WSOC concentrations of precipitation at Nam Co region (inland TP) were lower than that in 

the urban areas but higher than that from snowpit samples (Li et al., 2018b). 

Over the TP, large numbers of lakes are distributed (including proglacial lakes) (Brun et al., 2021; Zhang et al., 2020a). 

As BC is chemically inert in the lake sediment cores, it can serve as an archive and reliable indicator to investigate the source 

and transport of BC in the past (Han et al., 2012). The BC investigation from lake sediment cores over the plateau revealed an 105 

increasing trend of BC concurrent with increased anthropogenic emissions since the 1950s (Cong et al., 2013; Han et al., 2015; 

Neupane et al., 2019; Zhu et al., 2020), and suggested that BC deposition in recent decades have increased about 2−3 fold 

compared to the background level. 

During the past decade, our research team has gradually setup a coordinated monitoring network and research program 

to link Atmospheric Pollution and Cryospheric Change (APCC) covering the TP and its surrounded region (Fig. 1) (Kang et 110 

al., 2019). Based on the APCC program, our overarching goal is to perform more integrated and in-depth investigations of the 

origins and distributions of atmospheric pollutants and their impacts on cryospheric change. The updated specific goals include: 

(I) Characterize the features of atmospheric pollutants (including new emergent pollutants) and depict their spatial and seasonal 

variations in different environmental media over the Third Pole region; 

(II) Investigate the source appointment of different atmospheric pollutants based on chemical tracers and modelling, and reveal 115 

the transport pathways and mechanisms by which atmospheric pollution is trans-boundary transported to the Third Pole 

region;  

(III) Quantify the contribution of atmospheric pollutants deposited as light-absorbing impurities to the glacier and snow melting, 

determine the fates of environmentally relevant pollutants within glaciers and snowpack, and further estimate the feedback 

of cryospehric melting to the carbon (and nitrogen) cycle and hydrological changes. 120 

A series achievement has been published on the research progress that depends on or is related to the APCC program 

during the past decade (Kang et al., 2019). Recently, new progresses were also achieved, including extended the study area to 

central Asia (Chen et al., 2021; Zhang et al., 2021a), investigated a new emergent pollutant-microplastics in snow (Zhang et 

al., 2021b), and discussed the potential impact of glacier melting and permafrost thaw on carbon cycle (Gao et al., 2021a; 

Zhang et al., 2021c). Therefore, in this article, we will introduce and provide access to the systematic dataset of BC and OC 125 

from the atmosphere, glaciers (including ice cores), snow cover, precipitation, and lake sediment cores over the TP and its 
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surroundings based on the APCC network. The site description, online observations, and sampling are summarized in Section 

2 and 3, respectively. A detailed data description of laboratory analysis and BC, OC, WSOC, and WIOC concentrations from 

aerosols/glaciers/precipitation/snow cover, and refractory BC (rBC) historical records from ice cores and BC from lake 

sediment cores are given in Section 4, highlighting the primary results and differences and similarities among studied regions. 130 

Meanwhile, mass absorption cross section (MAC) values of BC and WSOC from aerosols/glaciers/snow cover and 

precipitation, and carbon isotopic signatures (∆14C, δ13C) from glacier snowpits/precipitation and aerosols are also provided. 

The data availability and access are provided in Section 5, and the conclusions are summarized in Section 6. 

2 Research site descriptions 

2.1 Overview of site distributions 135 

The TP can be divided into three distinct sub-regions, respectively associated with the dominant influence of the westerlies 

(northern TP), Indian monsoon (southern TP), and the transition region in between, which don’t have an exact boundary of 

each domain (Yao et al., 2013). These different features in sub-regions motivated the need for network observations to 

understand the atmospheric pollutants and their possible impact on the environment. The APCC program currently consists of 

29 stations across the TP and its surroundings covering these three distinct sub-regions. Among these stations, there are 27 140 

stations for aerosol sampling and observations, 20 glaciers observed, 3 stations for snow cover observations and 138 locations 

for snow sampling once, and 6 stations for precipitation observations (Table 1 and Fig. 1). In addition, sediment cores were 

studied from 7 lakes across the Himalayas and TP. According to the distance and the extent of impact from anthropogenic 

activities, these stations were distributed into two major types, namely urban stations (strongly influenced by anthropogenic 

activities), and remote stations (weakly impacted by direct anthropogenic emissions). As this paper is the first dataset report 145 

based on the APCC program, we will release the carbonaceous dataset from 20 stations for aerosols, 17 glaciers (including 

samples from surface snow/ice, snowpit and two ice cores), 2 stations for continuous snow cover observations and 138 

locations during snow cover surveys, 6 stations for precipitation, and 7 lake sediment cores across the TP and its surroundings. 

In the future, more comprehensive datasets on mercury, heavy metals, and persistent organic pollutants will also be reported 

gradually from the APCC program. 150 

2.2 Stations for the aerosol and precipitation studies  

The APCC network has a total of 29 stations for the aerosol and precipitation studies. In specific, for the spatial distributions 

(Fig. 1 and Table 1), the APCC program includes 8 stations from Nepal across the central Himalayas to Tibet (Lumbini, 

Kathmandu, Jomsom, Pokhara, Dhunche, Nyalam, Zhongba, Everest), 3 stations in Pakistan (Hunza, Mardan, Karachi), and 

2 stations in the southeast TP (Lulang, Yulong), all of which are dominantly influenced by the Indian monsoon. There are 12 155 

sites (Dushanbe, Toskent, Bishkek, Jimunai, Koktokay, Tianshan, Koxkar, Muztagh Ata, Ngari, Laohugou, Qilian, Beiluhe) 

distributed in Central Asia, Xinjiang Uygur Autonomous Region (China) and the western and northern TP, mainly controlled 
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by the westerlies. In the inland TP, 2 stations (Nam Co, Tanggula) are distributed across the Nainqentanglha Mountains. to the 

Tanggula Mountains, which are alternately influenced by the Indian monsoon and westerlies (as the transition domain, Yao et 

al., 2013). Aerosol samples were also collected from Lhasa and Lanzhou city. The elevations of these stations ranged from 13 160 

m to over 5000 m a.s.l. (Table 1), with landscapes including forest, alpine steppe, alpine meadow, and desert. These sites 

served as the key locations for field observations and measurements. 

There are 5 stations located on the southern side of the Himalayas in Nepal, focusing on aerosol studies to resolve the 

transboundary transport of air pollutants (Tripathee et al., 2017; Chen et al., 2020). A list of the detailed information on 

observation items is in Table 1. Kathmandu, the capital city of Nepal, is characterized by rapid but uncontrolled urban growth 165 

and has severe air pollution problems. Pokhara, a famous tourist city, has undergone rapid urbanization with increased numbers 

of vehicles and industries. Lumbini, located on the northern edge of the Indo-Gangetic Plain (IGP), is a typical rural site located 

in a mixed setting with a large number of agricultural and industrial activities. Dhunche is a small town situated in the Langtang 

National Park in the Rusuwa district in the foothills of the Himalayan Mountains; it is approximately 50 km north of 

Kathmandu. Jomsom is a semi-arid small town in the Mustang district, located in the Kali Gandaki River Valley across the 170 

Himalayas. 

In Pakistan, 3 stations (namely Karachi, Mardan, and Hunza) are studied based on the APCC program (Gul et al., 2018). 

Karachi is the capital city of Sindh province, with almost half of the domestic industries in this city. The sampling place is in 

the extreme south portion, just a few kilometres away from the Arabian sea. Mardan, located near Peshawar city, is the second 

largest city in Khyber Pakhtunkhwa province. The sampling locations are 10 to 15 km away towards the north side of central 175 

Mardan city. Hunza is situated in a valley of Gilgit-Baltistan, on the northern edge of Pakistan, sharing borders with the 

Wakhan Corridor of Afghanistan and the Xinjiang province of China. The sampling location is at the terminus of Passu glacier 

and very near to Gulkin and Balthoro glaciers. 

In the Central Asian countries, 3 stations were selected and set up for the aerosol studies. Dushanbe is the capital city of 

Tajikistan. The aerosol sample collection was performed at the Physical Technical Institute of the Academy of Sciences of 180 

Tajikistan, which is located in an urban environment on a hill in the eastern part of Dushanbe. Toshkent Shahri is the capital 

city of Uzbekistan, located in the east part of the country and between the Tianshan Mountains and the Syr river. Bishkek is 

the capital of Kyrgyzstan, at the foot of the Alatao mountains in north of the country and in the central Chu River basin. All of 

these sites are located in the arid and semi-arid regions with a dry continental climate. 

There are 18 stations (Lanzhou, Lhasa, Everest, Zhongba, Nyalam, Lulang, Yulong, Nam Co, Tanggula, Beiluhe, Qilian, 185 

Laohugou, Ngari, Muztagh Ata, Koxkar, Tianshan, Koktokay and Jimunai) continuously observed over the TP and its 

surroundings within China. Lanzhou is the capital city of Gansu province and is an important industrial base and 

comprehensive transportation hub in northwest China. Lhasa, China's highest altitude city, is located on the banks of the Lhasa 

River and serves as the capital of the Tibet Autonomous Region. Everest, Zhongba, and Nyalam are located on the northern 

side of the Himalayas, characterized by agriculture and yak husbandry and dominated by the Indian monsoon. In particular, at 190 

the Qomolangma Atmospheric and Environmental Observation and Research Station of CAS on the north slope of Mt. Everest 
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(Everest station), real-time data of equivalent BC concentrations (eBC, measured by the Aethalometer model, AE-33) has been 

observed since May of 2015 (Chen et al., 2018). Lulang is located in a subvalley of the Yarlung Tsangpo Grand Canyon, a 

corridor for the warm-humid Indian monsoon to penetrate the inner TP. Yulong, the southernmost glaciated mountain in the 

Eurasian continent, close to Lijiang City (Yunnan province), may be affected by local emissions. Nam Co is a typical pastoral 195 

area in the inland TP. Beiluhe is located to the east of Kekexili of inland TP. Laohugou is a remote hinterland site located in 

the western Qilian Mountains. Ngari is located in the west TP, a typical arid area covered by bare soil or grasslands. Koxkar 

station is located on the southern slope of Mt. Tomur, which is the highest peak in western Tianshan. Tianshan Glaciological 

Station (Tianshan station) is located in the upper reaches of the Urumqi river. Jimunai is located in Northern Xinjiang, near 

the Altai Mountains.  200 

Precipitation samples in this paper were collected from 6 stations (Fig. 1), namely the Upper Heihe river basin (Qilian), 

Nam Co, Everest, Lulang, Yulong, and Lhasa city (Gao et al., 2021b; Li et al., 2018b; Niu et al., 2019). The Upper Heihe river 

basin is a typical permafrost basin, located in the Qilian Mountains of the northern TP (Chen et al., 2014). The other 5 stations 

have been described in the previous paragraphs. 

2.3 Glaciers 205 

Carbonaceous data from a total of 17 glaciers are provided in this paper (Table 2, Fig. 1). There are 11 glaciers located in the 

Indian monsoon dominated region. Among them, Baishui glacier No.1 of Yulong Snow Mountain and the other 4 glaciers 

(namely Demula, Renlongba, Yarlong, Dongga) are located in the southeast TP (Niu et al., 2018a; Zhang et al., 2017a), and 

East Rongbuk glacier is located in the central Himalayas on the northern slope of Mt. Everest. In the inland TP, 3 glaciers are 

observed and studied. The Zhadang glacier, with an area of 2.0 km2 and a length of 2.2 km, is located on the north-eastern 210 

slope of the Nyainqentanglha mountain range (Li et al., 2018c). The Xiaodongkemadi glacier, with an area of approximately 

1.60 km2 and facing southwest, is located at the headwaters of the Dongkemadi River, a tributary at the upper reaches of the 

Buqu River near the Tanggula Pass in the central TP (Gao et al., 2012; Li et al., 2017b). The Ganglongjiama glacier (also 

known as Guoqu glacier) is located on the northern slope of Mt. Geladaindong, the summit peak of the Tanggula Mountains 

(Hu et al., 2020a). Meanwhile, there are 5 glaciers studied in northern Pakistan. The Passu and Gulkin glaciers are located very 215 

near the Karakoram highway connecting Pakistan with China. The Barpu and Mear glaciers are located very close to each 

other and around 3 km away from the residential area of the Hopar and Nagar valleys and Sachin glacier is close to a small 

city (Astore) (Gul et al., 2018). 

There are 6 glaciers monitored in the westerly-dominated regions. The Laohugou glacier No. 12, a typical valley glacier, 

is located on the north slope of the western Qilian Mountains in the northern TP and covers an area of 21.9 km2 (Li et al., 220 

2019a; Zhang et al., 2017b). The Muztag Ata glacier has an area of ∼0.96 km2 and a length of 1.8 km, located in the eastern 

Pamir Plateau (Yao et al., 2012). The Anglong glacier is located in the headwater region of Indus, covering an area of 1.5 km2 

(Chen et al., 2019c). The Koxkar glacier is located on the south slope of Mt. Tomur, the highest peak in western Tianshan, on 

the border between China and Kyrgyzstan (Zhang et al., 2017c). The Urumqi glacier No.1 is located at the headwater of the 
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Urumqi River in eastern Tianshan, which is surrounded by the Taklimakan Desert to the south, the Gurbantungut Desert to the 225 

north, and the Gobi Desert to the east. This glacier has an area of 1.65 km2 (50% of the basin) (Li et al., 2019b). The Muz Taw 

glacier is located on the northern slope of the Sawir mountains in Northern Xinjiang, south of the Ertix river in Central Asia 

(Zhang et al., 2020b).  

There are 2 ice cores retrieved from the East Rongbuk glacier (Mt. Everest region) and the Ganglongjiama (Mt. 

Geladaindong region) glacier, respectively (Jenkins et al., 2016; Kaspari et al., 2011; Zhang et al., 2015) (Fig. 1). In this study, 230 

data from the Muztag Ata glacier and the Urumqi glacier No.1 were not provided, which can be referred to the previous studies 

(Xu et al., 2012; Wang et al., 2015). 

2.4 Snow cover 

Snow cover samples were collected from 2 stations (the Laohugou and Koktokay) (Fig. 1) and 138 snow survey locations once 

in the TP and the Northern Xinjiang (Zhang et al., 2018a; Zhong et al., 2019, 2021). The Koktokay Snow Station at the 235 

headwater of the Irtysh River was selected as the fixed-point site, which is located in the Kayiertesi river basin, the first 

tributary of the Irtysh river. The Kayiertesi river basin is in the southern Altai Mountains in China, covering 2365 km2. 

Seasonally frozen soil and permafrost are widely spread in the basin, and the basin is rich in vegetation (39.2% vegetation 

coverage in 2014) (Zhang et al., 2016). The land surface is generally covered by forest in the shade and semi-shade and by 

grassland and shrubs on the sunny and semi-sunny slopes (Zhang et al., 2016). The lowest air temperature is below −45 ℃ in 240 

winter. Average annual maximum snow depth exceeds 1 m (Zhang et al., 2014). Floods in the river basin are due to rain-on-

snow events, originating from the combination of rapidly melting snow and intense precipitation. There were 27 locations for 

snow cover sampling distributed in the southern TP, 10 in the central TP, and 10 from one glacial river basin (Laohugou region 

in the northern TP) (Zhang et al., 2018a). There were 91 locations distributed across Northern Xinjiang. Among them, 11 

sampling locations s were selected during the whole snow season, including 5 locations in the southern Altai Mountains, 3 245 

locations on the west side of the Junggar Basin, and 3 locations in the northern Tianshan Mountains (Zhong et al., 2019).  

2.5 Sediment cores from the lakes  

Lake sediment cores were studied from 7 lakes distributed across the Himalayas and TP (Cong et al., 2013; Neupane et al., 

2019) (Table 3, Fig. 1). Gosainkunda and Gokyo are located on the southern slope of Nepal Himalayas. Qiangyong and Ranwu 

lake are located in the southern and southeast TP, respectively. Nam Co, Lingge Co and Tanggula lake are located in the inland 250 

TP. Riverine BC inputs to Qiangyong and Ranwu lake were controlled by the surrounding snow cover and glacier meltwater. 

All the above lakes are located far from areas with large amounts of anthropogenic activities. 
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3 Sampling in the field 

3.1 Atmospheric aerosol and precipitation sampling 

In this study, carbonaceous data (EC, OC, WSOC) from atmospheric aerosols (TSP, total suspended particulate) were collected 255 

from 19 stations based on the APCC program, distributed in the TP, Southeast Asia, and Central Asia. Generally, the TSP 

were collected on pre-combusted (550 ºC, 6 hours) quartz fibre filters (90 mm in diameter, with pore size of 2.2 μm, Whatman) 

with a TSP cyclone at a flow rate of 100 L/min for 24 hours (urban or rural sites) or 48 hours (remote sites) (Chen et al., 2019b). 

The TSP sampler was setup on the roof of the observation building to avoid the effects of ground dust (Fig. 2). After sampling, 

the filters were kept frozen until analysis. TSP samples were collected every 6 days to bypass the “weekend effect”, which 260 

indicated that weekly cycle of aerosol composite (with low value sin weekend and high values in the weekdays) was usually 

governed by the anthropogenic emissions (Satheesh et al., 2011). These quartz filters will be used for measurement of EC, OC, 

and WSOC from the aerosols. 

When precipitation occurred, samples were collected by an automated precipitation collector for the analysis of BC and 

WIOC. After the precipitation event, the precipitation amount was also recorded, and the samples were transferred into HDPE 265 

bottles (250 mL) and kept frozen until analysis. Samples of WSOC were collected in prebaked aluminium basins (450 °C, 6 

h) that were placed on a 1.5 m high platform (Li et al., 2016b, 2016c, 2018b, 2021; Niu et al., 2019). Due to limitations in the 

volume of samples collected during small precipitation events, only those with enough sample amount were selected to 

determine ∆14C and δ13C.  

3.2 Glaciers, snow cover and ice core sampling 270 

Surface snow/ice and snowpits were sampled from glaciers, and meteorological variables in glacial regions were observed by 

Automatic Weather Stations (Fig. 2). Generally, for glacier surface snow/ice sampling, different types of snow/ice (fresh snow, 

aged snow and granular ice) samples were collected across the ablation and accumulation zone of the entire glacier (Fig. 3). 

Whirl-pak bags were used to collect surface snow samples from the upper 0–10 cm (or 0−5 cm) of depth (approximately 2 L, 

unmelted), as well as surface granular ice samples. In general, the snowpit samples were collected from the accumulation zone 275 

of glaciers using a stainless-steel spoon with a vertical depth interval of 5, 10 or 15 cm and transferred into a Whirl-pak bag, 

following the protocol described by Kang et al. (2007). Generally, duplicate samples were collected to estimate the differences 

between sampling. In situ observations included snow thickness, density, grain size, and surface albedo, which are used to 

estimate the post-deposition processes, chemicals flux, and effect of BC on glacier melt. 

In field surveys across the northern/eastern/southern TP and Northern Xinjiang (Zhang et al., 2018a; Zhong et al., 2019), 280 

snow depth, snow density, snow grain size and surface albedo were observed, and snow cover samples were collected. At each 

site, snow samples were collected from the top 5 cm of the snowpack and stored in a Whirl-pak bag. The vertical resolution of 

the snowpit profile at Koktokay snow station was 5 cm intervals from the snow surface to the depth of 20 cm, then samples 

were collected every 10 cm from the depth of 20 cm to the bottom. During the snow accumulation period (November) and the 

http://apps.webofknowledge.com/OutboundService.do?SID=8CiDgjnViiFfkiJse2g&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=234147
http://cn.bing.com/dict/search?q=aluminium&FORM=BDVSP6&mkt=zh-cn
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stable period (from December through early March), snowpit samples were collected three times a month at 10:00 am 285 

(UTC/GMT +8.00, the same below). During the intense snowmelt period (from early or mid-March to the early April), snow 

samples were collected twice a day at 10:00 am and 7:00 pm, respectively. Snow cover samples for analyses of WSOC were 

directly collected into the square polycarbonate bottles (Zhang et al., 2019). The samples were kept frozen until they were 

melted and filtered in the laboratory. 

In this paper, historical rBC records from two ice cores were reported. In 2002, a 108 m ice core was collected from the 290 

col of the East Rongbuk glacier located on the northeast ridge of Mt. Everest on the northern slope of the Himalayas (Kaspari 

et al., 2011). In 2016, a shallow ice core (8 m length) was drilled by the team from the same glacier to expand rBC records 

since 2000. In November 2005, a 147 m ice core was collected from the upper basin of the Ganglongjiama glacier on the 

northern slope of the Mt. Geladaindong using an electro-mechanical drill (Jenkins et al., 2016; Zhang et al., 2015). The drilled 

ice cores were packed in polyethylene tubing in the field, transported frozen to the State Key Laboratory of Cryospheric 295 

Science, Chinese Academy of Sciences in Lanzhou, and kept in a cold room at –20°C until sample preparation and analysis 

(Kang et al., 2015).  

3.3 Lake sediment core sampling 

Lake sediment cores were drilled from the deep basin of the studied lakes during 2008−2017 using a gravity coring system 

with a 6 cm inner diameter polycarbonate tube (Cong et al, 2013; Neupane et al., 2019). The core sediments were sliced in the 300 

field at intervals of 0.5 cm, except for Lingge Co and Ranwu Lake, which were sliced at 1 cm intervals, stored in plastic bags, 

and kept frozen until analysis. 

4 Observations, measurement methods and data descriptions 

4.1 Real-time atmospheric BC using Aethalometer 

BC is an important part of atmospheric particulate aerosols, which imposes adverse effects on atmospheric visibility, health, 305 

and climate change (Ramanathan and Carmichael, 2008). The eBC is operationally defined as the amount of strongly light-

absorbing carbon with the approximate optical properties of carbon soot that would give the same signal in an optical 

instrument (e.g., Aethalometer) (Andreae and Gelencser, 2006). At the Everest station, a real-time optical instrument 

(Aethalometer model AE-33, Magee Scientific Corporation, USA) for measurement of eBC from atmospheric aerosols was 

operated with an inlet installed at approximately 3 m above the ground level since March of 2015. The airflow rate was operated 310 

at 4 L min−1. The eBC concentrations can be acquired according to the light absorption and attenuation characteristics from 

the seven fixed wavelengths (e.g., 370, 470, 520, 590, 660, 880 and 950 nm) (Chen et al., 2018; Drinovec et al., 2015). In 

general, the eBC concentration measured at 880 nm is used as the BC concentration in the atmosphere, as the absorption of 

other types of aerosols (e.g., OC and dust) is greatly reduced at this wavelength (Sandradewi et al., 2008). When calculating 

eBC concentrations, it is therefore possible to eliminate the “loading effect” with the loading compensation parameter k, which 315 
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allows extrapolation to zero loading, and the accurate ambient BC concentration is obtained (Drinovec et al., 2015). Previous 

studies have evaluated the real-time compensation algorithm of dual-spot Aethalometer model AE-33 and indicated that AE-

33 agreed well with the post-processed loading effect compensated data obtained using earlier Aethalometer models and other 

filter based absorption photometer (Chen et al., 2018; Drinovec et al., 2015). 

At Everest station, daily and monthly mean eBC concentrations presented a strong seasonal variations during 2015−2019, 320 

which showed the highest values in the pre-monsoon season (~923 ng m−3 in April) and the lowest values in the monsoon 

season (~88.5 ng m−3 in July) (APCC dataset I-1 and Fig. 4). In the pre-monsoon season, BC from the Indo-Gangetic Plain 

(IGP) region can be transported and concentrated on the southern slope of the Himalayas by the north-westerly winds in the 

lower atmosphere, and then further transported across the Himalayas by mountain-valley winds (Cong et al., 2015). 

Simulations further indicated that the BC aerosols in South Asia could be uplifted and transported to the Mt. Everest region 325 

by the southerly winds in the upper atmosphere in the monsoon season (Chen et al., 2018). The results indicated the seasonal 

cycle of BC was significantly influenced by the atmospheric circulation and combustion intensity in the Mt. Everest region. 

Meanwhile, there were continuously high concentrations of eBC above 1000 ng m−3 during 8–10 June 2015, 19–22 March 

2016, 9–30 April 2016, and 11–14 April 2017, indicating that the heavy pollution episodes happened at Mt. Everest during 

those days (Chen et al., 2018).  330 

4.2 Analysis methods and data of atmospheric aerosol EC and OC  

After the TSP sampling, the aerosol EC and OC concentrations were measured by a thermal/optical carbon analyser (Desert 

Research Institute DRI Model 2001 or Sunset Lab) (Chen et al., 2019b). In detail, for the aerosol samples (TSP quartz filters), 

a punch of sample (area 0.5 cm2) was put in a quartz boat inside the analyser and heated stepwise at the different temperature 

plateaus (IMPROVE_A temperature protocol with an optical reflectance correction for sample charring) (Chow et al., 2007). 335 

The IMPROVE_A temperature protocol defined temperature plateaus for thermally derived carbon fractions of 140 °C for 

OC1, 280 °C for OC2, 480 °C for OC3, and 580 °C for OC4 in a helium (He) carrier gas and 580 °C for EC1, 740 °C for EC2, 

and 840 °C for EC3 in a 98% He/2% oxygen (O2) carrier gas. Each carbon fraction reported to the IMPROVE_A network 

database consists of a value and a precision. The aerosol OC and EC by thermal/optical reflectance (TOR) are insensitive to 

the change in such temperature protocol. Therefore, EC, OC, and total carbon (TC) were calculated from the eight carbon 340 

fractions as: 

OC = OC1 + OC2 + OC3 + OC4 + OP                                                                                                                                        (1) 

EC = EC1 + EC2 + EC3 − OP                                                                                                                                                   (2) 

TC = OC + EC                                                                                                                                                                            (3) 

Where, OP in the equation represents pyrolyzed OC, which is defined as the carbon evolving between the introduction of 345 

oxygen in the helium atmosphere and the return of reflectance to its initial values (the OC/EC split) (Chow et al., 2005). The 

accuracy of the measurement was ±10% and the detection limit for OC, EC and TC were 0.43, 0.12, and 0.49 μg C cm−2, 

respectively (Chen et al., 2019b).  
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Approximately 1,000 samples from 19 different sites were analysed in this study (APCC dataset I-1). Annual average TC, 

EC and OC distributions across the TP usually showed higher values in the urban and rural sites and lower values in the remote 350 

sites, which considerably decreased from outside to inland of the TP (Chen et al., 2019b) (Fig. 5). The highest TC, EC and OC 

values were found over urban areas (e.g., Kathmandu: OC=34.8 μg m−3, EC=9.97 μg m−3; Mardan: OC=44.7 μg m−3, EC=11.7 

μg m−3; Lanzhou: OC=25.4 μg m−3, EC=6.7 μg m−3), indicating the impact from increased anthropogenic emissions. The OC 

and EC concentrations in sites on the edge of TP were much lower than those in cities (e.g., Lulang: OC=4.86 μg m−3, EC=0.7 

μg m−3; Hunza: OC=5.12 μg m−3, EC=0.78 μg m−3; Laohugou: OC=4.81 μg m−3, EC=0.59 μg m−3), but higher than those in 355 

the inland regions (e.g., Ngari: OC=1.82 μg m−3, EC=031 μg m−3; Nam Co: OC=1.63 μg m−3, EC=0.13 μg m−3). Meanwhile, 

aerosol TC, EC and OC concentrations revealed apparent seasonality (Fig. 5). Higher concentrations were observed over the 

South Asian sites (e.g., Lumbini located in northern IGP, and Kathmandu valley) primarily during the pre-monsoon season, 

due to regional-scale pollution plumes known as atmospheric brown clouds (Ramanathan et al., 2007b). However, different 

seasonal variations were observed in the inland to northern TP. For example, at Nam Co station, relatively high OC and EC 360 

concentrations occurred during the monsoon and post-monsoon. The regional differences in CA seasonal variations suggests 

differences in the pollutant sources and transport pathways. In the Central Asia, the OC and EC concentrations demonstrated 

clear seasonal patterns, with elevated concentrations observed during August to February (Chen et al., 2021). These results of 

different seasonal variations between southern and northern parts of the TP, suggesting differences in the patterns of pollutant 

sources and in distance from the sources between the regions (Chen et al., 2019b). All of these measurements have provided 365 

the basis for understanding the spatio-temporal variations of carbonaceous particles over the vast Third Pole region, which is 

of great importance for scientific communities worldwide. Furthermore, these data sets are critical for further scientific studies 

in the future on the atmospheric environment across this vast region.  

4.3 Mass absorption cross section (MAC) of aerosol EC and WSOC from atmospheric aerosols 

The optical attenuation (ATN) can be calculated based on the transmittance signal with equation (4) (Cheng et al., 2011): 370 

ATN = ln⁡(
𝑇𝑓𝑖𝑛𝑎𝑙

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙
)                                                                                                                                                                     (4) 

Where, Tinitial and Tfinal are the transmittance signal before and after the thermal-optical analysis, respectively. The ATN can 

be used to determine the absorption coefficient (babs) based on equation (5): 

babs= ATN × 
𝐴

𝑉
                                                                                                                                                                           (5) 

Where, A is the filter area (cm2) and V is the volume of air sampled (m3). Thus the MAC of EC (MACEC, m2 g−1) can be 375 

calculated as:  

MACEC= 
b𝑎𝑏𝑠

𝐸𝐶
 = 

𝐴𝑇𝑁×⁡𝐴

𝐸𝐶×⁡𝑉
 = 

𝐴𝑇𝑁

𝐸𝐶𝑆
⁡× 102                                                                                                                                         (6) 

Where, ECS (μg C m−2) is the filter loading of EC. As multiple scattering effects occur associated with the filter-based 

measurement of absorption, they were corrected by a value of 3.6 (Chen et al., 2021). 
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The light absorption spectra of WSOC were measured between wavelengths of 200 nm to 800 nm with precision of 5 nm 380 

bandwidth by a UV-Visible Spectrophotometer (SpectraMax M5). The value of MACWSOC can be calculated from following 

equation (7) (Bosch et al., 2014; Kirillova et al., 2014): 

MAC𝑊𝑆𝑂𝐶 =
𝐴

𝑐.𝐿
× ln⁡(10)                                                                                                                                                        (7) 

Where, A (absorbance) is derived directly from the spectrophotometer, L is the absorbing path length, and c is WSOC 

concentration.  385 

The MACEC at 632 nm exhibited significant spatial variations, differing by a factor of up to two with a clear increasing 

trend from the outer to the inner TP (Fig. 6). For the study sites, the annual MACEC ranged from 6.37 to 8.49 m2 g−1. Karachi 

had the lowest MACEC among the sites. Other sites, including Mardan, and Lanzhou, exhibited similar annual average MACBC 

of approximately 7.0 m2 g−1 during the sampling period. On the southern side of the TP, sites (e.g., Dhunche, Jomsom, Everest, 

Zhongba, Nyalam, Lulang) had moderate MACEC, which were slightly higher than those in urban sites but lower than in the 390 

inland remote regions (e.g., Nam Co, Hunza, Ngari, and Beiluhe). In the northern TP, Laohugou demonstrated slightly lower 

MACEC, comparable to that in urban areas. The lower MACEC values in urban areas were mainly affected by local fresh 

emissions, while the relatively higher MACEC values in remote sites were mostly attributed to the coating enhancement of 

aerosols (Chen et al., 2019b). 

Aerosol MACWSOC were analysed for 10 sites, including Kathmandu, Lumbini, Karachi, Jomsom, Lulang, Everest, Lhasa, 395 

Nam Co, Lanzhou, and Laohugou (Chen et al., 2020; Li et al., 2016b, 2016c; Li et al., 2021). Relatively higher MACWSOC was 

observed in Lumbini, which had an annual average value of 1.64 m2 g−1. Kathmandu, Lanzhou, and Laohugou had moderate 

values of approximately 1.30 m2 g−1. Jomsom and Karachi had relatively lower MACWSOC values of 0.97 and 0.87 m2 g−1, 

respectively. The MACWSOC values were generally higher in urban regions than those at remote sites probably because of the 

larger primary and anthropogenic contribution for WSOC in urban areas in contrast to remote regions (Chen et al., 2020).  400 

4.4 BC and WIOC from glaciers and snow cover 

Before filtration, these frozen snowpit, surface snow, and snow cover samples were rapidly melted via a hot water bath 

(approximately 20 minutes for complete melting) and the meltwater (typically 0.5 to 1 L) was filtered through a pre-dried (in 

a desiccator, at 550°C, for 6 hours) weighted quartz filter (Whatman, with pore size of 2.2 μm) using a vacuum pump (Zhang 

et al., 2017a, 2018; Zhong et al., 2019, 2021). Samples were filtered twice and the filtration equipment was rinsed with ultra-405 

pure water twice (<18.2 mΩ) in order to prevent particle loss. The estimated total uncertainty in the particle concentrations 

was <1% (including background counts and random counting errors).  

After filtering the meltwater, the quartz filters were dried and weighed gravimetrically, then analysed for BC and WIOC. 

Generally, the dust loads in the snow/ice samples were greater (approximately 2−3 orders of magnitude) than in the airborne 

aerosol samples. In order to eliminate the impact of dust, BC and WIOC were measured by a modified IMPROVE_A protocol 410 

by DRI model thermal/optical carbon analyser (Yang et al., 2015; Wang et al., 2012). Specifically, the method was modified 
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such that only one temperature plateau (550°C) was used in the 100% helium atmosphere to reduce the time that the BC was 

exposed to the catalysing atmosphere. The reported OC concentrations from the snow and ice samples account for only WIOC 

because most of WSOC was not captured by the filter-based method. The detection limit of the analysis was 0.19 ± 0.13 μg 

TC cm−2, and the filter blank was 1.23 ± 0.38 μg TC cm−2, which was about 1 order of magnitude lower than the measured 415 

sample values (Zhang et al., 2017). 

The evaluated blank filters for total carbon <1 μg cm−2. For the same filter, multiple measurements showed small 

relative standard deviations (RSD, <10%), indicating that the data points tended to be close to the mean value, an 

acceptable filtration. The duplicate snow samples demonstrated the similar concentrations of BC and OC. The evaluated 

the impact of inorganic carbonates interfering with BC measurements showed the carbonate acidification and analysis 420 

indicated acceptable data quality with a discrepancy <20% (Zhang et al., 2017a). 

According to the measurements, the average BC concentrations in glacier snow/ice ranged from several ng g–1 to hundreds 

of ng g–1, with marked differences between the glaciers (APCC dataset I-2, and Fig. 7). In particular, BC concentrations in the 

aged snow/granular ice were usually much higher (1−2 orders of magnitude) than that in fresh snow/snowpit/ice cores (Kang 

et al., 2020). Concentrations of BC and WIOC were higher in the central and northern TP than in the southern TP. There was 425 

large spatial variability of BC and WIOC in snow cover across the TP and Northern Xinjiang. Concentrations of BC and WIOC 

in snow cover over the TP were 202−17468 ng g−1 and 491−13880 ng g−1, respectively. The values of BC and WIOC in snow 

cover across Northern Xinjiang varied from 32 to 8841 ng g−1, and 77 to 8568 ng g−1, respectively. Greater BC and WIOC 

concentrations in snow cover appeared in the western areas (west of 83°E) than other areas in Northern Xinjiang (Fig. 8). 

Vertical variations of monthly mean BC and WIOC concentrations in the snowpit profiles showed that the maximum monthly 430 

mean BC and WIOC concentrations generally appeared at the snow surface (302−6271 ng g−1 for BC and 780−17877 ng g−1 

for WIOC) (Fig. 9), suggesting that the magnitude of downward migration of BC and WIOC was much less than the enrichment 

in surface snow for snow cover. 

4.5 WSOC from glaciers and snow cover  

Before the measurement, the melted snow/ice samples (collected using pre-cleaned 60 mL square-shaped polycarbonate bottles) 435 

were filtered through a 0.45 μm (pore size) PTFE membrane filter (Macherey–Nagel). WSOC concentrations were determined 

using a TOC-5000A analyser (Shimadzu Corp, Kyoto, Japan) (Yan et al., 2016; Zhang et al., 2018b). The detection limit of 

the instrument, precision and average WSOC concentration of the blanks were 0.015 mg L-1, ±5% and 0.025 ± 0.006 mg L-1, 

respectively, demonstrating that contamination was minimal during the pre-treatment and analysis processing. WSOC 

concentrations in glacier samples were lower in the snowpit and fresh snow, but higher in the aged snow or granular ice (Fig. 440 

7). For the benchmark glaciers (Muz Taw glacier, and Laohugou Glacier No.12), the spatial distribution of WSOC generally 

decreased with increasing elevation, indicating that more intense melting occurred in the lower elevation ablation zones 

exposed to higher concentrations of WSOC (Gao et al., 2020; Hu et al., 2018). The detection limit of the analyser was low at 
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4 μg L−1, while the precision and average WSOC concentrations of the blanks were ± 5% and 4 ± 2 μg L−1, respectively, 

demonstrating that contamination during the pre-treatment and analysis processing of these samples was weak (Hu et al., 2021). 445 

The light absorption spectra of the WSOC were measured with a UV-Visible Spectrophotometer (SpectraMax M5, 

Molecular Devices, USA) between the wavelengths of 200 nm and 800 nm with an interval of 5 nm. Each spectrum was 

determined relative to that of Milli-Q water. The MAC values for WSOC in glaciers and snow cover samples were calculated 

by equation (7). The MACWSOC from snowpits of Laohugou glacier No.12 and Ganglongjiama glacier (Central TP) was 

4.71±3.68 m2 g−1 and 2.17±2.13 m2 g−1, respectively (Hu et al., 2018, 2020). MACWSOC from snow cover in the Altai mountains 450 

was 0.45 ± 0.35 m2 g−1, with higher values in March and April 2017; the fraction of radiative forcing caused by WSOC relative 

to BC accounted for approximately 10.5%, indicating WSOC was a non-negligible light-absorber in snow of the Altai regions 

(Zhang et al., 2019). The calculated MACWSOC from Baishui glacier No.1 at Mt. Yulong was 6.31±0.34 m2 g−1 (Niu et al., 

2018b). The comparisons of MACWSOC from glaciers and snow cover revealed significant differences between regions (Fig. 

10). Even for the same glacier (the Baishui glacier No.1), MACWSOC showed large variability from snowpits over different 455 

sampling periods (Niu et al., 2020).  

4.6 WSOC from precipitations  

The precipitation samples were also filtered through a PTFE membrane filter with 0.45 μm pore size (Macherey–Nagel) before 

the WSOC measurement. The Shimadzu TOC-5000 total organic carbon analyser (Shimadzu Corp, Kyoto, Japan) was used to 

determine the precipitation WSOC concentration (Li et al., 2016d). The average blanks for precipitation WSOC was 0.08±460 

0.05 μg C mL−1 (Gao et al., 2021b). The light absorption spectra of precipitation WSOC were measured by using the same 

method used for the glacier samples. The value of precipitation MACWSOC was calculated by the equation (7).  

Precipitation WSOC concentrations decreased from urban cities to remote stations, with marked seasonal variations 

(APCC dataset I-3, and Fig. 11) (Gao et al., 2021b; Li et al., 2017a, 2018a; Niu et al., 2019). The average precipitation WSOC 

concentrations was 1.41 μg C mL−1 at the Qilian Station of the northern TP, with WSOC flux of 6.42 kg ha−1 yr−1 (Gao et al., 465 

2021b). For summer precipitation in the Mt. Yulong region in southeast TP, the average concentration of WSOC was 1.25 μg 

C mL−1 (Niu et al., 2019). The average precipitation WSOC concentration at Nam Co was 1.0 μg C mL−1; the estimation 

suggested that about15% of WSOC was fossil derived (Li et al., 2018a). The MACWSOC values of precipitation samples were 

significantly lower than the aerosol samples (Li et al., 2017a). For example, the precipitation MACWSOC only ranged 0.26–1.84 

m2 g−1 at Qilian Station, suggesting the potential impact of WSOC on climatic forcing in the area. Seasonally, MACWSOC of 470 

both aerosol and precipitation samples showed high values in winter and low values in summer (Gao et al., 2021b; Li et al., 

2021). 
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4.7 Carbon isotopes from glacier snowpits and atmospheric aerosols  

The dual-carbon-isotope signatures (∆14C and δ13C) are effective ways to distinguish and track the different sources of carbon 

aerosols (Gustafsson et al., 2009). In this study, BC mass contents of the filtered glacier snowpit and atmospehric aerosols 475 

(TSP) samples were quantified using the TOT technique. Briefly, filters were acidified by fumigation in open glass Petri dishes 

held in a desiccator with >37% HCl acid for 24 hours to remove carbonates and were subsequently dried at 60 ℃ for 1 hour 

to remove remaining HCl acid. A 1.5-cm2 punched acid-treated filter was analysed using a carbon analyser (Sunset Laboratory, 

Tigard, OR) following the National Institute for Occupational Safety and Health (NIOSH) method 5040 to determine BC and 

OC concentrations of the aerosol samples and the WIOC concentrations of the particles from the collected snow samples. 480 

Sucrose standard and other reference materials were also subjected to these measurements (Li et al., 2016). The filter area 

required for the subsequent 14C measurements was determined based on the measured BC concentration. The CO2 produced 

was cryotrapped during the BC combustion phase after removing the water and sulfur-containing gases online. Purified CO2 

was then transferred in flame-sealed glass ampules to the United States National Science Foundation (US-NSF) National 

Ocean Science Accelerator Mass Spectrometry (NOSAMS) facility at the Woods Hole Oceanographic Institution (Woods 485 

Hole, MA, USA). For precipitation and snow samples containing more than 60 μg C (WSOC), the sample was poured into 

pre-cleaned quartz tubes, acidified to pH 2 with phosphoric acid, and sparged with ultrahigh purity helium to remove inorganic 

carbon. Next, the sample was irradiated using a high-energy UV lamp for 5 hours to quantitatively oxidize WSOC to CO2. 

Concentrations of WSOC were determined using a calibrated Baratron absolute pressure gauge (MKS Industries). WSOC 

concentrations determined by this method well agreed with those determined using the Shimadzu TOC analyser (Raymond et 490 

al., 2007). CO2 was cryogenically purified by liquid nitrogen on a vacuum extraction line and sent to the National Ocean 

Sciences Accelerator Mass Spectrometry (NOSAMS) at Woods Hole for isotopic analysis.  

Fossil fuel contribution to BC in both aerosol and snowpit samples decreased from the outer TP (i.e., South Asia and 

western China) to the inner TP (APCC dataset I-4, and Fig. 12) (Li et al., 2016). For the Himalayan region (Thorung, East 

Rongbuk, Qiangyong), equal contributions from fossil fuel (46±11%) and biomass (54±11%) combustion were found, 495 

consistent with BC source fingerprints from the IGP region (Dasari et al., 2020). BC in the remote northern TP (Laohugou) 

predominantly derived from fossil fuel combustion (66±16%), consistent with Chinese sources. The fossil fuel contributions 

to BC in the inland TP (Tanggula, Zhadang) were lower (30±10%), implying contributions from internal Tibetan sources (for 

example, yak dung combustion). A similar phenomenon was observed for WSOC in snowpits, which revealed lower fossil 

fuel contributions in the inner TP. The results suggested that pollutants transported from South Asia influenced the BC and 500 

WSOC concentrations over the southern part of TP. Meanwhile, Chinese emissions influenced northern TP and local emissions 

influenced inland TP. 
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4.8 rBC from ice cores  

In the laboratory, the drilled ice core sections were cut longitudinally into halves, which were sectioned using a modified band-

saw (stainless-steel blades; table tops and saw guides covered with Teflon) cleaned with ethyl alcohol and ultrapure water 505 

(18.2 MΩ). One half-section of the core was cut into 3−5 cm segments. For the East Rongbuk ice core, a total of 663 samples 

were collected for rBC analysis (Kaspari et al., 2011). For Geladaindong ice core, a total of 3585 samples were collected for 

rBC analyses (Jenkins et al., 2016). To eliminate possible contamination from sampling, drilling or storage, the outer portion 

of each ice sample was scraped using a ceramic knife in a clean, low-temperature room (–8 °C). Polypropylene clean room-

suits and non-powder vinyl clean-room gloves were worn throughout the sampling process to minimize potential 510 

contamination (Kang et al., 2007). After the outer section of the ice was removed, the samples were put into Whirl-pak bags, 

melted at room temperature, and the solution was poured into high-density polyethylene vials for the subsequent experiments.  

The samples were stored as liquid until analysis (Jenkins et al., 2016). 

The rBC records from ice cores were analysed by using a SP2 (Droplet Measurement Technologies), an important 

analytical technique applied to Arctic ice cores (McConnell et al., 2007). The SP2 uses laser induced incandescence to measure 515 

the refractory BC mass in individual particles quantitatively and independent of particle morphology and coatings with light 

scattering material, with detection limit was 0.3 fg/particle (Schwarz et al., 2012). Coupled to a nebulizer, the SP2 can be used 

to measure rBC particles in liquid-phase samples (Lim et al., 2014; Schwarz et al., 2013). The high sensitivity and small-

required sample volume enabled ice cores to be analysed at much higher resolution than thermal‐optical methods. Generally, 

rBC concentrations from ice cores are likely to be systematically underestimated due to the nebulization efficiency. The 520 

nebulization efficiency is size dependent, with large (>500 nm) and small (<200−250 nm) BC particles nebulized with lower 

efficiency than mid-sized particles (Wendl et al., 2014; Schwarz et al., 2012). Besides, ice core samples were stored in the 

liquid phase after melting, and prior findings indicate that storage in the liquid phase can result in as great as 80% reduction in 

measured BC concentrations (Wendl et al., 2014; Kaspari et al., 2014). Nevertheless, because we focus on the temporal 

variation of rBC from ice core for the historical records rather than on absolute concentrations, the systematic underestimation 525 

of rBC does not affect the historical changes. 

Historical records from the East Rongbuk ice core showed that rBC concentrations have increased approximately 

threefold from 1975–2000 relative to 1860–1975 (APCC dataset I-5, and Fig. 13), inferring anthropogenic BC is transported 

to high elevation regions of the Himalaya (Kaspari et al., 2011). The Geladaindong ice core provided the first long-term rBC 

records in the central TP spanning 1843−1982; after the 1940s, the rBC record was also characterized by an increasing trend 530 

(Fig. 13). Such an increase in rBC concentrations over the recent decades was likely attributed to the increased combustion 

emissions from regional BC sources, and a reduction in snow accumulation (Jenkins et al., 2016). 



18 

4.9 BC from lake sediment cores 

The freeze-dried lake sediment core samples were grinded into powder with a size <0.074 mm using an agate mortar, and   

approximately 0.10−0.15 g of sample was transferred into a 50 mL centrifuge tube. In order to remove carbonates, silicates 535 

and metal oxides, the sediment samples were acid treated with 10 mL of HCl (2 N) and left for 24 hours at room temperature. 

The supernatants were removed and rinsed with ultrapure water. Then, 15 mL of the mixture of HCl (6 N) and HF (48% v/v) 

with ratio of 1:2 (v/v) was added to the residue for further digestion for 24 h at room temperature and subsequently rinsed 

thoroughly with ultrapure water. The residue was treated with HCl (4 N) at 60 °C overnight to get rid of fluoride that may have 

formed, which was then centrifuged to remove the supernatant liquid. The residue was rinsed with pure water until the pH of 540 

the eluent became neutral. Finally, the residual solid was diluted with 200 mL of ultrapure water and filtered through a 47 mm 

quartz fibre filter ensuring even distribution on the filter surface, which was then analysed for BC abundances (Cong et al., 

2013). 

Generally, the IMPROVE-A protocol with TOR has been used for determination of BC concentrations in lake sediments 

(Neupane et al., 2019). The repeated measurement of BC in a few lake sediments (n=5) were to ensure reproducibility of 545 

measurements, which reported as relative percentage deviation was better than 8%. Standard reference material (marine 

sediments, NIST SRM-1941b) were also analysed to assess the accuracy of measurements. It indicated an average accuracy 

of 5.5% for the measurements of BC in lake sediments in this study. 

The BC flux (g m−2 yr−1) of the lake sediment cores was calculated by multiplying the BC concentration (mg g−1) with 

the quotient of total weight of sample (dry weight per layer) and area of gravity corer (6 cm inner diameter polycarbonate tube; 550 

area = π×r2), as well as the deposition time (i.e., the time difference between the two consecutive deposition layers): 

BC⁡flux =
𝐵𝐶⁡𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛×

𝐷𝑟𝑦⁡𝑤𝑡.𝑝𝑒𝑟⁡𝑙𝑎𝑦𝑒𝑟

𝐴𝑟𝑒𝑎⁡𝑜𝑓⁡𝑔𝑟𝑎𝑣𝑖𝑡𝑦⁡𝑐𝑜𝑟𝑒𝑟

𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛⁡𝑡𝑖𝑚𝑒
                                                                                                                          (8) 

Historical BC records from the lake sediment cores show an increasing trend of BC concurrent with increased 

anthropogenic emissions since the 1950s (APCC dataset I-5, and Fig. 14). The relatively constant trend of BC before the 1950s 

could be attributed to the background level with minimal inputs from anthropogenic activities (Cong et al., 2013; Neupane et 555 

al., 2019). Previous studies pointed out that the deposition of BC in lake sediment cores was mainly related to river transport 

from the lake basin as a result of climate change (e.g., increases in temperature and precipitation) (Li et al., 2017). The much 

higher BC flux in recent decades may also be caused by increases in direct atmospheric deposition in addition to riverine input.  

5 Data availability  

All the BC, OC, WIOC, WSOC, MAC values of BC and WSOC, and BC isotope datasets presented in this study have 560 

been released and are available for free download from the Cold and Arid Regions Science Data Center at Lanzhou 

(https://doi.org/10.12072/ncdc.NIEER.db0114.2021, Kang and Zhang, 2021). 

A specific directory was designated with data classified into different categories:  

https://doi.org/10.12072/ncdc.NIEER.db0114.2021
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a) Aerosol BC and OC abundances, and their MAC data (APCC dataset I-1),  

b) Glacier and snow cover BC, WIOC, and WSOC, dust data and MAC values of WSOC (APCC dataset I-2),  565 

c) Carbon isotope data from snowpits and aerosol (APCC dataset I-3),  

d) Precipitation WSOC and BC data and MAC values of WSOC (APCC dataset I-4), and  

e) BC data from ice cores and lake sediment cores (APCC dataset I-5).  

In each dataset, a short summary is also provided. Auxiliary data including site descriptions (e.g., locations), observation 

contents, and measurements are presented. 570 

6 Conclusions 

The dataset of BC and OC concentrations and their related MAC values and carbon isotope signatures from the 

atmosphere, glaciers, snow cover, precipitation, and lake sediments based on the APCC program over the Third Pole are 

presented in this paper. These data are a collaborative effort aimed to address multiple scientific issues, including: (1) 

characterizing the carbonaceous components and depicting their spatial and temporal variations over the TP and its surrounding 575 

region; (2) identifying the carbon aerosol sources and investigating the mechanisms of long-range transport; and (3) 

constraining the role of carbon components on the glacier/snow cover melting. Our continuous efforts based on the current 

APCC program are the in-depth investigations of the origins and distributions of atmospheric pollutants and their impacts and 

response to cryospheric changes over the Third Pole region. Moreover, this paper presents the long-term spatial analysis of 

carbonaceous particles from multi environmental samples (atmosphere, glacier, lake sediments, etc.) over the Third Pole. The 580 

data from this work are also significant for understanding the negative consequences of pollution on environment of remote 

regions and pave a way for future perspectives and protection strategies.  
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Table 1 Detailed geographic characteristics of the Atmospheric Pollution and Cryospheric Change program observation stations across the 

Tibetan Plateau and its surrounding in this paper. 

Regions Abbreviations Site Latitude (ºN) Longitude (ºE) Elevation (m a.s.l.) Observations 

Altai JMN 

Altai Observation and Research Station of Cryospheric Science and 

Sustainable Development (Jimunai, North Xinjiang) (roof height 

2m)  

46.843 88.133 997 Muz Taw glacier, aerosol 

 KKTH Koktokay Snow Station, North Xinjiang (roof height 2m)  47.353 89.662 1379 snow cover 

Tianshan TS Tianshan Glaciological Station, Xinjiang (roof height 2m)  43.105 86.807 2100 
Glacier No.1 at Urumqi River source 

region, aerosol, snowpit 

 KQK Koxkar (Tianshan), Xinjiang (roof height 2m)  41.813 80.17 3000 Koxkar glacier, aerosol 

Tibetan 

Plateau 
MT 

Muztagh Ata Station for Westerly Environment Observation and 

Research, Western Tibetan Plateau (roof height 2m)  
38.291 75.055 5725 Muztagh Ata glacier, aerosol 

 NGR 
Ngari Station for Desert Environment Observation and Research, 

Western Tibetan Plateau (roof height 2m)  
33.392 79.701 4270 Anglong glacier, aerosol 

 LHG 
Qilian Observation and research Station of Cryosphere and 

Ecologic Environment, Northern Tibetan Plateau (roof height 2m)  
39.429 96.556 4230 

Laohugou glacier No.12, snow cover, 

aerosol 

 QL 
Qilian Alpine Ecology and Hydrology Research Station, Northern 

Tibetan Plateau 
38.25 99.8667 3040 precipitation 

 BLH 

Beiluhe Observation and Research Station on Frozen Soil 

Engineering and Environment in Qinghai-Tibet Plateau (roof 

height 2m)  

35.428 92.556 4000 aerosol 

 TGL 
Tanggula Cryosphere and  Environment Observation Station, 

Central Tibetan Plateau 
33.083 92.067 5000 

Xiandongkemadi/Ganglongjiama 

glacier 

 NMC 
Nam Co Station for Multisphere Observation and Research, 

Southern Tibetan Plateau (roof height 2m)  
30.779 90.991 4730 

Zhadang glacier, snow cover, aerosol, 

precipitation 

 ZB Zhongba, Southern Tibetan Plateau (roof height 2m)  29.7 83.983 4704 aerosol 

 NLM Nyalam, Southern Tibetan Plateau (roof height 2m)  28.167 85.983 4166 aerosol 

 EV 

Qomolangma Atmospheric and Environmental Observation and 

Research Station (Everest), Southern Tibetan Plateau (roof height 

2m)  

28.35 86.933 4276 
East Rongbuk glacier, aerosol, 

precipitation 

 SETS 

South-East Tibetan plateau Station for integrated observation and 

research of alpine environment (Lulang), Southeast Tibetan Plateau 

(roof height 2m)  

29.767 94.733 3326 

aerosol, precipitation, 

Demula/Yarlong/Renlongba/Dongga 

glacier 

 YL 
Yulong Snow Mountain Glacial and Environmental Observation 

and Research Station, Southeast Tibetan Plateau (roof height 2m)  
27.167 100.167 2650 

Baishui glacier No.1, aerosol, 

precipitation 

       

Related cities LZH Lanzhou city, Gansu Province (roof height 25m)  36.05 103.859 1520 aerosol 

 LS Lhasa city, Xizang Province (roof height 15m)  29.633 91.3 3642 aerosol, precipitation 

       

Nepal DC Dhunche (roof height 3m)  28.117 85.3 2051 aerosol 

 PKR Pokhara (roof height 6m)  28.183 83.983 813 aerosol 

 JMS Jomsom  (roof height 3m)  28.767 83.717 3048 aerosol 

 KTMD Kathmandu (roof height 15m)  27.683 85.4 1300 aerosol 

 LMB Lumbini  (roof height 15m)  27.483 83.283 100 aerosol 

       

Pakistan KRC Karachi (roof height 10m)  24.85 66.983 13 aerosol 

 HZ Hunza (roof height 3m)  36.46 74.892 2519 
Passu/Gulkin/Barpu/Mear/Sachin 

glaciers, snow cover, , aerosol 

 MD Mardan (roof height 10 m)  34.239 72.048 485 aerosol 

       

Central Asia DSB Dushanbe (roof height 3m)  38.5588 68.8558 864 aerosol 

 TSK Toshkent (roof height 10m)  41.2667 69.2167 821 aerosol 

  BSK Bishkek (roof height 2m) 42.8833 74.7666 750 aerosol 

 945 
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Table 2 Detailed information for the observed glaciers based on the Atmospheric Pollution and Cryospheric Change program across the 

Third Pole. 

Regions Mountains Glacier name Latitude Longitude 

Southeastern Tibetan Plateau Hengduanshan Baishui glacier No.1  27.17°N 100.15°E 

Southeastern Tibetan Plateau Nyainqengtanglha Mts. Demula glacier/Renlongba glacier/Yarlong glacier/Dongga glacier 29.355°N 97.02°E 

Himalayas Mt. Everest, Himalayas East Rongbuk glacier 28.031°N 86.961°E 

Inland Tibetan Plateau Nyainqengtanglha Mts. Zhadang glacier  30.467°N 90.633°E 

Inland Tibetan Plateau Tanggulha Mts. Xiaodongkemadi glacier 33.067°N 92.067°E 

Inland Tibetan Plateau Tanggulha Mts. Gangklongjiama glacier (Guoqu glacier) 33.833°N 91.683°E 

Northern Tibetan Plateau Qilian Mts. Laohugou glacier No.12 39.44°N 96.542°E 

Western Tibetan Plateau Mt. Anglonggangri, Ngari Anglong glacier 32.849°N 80.932°E 

     

Tianshan Wester Tianshan Keqikaer glacier 41.813°N 80.17°E 

Tianshan Eastern Tianshan Urumqi glacrei No.1   

Northern Xinjiang Sawir Mts. Muz Taw glacier  47.06°N 85.56°E 

     

Eastern Pamir Plateau Mt. Muztagh Muztagh Ata glacier 38.283°N 75.067°E 

     

Northern Pakistan Karakoram and Himalayas Passu  glacier 36.45°N 74.85°E 

Northern Pakistan Karakoram and Himalayas Gulkin glacier 36.42°N 74.77°E 

Northern Pakistan Karakoram and Himalayas Barpu glacier 36.18°N 74.08°E 

Northern Pakistan Karakoram and Himalayas Mear glacier 36.15°N 74.82°E 

Northern Pakistan Karakoram and Himalayas Sachin glacier 35.32°N 74.76°E 

Note: An ice core with depth of 108 m was collected from the col of the East Rongbuk glacier (28.03ºN, 86.96º E, 6518 m) located on the northeast ridge of 

Mt. Everest; An ice core with depth of 147 m was collected from the upper basin of the Ganglongjiama glacier (Guoqu glacier, 33.58°N, 91.18°E; 5750 m 

a.s.l.) on the northern slope of the Mt. Geladaindong. Mts.: Mountains 950 
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Table 3 Detailed information for the lake sediments cores across the Third Pole in this paper. 

Regions Lake name Latitude Longitude Elevation (m a.s.l.) 

Tibetan Plateau Ranwu Lake 29.441 ºN 96.796 ºE 3800 

 Qiangyong Co 28.89 ºN 90.226 ºE 4866 

 Nam Co 30.779 ºN 90.991 ºE 4730 

 Tanggula 32.903 ºN 91.953 ºE 5152 

 Lingg Co 33.831 ºN 88.603 ºE 5051 

     

Nepal Gokyo 27.951 ºN 86.69 ºE 4750 

 Gosainkunda 28.095 ºN 85.65 ºE 4390 
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Figure 1. Schematic overview of measurements from the Atmospheric Pollution and Cryospheric Changes program over the Third Pole, in 

which coordinated carbonaceous component measurements were made on samples from the atmosphere, glaciers, snow cover, precipitation, 

and lake sediment cores. The location information for each station, glacier and lake are provided in Tables 1, 2 and 3. 
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Figure 2. Photos of aerosol sampling, snow sampling, and ice core drilling on the Tibetan Plateau. 960 
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Figure 3. Black carbon and organic carbon data in surface snow and snowpit sampling sites from the Xiaodongkemadi glacier at Tanggula 

Mountains in the central Tibetan Plateau. Modified from (Li et al., 2017a). 
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Figure 4. Daily mean BC aerosol concentrations at Everest Station (Mt. Everest region) measured by AE-33 during May15, 2015 to 

December 29, 2019. Light blue lines refer to daily data; the thick blue lines represent the smoothing results. 
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Figure 5. Aerosol OC and EC concentration distributions in the Tibetan Plateau and its surroundings (top), and temporal variations of OC 970 
and EC concentrations at Kathmandu and Nam Co station (bottom) during the observed periods, respectively. The abbreviations can be 

found in Table 1.  
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Figure 6. Spatial distribution of mass absorption cross section of EC (MACEC) (annual average value) on the Tibetan Plateau. Modified 975 
from (Chen et al., 2019b).  
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Figure 7. BC and WSOC concentrations from studied glaciers distributed on the Tibetan Plateau and surroundings. 
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Figure 8. Spatial distributions of (a) BC and (b) WIOC concentrations in snow cover for each sampling site across the Tibetan Plateau and 

the Northern Xinjiang. Data cited from (Zhang et al., 2018a; Zhong et al., 2019). 
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Figure 9. Vertical variations of mean BC and WIOC concentrations in snowpits at Koktokay snow station during two snow years (Zhong 

et al., 2019). 
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Figure 10. Comparison of the mass absorption cross section (MAC) of WSOC in snow and ice, and precipitation across the Tibetan Plateau 

and its surroundings. 
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Figure 11. Spatial distributions of precipitation WSOC on the Tibetan Plateau and its surroundings (left), and WSOC temporal variations 

of concentrations and flux from precipitation at Qilian Station in the northern Tibetan Plateau (right). (a) Precipitation WSOC concentrations 

and (b) Precipitation WSOC flux (modified from Gao et al., 2021b). 

 



45 

 1000 

Figure 12. BC carbon and WSOC isotopes from snowpit samples in the Himalayas and Tibetan Plateau.  Modified from (Li et al., 2016a). 
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Figure 13. Historical BC concentration records retrieved from ice cores over the Himalayas and Tibetan Plateau. East Rongbuk ice core 

data from the northern slope of Mt. Everest in Himalayas (Kaspari et al., 2011), and Geladaindong ice core data from the Tanggula Mountains 1005 
of the central Tibetan Plateau (Jenkins et al., 2016). 
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Figure 14. Historical BC flux (g m−2 yr−1) retrieved from lake sediment cores across the Third Pole. Nam Co lake sediment core data was 

cited from (Cong et al., 2013); other lake sediment cores data was cited from (Neupane et al., 2019). 


