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Abstract.  

The Köppen-Geiger classification scheme provides an effective and ecologically meaningful way to characterize climatic 

conditions and has been widely applied in climate change studies. Significant changes in Köppen climates have been observed 

and projected in the recent two centuries. Current accuracy, temporal coverage, spatial and temporal resolution of historical 

and future climate classification maps cannot sufficiently fulfil the current needs of climate change research. Comprehensive 10 

assessment of climate change impacts requires a more accurate depiction of fine-grained climatic conditions and continuous 

long-term time coverage. Here, we present a series of improved 1-km Köppen-Geiger climate classification maps for ten 

historical periods in 1979-2017 and four future periods in 2020-2099 under RCP2.6, 4.5, 6.0, and 8.5. The historical maps are 

derived from multiple downscaled observational datasets and the future maps are derived from an ensemble of bias-corrected 

downscaled CMIP5 projections. In addition to climate classification maps, we calculate 12 bioclimatic variables at 1-km 15 

resolution, providing detailed descriptions of annual averages, seasonality, and stressful conditions of climates. The new maps 

offer higher classification accuracy and demonstrate the ability to capture recent and future projected changes in spatial 

distributions of climate zones. On regional and continental scales, the new maps show accurate depictions of topographic 

features and correspond closely with vegetation distributions. We also provide a heuristic application example to detect long-

term global-scale area changes of climate zones. This high-resolution dataset of Köppen-Geiger climate classification and 20 

bioclimatic variables can be used in conjunction with species distribution models to promote biodiversity conservation and to 

analyze and identify recent and future interannual or interdecadal changes in climate zones on a global or regional scale. The 

dataset referred to as KGClim, is publicly available at http://doi.org/10.5281/zenodo.4546140 for historical climate and 

http://doi.org/10.5281/zenodo.4542076 for future climate. 

1 Introduction 25 

Climate has direct impacts on the processes and functioning of the ecosystem as well as on the distribution of species. (Chen, 

Hill, Ohlemüller, Roy, & Thomas, 2011; Ordonez & Williams, 2013; Pinsky, Worm, Fogarty, Sarmiento, & Levin, 2013; 

Thuiller, Lavorel, Araújo, Sykes, & Prentice, 2005). The spatial patterns of climates have been often identified using the 

Köppen climate classification system (Köppen, 1931).  
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The Koppen classification system was designed to map the distribution of the world’s biomes based on the annual cycles of 30 

surface air temperature and precipitation (Köppen, 1936). Compared with other human expertise based climate mapping 

methods (e.g., Holdridge, 1947; Thornthwaite, 1931; Walter & Elwood, 1975) and clustering approaches (e.g., Netzel & 

Stepinski, 2016), which suffer from a lack in meteorological basis, the Köppen classification demonstrates stronger correlation 

with distributions of biomes and soil types (Bockheim, Gennadiyev, Hammer, & Tandarich, 2005; Rohli, Joyner, Reynolds, 

& Ballinger, 2015). It provides an ecologically relevant and effective method to classify climate conditions by combining 35 

seasonal cycles of surface air temperature and precipitation (Cui, Liang, & Wang, 2021). 

The Köppen classification has been widely applied in biological science, earth and planetary sciences, and environmental 

science (Rubel & Kottek, 2011). It is a convenient and integrated tool to identify spatial patterns of climate distributions and 

to examine relationships between climates and biological systems. It has been found useful for a variety of issues on climate 

change, such as hydrological cycle studies (Peel, McMahon, Finlayson, & Watson, 2001), Arctic climate change (Feng et al., 40 

2012; Wang & Overland, 2004), assessment of climate change impacts on ecosystem (Roderfeld et al., 2008), biome 

distribution (Rohli, Joyner et al., 2015) and biodiversity (Garcia, Cabeza, Rahbek, & Araújo, 2014). 

There has been a resurgence in the application of the Köppen climate classification in climate change research over the recent 

decades (Cui, Liang, & Wang, 2021). The Köppen climate classification has been used to set up dynamic global vegetation 

models (Poulter et al., 2011), to characterize species composition (Brugger & Rubel, 2013), to model the species range 45 

distribution (Brugger & Rubel, 2013; Tererai & Wood, 2014; Webber et al., 2011), and to analyze the species growth behavior 

(Tarkan & Vilizzi, 2015). The Köppen classification has also been applied to detect the shifts in geographical distributions of 

climate zones (Belda, Holtanová, Kalvová, & Halenka, 2016; Chan & Wu, 2015; Feng et al., 2014; Mahlstein, Daniel, & 

Solomon, 2013). It also has the potential to aggregate climate information on warmth and precipitation seasonality into 

ecologically important climate classes thereby simplifying spatial variability. This climate classification system adds a new 50 

direction to develop climate change metrics and can provide support for the growth of species distribution modelling (SDM). 

The recent Köppen climate classification maps have a resolution ranging between 0.5° and 1-km (Cui, Liang, & Wang, 2021). 

Early published Köppen climate classification maps have a relatively low resolution of 0.5° (Belda, Holtanová, Halenka, & 

Kalvová, 2014; Grieser, Gommes, Cofield, & Bernardi, 2006; Kottek, Grieser, Beck, Rudolf, & Rubel, 2006; Kriticos et al., 

2012; Rubel & Kottek, 2010). Several map products used interpolation methods to obtain a higher resolution of ~0.1° (Kriticos 55 

et al., 2012; Peel, Finlayson, & McMahon, 2007; Rubel, Brugger, Haslinger, & Auer, 2017). Fine resolutions of at least 1-km 

are required to detect microrefugia and promote effective conservation. Recently, Beck et al. (2018) generated new global 

climate classification maps for two periods 1980-2016 and 2071-2100 under RCP8.5 with a resolution of 1-km. To represent 

historical climates, they adjusted the inconsistent temporal spans of climatology datasets to the period 1980-2016, by adding 

interpolated temperature change offsets or multiplying precipitation factors, which may lead to biased coverage of the historical 60 

period. Current classification accuracy, temporal coverage, spatial and temporal resolution of historical and future climate 
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classification maps cannot sufficiently fulfil the current needs of climate change research. Significant changes in Köppen 

climates have been observed and projected in the recent two centuries (Belda et al., 2014; Chan & Wu, 2015; Chen & Chen, 

2013; Rohli, Andrew, Reynolds, Shaw, & Vázquez, 2015; Yoo & Rohli, 2016). Previous studies found that large-scale shifts 

in climate zones have been observed over more than 5% of the total land area since the 1980s, and approximately 20.0% of 65 

the total land area is projected to experience climate zone changes under RCP8.5 by 2100 (Cui, Liang, & Wang, 2021). 

Detection of recent and future changes in climate zones with the application of Köppen climate maps needs more accurate 

depiction of fine-grained climatic conditions, continuous and longer temporal coverage. 

This creates the urgent need for global maps of Köppen climate classification with increased accuracy, finer spatial and 

temporal resolutions. Currently available global observational datasets of temperature and precipitation collected during the 70 

recent centuries, and the global climate simulations under alternative future climate scenarios have offered the possibility to 

create a comprehensive dataset for past and future climates. In this study, we presented an improved long-term climate 

classification map series for 1) ten historical 30-yr periods of the observational record (1979-2008,1980-2009…1988-2017) 

and four future 30-yr periods (2020-2049, 2040-2069, 2060-2089, 2070-2099) under four RCPs (RCP2.6, 4.5, 6.0 and 8.5). 

To improve the classification accuracy and achieve a resolution as fine as 1-km (30 arc-second), we combined multiple 75 

datasets, including WorldClim V2 (Fick & Hijmans, 2017; Booth et al., 2014), CHELSA V1.2 (Booth et al., 2014), CRU TS 

v4.03 (New, Hulme, & Jones, 2000), UDEL (Willmott & Matsuura, 2001), GPCC datasets (Beck, Grieser, & Rudolf, 2005) 

and bias-corrected downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations (Navarro-

Racines, Tarapues, Thornton, Jarvis, & Ramirez-Villegas, 2020) (Table 1). We also calculated 12 bioclimatic variables at the 

same 1-km resolution using these climate datasets for the same historical and future periods. This dataset can be used to in 80 

conjunction with SDMs to promote biodiversity conservation, or to analyse and identify recent and future changes in climate 

zones on a global or regional scale. 

To validate the Köppen-Geiger climate classification maps, we used the station observations from Global Historical 

Climatology Network-Daily (GHCN-D) (Menne, Durre, Vose, Gleason, & Houston, 2012), and Global Summary Of the Day 

(GSOD) (National Climatic Data Center, NESDIS, NOAA, & U.S. Department of Commerce, 2015) database. At the regional 85 

and continental scale, we compared our Köppen-Geiger climate classification maps with previous map products, associated 

maps of forest cover, and elevation distribution, for 1) regions with large spatial gradients in climates, including central and 

eastern Africa, Europe, North America, and 2) regions with sharp elevation gradients, including Tibetan Plateau, central Rocky 

Mountains, central Andes. Further, we conducted sensitivity analysis with respect to classification temporal scale, dataset 

input, and data integration methods. We also provided a heuristic example which used climate classification map series to 90 

detect the long-term area changes of climate zones, showing how the Köppen-Geiger climate classification map series can be 

applied in climate change studies. 
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2 Datasets 

Table 1 Climatology datasets to generate present global maps of Köppen climate classification with varied spatial resolutions 

Dataset Spatial Resolution Temporal Span Variable(s) Source and Description 

Present Köppen classification map series with resolution of 30 arc-second (1km) 

CRU 0.5° 1979-2017 T Climatic Research Unit (CRU) TS v4.03 

UDEL 0.5° 1979-2017 T, P U. of Delaware Precipitation and Air Temperature 

WorldClim  0.0083° 1970-2000 T, P WorldClim Historical Climate Data V2 

CHELSA 0.0083° 1979-2013 T, P Climatologies at high resolution for the earth's land surface areas (CHELSA) 

GPCC 0.5° 1979-2016 P Global Precipitation Climatology Centre (GPCC) 

Future Köppen classification map series with resolution of 30 arc-second (1km) 

CMIP5  0.0083° 2020-2100 T, P CCAFS-Climate Statistically Downscaled Delta Method CMIP5 data 

WorldClim  0.0083° 1970-2000 T, P WorldClim Historical Climate Data V2 

Table 1 lists the climatology datasets with global coverage and on a monthly time step, used to generate historical and future 

Köppen-Geiger climate map series. The present 1-km Köppen-Geiger classification map series for 1979-2017 was derived 95 

from the Climatologies at High-resolution for the Earth's Land Surface Areas (CHELSA) V1.2 (Karger et al., 2017), 

WorldClim Historical Climate Data V2 (Fick & Hijmans, 2017; Booth et al., 2014) and the statistically downscaled Climatic 

Research Unit (CRU) TS v4.03 (New et al., 2000), University of Delaware Precipitation and Air Temperature (UDEL) 

(Willmott & Matsuura, 2001) and Global Precipitation Climatology Centre (GPCC) (Beck et al., 2005) datasets. To decide the 

datasets to use, we conducted a sensitivity analysis on the input climatology datasets and utilized monthly air temperature 100 

datasets from CRU, UDEL, GHCN_CAMS Gridded 2m Temperature (Fan & Dool, 2008) and monthly precipitation datasets 

from GPCC, UDEL, NOAA's PRECipitation REConstruction over Land (PREC/L) (Chen, Xie, Janowiak, & Arkin, 2002). 

Evaluation results indicated that incorporating only CRU, UDEL temperature datasets and UDEL, GPCC precipitation datasets 

led to higher accuracy in the classification results. Therefore, we chose CRU, UDEL, and GPCC datasets as the classification 

system input to boost the final accuracy. 105 

To explicitly correct topographic effect, we used 1-km CHELSA V1.2 and WorldClim V2 datasets in addition to the 0.5° 

resolution datasets. The CHELSEA dataset statistically downscaled temperature data from the ERA-Interim climatic reanalysis. 

For precipitation data, it incorporated multiple orographic predictors and performed bias correction (Karger et al., 2017). With 

major topo-climatic drivers considered, the CHELSA dataset demonstrated good performance in ecological science studies. 

CHELSA data exhibited comparable accuracy for temperatures and better predicted precipitation patterns based on the 110 

validation results (Karger et al., 2017). 

We produced the future Köppen classification map series using the CCAFS climate statistically bias-corrected and downscaled 

CMIP5 projections (Navarro-Racines et al., 2020). The CCAFS presented a global database of future climates developed by 

a climate model bias correction method based on the CMIP5 GCM simulations (Taylor, Stouffer, & Meehl, 2012) archive, 
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coordinated by the World Climate Research Programme in support of the IPCC Fifth Assessment Report (AR5) (Hartmann et 115 

al., 2013). The total is 35 GCMs, and all RCPs, RCP 2.6, 4.5, 6.0 and 8.5 (Table S1). Projections are available at varied coarse 

scales (70–400km). To achieve high-resolution (1km) climate representations, downscaling method has been applied with the 

use of the WorldClim data (Fick & Hijmans, 2017; Booth et al., 2014) . Technical evaluation showed that the bias-correction 

method that CCAFS data applied reduced climate model bias by 50–70%, which could potentially address the bias issue in 

model simulations for the threshold-based Köppen classification scheme. 120 

3 Methodology 

3.1 Köppen-Geiger climate classification 

Table 2 Criteria of Köppen-Geiger climate classification with temperature in oC and precipitation in mm. 

1st 2nd 3rd Description Criterion 

A    Tropical Not (B) & Tcold≥18 

f  - Rainforest Pdry≥60 

m  - Monsoon Not (Af) & Pdry≥100-MAP/25 

w  - Savannah Not (Af) & Pdry<100-MAP/25 

B    Arid MAP<10×Pthreshold 

W  - Desert MAP<5×Pthreshold 

S  - Steppe MAP≥5×Pthreshold 

  h -- Hot MAT≥18 

  k -- Cold MAT<18 

C    Temperate Not (B) & Thot>10 & -3 <Tcold<18 

w  - Dry winter Pwdry<Pswet/10 

s  - Dry summer Not (w) & Psdry<40 & Psdry<Pwwet/3 

f  - Without dry season Not (s) or (w) 

  a -- Hot summer Thot≥22 

  b -- Warm summer Not (a) & Tmon10≥4 

  c -- Cold summer Not (a or b) & 1≤Tmon10<4 

D    Boreal Not (B) & Thot>10 & Tcold≤-3  

w  - Dry winter Pwdry<Pswet/10 

s  - Dry summer Not (w) & Psdry<40 & Psdry<Pwwet/3 

f  - Without dry season Not (s) or (w) 

  a - Hot summer Thot≥22 

  b - Warm summer Not (a) & Tmon10≥4 

  c - Cold summer Not (a), (b) or (d) 

  d - Very cold winter Not (a) or (b) & Tcold<-38 

E    Polar Not (B) & Thot≤10 
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T  - Tundra Thot>0 

F  - Frost Thot≤0 

MAT = mean annual air temperature (°C); Tcold = the air temperature of the coldest month (°C); Thot = the air temperature of the 

warmest month (°C); Tmon10 = the number of months with air temperature >10 °C; MAP = mean annual precipitation (mm 

y−1); Pdry = precipitation in the driest month (mm month−1); Psdry = precipitation in the driest month in summer (mm 

month−1); Pwdry = precipitation in the driest month in winter (mm month−1); Pswet = precipitation in the wettest month in summer (mm 

month−1); Pwwet = precipitation in the wettest month in winter (mm month−1); Pthreshold=2×MAT if >70% of precipitation falls in 

winter, Pthreshold=2×MAT+28 if >70% of precipitation falls in summer, otherwise Pthreshold=2×MAT+14.  

The Köppen climate classification scheme was first introduced by Wladimir Köppen in 1900. It is one of the earliest 

quantitative classification systems of Earth’s climates. Its modification, Köppen-Geiger classification was first published in 

1936 (Köppen, 1936), developed by Wladimir Köppen and Rudolf Geiger. KGC identifies climates based on their effects on 125 

plant growth from the aspects of warmth and aridity, and classifies climate into five main climate classes and 30 subtypes 

(Rubel & Kottek, 2011). The five main climate zones distinguish between plants of the tropical climate zone (A), the arid 

climate zone (B), the temperate climate zone (C), the boreal climate zone (D) and the polar climate zone (E), referring to the 

five major climate zones (Sanderson, 1999). All these main climate zones are thermal zones except the arid (B) climate zone, 

which is defined based on precipitation threshold. 130 

This research followed the Köppen-Geiger climate classification as described in Kottek et al. (2006), and Rubel & Kottek 

(2010). This latest version of the KGC scheme was first presented by Geiger (1961) (Table 2). Several existing Köppen-Geiger 

climate map products, including Peel et al. (2007), Kriticos et al. (2012), and Beck et al. (2018) applied the KGC scheme 

modified following Russell (1931). Russell (1931) adjusted the definition of the boundary of temperate (C) and boreal (D) 

climate zones using the coldest monthly temperature > 0 °C instead of >-3 °C. This threshold was proposed because the 0°C 135 

line fits the distribution of the topographical features and vegetation in western United States, where at that time meteorological 

stations were sparsely distributed (Jones, 1932). However, the application of 0°C boundary to the global climates has not been 

validated. Therefore, this research didn’t utilize the Russell’s modification (1931) and followed the latest version KGC 

proposed by Geiger (1961).  
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3.2 Statistical downscaling 140 

 

Figure 1. Illustration of the downscaling process. (a) Anomaly downscaling method with January total precipitation from GPCC dataset 

and (b) delta downscaling method with January temperature from CRU dataset. Baseline (1970-2000) and present-day climate data (e.g. 

1979-2008) are from CRU, UDEL, or GPCC datasets, which have a coarse spatial resolution of 0.5o. Precipitation anomaly is change factor 

of monthly precipitation from baseline to present-day climates. Temperature delta is change in monthly air temperature from baseline to 145 
present-day climates. WorldClim (1970-2000) climate data is adjusted by multiplying 30 arc-second interpolated anomaly (for precipitation) 

or adding 30 arc-second interpolated delta (for temperature) to generate the downscaled climate surfaces with 30 arc-second resolution. 

Precipitation values in mm/month and temperature values in oC. 

Due to limited number of available observational datasets with high resolution and long-term continuous temporal coverage, 

the research implemented the delta method by applying a delta change or change factor onto the WorldClim historical 150 

observations (Fick & Hijmans, 2017) to achieve 30-yr average climatology data with a 1-km resolution based on the CRU, 

UDEL and GPCC datasets. The delta method is a statistical downscaling method that assumes that the relationship between 

climatic variables remain relatively constant at local scale. We applied delta method to downscale the long-term (30-yr) mean 

climates using coarse-resolution monthly climatology datasets. The delta changes or change factors are calculated as the 

differences between the 30-yr long-term means of temperature or precipitation of baseline (1970-2000) and present-day 155 
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climates. The delta method comprises the following four steps: 1) calculate 30-yr averages for baseline (1970-2000) and 

present day of monthly temperature and precipitation; 2) calculate anomaly for precipitation and delta for temperature; 3) apply 

thin-plate splines interpolation (TPS) to create 1km surface of precipitation anomaly and temperature delta; 4) multiply 

anomaly or add delta to historical climates based on WorldClim dataset (Fig. 1). 

First, using monthly time series from CRU, UDEL and GPCC datasets, we calculated 30-yr means as a baseline (1970-2000), 160 

for each climatology dataset and each variable. We used 1970-2000 as baseline period, for consistency with WorldClim 

Historical Climate Data V2. Next, we calculated 30-yr means for each month and each 30-yr present-day period in 1979-2017. 

We then calculated anomalies as proportional differences between present-day and baseline in total precipitation and delta as 

difference in temperature. To derive 30 arc-second (1-km) anomaly or delta surfaces, we applied thin-plate splines (TPS) 

interpolation (Craven & Wahba, 1978; Franke, 1982; Schempp, Zeller, & Duchon, 1977) on precipitation anomaly and 165 

temperature delta. TPS has been widely used in climate science (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005; Navarro-

Racines et al., 2020) as it produced a smooth and continuous surface, which is infinitely differentiable. Last, we multiplied the 

change factor or added the delta to the WorldClim (1970-2000) data to get downscaled present-day monthly climate data. 

Our future Köppen-Geiger map series are based on an ensemble of maps derived from the CCAFS bias-corrected and 

downscaled climate projections, which include 35 CMIP5 GCMs, and 4 RCPs (Navarro-Racines et al., 2020). Large 170 

misclassifications exist within the GCMs as detected in previous assessment of large areas ranging between 20-50% of the 

total land area (Cui, Liang, & Wang, 2021). Deficiencies in model physics are also more likely to contribute to uncertainties 

in the maps than grid size or reference dataset limitations (Tapiador, Moreno, & Navarro, 2019). Multi-model mean and delta-

change method can mitigate the bias effects from the threshold-based classification scheme and have been utilized to simulate 

better results of climate classification (Hanf, Körper, Spangehl, & Cubasch, 2012). Therefore, we chose the CCAFS bias-175 

corrected and downscaled CMIP5 projections (Navarro-Racines et al., 2020) to reduce the amplified errors due to uncertainty 

of climate projections. Navarro-Racines et al. (2020) interpolated anomalies of original GCM outputs using thin plate spline 

spatial interpolation to achieve a baseline climate with a 1km surface. Then they applied delta method to the interpolated 

baseline climates to correct the model biases (Hay, Wilby, & Leavesley, 2000; Ho, Stephenson, Collins, Ferro, & Brown, 

2012).  180 
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3.3 Data Integration 

 

Figure 2. Step by step process to generate Köppen-Geiger climate map series.  

The historical Köppen-Geiger climate classification map series was generated using the highest confidence class from an 

ensemble of maps using all combinations of surface air temperature and precipitation products (Fig. 2), as described in Beck 185 

et al. (2018). The highest confidence was given to the most common climate class for each grid cell. The final historical climate 

map series were derived using the climate class with the highest level of confidence in an ensemble of 3 × 3 = 9 classification 

maps based on combinations of the 3 precipitation datasets (CRU, UDEL, and CHELSA) and 3 surface air temperature datasets 

(GPCC, UDEL, and CHELSA). To further test the sensitivity of the method using the climate with the highest level of 

agreement, we incorporated another data integration method using the mean of multiple datasets. We quantified the degree of 190 

confidence placed in the Köppen-Geiger climate map series using the degree of confidence at the grid cell level calculated by 

dividing the occurrence frequency of the climate class with the highest level of agreement by the ensemble size. The calculated 

confidence level can be viewed as the agreement degree in classification resulted derived from different climatology datasets. 

The future Köppen-Geiger climate classification map series under 4 RCPs, were derived based on the most common climate 

class from an ensemble of future climate maps. We generated a future Köppen-Geiger climate classification map for each 195 

climate model projection, using the CCAFS bias-corrected and downscaled CMIP5 GCM dataset. For example, the future 

Köppen-Geiger climate classification map series under RCP8.5 was derived from an ensemble of 30 maps based on 30 CMIP5 

models. The level of confidence was estimated using the ratio between the frequency of the climate class with the highest level 

of agreement in the future map results, and the ensemble size.  
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4 Results and Discussion 200 

4.1 Historical Köppen-Geiger climate maps 

 

Figure 3 Global maps of Köppen-Geiger climate classification for the historical periods (1979-2008, 1981-2010, 1983-2012, 1985-

2014, 1987-2016) and associated classification confidence levels. (a) Historical maps of Köppen-Geiger climate classification and (b) 

confidence levels associated with the Köppen-Geiger climate classification.  205 

Global map series of Köppen-Geiger climate classification for historical periods and associated corresponding confidence 

levels are shown in Figure 3. Based on the distribution of confidence level, over 90% of the land area exhibit high level of 

confidence as classification results based on different climate data show excellent agreement. Relatively lower classification 
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accuracy and large discrepancy in classification results are found espectially in mountainous regions such as Andes Mountains, 

Rocky Mountains, Tibetan Plateau, and major climate transitional zones located in mid and high latitudes of Northern 210 

Hemisphere, Central Africa, and Central Asia.  

 

Figure 4. Present Köppen-Geiger classification and confidence map for 1979-2008 with resolution of 1km for the central Rocky 

Mountains in North America. (a) Climate maps based on the 9 combinations of the 3 precipitation datasets × 3 surface air temperature 

datasets, (b) the final climate map derived from the most common climate class among the 9 climate maps, and (c) confidence level 215 
distribution of the final climate map. 
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Figure 5. Present Köppen-Geiger classification and confidence map for 1979-2008 with resolution of 1km for the Tibetan Plateau. 

(a) Climate maps based on the 9 combinations of the 3 precipitation datasets × 3 surface air temperature datasets, (b) the final climate map 

derived from the most common climate class among the 9 climate maps, and (c) confidence level distribution of the final climate map. 220 

Regional distributions of climatic conditions are largely created by local variation in topography in rugged terrain (Dobrowski 

et al., 2013; Franklin et al., 2013). The climate classification and confidence level maps of mountainous areas of Central Rocky 

Mountains and Tibetan Plateau are shown in Figure 4 and 5 respectively. For each combination of precipitation and surface 

air temperature datasets, we generated a Köppen-Geiger climate classification map (see Fig. 4a and 5a for 1979-2008 maps 

for the central Rocky Mountains and Tibetan Plateau). The final Köppen-Geiger classification map is derived based on the 225 

most common climate type among all the climate maps (Fig. 4b and 5b). We then calculated corresponding confidence levels 

to quantify the uncertainty in the classification maps (Fig. 4c and 5c). The uncertainty in climate classification in mountainous 

areas is attributed to the uncertainty existing in climate data, espectially precipitation data. In rugged terrain, CHELSA 

precipitation data shows more detailed precipitation patterns, causing disagreement in classificaion results of the 3rd level 

climate classes which depict precipitation seasonality. 230 
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4.2 Future Köppen-Geiger climate maps 

 

Figure 6 Global maps of Köppen-Geiger climate classification for the future periods (2020-2049, 2040-2069, 2060-2089, 2070-2099) 

under RCP8.5 and associated classification confidence levels. (a) Future maps of Köppen-Geiger climate classification and (b) confidence 

levels associated with the Köppen-Geiger climate classification. 235 

Future Köppen-Geiger climate classification maps under RCP8.5 and associated confidence levels are shown in Figure 6. 

Indicated by confidence levels, there exist larger uncertainties in the final future climate maps than historical maps, particularly 

at mid and high latitudes. Climate map for the future period of 2070-2099 shows the largest uncertainty compared with the 

other future periods.  
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 240 

Figure 7. Future Köppen-Geiger classification and confidence map for 2070-2099 under RCP8.5 with resolution of 1km for the 

central Rocky Mountains in North America. (a) Climate maps based on 30 GCMs, (b) the final climate map derived from the most 

common climate class among all the 30 climate maps, and (c) confidence level distribution of the final climate map. 
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Figure 8. Future Köppen-Geiger classification and confidence map for 2070-2099 under RCP8.5 with resolution of 1km for the 245 
Tibetan Plateau. (a) Climate maps based on 30 GCMs, (b) the final climate map derived from the most common climate class among all 

the 30 climate maps, and (c) confidence level distribution of the final climate map. 

Future climate classifications derived from the diverse GCM projections for four RCPs, which are inherently uncertain 

(Gleckler, Taylor, & Doutriaux, 2008; Winsberg, 2012), provide a proxy of global distributions of climatic conditions and can 
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represent potential spatial changes in climate zones under global warming. The large uncertainty and strong disagreement in 250 

projected climate classification maps at high latitudes and in regions with rugged terrain can be indicated by relatively low 

confidence levels. Figure 7 and 8 show the future Köppen-Geiger climate classification maps based on GCM projections under 

RCP8.5 and associated confidence levels for the central Rocky Mountains and Tibetan Plateau. We generated a future Köppen-

Geiger climate classification map for each bias-corrected and downscaled CMIP5 GCM projection (see Fig. 7a and 8a for 

2070-2099 maps for the central Rocky Mountains and Tibetan Plateau). Noticeable regional changes in climate zones have 255 

been projected by comparing the 2070-2099 and 1979-2008 climate classification maps (see Fig. 4b and 7b for the central 

Rocky Mountains, and Fig. 5b and 8b for Tibetan Plateau). 
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4.3 Validation 

 

Figure 9. Validation of the historical Köppen-Geiger climate map series (1979-2008, 1980-2009, 1981-2010, 1982-2011, 1983-2012, 260 
1984-2013). (a) Small-scale accuracy of historical Köppen-Geiger climate maps. (b) Small-scale precision of historical Köppen-

Geiger climate maps. Climate classificaiton has been applied for each station. The small-scale accuracy and precision are 

calculated based on the classification results of all the stations within the given region, with a minimum of 3 stations in the 5° 

search radius. 
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We validated the historical climate maps using the station observations from Global Historical Climatology Network-Daily 265 

(GHCN-D) (Menne et al., 2012) and Global Summary Of the Day (GSOD) database (National Climatic Data Center et al., 

2015) as reference data. For each station, time series of monthly temperature and precipitation were calculated from the daily 

observations with months with <15 daily values discarded. Then if ≥6 months are present, monthly climatology were 

generated subsequently by averaging the monthly means for the given period, typically 30 years. We discarded stations with 

gap years or missing data in the given 30 years. For each station and each 30-yr period, we applied Köppen-Geiger climate 270 

classification. We evaluated overall classification performance for each climate map using total accuracy, which is defined as 

the percentage of correct classes, and average precision, which is averaged fraction of correct classification for all climate 

classes. Figure 9 shows the small-scale distributions of total accuracy and average precision for historical Köppen-Geiger 

climate map series with 10° grid cells. Due to uneven distributions of weather stations, remote areas in the Pacific islands, 

Central Africa, and Amazon Forest suffer from a lack of station observations or an underrepresented validation results. Overall, 275 

the spatial patterms of total accuracy and average precision show good correspondence with classification confidence levels, 

indicating a potential of confidence level to represent classification uncertainty. 

4.4 Sensitivity analysis 

Table 3 Accuracy of the 1km Köppen-Geiger climate map series derived from different combinations of temperature and precipitation dataset 

input, and by different means of integration of multiple datasets. The values represent overall accuracy based on the technical validation using ground 

observation as reference.  
 

Temperature CHELSA, Downscaled CRU and UDEL Downscaled CRU and UDEL CHELSA 

Precipitation CHELSA, Downscaled GPCC and UDEL Downscaled GPCC and UDEL CHELSA 

Integration of 

multiple datasets 
Highest level of agreement Mean of multiple datasets Highest level of agreement Mean of multiple datasets - 

1979-2008 83.25% 83.66% 83.13% 83.33% 79.72% 

1980-2009 82.96% 83.44% 82.74% 82.78% 79.14% 

1981-2010 82.63% 82.86% 81.95% 82.38% 78.03% 

1982-2011 82.42% 82.73% 81.93% 82.11% 78.47% 

1983-2012 81.48% 82.34% 81.14% 81.49% 78.32% 

1984-2013 81.62% 82.05% 80.84% 81.27% 78.26% 

1985-2014 - - 80.23% 80.86% - 

1986-2015 - - 79.79% 80.58% - 

1987-2016 - - 78.76% 79.62% - 

1988-2017 - - - 78.65% - 

Average 82.39% 82.85% 81.17% 81.31% 78.66% 

1980-2017 

(Beck et al. 2018) 77.65% 
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We tested sensitivity of the climate map series using different combinations of temperature and precipitation dataset, and 

different method of data integration (Table 3). Results indicated an average total accuracy of the 1km Köppen-Geiger 280 

classification maps generated with all the CHELSA, donwscaled CRU, GPCC and UDEL datasets and with only downscaled 

CRU, GPCC, UDEL datasets as 82.39% and 81.17% respecively. Using the mean of multiple datasets which can potentially 

reduce the data bias, led to better classification results. Compared with the recently published Köppen-Geiger climate map 

product, Beck et al. (2018), the newly generated Köppen-Geiger climate map series showed greater accuracy in total. 

 285 

Figure 10. Validation of downscaled data of bioclimatic variables and the generated Köppen-Geiger climate map.  

We conducted sensitivity analysis of the Köppen classification scheme and tested multiple time scales, 10-yr, 20-yr, and 30-

yr. The selection criteria of station observations were adjusted accordingly based on the time scale utilized. Duplicate 

stations in the two datasets were further removed. Accuracy results exhibited decreasing accuracy for shorter time scale (Fig. 

10). Further, we estimated the total accuracy for Köppen-Geiger climate classification maps from previous studies, Beck et 290 

al., (2018) Kriticos et al., (2012), Peel et al., (2007), and Kottek et al., (2006), using the same validation dataset and 

consistent Köppen-Geiger climate classification scheme the corresponding study applied. The validation results demonstrate 

that the new Köppen-Geiger maps have comparatively higher overall accuracy than all the previous studies. 
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4.5 Regional and continental scale comparison  

 295 
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Figure 11. Köppen-Geiger climate classification maps from our study and previous studies, Beck et al., 2018, and Kriticos et al., 

2012, associated forest cover and elevation maps, for regions with large spatial gradients in climates or sharp elevation gradients. 

(a) Central and eastern Africa, (b) Tibetan Plateau, (c) central Rocky Mountains, (d) high latitudes in North America, (e) Europe, and (f) 300 
central Andes. The forest cover map is the 30m Landsat-based forest cover map for year 2000 (Hansen et al., 2013). The elevation data is 

the NASA SRTM Digital Elevation 30m data (Farr et al., 2007). The representative period of each map is listed in parentheses.  

At the regional and continental scale, we compared our Köppen-Geiger climate classification maps with previous map products 

for regions with large spatial gradients in climates, including central and eastern Africa, Europe, North America, and regions 

with sharp elevation gradients, including Tibetan Plateau, central Rocky Mountains, central Andes. The high-resolution 305 

Köppen-Geiger maps from two previous studies, Beck et al., (2018), and Kriticos et al., (2012) are used to evaluate the new 

Köppen-Geiger climate classification maps. To show the agreement between the improved Köppen-Geiger climate 

classification maps and regional lanscape distributions, we showed maps of forest cover, and elevation distribution for these 

regions. The forest cover map we used is the 2000 30m Landsat-based forest cover map (Hansen et al., 2013). The elevation 

is from the NASA SRTM Digital Elevation 30m data (Farr et al., 2007).  Figure 11 illustrate the enhanced regional details of 310 

the maps. 

Compared with Köppen-Geiger climate maps from previous studies, the series of Köppen-Geiger climate maps from our study 

demonstrate the ability to capture recent changes in spatial distributions of climate zones. For example, our maps can detect 
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the significant changes in the arid (B) ans polar (E) climate zones specifically driven by the accelerated global warming since 

the 1980s (Cui, Liang, & Wang, 2021). Another improvement of the new series of Köppen-Geiger climate maps is the 315 

application of threshold of -3 oC as the boundary of temperate (C) and boreal (D) climate zones, which show better agreement 

with global boreal forest distributions compared with Russell’s modification of 0 oC (1931), which Beck et al., (2018), and 

Kriticos et al., (2012) utilized. Moreover, the new Köppen-Geiger maps show accurate depiction of important topographic 

features and correspond closely with tree lines in the forest cover maps over the regions with complex topography (Fig. 11).  

4.6 Bioclimatic variables 320 

Table 4 List of bioclimatic variables derived from downscaled monthly climate data. 

Bioclimatic Variables Description 

BIO1 Annual mean temperature (oC) 

BIO2 Temperature of the warmest month (oC) 

BIO3 Temperature of the coldest month (oC) 

BIO4 Annual precipitation (mm) 

BIO5 Precipitation of the warmest half year (mm) 

BIO6 Precipitation of the coldest half year (mm) 

BIO7 Precipitation of the driest month (mm) 

BIO8 Precipitation of the driest month in the warmest half year (mm) 

BIO9 Precipitation of the driest month in the coldest half year (mm) 

BIO10 Precipitation of the wettest month (mm) 

BIO11 Precipitation of the wettest month in the warmest half year (mm) 

BIO12 Precipitation of the wettest month in the coldest half year (mm) 

Beyond the Köppen-Geiger climate classification maps, we calculated a set of bioclimatic variables from the monthly climate 

data (see full list in Table 4). The bioclimatic variables at 1-km sptial resolution can capture regional environmental variations 

expecially in mountainous areas and areas with strong climate variations. These bioclimatic variables can be used in studies 

of environmental, agricultural and biological sciences, for example, development of species distribution modeling and 

assessment of biological impacts induced by climate change. The variables provide descriptions of annual averages, and 325 

seasonality of climates. The warmest half year or the coldest half year is defined as the period of the warmest six months or 

the coldest six months.  
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Figure 12. Scatter plots of the station observations and estimates of bioclimatic variables from downscaled climatology data. The 

bioclimatic variables include the 30-yr means of annual temperature (MAT), the air temperature of the coldest month (Tcold), the air 330 
temperature of the warmest month (Thot),  total annual precipitation (MAP), precipitation of the summer half year (Psumm), and 

precipitation of the winter half year (Pwint). (a) Scatter plots of the station observations and downscaled temperature data from CHELSA, 

CRU, UDEL datasets, and (b) and downscaled precipitation data from CHELSA, GPCC, UDEL datasets.  

We validated the bioclimatic variables from different datasets with station data from GHCN-D (Menne et al., 2012) and GSOD 

database (National Climatic Data Center et al., 2015) (Fig. 12). We calculated a linear regression model for the 12 bioclimatic 335 

variables for each 10° grid cell (Fig. 13). The 30-yr average mean annual temperature (MAT) from CHELSA dataset shows 

overall highest fit with station data, with CRU, and UDEL datasets showing smaller, but still strong correlation with station 

data. The 30-yr average mean annual precipitation (MAP) estimates from GPCC, UDEL, and CHELSA datasets have 

considerable uncertainties, indicated by relatively low correlation with station observations. In current precipitation datasets, 

there exist a varied degree of discrepancy in annual estimates over multiple time scales (Sun et al., 2018). 340 
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Figure 13. Small-scale comparison of annual temperature (MAT) and mean annual precipitation (MAP) variables derived from 

different datasets with station data. Small-scale correlation between the 30-yr average mean annual temperature (MAT) and mean annual 

precipitation (MAP) data and ground observations for three historical periods (1979-2008, 1981-2010, 1983-2012). The station data is from 345 
GHCN-D and GSOD database. The figure shows the R2 value for 10° grid cells.  (a), (b), and (c) are MAT results. (d), (e), and (f) are MAP 

results. (a) MAT is calculated from downscaled monthly temperature data from CRU dataset, (b) from UDEL dataset and (c) from CHELSA 

dataset. (d) MAP is calculated from downscaled monthly precipitation data from GPCC dataset, (e) from UDEL dataset and (f) from 

CHELSA dataset. 
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4.7 Application example: detection of area changes in climate zones 350 

 

Figure 14. Area changes in climate zones since the 1980s on a global scale under RCP8.5. The error bars for historical periods (1979-

2017) indicate standard error in the Köppen-Geiger classification results based on the 9 combinations of observational air temperature and 

precipitation datasets and for future periods (2020-2099), the error bars indicate standard error in the Köppen-Geiger classification results 

based on the 30 GCMs. 355 

Changes in climatic conditions under global warming have significant impacts on biodiversity and ecological systems. Area 

changes of climate zones can indicate spatial shrinkage or expansion of analogous climatic conditions, potentially implying 

threats for species range contraction or opportunities for range expansion (Cui, Liang, & Wang, 2021). To examine the area 

changes of climate zones, we calculated the total area covered by each climate type for each historical and future periods 

under high-emission RCP8.5 scenario (Fig. 14). Our results of changes in area occupied by different climate zones 360 

demonstrate good agreement with results from previous studies (Chan & Wu, 2015). Results show that accelerated 

anthropogenic global warming since the 1980s has caused large-scale changes in climate zones and the shifts into warmer 

and drier climates are projected in this century. The tropical and arid climates are expanding into large areas in mid latitudes 

whereas the high-latitude climates will experience significant area shrinkage. 
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5 Conclusion 365 

Changes in broad-scale climatic conditions, driven by anthropogenic global warming, lead to the redistribution of species 

diversity and the reorganization of ecosystems. Distributions of the Earth’s climatic conditions have been widely characterized 

based on the Köppen climate classification system. Köppen climate classification maps require fine resolutions of at least 1-

km to detect relevant microrefugia and promote effective conservation. Studies examining recent and future interannual or 

interdecadal changes in climate zones at regional scale needs more accurate depiction of fine-grained climatic conditions, 370 

continuous and longer temporal coverage. 

We presented an improved long-term Köppen-Geiger climate classification map series for ten historical 30-yr periods in 1979-

2017 and four future 30-yr periods in 2020-2099 under RCP2.6, 4.5, 6.0 and 8.5. To improve the classification accuracy and 

achieve a resolution as fine as 1-km, we combined multiple datasets, including WorldClim V2, CHELSA V1.2, CRU TS v4.03, 

UDEL, GPCC datasets and bias-corrected downscaled CMIP5 model simulations from CCAFS. The historical climate maps 375 

are based on the most common climate type from an ensemble of climate maps derived from combinations of observational 

climatology datasets. The future climate maps are based on an ensemble of climate maps derived from 35 GCMs. We estimated 

the corresponding confidence levels to quantify the uncertainty in climate maps. We also calculated 12 bioclimatic variables 

at the same 1-km resolution using these climate datasets for the same historical and future periods to provide data of annual 

averages, seasonality, and stressful conditions of climates. 380 

To validate the Köppen-Geiger climate classification maps, we used the station observations from GHCN-D and GSOD 

database. Our validation results show that the new Köppen-Geiger maps have comparatively higher overall accuracy than all 

the previous studies. Although the new maps exhibit improved overall accuracy, relatively lower confidence level and larger 

discrepancy in classification results are found especially in mountainous regions and major climate transitional zones located 

in mid and high latitudes. The confidence levels can provide a useful quantification of classification uncertainty. 385 

Compared with climate maps from previous studies with a single present-day period, the series of Köppen-Geiger climate 

maps from our study demonstrate the ability to capture recent and future projected changes in spatial distributions of climate 

zones. On regional and continental scale, the new maps show accurate depictions of topographic features and correspond 

closely with vegetation distributions. Our Köppen-Geiger climate classificaion maps can offer a descriptive and ecological 

relevant way to provide insights into changes in spatial distributions of climate zones. 390 

One of the limitations is that the future of Köppen-Geiger climate maps built on dowscaled climate model projections exsit 

unaviodable uncertainties. The classification agreement levels of GCMs are relatively low at high latitudes and in regions with 

rugged terrain. The main sources of model discrepancies and uncertainties are deficiencies in model physics and varied model 

resolution. The climate model outputs have coarse spatial resolution varying from 70-400 km and cannot well represent future 

climate change at the same scale of 1-km as our baseline climatology. Through bias-corretion and donwscaling methods, we 395 

https://doi.org/10.5194/essd-2021-186

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 3 June 2021
c© Author(s) 2021. CC BY 4.0 License.



27 

 

made assumptions that local relationships between climatic variables remain constant across different scales, leading to a 

compromise between spatial scale and climate model physics.  

We also tested the sensitivity of classification results to different time scale, dataset input, and data integration methods. Results 

show that 30-yr time scale exhibited the highest accuacy results. Moreover, using the mean of multiple datasets from CHELSA, 

CRU, UDEL, and GPCC could lead to better classification results. Last, we provided a heuristic example which used climate 400 

classification map series to detect the long-term area changes of climate zones, showing how the new Köppen-Geiger climate 

classification map series can be applied in climate change studies. With improved accuracy, high spatial resolution, long-term 

continuous time coverage, this global dataset of Köppen-Geiger climate classification and bioclimatic variables can be used to 

in conjunction with species distribution models to promote biodiversity conservation, and to analyse and identify recent and 

future interannual or interdecadal changes in climate zones on a global or regional scale. 405 

Data Availability 

This high-resolution global dataset of Köppen-Geiger climate classification and bioclimatic variables dataset for historical 

periods in 1979-2017 is available at http://doi.org/10.5281/zenodo.4546140 (Cui, Liang, Wang, & Liu, 2021b). The dataset 

for future periods in 2020-2100 is available at http://doi.org/10.5281/zenodo.4542076 (Cui, Liang, Wang, & Liu, 2021a).  
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