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Abstract.  

The Köppen-Geiger classification scheme provides an effective and ecologically meaningful way to characterize climatic 

conditions and has been widely applied in climate change studies. Significant changes in the Köppen climates have been 

observed and projected in the recent two centuries. Current accuracy, temporal coverage, spatial and temporal resolution of 

historical and future climate classification maps cannot sufficiently fulfil the current needs of climate change research. 10 

Comprehensive assessment of climate change impacts requires a more accurate depiction of fine-grained climatic conditions 

and continuous long-term time coverage. Here, we present a series of improved 1-km Köppen-Geiger climate classification 

maps for six historical periods in 1979-2013 and four future periods in 2020-2099 under RCP2.6, 4.5, 6.0, and 8.5. The 

historical maps are derived from multiple downscaled observational datasets and the future maps are derived from an ensemble 

of bias-corrected downscaled CMIP5 projections. In addition to climate classification maps, we calculate 12 bioclimatic 15 

variables at 1-km resolution, providing detailed descriptions of annual averages, seasonality, and stressful conditions of 

climates. The new maps offer higher classification accuracy than existing climate map products and demonstrate the ability to 

capture recent and future projected changes in spatial distributions of climate zones. On regional and continental scales, the 

new maps show accurate depictions of topographic features and correspond closely with vegetation distributions. We also 

provide a heuristic application example to detect long-term global-scale area changes of climate zones. This high-resolution 20 

dataset of the Köppen-Geiger climate classification and bioclimatic variables can be used in conjunction with species 

distribution models to promote biodiversity conservation and to analyze and identify recent and future interannual or 

interdecadal changes in climate zones on a global or regional scale. The dataset referred to as KGClim, is publicly available at 

http://doi.org/10.5281/zenodo.5347837 for historical climate and http://doi.org/10.5281/zenodo.4542076 for future climate. 

1 Introduction 25 

Climate has direct impacts on the processes and functioning of the ecosystem as well as on the distribution of species. (Chen 

et al., 2011; Ordonez and Williams, 2013; Pinsky et al., 2013; Thuiller et al., 2005). The spatial patterns of climates have been 

often identified using the Köppen climate classification system (Köppen, 1931).  

https://doi.org/10.5281/zenodo.5347837
http://doi.org/10.5281/zenodo.4542076


2 

 

The Köppen classification system was designed to map the distribution of the world’s biomes based on the amplitude and 

seasonal phase of annual cycles of surface air temperature and precipitation (Köppen, 1936). Compared with other human 30 

expertise based climate mapping methods (Holdridge, 1947; Thornthwaite, 1931; Walter and Elwood, 1975) and clustering 

approaches (Netzel and Stepinski, 2016), which suffer from a lack in meteorological basis, the Köppen classification 

demonstrates stronger correlation with distributions of biomes and soil types (Bockheim et al., 2005; Rohli et al., 2015b). It 

provides an ecologically relevant and effective method to classify climate conditions by combining seasonal cycles of surface 

air temperature and precipitation (Cui et al., 2021a). 35 

The Köppen classification has been widely applied in biological science, earth and planetary sciences, and environmental 

science (Rubel and Kottek, 2011). It is a convenient and integrated tool to identify spatial patterns of climate distributions and 

to examine relationships between climates and biological systems. It has been found useful for a variety of issues on climate 

change, such as hydrological cycle studies (Peel et al., 2001; Manabe and Holloway, 1975), Arctic climate change (Feng et 

al., 2012; Wang and Overland, 2004), assessment of climate change impacts on ecosystem (Roderfeld et al., 2008), biome 40 

distribution (Rohli et al., 2015b; Leemans et al., 1996) and biodiversity (Garcia et al., 2014). 

There has been a resurgence in the application of the Köppen climate classification in climate change research over the recent 

decades (Cui et al., 2021a). The Köppen climate classification has been used to set up dynamic global vegetation models 

(Poulter et al., 2011; Poulter et al., 2015), to characterize species composition (Brugger and Rubel, 2013), to model the species 

range distribution (Tererai and Wood, 2014; Brugger and Rubel, 2013; Webber et al., 2011), and to analyze the species growth 45 

behavior (Tarkan and Vilizzi, 2015). The Köppen classification has also been applied to detect the shifts in geographical 

distributions of climate zones (Belda et al., 2016; Chan and Wu, 2015; Feng et al., 2014; Mahlstein et al., 2013). It also has 

the potential to aggregate climate information on warmth and precipitation seasonality into ecologically important climate 

classes thereby simplifying spatial variability. This climate classification system adds a new direction to develop climate 

change metrics and can provide support for the growth of species distribution modelling (SDM). 50 

The recent Köppen climate classification maps have a resolution ranging between 0.5° and 1-km (Cui et al., 2021a). Early 

published Köppen climate classification maps have a relatively low resolution of 0.5° (Kottek et al., 2006; Grieser et al., 2006; 

Rubel and Kottek, 2010; Belda et al., 2014; Kriticos et al., 2012). Several map products used interpolation methods to obtain 

a higher resolution of ~0.1° (Peel et al., 2007; Kriticos et al., 2012; Rubel et al., 2017). Fine resolutions of at least 1-km are 

required to detect microrefugia and promote effective conservation. As the only 1-km global climate classification map 55 

product, Beck et al. (2018) provided global climate classification maps for two periods 1980-2016 and 2071-2100 under 

RCP8.5. The maps were derived using climate data from WorldClim V1 and V2 (Fick and Hijmans, 2017), CHELSA V1.2 

(Karger et al., 2017), and CHPclim V1 (Funk et al., 2015). To represent historical climates, they adjusted the inconsistent 

temporal spans of climatology datasets to the period 1980-2016, by adding interpolated temperature change offsets or 

multiplying precipitation factors, which may lead to biased coverage of the historical period. Current classification accuracy, 60 
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temporal coverage, spatial and temporal resolution of historical and future climate classification maps cannot sufficiently fulfil 

the current needs of climate change research. Significant changes in the Köppen climates have been observed and projected in 

the recent two centuries (Rohli et al., 2015a; Belda et al., 2014; Chen and Chen, 2013; Chan and Wu, 2015; Yoo and Rohli, 

2016). Previous studies found that large-scale shifts in climate zones have been observed over more than 5% of the total land 

area since the 1980s, and approximately 20.0% of the total land area is projected to experience climate zone changes under 65 

RCP8.5 by 2100 (Cui et al., 2021a). Detection of recent and future changes in climate zones with the application of the Köppen 

climate maps needs more accurate depiction of fine-grained climatic conditions, continuous and longer temporal coverage. 

This creates the urgent need for global maps of the Köppen climate classification with increased accuracy, finer spatial and 

temporal resolutions. Currently available global observational datasets of temperature and precipitation collected during the 

recent centuries, and the global climate simulations under alternative future climate scenarios have offered the possibility to 70 

create a comprehensive dataset for past and future climates. In this study, we presented an improved long-term Köppen-Geiger 

climate classification map series for 1) six historical 30-yr periods of the observational record (1979-2008,1980-2009, 1981-

2010, 1982-2011, 1983-2012, 1984-2013) and four future 30-yr periods (2020-2049, 2040-2069, 2060-2089, 2070-2099) under 

four RCPs (RCP2.6, 4.5, 6.0 and 8.5). To improve the classification accuracy and achieve a resolution as fine as 1-km (30 arc-

second), we combined multiple datasets, including WorldClim V2 (Fick and Hijmans, 2017), CHELSA V1.2 (Karger et al., 75 

2017), CRU TS v4.03 (New et al., 2000), UDEL (Willmott and Matsuura, 2001), GPCC datasets (Beck et al., 2005) and bias-

corrected downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations (Navarro-Racines et al., 

2020) (Table 1). We used the WorldClim Historical Climate Data V2 (Fick and Hijmans, 2017) to downscale the 0.5° 

climatology datasets including CRU, UDEL and GPCC, and derive high resolution climate data for the historical periods. To 

determine the final climate class, we used the climate class with the highest agreement level from an ensemble of climate maps 80 

derived from different combinations of surface air temperature and precipitation products, as implemented in Beck et al. 

(2018). In addition to the Köppen-Geiger climate maps, we also calculated 12 bioclimatic variables at the same 1-km resolution 

using these climate datasets for the same historical and future periods. This dataset can be used to in conjunction with SDMs 

to promote biodiversity conservation, or to map plant functional type distributions for earth system model simulations, or to 

analyse and identify recent and future changes in climate zones on a global or regional scale. 85 

To validate the Köppen-Geiger climate classification maps, we used the station observations from Global Historical 

Climatology Network-Daily (GHCN-D) (Menne et al., 2012), and Global Summary Of the Day (GSOD) (National Climatic 

Data Center et al., 2015) database. At the regional and continental scale, we compared our Köppen-Geiger climate 

classification maps with previous map products, associated maps of forest cover, and elevation distribution, for 1) regions with 

large spatial gradients in climates, including central and eastern Africa, Europe, North America, and 2) regions with sharp 90 

elevation gradients, including Tibetan Plateau, central Rocky Mountains, central Andes. Further, we conducted sensitivity 

analysis with respect to classification temporal scale, dataset input, and data integration methods. We also provided a heuristic 
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example which used climate classification map series to detect the long-term area changes of climate zones, showing how the 

Köppen-Geiger climate classification map series can be applied in climate change studies. 

2 Datasets 95 

Table 1 Climatology datasets to generate present global maps of the Köppen climate classification with varied spatial resolutions 

Dataset Usage 
Spatial 

Res. 

Temporal 

Span 
Variable Source and Description 

Present Köppen classification map series with resolution of 30 arc-second (1km) 

CRU Map Input 0.5° 1979-2017 T Climatic Research Unit (CRU) TS v4.03 

UDEL Map Input  0.5° 1979-2017 T, P U. of Delaware Precipitation and Air Temperature 

WorldClim Downscaling 0.0083° 1970-2000 T, P WorldClim Historical Climate Data V2 

CHELSA Map Input  0.0083° 1979-2013 T, P Climatologies at high resolution for the earth's land surface areas (CHELSA) 

GPCC Map Input  0.5° 1979-2016 P Global Precipitation Climatology Centre (GPCC) 

PREC/L Data Selection 0.5° 1979-2012 P NOAA's PRECipitation REConstruction over Land (PREC/L) 

GHCN_CAMS Data Selection 0.5° 1979-2017 T GHCN_CAMS Gridded 2m Temperature (Land) 

Future Köppen classification map series with resolution of 30 arc-second (1km) 

CMIP5  Map Input  0.0083° 2020-2100 T, P CCAFS-Climate Statistically Downscaled Delta Method CMIP5 data 

WorldClim  Downscaling  0.0083° 1970-2000 T, P WorldClim Historical Climate Data V2 

Table 1 lists the climatology datasets with global coverage and on a monthly time step, used to generate historical and future 

Köppen-Geiger climate map series. The present 1-km Köppen-Geiger classification map series for 1979-2013 was derived 

from the Climatologies at High-resolution for the Earth's Land Surface Areas (CHELSA) V1.2 (Karger et al., 2017), 

WorldClim Historical Climate Data V2 (Fick and Hijmans, 2017) and the statistically downscaled Climatic Research Unit 

(CRU) TS v4.03 (New et al., 2000), University of Delaware Precipitation and Air Temperature (UDEL) (Willmott and 100 

Matsuura, 2001) and Global Precipitation Climatology Centre (GPCC) (Beck et al., 2005) datasets. To decide the datasets to 

use, we conducted a sensitivity analysis on the input climatology datasets and utilized monthly air temperature datasets from 

CRU, UDEL, GHCN_CAMS Gridded 2m Temperature (Fan and Dool, 2008) and monthly precipitation datasets from GPCC, 

UDEL, NOAA's PRECipitation REConstruction over Land (PREC/L) (Chen et al., 2002). Evaluation results indicated that 

incorporating only CRU, UDEL temperature datasets and UDEL, GPCC precipitation datasets and excluding GHCN_CAMS 105 

and PREC/L datasets led to higher accuracy in the classification results. Therefore, we chose CRU, UDEL, and GPCC datasets 

as the classification system input to boost the final accuracy. 

To explicitly correct topographic effect, we used 1-km CHELSA V1.2 and WorldClim V2 datasets in addition to the 0.5° 

resolution datasets. The CHELSEA dataset statistically downscaled temperature data from the ERA-Interim climatic reanalysis. 

For precipitation data, it incorporated multiple orographic predictors and performed bias correction (Karger et al., 2017). With 110 

major topo-climatic drivers considered, the CHELSA dataset demonstrated good performance in ecological science studies. 
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CHELSA data exhibited comparable accuracy for temperatures and better predicted precipitation patterns based on the 

validation results (Karger et al., 2017). 

We produced the future Köppen classification map series using the CCAFS climate statistically bias-corrected and downscaled 

CMIP5 projections (Navarro-Racines et al., 2020). The CCAFS presented a global database of future climates developed by 115 

a climate model bias correction method based on the CMIP5 GCM simulations (Taylor et al., 2012) archive, coordinated by 

the World Climate Research Programme in support of the IPCC Fifth Assessment Report (AR5) (Hartmann et al., 2013). The 

total is 35 GCMs, and all RCPs, RCP 2.6, 4.5, 6.0 and 8.5 (Table S1). Projections are available at varied coarse scales (70–

400km). To achieve high-resolution (1km) climate representations, downscaling method has been applied with the use of the 

WorldClim data (Fick and Hijmans, 2017) . Technical evaluation showed that the bias-correction method that CCAFS data 120 

applied reduced climate model bias by 50–70%, which could potentially address the bias issue in model simulations for the 

threshold-based Köppen classification scheme (Navarro-Racines et al., 2020). 

3 Methodology 

3.1 Köppen-Geiger climate classification 

Table 2 Criteria of the Köppen-Geiger climate classification with temperature in oC and precipitation in mm. 

1st 2nd 3rd Description Criterion 

A    Tropical Not (B) & Tcold≥18 

f  - Rainforest Pdry≥60 

m  - Monsoon Not (Af) & Pdry≥100-MAP/25 

w  - Savannah Not (Af) & Pdry<100-MAP/25 

B    Arid MAP<10×Pthreshold 

W  - Desert MAP<5×Pthreshold 

S  - Steppe MAP≥5×Pthreshold 

  h -- Hot MAT≥18 

  k -- Cold MAT<18 

C    Temperate Not (B) & Thot>10 & -3 <Tcold<18 

w  - Dry winter Pwdry<Pswet/10 

s  - Dry summer Not (w) & Psdry<40 & Psdry<Pwwet/3 

f  - Without dry season Not (s) or (w) 

  a -- Hot summer Thot≥22 

  b -- Warm summer Not (a) & Tmon10≥4 

  c -- Cold summer Not (a or b) & 1≤Tmon10<4 

D    Boreal Not (B) & Thot>10 & Tcold≤-3  

w  - Dry winter Pwdry<Pswet/10 
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s  - Dry summer Not (w) & Psdry<40 & Psdry<Pwwet/3 

f  - Without dry season Not (s) or (w) 

  a - Hot summer Thot≥22 

  b - Warm summer Not (a) & Tmon10≥4 

  c - Cold summer Not (a), (b) or (d) 

  d - Very cold winter Not (a) or (b) & Tcold<-38 

E    Polar Not (B) & Thot≤10 

T  - Tundra Thot>0 

F  - Frost Thot≤0 

MAT = mean annual air temperature (°C); Tcold = the air temperature of the coldest month (°C); Thot = the air temperature of the 

warmest month (°C); Tmon10 = the number of months with air temperature >10 °C; MAP = mean annual precipitation (mm 

y−1); Pdry = precipitation in the driest month (mm month−1); Psdry = precipitation in the driest month in summer (mm 

month−1); Pwdry = precipitation in the driest month in winter (mm month−1); Pswet = precipitation in the wettest month in summer (mm 

month−1); Pwwet = precipitation in the wettest month in winter (mm month−1); Pthreshold=2×MAT if >70% of precipitation falls in 

winter, Pthreshold=2×MAT+28 if >70% of precipitation falls in summer, otherwise Pthreshold=2×MAT+14.  

The Köppen climate classification scheme was first introduced by Wladimir Köppen (Köppen, 1936). It is one of the earliest 125 

quantitative classification systems of Earth’s climates. Its modification, the Köppen-Geiger classification (KGC) was first 

published in 1936 (Köppen, 1936), developed by Wladimir Köppen and Rudolf Geiger. KGC identifies climates based on their 

effects on plant growth from the aspects of warmth and aridity, and classifies climate into five main climate classes and 30 

subtypes (Rubel and Kottek, 2011). The five main climate zones distinguish between plants of the tropical climate zone (A), 

the arid climate zone (B), the temperate climate zone (C), the boreal climate zone (D) and the polar climate zone (E), referring 130 

to the five major climate zones (Sanderson, 1999). All these main climate zones are thermal zones except the arid (B) climate 

zone, which is defined based on precipitation threshold. 

This research followed the Köppen-Geiger climate classification as described in Kottek et al. (2006), and Rubel and Kottek 

(2010). This latest version of the KGC scheme was first presented by Geiger (1961) (Table 2). Several existing Köppen-Geiger 

climate map products, including Peel et al. (2007), Kriticos et al. (2012), and Beck et al. (2018) applied the KGC scheme 135 

modified following Russell (1931). Russell (1931) adjusted the definition of the boundary of temperate (C) and boreal (D) 

climate zones using the coldest monthly temperature > 0 °C instead of >-3 °C. This threshold was proposed because the 0°C 

line fits the distribution of the topographical features and vegetation in western United States, where at that time meteorological 

stations were sparsely distributed (Jones, 1932). However, the application of 0°C boundary to the global climates has not been 

validated. Therefore, this research didn’t utilize the Russell’s modification (1931) and followed the latest version KGC 140 

proposed by Geiger (1961).  
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3.2 Statistical downscaling 

 

Figure 1. Illustration of the downscaling process. (a) Anomaly downscaling method with January total precipitation from GPCC dataset 

and (b) delta downscaling method with January temperature from CRU dataset. Baseline (1970-2000) and present-day climate data (e.g. 145 
1979-2008) are from CRU, UDEL, or GPCC datasets, which have a coarse spatial resolution of 0.5o. Precipitation anomaly is change factor 

of monthly precipitation from baseline to present-day climates. Temperature delta is change in monthly air temperature from baseline to 

present-day climates. WorldClim (1970-2000) climate data is adjusted by multiplying 30 arc-second interpolated anomaly (for precipitation) 

or adding 30 arc-second interpolated delta (for temperature) to generate the downscaled climate surfaces with 30 arc-second resolution. 

Precipitation values in mm/month and temperature values in oC. 150 

Due to limited number of available observational datasets with high resolution and long-term continuous temporal coverage, 

the research implemented the delta method by applying a delta change or change factor (Hay et al., 2000; Wilby and Wigley, 

1997) onto the WorldClim historical observations (Fick and Hijmans, 2017) to achieve 30-yr average climatology data with a 
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1-km resolution based on the CRU, UDEL and GPCC datasets. The delta method is a statistical downscaling method that 

assumes that the relationship between climatic variables remain relatively constant at local scale (Wilby and Wigley, 1997). 155 

We applied delta method to downscale the long-term (30-yr) mean climates using coarse-resolution monthly climatology 

datasets. The delta changes or change factors are calculated as the differences between the 30-yr long-term means of 

temperature or precipitation of baseline (1970-2000) and present-day climates. The delta method comprises the following four 

steps: 1) calculate 30-yr averages for baseline (1970-2000) and present day of monthly temperature and precipitation; 2) 

calculate anomaly for precipitation and delta for temperature; 3) apply thin-plate splines interpolation (TPS) to create 1km 160 

surface of precipitation anomaly and temperature delta; 4) multiply anomaly or add delta to historical climates based on 

WorldClim dataset (Fig. 1). 

First, using monthly time series from CRU, UDEL and GPCC datasets, we calculated 30-yr means as a baseline (1970-2000), 

for each climatology dataset and each variable. We used 1970-2000 as baseline period, for consistency with WorldClim 

Historical Climate Data V2. Next, we calculated 30-yr means for each month and each 30-yr present-day period in 1979-2013 165 

We then calculated anomalies as proportional differences between present-day and baseline in total precipitation and delta as 

difference in temperature. To derive 30 arc-second (1-km) anomaly or delta surfaces, we applied thin-plate splines (TPS) 

interpolation (Franke, 1982; Schempp et al., 1977; Craven and Wahba, 1978) on precipitation anomaly and temperature delta. 

TPS has been widely used in climate science (Hijmans et al., 2005; Navarro-Racines et al., 2020) as it produced a smooth and 

continuous surface, which is infinitely differentiable. Last, we multiplied the change factor or added the delta to the WorldClim 170 

(1970-2000) data to get downscaled present-day monthly climate data. 

Our future Köppen-Geiger map series are based on an ensemble of maps derived from the CCAFS bias-corrected and 

downscaled climate projections, which include 35 CMIP5 GCMs, and 4 RCPs (Navarro-Racines et al., 2020). Large 

misclassifications exist within the GCMs as detected in previous assessment of large areas ranging between 20-50% of the 

total land area (Cui et al., 2021a). Deficiencies in model physics are also more likely to contribute to uncertainties in the maps 175 

than grid size or reference dataset limitations (Tapiador et al., 2019). Multi-model mean and delta-change method can mitigate 

the bias effects from the threshold-based classification scheme and have been utilized to simulate better results of climate 

classification (Hanf et al., 2012). Therefore, we chose the CCAFS bias-corrected and downscaled CMIP5 projections (Navarro-

Racines et al., 2020) to reduce the amplified errors due to uncertainty of climate projections. Navarro-Racines et al. (2020) 

interpolated anomalies of original GCM outputs using thin plate spline spatial interpolation to achieve a baseline climate with 180 

a 1km surface. Then they applied delta method to the interpolated baseline climates to correct the model biases (Hay et al., 

2000; Ho et al., 2012).  
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3.3 Data Integration 

 

Figure 2. Step by step process to generate Köppen-Geiger climate map series.  185 

The historical Köppen-Geiger climate classification map series was generated using the highest confidence class from an 

ensemble of maps using all combinations of surface air temperature and precipitation products (Fig. 2), as described in Beck 

et al. (2018). The highest confidence was given to the most common climate class for each grid cell. The final historical climate 

map series were derived using the climate class with the highest level of confidence in an ensemble of 3 × 3 = 9 classification 

maps based on combinations of the 3 precipitation datasets (CRU, UDEL, and CHELSA) and 3 surface air temperature datasets 190 

(GPCC, UDEL, and CHELSA). To further test the sensitivity of the method using the climate with the highest level of 

agreement, we incorporated another data integration method using the mean of multiple datasets. We quantified the degree of 

confidence placed in the Köppen-Geiger climate map series using the degree of confidence at the grid cell level calculated by 

dividing the occurrence frequency of the climate class with the highest level of agreement by the ensemble size. The calculated 

confidence level can be viewed as the agreement degree in classification resulted derived from different climatology datasets. 195 

The future Köppen-Geiger climate classification map series under 4 RCPs, were derived based on the most common climate 

class from an ensemble of future climate maps. We generated a future Köppen-Geiger climate classification map for each 

climate model projection, using the CCAFS bias-corrected and downscaled CMIP5 GCM dataset. For example, the future 

Köppen-Geiger climate classification map series under RCP8.5 was derived from an ensemble of 30 maps based on 30 CMIP5 
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models. The level of confidence was estimated using the ratio between the frequency of the climate class with the highest level 200 

of agreement in the future map results, and the ensemble size.  

3.4 Validation 

We validated the historical climate maps using the station observations from Global Historical Climatology Network-Daily 

(GHCN-D) (Menne et al., 2012) and Global Summary Of the Day (GSOD) database (National Climatic Data Center et al., 

2015) as reference data. GHCN-D dataset provides daily climate data over global land areas and contains records from over 205 

80,000 weather stations worldwide, about one third of which have both temperature and precipitation data available (Menne 

et al., 2012). GSOD dataset includes global daily summary data over 9,000 stations, of which the historical data from 1973 

being the most complete (National Climatic Data Center et al., 2015). For each station, time series of monthly temperature and 

precipitation were calculated from the daily observations with months with <15 daily values discarded. Then if ≥6 months 

are present, monthly climatology were generated subsequently by averaging the monthly means for the given 30-yr period. 210 

We removed duplicate stations in the two datasets and discarded stations with gap years or missing data in the given 30 years. 

For each station and each 30-yr period, we applied the Köppen-Geiger climate classification, and then evaluated overall 

classification performance for each climate map using total accuracy, which is defined as the percentage of correct classes, 

and average precision, which is averaged fraction of correct classification for all climate classes.  

Using the same validation datasets and station selection process, we also evaluated the previous climate maps from Beck et 215 

al., (2018) Kriticos et al., (2012), Peel et al., (2007), and Kottek et al., (2006). We applied the same Köppen-Geiger climate 

classification criteria described in the preivous studies to assess the overall accuracy of the map products. To further validate 

the climate classification results, we performed sensitivity analysis on the data integration method, the climate classificaiton 

time scale, and climatology dataset input, using the same validation datasets from GHCN-D and GSOD. In addition, we 

compared the climate classification results with forest cover and elevation maps, and with the two high-resolution comparable 220 

climate map products, Beck et al., (2018) (1-km) and Kriticos et al., (2012) (0.167 o), at regional and continental scale. The 

forest cover map we used is the 2000 30m Landsat-based forest cover map (Hansen et al., 2013). The elevation data is from 

the NASA SRTM Digital Elevation 30m data (Farr et al., 2007).   

4 Results and Discussion 

4.1 Historical Köppen-Geiger climate maps 225 
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Figure 3 Global maps of the Köppen-Geiger climate classification for the historical periods (1979-2008, 1980-2009, 1981-2010, 1982-

1011, 1983-2012, 1984-2013) and associated classification confidence levels. (a) Historical maps of the Köppen-Geiger climate 

classification and (b) confidence levels associated with the Köppen-Geiger climate classification.  230 
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Global map series of the Köppen-Geiger climate classification for historical periods and associated corresponding confidence 

levels are shown in Figure 3. Based on the distribution of confidence level, over 90% of the land area exhibit high level of 

confidence as classification results based on different climate data show excellent agreement. Relatively lower confidence 

level and large discrepancy in classification results are found espectially in mountainous regions such as Andes Mountains, 

Rocky Mountains, Tibetan Plateau, and major climate transitional zones located in mid and high latitudes of Northern 235 

Hemisphere, Central Africa, and Central Asia.  

 

Figure 4. Present Köppen-Geiger classification and confidence map for 1979-2008 with resolution of 1km for the central Rocky 

Mountains in North America. (a) Climate maps based on the 9 combinations of the 3 precipitation datasets × 3 surface air temperature 

datasets, (b) the final climate map derived from the most common climate class among the 9 climate maps, (c) confidence level distribution 240 
of the final climate map, and (d) elevation map for the the central Rocky Mountains in North America. 
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Figure 5. Present Köppen-Geiger classification and confidence map for 1979-2008 with resolution of 1km for the Tibetan Plateau. 

(a) Climate maps based on the 9 combinations of the 3 precipitation datasets × 3 surface air temperature datasets, (b) the final climate map 

derived from the most common climate class among the 9 climate maps, (c) confidence level distribution of the final climate map, and (d) 245 
elevation map for the Tibetan Plateau. 

Regional distributions of climatic conditions are largely created by local variation in topography in rugged terrain (Dobrowski 

et al., 2013; Franklin et al., 2013). The climate classification and confidence level maps of mountainous areas of Central Rocky 

Mountains and Tibetan Plateau are shown in Figure 4 and 5 respectively. For each combination of precipitation and surface 

air temperature datasets, we generated a Köppen-Geiger climate classification map (see Fig. 4a and 5a for 1979-2008 maps 250 

for the central Rocky Mountains and Tibetan Plateau). The final Köppen-Geiger classification map is derived based on the 

most common climate type among all the climate maps (Fig. 4b and 5b). We then calculated corresponding confidence levels 

to quantify the uncertainty in the classification maps (Fig. 4c and 5c). The uncertainty in climate classification in mountainous 

areas is attributed to the uncertainty existing in climate data, espectially precipitation data. In rugged terrain, CHELSA 

precipitation data shows more detailed precipitation patterns, causing disagreement in classificaion results of the 3rd level 255 

climate classes which depict precipitation seasonality. 
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4.2 Validation 
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Figure 6. Validation of the historical Köppen-Geiger climate map series (1979-2008, 1980-2009, 1981-2010, 1982-2011, 1983-2012, 

1984-2013). (a) Small-scale accuracy of historical Köppen-Geiger climate maps. (b) Small-scale precision of historical Köppen-260 

Geiger climate maps. Climate classificaiton has been applied for each station. The small-scale accuracy and precision are 

calculated based on the classification results of all the stations within the given region, with a minimum of 3 stations in the 5° 

search radius. 

We validated the historical climate maps using the station observations from Global Historical Climatology Network-Daily 

(GHCN-D) (Menne et al., 2012) and Global Summary Of the Day (GSOD) database (National Climatic Data Center et al., 265 

2015). Figure 6 shows the small-scale distributions of total accuracy and average precision for historical Köppen-Geiger 

climate map series with 10° grid cells. Due to uneven distributions of weather stations, remote areas in the Pacific islands, 

Central Africa, and Amazon Forest suffer from a lack of station observations or an underrepresented validation results.  

Table 3 Continental and global overall accuracy, average precision, and confidence level of the historical Köppen-Geiger climate map 

series (1979-2008, 1980-2009, 1981-2010, 1982-2011, 1983-2012, 1984-2013). The overall accuracy is calculated as the percentage of correct 

climate classes using ground observations, and average precision is averaged fraction of correct classification for all climate classes. Confidence 

level values shows the 95% confidence interval of the confidence level for each continent, and the whole globe. All the values are presented in 

percentage. 
 

 Region Africa Asia Oceania Europe North America South America Global 

A
cc

u
ra

cy
 

1979-2008 88.24% 84.05% 92.39% 85.11% 79.37% 69.18% 83.25% 

1980-2009 87.67% 85.00% 90.11% 84.24% 76.94% 70.00% 82.96% 

1981-2010 85.71% 84.29% 93.48% 84.23% 75.61% 68.75% 82.63% 

1982-2011 83.78% 85.06% 91.30% 84.10% 74.79% 68.90% 82.42% 

1983-2012 85.43% 83.64% 92.39% 83.51% 71.99% 66.67% 81.48% 

1984-2013 85.81% 81.32% 92.39% 84.38% 71.84% 68.00% 81.62% 

 Average 86.11% 83.89% 92.01% 84.26% 75.09% 68.58% 82.39% 

P
re

ci
si

o
n

 

1979-2008 80.24% 72.77% 92.77% 75.71% 64.41% 66.20% 71.27% 

1980-2009 88.33% 73.40% 89.83% 75.58% 65.15% 68.11% 73.39% 

1981-2010 79.54% 71.19% 94.21% 74.77% 67.75% 67.63% 74.10% 

1982-2011 70.42% 71.34% 91.37% 75.61% 70.62% 66.65% 74.24% 

1983-2012 71.54% 68.99% 92.67% 69.82% 66.73% 64.33% 72.41% 

1984-2013 71.66% 68.08% 92.55% 76.30% 67.95% 65.17% 74.59% 

 Average 76.96% 70.96% 92.23% 74.63% 67.10% 66.35% 73.33% 

C
o
n
fi

d
en

ce
 l

ev
el

 

1979-2008 94.930.002% 92.080.002% 91.820.002% 92.290.002% 94.550.004% 92.310.003% 92.940.002% 

1980-2009 94.910.002% 92.140.002% 91.730.002% 92.390.002% 94.650.004% 92.240.003% 92.950.002% 

1981-2010 94.890.002% 92.170.002% 91.630.002% 92.430.002% 94.510.004% 92.180.003% 92.920.002% 

1982-2011 94.920.002% 92.160.002% 91.480.002% 92.410.002% 94.350.004% 92.130.003% 92.870.002% 

1983-2012 94.960.002% 92.160.002% 91.310.002% 92.540.002% 94.370.004% 92.050.003% 92.870.002% 

1984-2013 94.970.002% 91.220.002% 91.320.002% 92.520.002% 94.450.004% 92.000.003% 92.870.002% 

 Average 94.930.002% 91.990.002% 91.550.002% 92.430.002% 94.480.004% 92.150.003% 92.900.002% 
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We summarized the overall accuracy, average precision, and confidence levels for each continent and the whole globe (Table 270 

3). The global overall classification accuracy of the historical Köppen-Geiger climate maps is estimated to be 82.39% with the 

lowest in South America (68.58%) and highest in Oceania (92.01%). The global average precision, which is calculated as 

averaged fraction of correct classification for all climate classes, is 73.33%. Similar to overall accuracy, South American has 

the lowest precision level, equal to 66.35% and Oceania the highest, 92.23%. Having a good correspondence with accuracy 

and precision values, the continental average confidence levels range from 91.55% to 94.93%, and the global level is 92.90% 275 

(Table S2). Overall, the spatial patterms of total accuracy and average precision show good correspondence with classification 

confidence levels (Figure 3), indicating a potential of confidence level to represent classification uncertainty.  

Table 4 Accuracy of the 1km Köppen-Geiger climate map series derived from different combinations of temperature and precipitation dataset 

input, and by different means of integration of multiple datasets. The values represent overall accuracy based on the technical validation using ground 

observation as reference.  
 

Temperature CHELSA, Downscaled CRU and UDEL Downscaled CRU and UDEL CHELSA 

Precipitation CHELSA, Downscaled GPCC and UDEL Downscaled GPCC and UDEL CHELSA 

Integration of 

multiple datasets 
Highest agreement level Mean of multiple datasets Highest agreement level Mean of multiple datasets - 

1979-2008 83.25% 83.66% 83.13% 83.33% 79.72% 

1980-2009 82.96% 83.44% 82.74% 82.78% 79.14% 

1981-2010 82.63% 82.86% 81.95% 82.38% 78.03% 

1982-2011 82.42% 82.73% 81.93% 82.11% 78.47% 

1983-2012 81.48% 82.34% 81.14% 81.49% 78.32% 

1984-2013 81.62% 82.05% 80.84% 81.27% 78.26% 

1985-2014 - - 80.23% 80.86% - 

1986-2015 - - 79.79% 80.58% - 

1987-2016 - - 78.76% 79.62% - 

1988-2017 - - - 78.65% - 

Average 82.39% 82.85% 81.17% 81.31% 78.66% 

1980-2017 

(Beck et al. 2018) 77.65% 
    

1961-1990 

(Kriticos et al., 

(2012) 64.70%     

Using the same validation datasets from GHCN-D and GSOD, we tested sensitivity of the climate map series using different 

combinations of temperature and precipitation dataset, and different method of data integration (Table 3). Results indicated 

an average total accuracy of the 1km Köppen-Geiger classification maps generated with all the CHELSA, donwscaled CRU, 280 

GPCC and UDEL datasets and with only downscaled CRU, GPCC, UDEL datasets as 82.39% and 81.17% respecively. 
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Using the mean of multiple datasets which can potentially reduce the data bias, led to better classification results. We 

estiomtated the total accuracy of the previous high resolution Köppen-Geiger climate map products using the same 

validation datasets. We applied the same classification system described in the previous studies and the same time period of 

the previous climate map product to process the station observation data and estimate their overall accuracy. Compared with 285 

the previous high resolution Köppen-Geiger climate map products, Beck et al. (2018) and Kriticos et al., (2012), the newly 

generated Köppen-Geiger climate map series showed greater accuracy in total.  

 

Figure 7. Validation of downscaled data of bioclimatic variables and the generated Köppen-Geiger climate map.  

We conducted sensitivity analysis of the Köppen classification scheme and tested multiple time scales, 10-yr, 20-yr, and 30-290 

yr. The selection criteria of station observations were adjusted accordingly based on the time scale utilized. Accuracy results 

exhibited decreasing accuracy for shorter time scale (Fig. 7). Further, we estimated the total accuracy for the Köppen-Geiger 

climate classification maps from previous studies, Beck et al., (2018) Kriticos et al., (2012), Peel et al., (2007), and Kottek et 

al., (2006), using the same validation dataset and consistent Köppen-Geiger climate classification scheme the corresponding 

study applied. The validation results demonstrate that the new Köppen-Geiger maps have comparatively higher overall 295 

accuracy than all the previous studies. 

4.3 Regional and continental scale comparison 
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Figure 8. Köppen-Geiger climate classification maps from previous studies, Beck et al., 2018 (1-km, 1980-2016), and Kriticos et al., 

2012 (0.167o, 1961-1990), our study (1-km, 1979-2009 to 1984-2013), associated forest cover and elevation maps, for regions with 

large spatial gradients in climates or sharp elevation gradients. (a) central Rocky Mountains, (b) Tibetan Plateau, (c) Europe, (d) high 

latitudes in North America, (e) Central and eastern Africa, and (f) central Andes. The forest cover map is the 30m Landsat-based forest cover 310 
map for year 2000 (Hansen et al., 2013). The elevation data is the NASA SRTM Digital Elevation 30m data (Farr et al., 2007). The 

representative period of each map is listed in parentheses.  

At the regional and continental scale, we compared our Köppen-Geiger climate classification maps with previous map products 

for regions with large spatial gradients in climates, including central and eastern Africa, Europe, North America, and regions 

with sharp elevation gradients, including Tibetan Plateau, central Rocky Mountains, central Andes (Fig. 8). We compared the 315 

new 1-km Köppen-Geiger climate classification maps from our study for time periods of 1980-2009, and 1984-2013 with the 

high-resolution Köppen-Geiger maps from two previous studies, Beck et al., (2018), which has a resolution of 1-km and 
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temporal coverage of 1980-2016, and Kriticos et al., (2012), which has a resolution of 0.0167o and covers 1961-1990. The 

Köppen classifications demonstrate good correlation with natural landscape distributions (Belda et al., 2014; Köppen, 1936; 

Trewartha, 1954). To show the agreement between the improved Köppen-Geiger climate classification maps and regional 320 

lanscape distributions, we also showed maps of forest cover, and elevation distribution for these regions. Figure 8 illustrate the 

enhanced regional details of the maps. 

Compared with the Köppen-Geiger climate maps from previous studies with only one time period, the series of the Köppen-

Geiger climate maps from our study demonstrate the ability to capture recent changes in spatial distributions of climate zones. 

For example, our maps can detect the significant changes in the climate zones specifically driven by the accelerated global 325 

warming since the 1980s, for example, the poleward movements of boreal (D) and polar (E) climates in high latitudes in North 

America shown in the comparison between the 1980-2009 and 1984-2013 Köppen-Geiger climate maps (Fig. 8d). Another 

example is the expansion of savanna (Aw) climate into temperature (Cw) climate zone, witnessed in Central Africa (Fig. 8e).  

Another improvement of the new series of the Köppen-Geiger climate maps is the application of threshold of -3 oC as the 

boundary of temperate (C) and boreal (D) climate zones, which show better agreement with global boreal forest distributions 330 

at regional scale compared with Russell’s modification of 0 oC (1931), which Beck et al., (2018), and Kriticos et al., (2012) 

utilized. Based on the comparison results of the Köppen climate zones and the biome classifications from the World Wildlife 

Federation (Rohli et al., 2015b), the boreal (D) climate zone largely corresponds to the distribution of boreal forest (Cui, Liang, 

and Wang, 2021). For example, evidenced in Figure 8c, the new Köppen-Geiger climate classification maps from our study 

show better agreement with the boreal forest in Carpathian Mountains across Central and Eastern Europe than Beck et al., 335 

(2018), and Kriticos et al., (2012). Figure 8d also shows good agreement of the northern boundary of boreal (D) climate zone 

in northern part of Quebec in Canada with the boundary of Canada’s boreal forest.  

Moreover, the new Köppen-Geiger maps can show accurate depiction of important topographic features over the regions with 

complex topography. For example, the topo-climate of the Himalays southern front determined by the mountain ranges are 

represented with more details in the new Köppen-Geiger maps compared with Beck et al., (2018), and Kriticos et al., (2012) 340 

(Fig. 8b). The abrupt changes in climate along the edges of the Andes mountains are also well described in the new maps (Fig. 

8f).  

In addition, the distribution of tropical (A), temperate (C) and boreal(D) climate zones in the new Köppen-Geiger maps 

correspond closely with tree lines in the forest cover maps. The temperate (C) and boreal(D) climate distributions based on the 

Köppen-Geiger maps show a better agreemenet with the forest distributions of the Middle and Southern Rocky Mountains 345 

than Beck et al., (2018), and Kriticos et al., (2012) (Fig. 8a). For another example, the boundaries of the tropocal rainforest in 

Central Africa and South America are clearly delineated in the in the new Köppen-Geiger maps (Fig. 8e and 8f). 
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4.4 Bioclimatic variables 

Table 5 List of bioclimatic variables derived from downscaled monthly climate data. 

Bioclimatic Variables Description 

BIO1 Annual mean temperature (oC) 

BIO2 Temperature of the warmest month (oC) 

BIO3 Temperature of the coldest month (oC) 

BIO4 Annual precipitation (mm) 

BIO5 Precipitation of the warmest half year (mm) 

BIO6 Precipitation of the coldest half year (mm) 

BIO7 Precipitation of the driest month (mm) 

BIO8 Precipitation of the driest month in the warmest half year (mm) 

BIO9 Precipitation of the driest month in the coldest half year (mm) 

BIO10 Precipitation of the wettest month (mm) 

BIO11 Precipitation of the wettest month in the warmest half year (mm) 

BIO12 Precipitation of the wettest month in the coldest half year (mm) 

Beyond the Köppen-Geiger climate classification maps, we calculated a set of bioclimatic variables from the monthly climate 

data (see full list in Table 5). The bioclimatic variables at 1-km sptial resolution can capture regional environmental variations 350 

expecially in mountainous areas and areas with strong climate variations. These bioclimatic variables can be used in studies 

of environmental, agricultural and biological sciences, for example, development of species distribution modeling and 

assessment of biological impacts induced by climate change. The variables provide descriptions of annual averages, and 

seasonality of climates. The warmest half year or the coldest half year is defined as the period of the warmest six months or  

the coldest six months.  355 
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Figure 9. Scatter plots of the station observations and estimates of bioclimatic variables from downscaled climatology data. The 

bioclimatic variables include the 30-yr means of annual temperature (MAT), the air temperature of the coldest month (Tcold), the air 

temperature of the warmest month (Thot),  total annual precipitation (MAP), precipitation of the summer half year (Psumm), and 

precipitation of the winter half year (Pwint). (a) Scatter plots of the station observations and downscaled temperature data from CHELSA, 360 
CRU, UDEL datasets, and (b) and downscaled precipitation data from CHELSA, GPCC, UDEL datasets.  

We validated the bioclimatic variables from different datasets with station data from GHCN-D (Menne et al., 2012) and GSOD 

database (National Climatic Data Center et al., 2015) (Fig. 9). We calculated a linear regression model for the 12 bioclimatic 

variables for each 10° grid cell (Fig. 10). The 30-yr average mean annual temperature (MAT) from CHELSA dataset shows 

overall highest fit with station data, with CRU, and UDEL datasets showing smaller, but still strong correlation with station 365 

data. The 30-yr average mean annual precipitation (MAP) estimates from GPCC, UDEL, and CHELSA datasets have 

considerable uncertainties, indicated by relatively low correlation with station observations. In current precipitation datasets, 

there exist a varied degree of discrepancy in annual estimates over multiple time scales (Sun et al., 2018). 
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 370 

Figure 10. Small-scale comparison of annual temperature (MAT) and mean annual precipitation (MAP) variables derived from 

different datasets with station data. Small-scale correlation between the 30-yr average mean annual temperature (MAT) and mean annual 

precipitation (MAP) data and ground observations for three historical periods (1979-2008, 1981-2010, 1983-2012). The station data is from 

GHCN-D and GSOD database. The figure shows the R2 value for 10° grid cells.  (a), (b), and (c) are MAT results. (d), (e), and (f) are MAP 

results. (a) MAT is calculated from downscaled monthly temperature data from CRU dataset, (b) from UDEL dataset and (c) from CHELSA 375 
dataset. (d) MAP is calculated from downscaled monthly precipitation data from GPCC dataset, (e) from UDEL dataset and (f) from 

CHELSA dataset. 
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4.5 Future Köppen-Geiger climate maps 

 

Figure 11 Global maps of the Köppen-Geiger climate classification for the future periods (2020-2049, 2040-2069, 2060-2089, 2070-380 
2099) under RCP8.5 and associated classification confidence levels. (a) Future maps of the Köppen-Geiger climate classification and (b) 

confidence levels associated with the Köppen-Geiger climate classification. (c) Future changes in Köppen-Geiger climates from 2020-2049m 

to 2080-2099 and (d) the associated confidence levels. 
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Future Köppen-Geiger climate classification maps under RCP8.5 and associated confidence levels are shown in Figure 11. 

Indicated by confidence levels, there exist larger uncertainties in the final future climate maps than historical maps, particularly 385 

at mid and high latitudes. Climate map for the future period of 2070-2099 shows the largest uncertainty compared with the 

other future periods.  
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Figure 12. Future Köppen-Geiger classification and confidence map for 2060-2089 under RCP8.5 with resolution of 1km for the 

central Rocky Mountains in North America. (a) Climate maps based on 30 GCMs, (b) the final climate map derived from the most 390 
common climate class among all the 30 climate maps, (c) present climate map of 1979-2008, and (d) confidence level distribution of the 

final climate map. 

 

Figure 13. Future Köppen-Geiger classification and confidence map for 2060-2089 under RCP8.5 with resolution of 1km for the 

Tibetan Plateau. (a) Climate maps based on 30 GCMs, (b) the final climate map derived from the most common climate class among all 395 
the 30 climate maps, (c) present climate map of 1979-2008, and (d) confidence level distribution of the final climate map. 
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Future climate classifications derived from the diverse GCM projections for four RCPs, which are inherently uncertain 

(Winsberg, 2012; Gleckler et al., 2008), provide a proxy of global distributions of climatic conditions and can represent 

potential spatial changes in climate zones under global warming. The large uncertainty and strong disagreement in projected 

climate classification maps at high latitudes and in regions with rugged terrain can be indicated by relatively low confidence 400 

levels. Figure 12 and 13 show the future Köppen-Geiger climate classification maps based on GCM projections under RCP8.5 

and associated confidence levels for the central Rocky Mountains and Tibetan Plateau. We generated a future Köppen-Geiger 

climate classification map for each bias-corrected and downscaled CMIP5 GCM projection (see Fig. 12a and 13a for 2070-

2099 maps for the central Rocky Mountains and Tibetan Plateau). Noticeable regional changes in climate zones have been 

projected by comparing the 2070-2099 and 1979-2008 climate classification maps (see Fig. 12b and 12c for the central Rocky 405 

Mountains, and Fig. 13b and 13c for Tibetan Plateau). 

4.6 Application example: detection of area changes in climate zones 

 

Figure 14. Area changes in climate zones since the 1980s on a global scale under RCP8.5. The error bars for historical periods (1979-

2014) indicate standard error in the Köppen-Geiger classification results based on the 9 combinations of observational air temperature and 410 
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precipitation datasets and for future periods (2020-2099), the error bars indicate standard error in the Köppen-Geiger classification results 

based on the 30 GCMs. 

Changes in climatic conditions under global warming have significant impacts on biodiversity and ecological systems. Area 

changes of climate zones can indicate spatial shrinkage or expansion of analogous climatic conditions, potentially implying 

threats for species range contraction or opportunities for range expansion (Cui et al., 2021a). To examine the area changes of 415 

climate zones, we calculated the total area covered by each climate type for each historical and future periods under high-

emission RCP8.5 scenario (Fig. 14). Our results of changes in area occupied by different climate zones demonstrate good 

agreement with results from previous studies (Chan and Wu, 2015). Results show that accelerated anthropogenic global 

warming since the 1980s has caused large-scale changes in climate zones and the shifts into warmer and drier climates are 

projected in this century. The tropical and arid climates are expanding into large areas in mid latitudes whereas the high-420 

latitude climates will experience significant area shrinkage. 

5 Conclusion 

Changes in broad-scale climatic conditions, driven by anthropogenic global warming, lead to the redistribution of species 

diversity and the reorganization of ecosystems. Distributions of the Earth’s climatic conditions have been widely characterized 

based on the Köppen climate classification system. The Köppen climate classification maps require fine resolutions of at least 425 

1-km to detect relevant microrefugia and promote effective conservation. Studies examining recent and future interannual or 

interdecadal changes in climate zones at regional scale needs more accurate depiction of fine-grained climatic conditions, 

continuous and longer temporal coverage. 

We presented an improved long-term Köppen-Geiger climate classification map series for six historical 30-yr periods in 1979-

2013 and four future 30-yr periods in 2020-2099 under RCP2.6, 4.5, 6.0 and 8.5. To improve the classification accuracy and 430 

achieve a resolution as fine as 1-km, we combined multiple datasets, including WorldClim V2, CHELSA V1.2, CRU TS v4.03, 

UDEL, GPCC datasets and bias-corrected downscaled CMIP5 model simulations from CCAFS. The historical climate maps 

are based on the most common climate type from an ensemble of climate maps derived from combinations of observational 

climatology datasets. The future climate maps are based on an ensemble of climate maps derived from 35 GCMs. We estimated 

the corresponding confidence levels to quantify the uncertainty in climate maps. We also calculated 12 bioclimatic variables 435 

at the same 1-km resolution using these climate datasets for the same historical and future periods to provide data of annual 

averages, seasonality, and stressful conditions of climates. 

To validate the Köppen-Geiger climate classification maps, we used the station observations from GHCN-D and GSOD 

database. Our validation results show that the new Köppen-Geiger maps have comparatively higher overall accuracy than all 

the previous studies. Although the new maps exhibit improved overall accuracy, relatively lower confidence level and larger 440 
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discrepancy in classification results are found especially in mountainous regions and major climate transitional zones located 

in mid and high latitudes. The confidence levels can provide a useful quantification of classification uncertainty. 

Compared with climate maps from previous studies with a single present-day period, the series of the Köppen-Geiger climate 

maps from our study demonstrate the ability to capture recent and future projected changes in spatial distributions of climate 

zones. On regional and continental scale, the new maps show accurate depictions of topographic features and correspond 445 

closely with vegetation distributions. Our Köppen-Geiger climate classificaion maps can offer a descriptive and ecological 

relevant way to provide insights into changes in spatial distributions of climate zones. 

One of the limitations is that the future Köppen-Geiger climate maps built on dowscaled climate model projections exsit 

unaviodable uncertainties. The classification agreement levels of GCMs are relatively low at high latitudes and in regions with 

rugged terrain. The main sources of model discrepancies and uncertainties are deficiencies in model physics and varied model 450 

resolution. The climate model outputs have coarse spatial resolution varying from 70-400 km and cannot well represent future 

climate change at the same scale of 1-km as our baseline climatology. Through bias-corretion and donwscaling methods, we 

made assumptions that local relationships between climatic variables remain constant across different scales, leading to a 

compromise between spatial scale and climate model physics.  

We also tested the sensitivity of classification results to different time scale, dataset input, and data integration methods. Results 455 

show that 30-yr time scale exhibited the highest accuacy results. Moreover, using the mean of multiple datasets from CHELSA, 

CRU, UDEL, and GPCC could lead to better classification results. Last, we provided a heuristic example which used climate 

classification map series to detect the long-term area changes of climate zones, showing how the new Köppen-Geiger climate 

classification map series can be applied in climate change studies. With improved accuracy, high spatial resolution, long-term 

continuous time coverage, this global dataset of the Köppen-Geiger climate classification and bioclimatic variables can be 460 

used to in conjunction with species distribution models to promote biodiversity conservation, and to analyse and identify recent 

and future interannual or interdecadal changes in climate zones on a global or regional scale. 

Data Availability 

This high-resolution global dataset of the Köppen-Geiger climate classification and bioclimatic variables dataset for historical 

periods in 1979-2013 is available at http://doi.org/10.5281/zenodo.5347837 (Cui et al., 2021c). The dataset for future periods 465 

in 2020-2100 is available at http://doi.org/10.5281/zenodo.4542076 (Cui et al., 2021b).  

http://doi.org/10.5281/zenodo.5347837
http://doi.org/10.5281/zenodo.4542076
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