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Abstract.  

This paper describes a 16-year datasets of air pollution concentrations and air quality indicators over France.  Using a kriging 

method that combines background measurements of air quality and modeling with the Chemistry Transport Model CHIMERE, 

hourly concentrations of NO2, O3, PM10 and PM2.5 are produced with a spatial resolution about 4 kilometers. Regulatory 

indicators (annual average, SOMO35, AOT40 etc…) are also calculated from these hourly data. NO2 and O3 datasets cover 10 

the period 2000-2015, as well as PM10 annual data. PM10 hourly concentrations are not available from 2000 to 2007 due to 

known artefact in PM10 measurements.  PM2.5 data are only available from 2009 because of the lack of measurement stations 

before. The overall dataset has been evaluated over all the years through a cross-validation process against background 

measurement stations (rural, sub-urban and urban), to account for the data fusion between measurement and models in the 

method. Results are very good for PM10, PM2.5 and O3. It shows an overestimation of NO2 concentrations in rural area, while 15 

background NO2 values in urban areas are well represented. Maps of the main indicators are shown over years and trends are 

calculated. Finally, country exposure and trends of three main health related indicators: yearly averaged PM2.5 NO2 and 

SOMO35 are calculated. The DOI link for the dataset is http://doi.org/10.5281/zenodo.5043645 (Real et al., 2021). We hope 

that the publication of this dataset in open access will facilitate further studies on the impacts of air pollution.   

 20 

1. Introduction 

Air pollution is a major environmental risk for human health and ecosystems in Europe. During the last decades the European 

Union (EU) has put in place several measures to reduce anthropogenic emissions of pollutants. In response of emissions 

reductions, concentrations of SO2, NO2 and particles measured over Europe show a clear decrease (EEA, 2018). European 

background concentrations decreases have been recently evaluated by the EMEP Task Force on Measurements and Monitoring 25 

(TFMM) through analysis of measurements from the EMEP monitoring network (representatives of rural background 

concentrations) over the period 1990-2012 (EMEP, 2016).  

Sulphur compounds show the largest decrease in response to strong sulfur emissions abatement. NO2, NMVOC and acidifying 

and eutrophying nitrogen pollutant emissions (NOx and NH3) also decreased over the period 1990-2012 with reductions 
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broadly consistent with the reported emission reductions in Europe for the same period. Decreases in PM10 and PM2.5 were 

also measured over the period 2002-2012. O3 trends are less straight forward despite decrease of its precursors. The magnitude 

of high ozone episodes has decreased whereas annual mean ozone levels measured at EMEP stations were increasing in the 

1990s, and show a limited negative trend starting in 2002. This feature is generally attributed to the evolution of the global 

baseline of tropospheric ozone for which further hemispheric control strategies are needed.  5 

Based on methodologies established within EMEP, the trends in air pollution concentration for the period 2000-2010 have 

also been evaluated over France by the Laboratoire Central de Surveillance de la Qualité de l’Air (Malherbe et al, 2017) using 

observations with more diverse typologies (rural, urban, trafic ..). Significant reductions of NO2 and PM10 concentrations were 

also estimated over France for this period (-17 % and -15 %). The evolution is less favorable for ozone. Even if the peaks 

decrease by 3.8 % in amplitude, the averages increase by 5.5 % over the period. Despite these reductions in pollutant emissions 10 

and pollutant concentrations (except for annual average O3), part of French citizens is still exposed to concentrations over the 

EU limit and target value and air quality in EU is still one of the main reasons of premature deaths (IHME, 2013).      

 

Complementary to observations (that only gives partial spatial information), accurate, highly spatially resolved and up to date 

maps of air pollution constitute an important information to assess air pollution trends and exposure. They are required to 15 

provide geographically detailed information on air pollutant concentration over the entire territory. These maps act as a basis 

for citizen information, for designing and stratifying monitoring networks and for supporting policy strategies and measuring 

their impact. They are also used to estimate population exposure to air pollutants, essential to epidemiological studies.  

At European scale, different mapping approaches have been used to produce maps of pollutant concentrations. These maps 

can be obtained by modeling using a regional Chemistry Transport Model (CTM) that simulates concentration of pollutants 20 

over Europe. However, these models cannot always be used over all Europe with a high resolution and present some biases 

and spatial representativity limitations. Regression methods (Briggs et al., 2000; Beelen et al., 2007) are also used at different 

scale. These stochastic modelling techniques develop statistical associations between potential ‘predictor variables’ (land use, 

emission sources, topography) and measured pollutant concentrations, to predict concentration at unsampled site. Other 

techniques frequently used are kriging techniques. These geostatistical techniques are based on the hypothesis that the data are 25 

spatially autocorrelated, and so take into account the distances between measurements and the spatial structure of the variable. 

Different types of kriging are used to map air pollutant concentration. Over France, kriging methods that combine information 

from a regional CTM (CHIMERE, (Mailler et al., 2017)) and observations are produced daily by the Operational Forecasting 

and Mapping System for Air Quality Prev’air (Rouïl et al., 2009). Since 2003 (for ozone), and 2005 for PM10, maps of 

concentrations simulated for the day before in Prev’air are corrected each morning using observations. The kriging technique 30 

used in Prev’Air has evolved in time, and PM2.5 and NO2 concentrations are now also corrected for the day before. Today, an 

hourly observations kriging with CHIMERE as an external drift is applied to map NO2 and O3 concentrations. Since 2017, for 
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the mapping of PM10 and PM2.5 concentrations, the method used is an hourly cokriging of PM10 and PM2.5 data with CHIMERE 

in external drift. These choices are the results of successive studies that compared different kriging techniques (Malherbe and 

Ung, 2009, Beauchamp 2015a).  

The purpose of this paper and its associated datasets is to present and provide O3, NO2, PM10 and PM2.5 concentration mapped 

data with high spatial and temporal resolution as well as associated regulatory indicators covering the French metropolitan 5 

territory for the period 2000-2015 (2007-2015 and 2009-2015 for hourly PM10 and PM2.5 concentrations). The same kriging 

technique as in the Prev’air system is used to combine modeling and observed concentrations. Hourly concentrations of PM10, 

PM2.5, NO2 and O3 are produced and mapped over France and these hourly data are then used to calculate and map Air Quality 

European and French standards.  

2. Methods 10 

Model outputs and measurements from the permanent monitoring network were combined by external drift kriging (Malherbe 

and Ung, 2009; Benmerad et al., 2017) to build hourly concentration maps over France for a long-time period: 2000 to 2015. 

Details on input data and methods used are described in the following paragraphs. Using these corrected hourly concentration 

data, maps of annual regulatory air quality indicators are subsequently derived over France. 

2.1 Monitoring data 15 

Hourly measurement are extracted from reference sets of validated data. Over France, observations are extracted from the 

national air quality databases:  BDQA (Base de Données de Qualité de l’Air) before 2013 and GEODAIR  

(https://www.lcsqa.org/fr/les-donnees-nationales-de-qualite-de-lair) after 2013; and from the Airbase   database 

(https://www.eea.europa.eu/themes/air/air-quality/map/airbase) for other European countries from 2000 to 2012 and AQ e-

reporting (https://www.eea.europa.eu/data-and-maps/data/aqereporting-8/aq-ereporting-products) from 2013 to 2015. All 20 

background monitoring data over the spatial domain are used in the kriging procedure, except for stations with measurements 

exceeding the 95 percentiles. This includes rural, suburban and urban stations but excludes industrial and traffic stations that 

are representative of very local concentration, hardly reproducible within a nation-wide mapping system. The number of 

background monitoring sites for each type of stations and for each year are summarize in Table 1. 

Table 1: Number of background French monitoring sites for the years 2000 to 2015 25 

 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

O3 284 310 337 362 378 396 404 405 399 385 376 360 347 318 319 331 

NO2 274 290 299 322 337 353 353 350 352 337 334 316 299 284 282 300 

PM10 119 125 171 212 219 238 126 219 252 241 249 245 240 218 173 251 

PM2.5 3 7 18 22 25 32 38 6 28 62 69 74 84 89 90 105 
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Because PM2.5 measurements stations were scarce in France before 2009, PM2.5 mapped data will only be computed for the 

period 2009-2015. Also, until 1 January 2007, operational monitoring of PM10 and PM2.5 was carried out in France by automatic 

measuring systems of the TEOM (PM10, PM2.5) or Beta (PM10) type. However, compared to the reference method EN 12341 

(gravimetry), these systems underestimate the concentrations of PM10. This is a known artefact related to the loss of semi-5 

volatile compounds. To correct PM10 measured concentrations before 2007, a simple approach consists in applying a uniform 

correcting factor over France. This method is not adapted for a correction of hourly or daily concentrations, but it has been 

shown to give good results for yearly mean PM10 concentrations (Malherbe et al., 2017, Bessagnet et al., 2008). The factor 

(1.36) is a median value calculated on the PM10 data from "reference" sites (Bessagnet et al., 2008). As a consequence, for the 

period 2000 to 2006, the only PM10 indicator available is the annual mean concentration.  10 

 

2.2 CHIMERE simulations 

The CHIMERE chemistry-transport model (Couvidat et al., 2018) is used to estimate air pollution levels for the metropolitan 

France, with a resolution of approximately 4 km resolution (0.06°×0.03°) over the year 2000 to 2015. This model has long 

been implemented and assessed in France as the main component of the national air quality forecasting and monitoring system 15 

PREV’AIR (Honoré et al., 2008). Two types of input data are used to simulate the concentrations.  

Prior to 2010, a setup similar to the one use in the EURODELTA-Trends project (Colette et al., 2017) is used. The 

methodology of Colette et al. (2017) is used to reconstruct the emissions of main air pollutants (Non Methanic Volatile Organic 

Compound (NMVOC), NOx, CO, SO2, NH3, and Primary PM): the annual emissions of every countries, distributed by SNAP 

(Selected Nomenclature for reporting of Air Pollutants) sectors, are estimated with the GAINS (Greenhouse gases and Air 20 

pollution Interactions and Synergies) model (Amann et al., 2011) for the years 2000, 2005, and 2010 . To derive emissions for 

intermediate years, sectorial results for 5-year periods are linearly interpolated. Meteorological data are simulated with the 

Weather Research and Forecast Model (WRF version 3.3.1; Skamarock et al., 2008) from 2000 to 2010.  

For the period 2011 to 2015, year-to-year emissions of the main pollutants are issued from EMEP (Cooperative programme 

for monitoring and evaluation of long range transmission of air pollutants in Europe) programme available 25 

at http://www.emep.int. Year-to-year meteorological data were provided by ECMWF with the Integrated Forecasting System 

(IFS) model with data assimilation. 

For these two datasets, the spatialization of emissions over France is performed with a 1 km proxy based on the national 

bottom-up emission inventory (available at http://emissions-air.developpement-durable.gouv.fr/) that feeds the emission pre-

processor of CHIMERE described in Mailler et al. (2017). Moreover, Denier van der Gon et al. (2015) showed that emissions 30 

of primary particles from residential wood burning can be underestimated up to a factor 2-3 over Europe because emissions 
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are lacking a large part semivolatile compounds. To compensate this underestimation, a factor of correction by countries 

determined from Denier van der Gon et al. (2015) is applied over the whole period. 

 

2.3 Kriging  

Hourly atmospheric concentration fields are estimated by external drift kriging, combining surface monitoring observations 5 

and outputs from the CHIMERE chemistry transport model. European stations outside the French domain are included in the 

kriging to increase accuracy at the borders. Kriging is performed using a moving neighbourhood as this allows local adjustment 

of the relationship between measurements and CHIMERE. Concentration at each grid point is estimated within a window of 

80 monitoring sites.  This number was adjusted in previous studies by sensitivity tests (Benmerad et al., 2017; Beauchamp et 

al., 2017). In addition, a smoothing is applied to avoid discontinuities in the map (Beauchamp et al., 2015b); the smoothing 10 

methodology was adapted from Rivoirard and Romary (2011).  The final output resolution is the same as for the CHIMERE 

model: approximately 4 km resolution (0.06°×0.03°).  

For particles (PM10 and PM2.5) a co-kriging with external drift is applied to take into account the correlation between PM10 

(particles with a radius < 10 µm) and PM2.5 (particles with a radius < 2.5 µm) and improve consistency between PM10 and 

PM2.5 estimates (Beauchamp et al., 2015b). Such cokriging also allows PM2.5 estimation to benefit from the higher density of 15 

PM10 monitoring stations. 

2.4 Output: regulatory air quality indicators   

From the kriged hourly concentrations, several air quality indicators (regulatory and used in health impact assessment) are 

calculated and mapped over France. The complete list and definition of these indicators are given in Table 2.  

 20 

Table 2: Yearly regulatory air quality indicators from EU legislation or French legislation and usual indicators. 

ID Pollutant  Statistics Threshold Threshold origin Target to protect 

NO2_avgannual NO2 
Yearly average 

 
40 µg.m-3 Limit value (EU) Human health 

O3_avgannual O3 Yearly average    

O3_AOT40 O3 
AOT40* from May to 
July  

6000 µg.m-3 
Long-term 
objective 

Vegetation 

O3_AOT40_5years O3 
AOT40* from May to 
July (5 years average) 

18000 µg.m-3 Target value (EU) Vegetation 

O3_SOMO35 O3 

Sum of excess of max 
daily 8-hour averages 
over 35 ppb (= 70 µg m-3) 
calculated for all days in a 
year; SOMO35 (Sum Of 
Means Over 35 ppb) 

 
Health Impact 
Assessment 

Human health 
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O3_T120 O3 

Number of days for 
which the running 
average over 8h exceeds 
120 μg.m-³ 

 
Quality objective 
(EU)  

Human health 

O3_T120_3years O3 

Number of days for 
which the running 8h 
average exceeds 120 
μg.m-³ (averaged over 3 
years) 

Not to exceed 
more than 25 
days a year 

Target value (EU)  Human health 

O3_T180 O3 
Number of hours 
exceeding the average 
value of 180 μg.m-³ 

 

Recommendation 
and Information 
Threshold 
(France) 

Human health 

O3_T240 O3 
Number of hours 
exceeding the average 
value of 240 μg.m-³ 

 
Alert threshold 
(France) 

Human health 

PM10_avgannual PM10 
Yearly average 

 
40 µg.m-3 Limit value (EU) Human health 

PM10_t50 PM10 
Number of days 
exceeding the average 
value of 50 μg.m-³ 

Not to exceed 
more than 35 
days a year 

Limit value (EU) Human health 

PM10_t80 PM10 
Number of days 
exceeding the average 
value of 80 μg.m-³ 

 
Alert threshold 
(France)) 

Human health 

PM25_avgannual PM25 Yearly average 25 µg.m-3 Limit value (EU)  Human health 
*AOT 40 (expressed in μg / m³.hour) means the sum of differences between hourly concentrations greater than 80 μg / m³ (= 

40 ppb or part per billion) and 80 μg / m³ for a given period using only the values 1 hour measured daily between 8 am and 8 

pm. 

3. Data validation 

Usually the quality of estimated concentrations maps is assessed using statistical indicators that compare observations and 5 

estimated concentrations at the monitoring stations over the domain. Here, information of all background stations over the 

domain are already used to develop the maps. Therefore, for a fair comparison, cross-validation method is used.  The cross-

validation method computes the quality of the spatial interpolation for each measurement station point from all available 

information except from the selected station point, i.e. it withholds one data point and then makes a prediction at the spatial 

location of that point. This procedure is repeated for all measurement points in the available set, enabling the evaluation of the 10 

quality of the predicted values at locations without measurements (as long as they are within the area covered by the 

measurements). 

It has been noticed that scores are systematically different over rural or urban stations (even if the kriging technique used here 

is not differentiate by type of station). Therefore, the results of the cross-validation are described per pollutant and 

differentiated type of stations (rural and urban types are shown here). Three statistical indicators are calculated based on daily 15 
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mean concentration: the mean bias, the root mean squared error (RMSE) and the pearson correlation (r). For each year, they 

are first calculated over the “left out” station and then the median values over all stations are calculated.   

3.1.4. PM10 

 

(a) (b) 

 
 

                      5 

Figure 1: PM10: statistical indicators calculated using cross-validation technique on daily mean PM10 values measured and estimated 
over RURAL background stations for the years 2007 to 2015. (a) number of rural stations for each year; (b) mean bias (black circles), 
RMSE (coloured rectangles), correlation (grey crosses) and mean observation (horizontal lines). 

(a) (b) 

 
 

     

Figure 2: PM10: statistical indicators calculated using cross-validation technique on daily mean PM10 values measured and 10 
estimated over URBAN background stations for the years 2007 to 2015. (a) number of rural stations for each year. (b) Bias (black 

circles), RMSE (coloured rectangles), correlation (grey crosses) and mean observation (horizontal lines) 
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The scores show an overall good representation of the observations by the reanalysed data with correlations between 0.77 and 

0.86 and RMSE around 7 µg.m-3, i.e between 30 % and 50 % of the mean yearly PM10 concentration. The mean biases are 

particularly low for urban stations with values smaller than -1 %. For rural stations the mean bias lies below +3 µg.m-3, i.e 

below +15 %. The proportion between rural and urban stations varies between 1/3 and 1/10. The larger number of urban 5 

stations leads to a better capture of the spatial variability of concentrations in urban environments.  

Looking at the evolution of scores over the years, for rural stations, the number of stations available first increase from 2009 

to 2012 before a decrease up to 2014. In 2015 a new increase starts in the number of stations over France. For urban stations, 

the decrease starts earlier (2010) but the evolution is the same. The temporal evolution of the scores generally follows the 

number of stations with higher correlations and smaller relative mean biases and RMSE when more stations are available. 10 

Indeed the largest is the number of stations, the more representative of the real spatial variability will be the kriging technique. 

There are however exceptions as shown in 2015 for rural stations, with the second worst scores whereas that year has the 

largest number of stations.   

3.1.5. PM2.5 

 15 

 

   

(a) (b) 
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Figure 3: PM2.5: statistical indicators calculated using cross-validation technique on daily mean PM2.5 values measured and 
estimated over RURAL background stations for the years 2009 to 2015. (a) number of rural stations for each year. (b) Bias (black 

circles), RMSE (coloured rectangles), correlation (grey crosses) and mean observation (horizontal lines) 

 

 5 

(a) (b) 

 

 

Figure 4: PM2.5: statistical indicators calculated using cross-validation technique on daily mean PM2.5 values measured and 
estimated over URBAN background stations for the years 2009 to 2015. (a) number of rural stations for each year. (b) Bias (black 

circles), RMSE (coloured rectangles), correlation (grey crosses) and mean observation (dotted horizontal lines) 

 

There is between one half to one third less PM2.5 than PM10 stations. However, thanks to the use of a co-kriging technique, the 10 

mapping for PM2.5 also benefits from PM10 information, so that correlations, mean bias and RMSE are almost similar to PM10 

scores. Mean biases for rural stations do not exceed 20 % of the mean concentrations and is very low for urban stations 

(between 0 and -3 %). As for PM10, this bias is systematically positive over rural station (overestimation) and slightly negative 

over urban ones (underestimation). This mainly has to do with data resolution that smooth out concentration gradients, giving 

unique value over each grid (around 4 km horizontal resolution). For urban station, located close to PM2.5 precursor emissions 15 

and usually showing high concentration values, this smoothing effect results in underestimation. Over rural areas located far 

from emission precursors, the opposite is observed.   

Correlation is usually higher than 0.8 and RMSE do not exceed 7 µg.m-3 (at maxima 50 % of the mean yearly concentration).  

3.1.6. O3 

 20 
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(a) 

 

(b) 

 

Figure 5: O3: statistical indicators calculated using cross-validation technique on daily mean O3 values measured and estimated 
over RURAL background stations for the years 2000 to 2015. (a) number of rural stations for each year. (b)  Bias (black circles), 

RMSE (coloured rectangles), correlation (grey crosses) and mean observation (horizontal lines) 5 

 

Comparison between estimated and observed ozone on rural stations show good correlations (0.8 to 0.87), small relative mean 

negative biases (-4 to -8 %) and low RMSE (around 20 % of the yearly average concentration). Between 2000 and 2007 the 
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number of rural stations increased resulting in an improvement of the modelled concentration maps. The small decrease in the 

number of stations after 2007 do not penalize the scores for these years.   

 

(a) 

 

(b) 

 

Figure 6: O3: statistical indicators calculated using cross-validation technique on daily mean O3 values measured and estimated over 5 
URBAN background stations for the years 2000 to 2015. (a) number of urban stations for each year. (b) Bias (black circles), RMSE 
(coloured rectangles), correlation (grey crosses) and mean observation (horizontal lines) 

The same conclusions can be drawn for urban ozone scores. The higher number of urban stations leads even to slightly better 

scores with correlations over 0.9 for all years and relative mean positive biases that do not exceed 5 %. A satisfactory RMSE 

is also obtained for all years with values around 20 % of the yearly mean concentration. It can be noticed that the positive and 10 
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negative bias is inverted compared to scores of PM. Indeed, larger value of O3 are usually observed over rural areas when 

precursors had time to produce O3 and where O3 destruction is lowest than in urban environment. Therefore, the smoothing 

effect has the opposite effect as for PM.  

 

3.1.7. NO2 5 

 

 

(a) 

 

(b) 
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Figure 7: NO2: statistical indicators calculated using cross-validation technique on daily mean NO2 values measured and estimated 
over RURAL background stations for the years 2000 to 2015. (a) number of rural stations for each year. (b)  Bias (black circles), 

RMSE (coloured rectangles), correlation (grey crosses) and mean observation (horizontal lines) 

NO2 rural scores are worse than for particles or O3. Correlations stands between 0.55 and 0.7 but more importantly, strong 

positive biases are found for all years with an overestimation of the observations by a 60 to 80 %. This also affects RMSE 5 

scores that can exceed 100 % of the yearly mean concentration. These low performances can be explained by the strong spatial 

gradients of NO2 concentrations due to its lower atmospheric lifetime than O3 or particles. There are too few rural stations to 

correctly catch this variability in the kriging technique used here so that urban stations have too much of a large weight, and 

the raw model concentrations also overestimate the rural concentrations.  

 10 

 

 

(a) 

 

(b) 
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Figure 8: NO2: statistical indicators calculated using cross-validation technique on daily mean NO2 values measured and estimated 
over URBAN background stations for the years 2000 to 2015. (a) number of urban stations for each year. (b) Bias (black circles), 
RMSE (coloured rectangles), correlation (grey crosses) and mean observation (horizontal lines) 

Urban scores for NO2 are much better than rural ones. Correlations evolve around 0.8, biases do not exceed -3.5 % and RMSE 5 

stand between 10 to 12 µg.m-3 (lower than 25 % of the yearly mean concentration). The high number of urban background 

stations seems satisfactory to allow the kriging technique to correctly reproduce the NO2 spatial variability in urban background 

environments. It should be noted however that traffic stations are not used in the present reanalysis.   

 

Overall, these cross-validations show a good representation of background measurements of O3, PM10, PM2.5 and NO2 over 10 

France, except for rural NO2 concentration that are overestimated. From this base, yearly indicators, trend over years and 

human exposition were calculated.       

4. Results 

Hourly concentrations fields are calculated from 2000 to 2015 for NO2, O3 and PM10, however, as explain in section 2, for 

PM10 only annual mean indicators maps are produced before 2007. PM2.5 hourly concentrations are calculated for year 2009 15 

to 2015 due to the lack of background stations before 2009. 

4.1 Concentration maps and trends 

All indicators given in section 2 are calculated but the following section focus on averaged annual mean concentrations of 

PM10, PM2.5, NO2 and O3, as well as SOMO35 and AOT (two indicators associated to O3), for which mapped data are shown. 
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Trend analyse over the period is performed by calculating the Sen-Theil regression slope for each grid point over the domain. 

To characterize the significance of these trend slopes, the 95 % confidence interval This confidence interval represents the 

lower and upper values above or below which you are confident (at  95 %) that the trends will occur. The smaller the confidence 

interval, the more statistically significant the trend. Large confidence intervals are considered as unrepresentative, especially 

those containing 0. Trend slopes and confidence intervals are calculated over the domain but country averaged values are also 5 

given in Table 3.   

  

Table 3: country averaged slope and its 95 % confidence interval 

Indicator Mean tendency slope (or 

mean trend) in µg.m-3.year-1 

Mean 95 % confidence 

interval (in µg.m-3.year-1) 

PM10 - avg annual -0.8 [-0.5 ; -1.09] 

PM2.5 - avg annual -0.87 [-0.48 ; -1.41] 

O3 - avg annual 0.32 [0.005 ; 0.59] 

O3 - SOMO35 -5.52 [ -102.7 ; 76.7 ] 

O3 - AOT  -142 [-641 ; 315] 

NO2 - avg annual -0.32 [-0.3 ; -0.63 ] 

   

 

3.1.1. PM10 10 
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Figure 9: PM10 annual mean concentrations from 2000 to 2015. Concentrations are obtained by combination between regional 
modelling and observations 

Annual mean PM10 concentration maps are shown in Figure 9. for the period 2000-2015. The grid resolution (around 4km) 

allows to see patterns such as interconnected cities, especially in the latest years for which large inter-regional concentrations 

patterns decrease. The impact of meteorological conditions can also be seen through the inter annual variability. For example, 5 

the heatwave year 2003 is associated with higher level of PM10 due to higher formation of secondary aerosols.  

Figure 10 shows the mapped trends in annual mean PM10 expressed as Sen-Theil regression slope in µg.m-3 per year and 

calculated over the period 2000-2015.  
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Figure 10: Trends in PM10 annual mean concentration. Sen slope coefficient (µg.m-3/year) calculated over the period 2000-2015 

There is a clear negative trend in PM10 annual mean concentrations over years for all regions.  but the highest ones are observed 

over regions with the highest PM10 concentrations at the beginning of the period: the South of France (East and West), the 5 

Auvergne-Rhône-Alpes region, the East (Grand-Est) and the extreme north of France. On average, a country-averaged negative 

trends in PM10 concentrations of -0.8 µg.m-3 per year is estimated over the period 2000-2015 (spatial average of the trend 

calculated over each grid). This trend is statistically significant with a narrow 95%-confidence interval ([-0.5;-1.09]) that does 

not include zero (see Table 3). This significant decrease is the result of the reduction of primary pollutant over these 16 years 

in response to emission reduction. From 2000 to 2015, primary PM10 emissions over France have been reduced by 39 %, as 10 

well as emission of PM10 precursors such as NOx emissions (-56 %) and SOx emissions (-87 %) (data calculated by the 

CITEPA and extracted from the 2015 French national air quality report https://www.statistiques.developpement-

durable.gouv.fr/sites/default/files/2018-10/datalab-bilan-de-la-qualite-de-l-air-en-france-en-2015-octobre-2016-c.pdf).  
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3.1.2. PM2.5 

   

   

 

 

 

Figure 11: PM2.5 annual mean concentrations from 2009 to 2015. Concentrations are obtained by combination between regional 
modelling and observations. 
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The PM2.5 highest values are observed at the beginning of the period and are more concentrated over the main sources regions 

than PM10. Important reductions of yearly mean background concentrations are observed over years. Sen slopes coefficients 

calculated for the yearly mean PM2.5 (Figure 12.) over the period show negative trends  over the entire territory, more 

pronounced over the South-East region, the Auvergne-Rhone-Alpes one, the North of France and Brittany. A country-averaged 

negative trend of -0.87 µg.m-3 per year is calculated, again with statistical significance (95 % interval of [-0.48;-1.41] that does 5 

not contain zero). As for PM10, this negative trend is associated to the reduction in primary PM2.5 emissions and in PM2.5 

precursors emissions (SOx, NOx and VOC).   

 

 

Figure 12: trends in PM2.5 annual mean concentration. Sen slope coefficients (µg.m-3/year) calculated over the period 2009-2015.  10 

3.1.3. Ozone 
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Figure 13: SOMO35 indicator for the period 2000 to 2015. Ozone concentrations are obtained by combination between regional 
modelling and observations. 

The SOMO35 indicator shows a strong inter-annual variability. O3 is a photochemical pollutant produced by secondary 

reactions in presence of NOx, VOC and sunlight. The hot year 2003 is noticeable with very high SOMO35 over almost all the 

territory. For every year the largest SOMO35 are found in the south-east of France and to a lesser extent over the Alsace region. 5 

Trends of SOMO35, annual mean O3 and AOT40 over years are represented in Figure 14. for the 2000-2015 period. 
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a) Yearly mean concentrations b) SOMO35 c) AOT40 

   
Figure 14: Trends in annual mean O3 concentrations in µg.m-3.year-1 (a), SOMO35 in µg.m-3.day.year-1 (b) and AOT40 in µg.m-

3.hour.year-1 (c) indicators. Sen slope are calculated over the period 2000-2015. 

For the O3 average annual concentration, small positive trends are found over France. Two exceptions are the south-east 

(PACA region) and the Grand-Est region (East of France), i.e the regions with the highest O3 concentrations, showing 5 

negative trends. Averaging over France, this leads to a positive trend of 0.32 µg.m-3.year-1. Both negative and positive trends 

are significant according to the mapped 95 % confidence interval (not shown). SOMO35 and AOT40 indicators, that do not 

account for value lower than a threshold, show mostly negative trends. However these trends are not significant, according to 

the value of the mapped 95 % confidence interval, that includes zero. These results are consistent with other European 

studies (EMEP 2016, Malherbe et al., 2017) that show an increase in background concentrations and a decrease in O3 peaks. 10 

3.1.8. NO2 
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Figure 15: NO2 annual mean concentrations for the period 2000 to 2015. NO2 concentrations are obtained by combination between 
regional modelling and observations. 

NO2 is mainly emitted by road transports. All maps have the same pattern with cities and large interconnecting roads showing 

the highest NO2 concentrations. Trends over the 2000-2015 period are shown in Figure 15. Decreases in NO2 concentrations 

are observed both on rural and urban regions over the entire territory. We remind however, that rural levels have been found 5 

to be overestimated with our approach (see 3.1.7). The decrease is larger where NO2 concentrations are important. As for 

PM2.5, these results highlight the combined benefit of large-scale emissions management policies that target emission sectors 

and locally-oriented policies. 
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Figure 16: Trends in yearly mean NO2 concentrations. Sen slope coefficients (µg.m-3/year) are calculated over the period 2000-
2015. 

On average, a significant negative trend of -0.46 µg.m-3 is calculated over France, with a narrow 95 % confidence interval (see 

Table 3).   5 

 

4.2 Exposure trends 

Population-weighted annual average concentrations are good estimates of population exposure, because they give greater 

weight to the air pollution found where most people live. Here, the country-averaged population weighted concentrations of 

NO2, PM2.5 and SOMO35 (3 health impact indicators) are calculated for each evaluated year, from the hourly corrected mapped 10 

data over France. For one pollutant, it is obtained by summing over all country grids, the result of the multiplication of the 

concentration per the population in the grid, and then divided it by the total population of the country. The population database 

used in this study is the national LCSQA population database (Létinois et al., 2014) established for year 2015. It is based on 

detailed files from the French finance department with information at a building level. It is important to notice that the French 

population used here did not vary with years. This population increased by about 10 % between 2000 and 2015. However, if 15 

we considered that the demographic evolution was homogeneous over the country (urban/rural proportion only increased by 

about 2.5% in France over the same period), the country-averaged population weighted concentration should be the same 

whatever the year of the population database.     

 

 20 
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(a) 

 

(b)

 

c) 

 

d) 

Exposition Indicator Mean slope (or mean 

trend)  

Mean 95% confidence 

interval  

Country averaged 

population weighted 

NO2 concentration 

-0.5 µg.m-3.year-1 [-0.4 ; -0.6] (µg.m-

3.year-1) 

Country averaged 

population weighted 

PM2.5 concentration 

-1 µg.m-3.year-1 [-0.6 ; -1.5] (µg.m-

3.year-1) 

Country averaged 

population weighted 

SOMO35 

concentration 

5.5 ppb.day.year-1 [-73 ; 110] 

(ppb.day.year-1) 

 

Figure 17: Yearly evolution of the country averaged population weighted of (a) NO2 concentration (b) PM2.5 concentration c) 
SOMO35. Trends and 95% confidence intervals are calculated (d).   

As for the concentrations, a very clear trend is observed on the country averaged population weighted NO2 with a negative 

trend of -0.5 µg.m-3.year-1 (with a narrow 95 % confidence interval: [-0.4,-0.6]) leading to a reduction of about 30 % in 16 

years. A negative trend of -1 µg.m-3.year-1 is also clearly calculated for PM2.5 (95 %-confidence interval: [-0.6,-1.5]) over the 5 

period 2009-2015, a reduction of about 31 % in 7 years. On the contrary, there is no clear trend for the SOMO35 indicator 

over the period 2000-2015.     
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When the abovementioned indicators are multiplied by the total population (to obtain the total exposure, i.e the sum of the 

population weighted over a country), the results indicators are those used to calculate health impact assessment based on dose-

response functions, as suggested by the WHO review of “Health Risks of Air Pollution in Europe” (WHO 2013), described in  

Holland (2014 a and b). Exposure to SOMO35, anthropic PM2.5 and NO2 (with or without threshold depending on the health 

impact indicator) contribute both to morbidity and mortality impacts. For example, over France, they have been used in the 5 

PREPA-evaluation study for which about fifty political measures to be applied over France have been evaluated and classified 

over different criteria, such as air quality impact, health impact and cost-benefit assessment (Schucht et al., 2018). At constant 

population evolution, the trends are similar between both indicators (total exposure and population weighted average 

concentration). However the evolution in population (even when homogeneous over the territory) does impact the total 

population exposure. Therefore, we expected a reduced impact on health impact assessment compared to those on population 10 

weighted concentrations.  

 

4. Data availability 

Mapped regulatory indicators and exposure data for all 15 years and the 4 pollutants described here are available on a zenodo 

repository under the Netcdf format (version n°4) and csv format for data at the municipal or regional level. The DOI link for 15 

the dataset is http://doi.org/10.5281/zenodo.5043645 (Real et al., 2021). It is also available through a web-based 

map library (https://www.ineris.fr/fr/recherche-appui/risques-chroniques/mesure-prevision-qualite-air/20-ans-evolution-

qualite-air). The web-based map library is intended to be updated annually. 

5. Conclusion 

A 16-year datasets of mapped air pollution concentrations and indicators over France have been constructed using a data fusion 20 

technique (kriging) that combines measurement from background surface monitoring station and modelling from the regional 

model CHIMERE. The resulting data are hourly concentrations at a resolution of about 4km horizontal resolution over France 

for the period 2000-2015 (more restricted period for PM2.5 and hourly-based PM10 indicators).  

The kriging technique implemented combined external drift kriging for NO2 and O3 and co-kriging with external drift for 

particulate matter, allowing PM2.5 estimation to benefit from the higher density of PM10 monitoring stations. The overall 25 

datasets have been evaluated over years using a cross-validation process that account for the incorporation of measurements 

in the correction process by withholding one datapoint before calculating the score. Concentrations of both rural and 

background urban stations are very well reproduced for O3, PM10 and PM2.5 with low mean biases, RMSE and good 

correlations. The same behaviour is found over background urban NO2 stations, while rural NO2 concentrations are 

systematically overestimated. The performance of the dataset to reproduce measurement was generally correlated with the 30 
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number of stations over the domain, up to a threshold where adding station do not seem to increase these performances. This 

threshold number was dependant on the pollutant, higher for pollutant showing high spatial gradient (i.e NO2 that has a shorter 

lifetime). 

Some of the produced mapped concentrations and indicators are detailed in the paper, and yearly trends are calculated. Clear 

and significative negative trends are calculated over the whole period for PM10, PM2.5 and NO2 yearly mean concentrations. 5 

They reflect the reductions in precursor emissions operated in Europe since the 90’s. O3 trends over these 16 years are less 

significant. In general, O3 background level is increasing, mainly due to large-scale pollution and O3 high levels (peaks) are 

decreasing due to local O3 precursors emissions reduction. This leads to a positive trend for O3 mean annual average 

concentration over most of France, but a small negative trend is also found over the regions showing the higher O3 levels 

(south-east and east). No significant trends are calculated for the two O3 indicators detailed here (SOMO35 and AOT40). 10 

Population exposition is also calculated over France with the same trends. The country averaged population weight of NO2 

and PM2.5 is decreasing by respectively 30 % in 16 years and 31 % in 7 years.  No clear trend is found for SOMO35 population 

weight.  

 

   15 
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