
1 

 

Historical reconstruction of background air pollution over France for 

2000-2015 

Elsa Real1, Florian Couvidat1, Anthony Ung1, Laure Malherbe1, Blandine Raux1, Alicia Gressent1, 

Augustin Colette1 

1INERIS, France 5 

Correspondence to: Elsa Real (elsa.real@ineris.fr)  

Abstract.  

This paper describes a 16-year data set of air pollution concentrations and air quality indicators over France.  Using a kriging 

method that combines background air quality measurements and modelling with the CHIMERE Chemistry Transport Model, 

hourly concentrations of NO2, O3, PM10 and PM2.5 are produced with a spatial resolution of about 4 kilometers. Regulatory 10 

indicators (annual average, SOMO35, AOT40 etc…) are also calculated from these hourly data. The NO2 and O3 datasets 

cover the period 2000-2015, as well as the annual PM10 data. Hourly PM10 concentrations are not available from 2000 to 2007 

due to known artefacts in PM10 measurements.  PM2.5 data are only available from 2009 onwards due to the limited number 

of measuring stations available before this date. The overall dataset was evaluated over all years by a cross-validation process 

against background stations (rural, sub-urban and urban), to take into account the data fusion between measurement and models 15 

in the method. The results are very good for PM10, PM2.5 and O3. They show an overestimation of NO2 concentrations in rural 

area, while NO2 background values in urban areas are well represented. Maps of the main indicators are presented over several 

years and trends are calculated. Finally, exposure and trends are calculated for the three main health-related indicators: annual 

averages of PM2.5, NO2 and SOMO35. The DOI link for the dataset is http://doi.org/10.5281/zenodo.5043645 (Real et al., 

2021). We hope that the publication of this open dataset will facilitate further studies on the impacts of air pollution.   20 

 

1. Introduction 

Air pollution is a major environmental risk for human health and ecosystems in Europe. Over the past decades the European 

Union (EU) has put in place several measures to reduce anthropogenic emissions of pollutants. In response to emissions 

reductions, concentrations of SO2, NO2 and particles measured over Europe show a clear decrease since 1990 (EEA, 2018; 25 

EMEP, 2016).  

 

The evolution of O3 trends is less clear, despite the decrease in its precursors. The magnitude of high ozone episodes has 

decreased while annual average ozone levels measured at EMEP stations were increasing in the 1990s, and show a limited 
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negative trend from 2002. As shown in the Tropospheric Ozone Assessment Report (Tarasick et al., 2019), this feature is 

generally attributed to the changing global tropospheric ozone baseline for which further hemispheric control strategies are 

needed. The same conclusions could be drawn from the Malherbe et al. study, which focused on France, with significant 

reductions in NO2 and particles concentrations and an increase in average O3 offset by a slight decrease in peak O3.  Despite 

these reductions in emissions and pollutant concentrations (with the exception of the annual average O3), a proportion of 5 

French citizens is still exposed to concentrations above the EU limit and target value and air quality in EU remains  one of the 

main reasons for premature deaths (IHME, 2013).      

 

As a complement to observations (which provide only partial spatial information), accurate, highly spatial resolution and up-

to-date air pollution maps are important information for assessing air pollution trends and exposure. They should provide 10 

geographically detailed information on the concentrations of air pollutants over the whole territory. These maps serve as a 

basis for informing citizens information, for designing and stratifying monitoring networks, for supporting policy strategies 

and measuring their impact. They are also used to estimate population exposure to air pollutants, which is essential for 

epidemiological studies.  

On a European scale, different mapping approaches have been used to produce maps of pollutant concentrations. These maps 15 

can be obtained by modeling using a regional Chemistry Transport Model (CTM) that simulates the concentration of pollutants 

over Europe. However, these models cannot always be used over the whole Europe with a high resolution and have some 

biases and limitations in spatial representativeness. Regression methods (Briggs et al., 2000; Beelen et al., 2007) are also used 

at different scale. These stochastic modelling techniques develop statistical associations between potential ‘predictor variables’ 

(land use, emission sources, topography) and measured pollutant concentrations in order to predict concentration at an 20 

unsampled site. Other frequently used techniques are kriging techniques. These geostatistical techniques are based on the 

assumption that the data are spatially autocorrelated, and therefore take into account the distances between measurements and 

the spatial structure of the variable. Different types of kriging are used to map the concentrations of air pollutant. Over France, 

kriging methods combining information from a regional CTM (CHIMERE, (Mailler et al., 2017)) and observations are 

produced daily by the Prev’air operational forecasting and mapping System for Air Quality  (Rouïl et al., 2009). Since 2003 25 

(for ozone), and 2005 for PM10, the concentrations maps simulated for the day before in Prev’air are corrected each morning 

using observations. The kriging technique used in Prev’Air has evolved over time, and PM2.5 and NO2 concentrations are now 

also corrected for the day before. Today, a kriging of hourly observations with CHIMERE as external drift is applied to map 

NO2 and O3 concentrations. Since 2017, for the mapping of PM10 and PM2.5 concentrations, the method used is an hourly 

cokriging of PM10 and PM2.5 data with CHIMERE as external drift. These choices are the results of successive studies that 30 

compared different kriging techniques (Malherbe and Ung, 2009, Beauchamp 2015a). A similar methodology was 

implemented for an earlier reconstruction of outdoor air pollution in Europe for the period 1989-2008 in (Bentayeb et al., 
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2014). There are also ambient air pollution maps produced at European scale at 1km resolution by the European Environment 

Agency, but only for selected annual indicators and without consistency for multi-year reconstructions (Horálek et al., 2012, 

2020). The Copernicus Atmosphere Monitoring Service has also produced European analyses since 2015, but again there is 

no multi-year consistency as these European maps are produced on an annual basis with gradually improving methodologies 

(Marécal et al., 2015). At Global scale, the Global Burden of Disease also makes available air pollution exposure maps, a 5 

recent update of the methodology was presented in (Shaddick et al., 2017), but the resolution is 0.1 degrees or about 10km. 

The purpose of this paper and the associated datasets is to present and provide mapped data of O3, NO2, PM10 and PM2.5 

concentration at high spatial and temporal resolution and associated regulatory indicators covering the French metropolitan 

territory for the period 2000-2015 (2007-2015 and 2009-2015 for hourly concentrations of PM10 and PM2.5). The same kriging 

technique as in the Prev’air system is used to combine modelled and observed concentrations. Hourly concentrations of PM10, 10 

PM2.5, NO2 and O3 are produced and mapped over France and these hourly data are then used to calculate and map European 

and French air quality standards.  

2. Methods 

Model outputs and measurements from the permanent monitoring network were combined by external drift kriging ( Malherbe 

and Ung, 2009; Benmerad et al., 2017) to construct hourly concentration maps over France for a long period: 2000 to 2015. 15 

Details on the input data and methods used are described in the following paragraphs. From these corrected hourly 

concentration data, annual regulatory air quality maps are then constructed over France. 

2.1 Monitoring data 

Hourly measurements are extracted from validated reference data sets. For France, observations are extracted from the national 

air quality databases:  BDQA (Base de Données de Qualité de l’Air) before 2013 and GEODAIR  (https://www.lcsqa.org/fr/les-20 

donnees-nationales-de-qualite-de-lair) after 2013; and from the Airbase   database (https://www.eea.europa.eu/themes/air/air-

quality/map/airbase) for other European countries from 2000 to 2012 and from AQ e-reporting 

(https://www.eea.europa.eu/data-and-maps/data/aqereporting-8/aq-ereporting-products) from 2013 to 2015. All background 

monitoring data over the spatial domain are used in the kriging procedure, except for stations with measurements above the 95 

percentiles. This includes rural, suburban and urban stations but excludes industrial and traffic stations that are representative 25 

of very local concentration, difficult to reproduce in a national scale mapping system. The number of background monitoring 

sites for each type of station and for each year is summarize in Table 1. 

 

 

https://www.lcsqa.org/fr/les-donnees-nationales-de-qualite-de-lair
https://www.lcsqa.org/fr/les-donnees-nationales-de-qualite-de-lair
https://www.eea.europa.eu/themes/air/air-quality/map/airbase
https://www.eea.europa.eu/themes/air/air-quality/map/airbase
https://www.eea.europa.eu/data-and-maps/data/aqereporting-8/aq-ereporting-products
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Table 1: Number of background French monitoring sites for the years 2000 to 2015 

 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

O3 284 310 337 362 378 396 404 405 399 385 376 360 347 318 319 331 

NO2 274 290 299 322 337 353 353 350 352 337 334 316 299 284 282 300 

PM10 119 125 171 212 219 238 126 219 252 241 249 245 240 218 173 251 

PM2.5          62 69 74 84 89 90 105 

 

 

Until 1 January 2007, operational monitoring of PM10 and PM2.5 was carried out in France by automatic measuring systems of 

the TEOM (PM10, PM2.5) or Beta (PM10) type. However, compared to the reference method EN 12341 (gravimetry), these 5 

systems underestimate the concentrations of particles. This is a known artefact related to the loss of semi-volatile compounds. 

To correct PM10 measured concentrations measured before 2007, a simple approach consists in applying a uniform correcting 

factor over France. This method is not suitable for correcting hourly or daily concentrations, but it has been shown to work 

well for annual average PM10 concentrations (Malherbe et al., 2017, Bessagnet et al., 2008). The factor (1.36) is a median 

value calculated on the PM10 data from "reference" sites (Bessagnet et al., 2008). As a consequence, for the period 2000 to 10 

2006, the only PM10 indicator available is the annual average concentration. Concerning PM2.5, given the few reference 

measurements available before 2009, the reliability of even annual measurements is low. It was therefore decided to apply the 

kriging methodology only from the year 2009 onwards, for which the change in measurement method had become widespread. 

 

2.2 CHIMERE simulations 15 

The CHIMERE chemistry-transport model (Couvidat et al., 2018) is used to estimate air pollution levels for metropolitan 

France, with a resolution of about 4 km (0.06°×0.03°) over the year 2000 to 2015. This model has long been implemented and 

assessed in France as the main component of the national air quality forecasting and monitoring system PREV’AIR (Honoré 

et al., 2008). Two types of input data are used to simulate concentrations.  

Prior to 2010, a configuration similar to the one use in the EURODELTA-Trends project (Colette et al., 2017) is used. The 20 

methodology of Colette et al. (2017) is used to reconstruct the emissions of main air pollutants (Non Methanic Volatile Organic 

Compound (NMVOC), NOx, CO, SO2, NH3, and Primary PM): the annual emissions of each country, broken down by SNAP 

(Selected Nomenclature for reporting of Air Pollutants) sectors, are estimated using  the GAINS (Greenhouse gases and Air 

pollution Interactions and Synergies) model (Amann et al., 2011) for the years 2000, 2005, and 2010 . To derive emissions for 

intermediate years, sectorial results for 5-year periods are linearly interpolated. Meteorological data are simulated with the 25 

Weather Research and Forecast Model (WRF version 3.3.1; Skamarock et al., 2008) from 2000 to 2010.  

For the period 2011 to 2015, year-to-year emissions of the main pollutants are taken from the Cooperative programme for 

monitoring and evaluation of long range transmission of air pollutants in Europe (EMEP) programme available 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/contaminant
https://www.sciencedirect.com/topics/computer-science/transmission-range
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/air-pollutant
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at http://www.emep.int. Annual meteorological data were provided by ECMWF with the Integrated Forecasting System (IFS) 

model with data assimilation. 

For these two datasets, the spatialization of emissions over France is performed with a 1 km proxy based on the national 

bottom-up emission inventory (available at http://emissions-air.developpement-durable.gouv.fr/) which feeds the CHIMERE 

emission pre-processor described in Mailler et al. (2017). Furthermore, Denier van der Gon et al. (2015) showed that primary 5 

PM emissions from residential wood burning can be underestimated by up to a factor 2-3 over Europe because the emissions 

largely lack semi-volatile compounds. To compensate this underestimation, a country correction factor determined from Denier 

van der Gon et al. (2015) is applied over the whole period. 

 

2.3 Kriging  10 

Hourly atmospheric concentration fields are estimated by universal kriging, a geostatistical method. Kriging aims to estimate 

the value of a random variable (random process which describes the observations) at locations from the measurements. 

Kriging relies on the concept of spatial continuity which implies that measurements that are close to each other will be more 

similar than distant measurements. In addition, kriging requires a good knowledge of the spatial structure of the interpolation 

domain which is represented by the variogram or co-variogram (second order properties) of a random function (Goovaerts, 15 

1997; Wackernagel, 2003; Chiles and Delfiner, 2012; Lichtenstern, 2013). Kriging involves deriving linear combination of 

the observations which ensures the minimal estimation variance under a non-bias condition. At a point s0, the concentration 

estimate 𝑦(𝑠0)̂ is given by equation 1. 

𝑦(𝑠0) = ̂ ∑ 𝜆𝑖𝑦(𝑠𝑖)

𝑁

𝑖=1

 

Equation 1 20 

Where 𝑦(𝑠𝑖) , i=1…N, are the observed concentrations at sampling locations through the entire domain (unique 

neighborhood) or within a limited neighborhood of 𝑠0 (moving neighborhood), and 𝜆𝑖, i=1…N, are the kriging weights. 

Among the kriging methods, the universal kriging (especially external drift kriging) allows to consider additional information 

to make estimate more accurate. This approach is based on a linear regression with auxiliary variables and a spatial correlation 

of the residuals and allows to combine simultaneously observations and additional information. The main hypothesis is that 25 

the global mean of the random variable is not constant through the domain and it relies on explanatory variables. This kriging 

technique has been used for several years in the monitoring air quality system for spatial interpolation at the regional scale 

(PREV’AIR, Malherbe et Ung, 2009). For 𝑦(𝑠0), which is the pollutant concentration to be estimated at a location s0, the 

hypothesis is a linear relation between 𝑦(𝑠0) and the considered auxiliary variables as explained by equation 2 and 3. 

 30 

 

http://www.emep.int/
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/forecasting
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/data-assimilation
file:///C:/Users/Couvidat/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/NNG5PQ1A/emission%20inventory
http://emissions-air.developpement-durable.gouv.fr/
https://www.sciencedirect.com/science/article/pii/S136481521830896X#bib15
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𝑦(𝑠0)  = 𝑚(𝑠0) +  𝜀(𝑠0) 

Equation 2 

𝑚(𝑠0) =  𝑏0 +  𝑏1𝑥1(𝑠0) +  𝑏2𝑥2(𝑠0) + ⋯ +  𝑏𝑝𝑥𝑝(𝑠0) 

Equation 3 

Where 𝑚(𝑠0) is the drift of the mean, 𝑏0,  𝑏1, … , 𝑏𝑝, are the coefficients of the linear regression, and 𝑥0,  𝑥1, … , 𝑥𝑝 , are the 5 

auxiliary variables. 𝜀 corresponds to the stationary random process which is associated with a semi-variogram. In addition, 

the kriging weights must satisfy the drift condition described in equation 4. 

∀𝑥𝑝 ∶  𝑥𝑝(𝑠0) =  ∑ 𝜆𝑖𝑥𝑝(𝑠𝑖)

𝑁

𝑖=1

 

Equation 4 

In this work, kriging is performed with surface monitoring observations and the drift is described by the outputs from the 10 

CHIMERE chemistry transport model. European stations located outside the French domain are included in the kriging  to 

increase accuracy at the borders. The kriging is performed using a moving neighbourhood as this allows for local adjustment 

of the relationship between the measurements and CHIMERE. The concentration at each grid point is estimated within a 

window of 80 monitoring sites. This number has been adjusted in previous studies by sensitivity tests (Benmerad et al., 2017; 

Beauchamp et al., 2017). In addition, smoothing is applied to avoid discontinuities in the map (Beauchamp et al., 2015b); the 15 

smoothing methodology was adapted from Rivoirard and Romary (2011).  The final output resolution is the same as for the 

CHIMERE model: approximately 4 km resolution (0.06°×0.03°).  

For PM10 (particles with a radius < 10 µm) and PM2.5 (particles with a radius < 2.5 µm) a co-kriging with external drift is 

applied. Co-kriging is an extension of kriging to the multivariate case. It allows the estimate of PM10 or PM2.5 concentrations 

by a linear combination of the two-variable data. The particularity of co-kriging is the use of the cross variance or semi-20 

variance between the principal variable and the secondary variable. In the case of co-kriging with external drift, the simple and 

cross variograms are built based on residuals (Fouquet et al., 2007). Co-kriging allows to take into account the correlation 

between PM10 and PM2.5 and to improve consistency between PM10 and PM2.5 estimates (Beauchamp et al., 2015a). This 

cokriging also allows PM2.5 estimate to benefit from the higher density of PM10 monitoring stations. 

 25 

 

2.4 Output: regulatory air quality indicators   

From the hourly kriged concentrations, several air quality indicators (regulatory and used in health impact assessment) are 

calculated and mapped over France. The complete list and definition of these indicators are given in Table 2.  
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Table 2: Yearly regulatory air quality indicators from EU legislation or French legislation and usual indicators. 

ID Pollutant  Statistics Threshold Threshold origin Target to protect 

NO2_avgannual NO2 
Yearly average 

 
40 µg.m-3 Limit value (EU) Human health 

O3_avgannual O3 Yearly average    

O3_AOT40 O3 
AOT40* from May to 

July  
6000 µg.m-3 

Long-term 

objective 
Vegetation 

O3_AOT40_5years O3 
AOT40* from May to 

July (5 years average) 
18000 µg.m-3 Target value (EU) Vegetation 

O3_SOMO35 O3 

Sum of excess of max 

daily 8-hour averages 

over 35 ppb (= 70 µg m-3) 

calculated for all days in a 

year; SOMO35 (Sum Of 

Means Over 35 ppb) 

 
Health Impact 

Assessment 
Human health 

O3_T120 O3 

Number of days for 

which the running 

average over 8h exceeds 

120 μg.m-³ 

 
Quality objective 

(EU)  
Human health 

O3_T120_3years O3 

Number of days for 

which the running 8h 

average exceeds 120 

μg.m-³ (averaged over 3 

years) 

Not to exceed 

more than 25 

days a year 

Target value (EU)  Human health 

O3_T180 O3 

Number of hours 

exceeding the average 

value of 180 μg.m-³ 

 

Recommendation 

and Information 

Threshold 

(France) 

Human health 

O3_T240 O3 

Number of hours 

exceeding the average 

value of 240 μg.m-³ 

 
Alert threshold 

(France) 
Human health 

PM10_avgannual PM10 
Yearly average 

 
40 µg.m-3 Limit value (EU) Human health 

PM10_t50 PM10 

Number of days 

exceeding the average 

value of 50 μg.m-³ 

Not to exceed 

more than 35 

days a year 

Limit value (EU) Human health 

PM10_t80 PM10 

Number of days 

exceeding the average 

value of 80 μg.m-³ 

 
Alert threshold 

(France)) 
Human health 

PM25_avgannual PM25 Yearly average 25 µg.m-3 Limit value (EU)  Human health 
*AOT 40 (expressed in μg / m³.hour) means the sum of differences between hourly concentrations greater than 80 μg / m³ (= 

40 ppb or part per billion) and 80 μg / m³ for a given period using only the values 1 hour measured daily between 8 am and 8 

pm. 5 
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3. Data validation 

Usually the quality of the estimated concentrations maps is assessed using statistical indicators that compare observations and 

estimated concentrations at the monitoring stations in the domain. Here, information of all background stations inr the domain 

is already used to produce the maps. Therefore, for a fair comparison, the cross-validation method is used.  The cross-validation 

method calculates the quality of the spatial interpolation for each measurement station point from all available information 5 

except the selected station point, i.e. it retains one data point and then makes a prediction at the spatial location of this point. 

This procedure is repeated for all measurement points in the available set, thus allowing the quality of the predicted values to 

be assessed at locations without measurements (provided they are within the area covered by the measurements). 

It was noticed that the scores are systematically different on rural and urban stations (even though the kriging technique used 

here is not differentiate by the type of station). This is why, the results of the cross-validation are described by pollutant and 10 

differentiated by stations type (rural and urban types are presented here). Three statistical indicators are calculated on the basis 

of the daily average concentration: the mean bias, the root mean squared error (RMSE) and the pearson correlation (r2). For 

each year, they are first calculated on the “left out” station and then the median values over all stations are calculated.   

Leave-one-out validation is a commonly used method in the air quality community (see for example ETC reports on air quality 

mapping (ETC, 2020)) which is presently recommended by FAIRMODE (FAIRMODE guidance, 2020).  However, scores 15 

derived from the results of the leave-one-out validation might be influenced by areas where the density of sampling points is 

highest. For this reason, during the FAIRMODE project (Riviere et al., 2019), for which a kriging method similar to the one 

conducted here was conducted, a comparison has been performed between  cross-validation results obtained by the leave-one-

out cross-validation and cross-validation results obtained by the 5-fold cross validation (leave-20%-station-out CV). Results 

and related scores were very similar. We therefore decided to keep to the leave-one-out cross-validation process for the 20 

validation of our kriging results.  
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3.1. PM10 

 

(a) (b) 

 
 

                      

Figure 1: PM10: statistical indicators calculated using cross-validation technique on daily mean PM10 values measured and estimated 5 
over RURAL background stations for the years 2007 to 2015. (a) number of rural stations for each year; (b) mean bias (black circles), 

RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines). 

(a) (b) 

 
 

     

Figure 2: PM10: statistical indicators calculated using cross-validation technique on daily mean PM10 values measured and 

estimated over URBAN background stations for the years 2007 to 2015. (a) number of rural stations for each year. (b) Bias (black 10 
circles), RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal 

lines) 
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The scores show a good representation of the observations by the kriged data with correlations between 0.77 and 0.86 and 

RMSE of about 7 µg.m-3, i.e between 30 % and 50 % of the annual mean PM10 concentration. The mean biases are particularly 

low for urban stations with values below -1 %. For rural stations the average bias is less than +3 µg.m-3, i.e less than +15 %. 

The proportion between rural and urban stations varies between 1/3 and 1/10. The larger number of urban stations allows a 5 

better capture of the spatial variability of concentrations in urban environments.  

Looking at the evolution of the scores over the years for rural stations, the number of stations available first increases from 

2009 to 2012 before decreasing until 2014. In 2015 a new increase in the number of stations in France begins. For urban 

stations, the decrease starts earlier (2010) but the evolution is the same. The temporal evolution of the scores generally follows 

the number of stations with higher correlations and smaller relative mean biases and RMSE when more stations are available. 10 

Indeed, the greater the number of stations, the more representative the kriging technique will be of the real spatial variability. 

There are exceptions, however, as in 2015 for rural stations, with the second worst scores even though that year has the largest 

number of stations.   

3.2. PM2.5 

   15 

(a) (b) 

 

 

Figure 3: PM2.5: statistical indicators calculated using cross-validation technique on daily mean PM2.5 values measured and 

estimated over RURAL background stations for the years 2009 to 2015. (a) number of rural stations for each year. (b) Bias (black 

circles), RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal 

lines) 
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(a) (b) 

 

 

Figure 4: PM2.5: statistical indicators calculated using cross-validation technique on daily mean PM2.5 values measured and 

estimated over URBAN background stations for the years 2009 to 2015. (a) number of rural stations for each year. (b) Bias (black 

circles), RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (dotted 5 
horizontal lines) 

 

There are between half and a third fewer PM2.5 stations than PM10 stations. However, by using a co-kriging technique, the 

PM2.5 mapping also benefits from PM10 information, so that the correlations, mean bias and RMSE are almost similar to the 

PM10 scores. The mean biases for rural stations do not exceed 20 % of the mean concentrations and are very low for urban 10 

stations (between 0 and -3 %). As for PM10, this bias is systematically positive on rural stations (overestimation) and slightly 

negative over urban stations (underestimation). This is mainly related to the resolution of the data which smoothes the 

concentration gradients, giving a unique value on each grid (about 4 km horizontal resolution). For urban station, located close 

to PM2.5 precursor emissions and generally having high concentration values, this smoothing effect leads to an underestimation. 

For rural areas far from emission precursors, the opposite is observed.   15 

The correlation is generally higher than 0.8 and the RMSE does not exceed 7 µg.m-3 (at maxima 50 % of the annual mean 

concentration).  
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3.3. O3 

(a) 

 

(b) 

 

 

Figure 5: O3: statistical indicators calculated using cross-validation technique on daily mean O3 values measured and estimated 

over RURAL background stations for the years 2000 to 2015. (a) number of rural stations for each year. (b)  Bias (black circles), 5 
RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines) 
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Comparison between estimated and observed ozone at rural stations shows good correlations (0.8 to 0.87), small relative mean 

negative biases (-4 to -8 %) and low RMSE (around 20 % of the annual mean concentration). Between 2000 and 2007, the 

number of rural stations increased, resulting in improved modelled concentration maps. The small decrease in the number of 

stations after 2007 do not penalise the scores for these years.   

(a) 

 

(b) 

 

 5 

Figure 6: O3: statistical indicators calculated using cross-validation technique on daily mean O3 values measured and estimated over 

URBAN background stations for the years 2000 to 2015. (a) number of urban stations for each year. (b) Bias (black circles), RMSE 

(coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines) 

The same conclusions can be drawn for the urban ozone scores. The higher number of urban stations even leads to slightly 

better scores, with correlations above 0.9 for all years and relative mean positive biases not exceeding 5 %. A satisfactory 10 
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RMSE is also obtained for all years with values around 20 % of the annual mean concentration. It can be seen that the positive 

and negative biases are reverse with respect to the PM scores. Indeed, the highest O3 values are generally observed in rural 

areas, where precursors have had time to produce O3 and where O3 destruction is lower than in urban areas. Therefore, the 

smoothing effect has the opposite effect to that of PM.  

3.4. NO2 5 

(a) 

 

(b) 

 

 

Figure 7: NO2: statistical indicators calculated using cross-validation technique on daily mean NO2 values measured and estimated 

over RURAL background stations for the years 2000 to 2015. (a) number of rural stations for each year. (b)  Bias (black circles), 

RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines) 
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 Rural scores for NO2 are worse for particles or O3. The correlations are between 0.55 and 0.7 but above all, strong positive 

biases are observed for all years with an overestimation of the observations of 60 to 80%. This also affects RMSE scores that 

can exceed 100 % of the annual mean concentration. This poor performance can be explained by the strong spatial gradients 

in NO2 concentrations due to its shorter atmospheric lifetime than O3 or particles. There are too few rural stations to properly 

capture this variability in the kriging technique used here, so the urban stations have too much weight, and the raw model 5 

concentrations also overestimate rural concentrations.  

(a) 

 

(b) 

 

 

Figure 8: NO2: statistical indicators calculated using cross-validation technique on daily mean NO2 values measured and estimated 

over URBAN background stations for the years 2000 to 2015. (a) number of urban stations for each year. (b) Bias (black circles), 

RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines) 10 
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The urban scores for NO2 are much better than the rural scores. The correlations are around 0.8, the biases do not exceed -3.5 

% and the RMSE is between 10 to 12 µg.m-3 (less than 25 % of the annual mean concentration). The high number of urban 

background stations seems satisfactory to allow the kriging technique to correctly reproduce the spatial variability of NO2 in 

urban background environments. It should be noted however that traffic stations are not used in the present analysis (neither 

as observational data to be compared with or included in kriging).   5 

3.5. Comparison with other scores 

In order to evaluate the added value of the kriging technique compared to the raw CHIMERE model simulations, the cross-

validation scores can be compared to the raw model scores. Table 3 shows the scores averaged over all years and all 

observations, without distinction of typology. 

  10 

Table 3: Validation scores for the raw data and the kriged concentrations (cross-validation). Annual scores (bias, RMSE and the 

Pearson correlation coefficient r2) are calculated over France for all year and all stations and are averaged.   

 NO2 O3 PM10 PM2.5 

RAW 

Bias -3.51 3.46 -8.91 -4.02 

RMSE 12.97 17.26 12.63 8.73 

R2 0.55 0.73 0.71 0.75 

KRIGED CONCENTRATION 

Bias -0.51 -0.07 -0.04 -0.15 

RMSE 10.41 12.54 7.64 5.83 

R2 0.81 0.92 0.85 0.87 
 

All scores are strongly improved by the kriging method of observations with CHIMERE in external drift. However, as can be 

seen in the previous figures, this improvement is more pronounced in urban areas than in rural areas, due to the much larger 15 

number of stations in urban areas, which makes the kriging more representative of these areas.  

 

The cross-validation scores can also be compared with those obtained in Europe with other mapping methods. Chein et al. 

(2019) compared 16 algorithms to develop Europe-wide spatial models of PM2.5 and NO2, included linear stepwise regression, 

regularization techniques and machine learning methods. Those models were developed based on the 2010 routine monitoring 20 

data from the AIRBASE dataset, satellite observations, dispersion model estimates and land use variables as predictors. De 

Hoogh et al. (2018) also performed cross validation of their fine spatial scale land use regression models (also based on 

AIRBASE dataset, satellite observations, dispersion model estimates and land use variables as predictors) used in Europe for 

the year 2010. Results from their cross-validation are compared to our own cross-validation results in Table 4.  

 25 
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Table 4: Validation scores for De Hoogh et al. (2018), Chein et al. (2019) and this study (Real et al. (2022)). The following scores are 

calculated by cross validation for the 3 studies : Pearson correlation coefficient R2, the bias, and the Root Mean Square Error 

(RMSE).    

    
De Hoogh et al., 

2018 
Chein et al., 2019 Real et al, 2022 

NO2 

R2 0.57 0.57 - 0.62 0.81  

RMSE 9.51 9 - 9.5 10.41  

Bias     -0.51  

PM2.5 

R2 0.58 - 0.68 0.48 - 0.63 0.87  

RMSE 2.97 - 3.3 3.1 - 3.9 5.83  

Bias     -0.15  

O3 

R2 0.63   0.92  

RMSE 6.87   12.54  

Bias     -0.07  

 

The comparison of performance in these three studies is of course limited by the fact that the spatial coverage differs: in De 5 

Hoogh et al. (2018) and Chein et al. (2019), the cross validation is computed over the whole of Europe. In this study, the 

performances are assessed over France.  

For all pollutants the spatial correlation (R2) is better in our study. In the same time, higher RMSE are also found for our study. 

This may be due to a larger bias, but we also demonstrated in our paper that the bias was very small, except at rural NO2 

stations. Since the RMSE score also depends on the absolute concentrations, the different spatial coverage may also play a 10 

role. The lower RMSE over Europe could be an artefact of including areas where absolute concentrations of NO2, PM2.5 or 

O3 are lower than over France.  

The validation scores obtained, as well as the comparison with raw data and with other mapping method, allow us to be 

confident about the validity of the concentrations obtained and their good representativeness of background concentrations, in 

particular in urban areas. A point of vigilance appears however when it comes to the representativeness of rural NO2 15 

concentrations which are overestimated in our results.  

4. Results and discussion 

After ensuring the validation of the kriged concentration data, yearly indicators, trend over years and human exposition are 

calculated. Hourly concentrations fields are produced from 2000 to 2015 for NO2, O3 and PM10, however, as explain in section 

2, for PM10 only annual mean indicators maps are produced before 2007. PM2.5 hourly concentrations are calculated for year 20 

2009 to 2015 due to the limited number of background stations available before 2009. 
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4.1 Concentration maps and trends 

All the indicators presented in section 2 are calculated but the following section focus on the annual averaged concentrations 

of PM10, PM2.5, NO2 and O3, as well as SOMO35 and AOT (two indicators associated with O3), for which mapped data are 

presented. These indicators are presented in this paper and available on a zenodo repository and on an online map library (see 

section 5).3433 Trend analyse over the period is performed by calculating the Sen-Theil regression slope for each grid point 5 

on the domain. To characterise the significance of these trend slopes, the 95 % confidence interval is calculated. This 

confidence interval represents the lower and upper values above or below which there is ( 95 %) confidence that the trends 

will occur. The smaller the confidence interval, the more statistically significant the trend. Large confidence intervals are 

considered as unrepresentative, especially those containing 0. Trend slopes and confidence intervals are calculated for each 

grid point in  the domain and country averaged values are also given in Table 5.   10 

  

Table 5: country averaged slope and its 95 % confidence interval 

Indicator Mean tendency slope (or mean 

trend) in µg.m-3.year-1 

Mean 95 % confidence interval (in 

µg.m-3.year-1) 

PM10 - avg annual -0.8 [-0.5 ; -1.09] 

PM2.5 - avg annual -0.87 [-0.48 ; -1.41] 

O3 - avg annual 0.32 [0.005 ; 0.59] 

O3 - SOMO35 -5.52 [ -102.7 ; 76.7 ] 

O3 - AOT  -142 [-641 ; 315] 

NO2 - avg annual -0.32 [-0.3 ; -0.63 ] 
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4.1.1. PM10 

   

   

   

annual average in µg.m-3 annual average in µg.m-3 annual average in µg.m-3

 annual average in µg.m-3 annual average in µg.m-3

annual average in µg.m-3 annual average in µg.m-3 annual average in µg.m-3
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Figure 9: PM10 annual mean concentrations from 2000 to 2015. Concentrations are obtained by combination between regional 

modelling and observations 

 

annual average in µg.m-3 annual average in µg.m-3 annual average in µg.m-3

annual average in µg.m-3 annual average in µg.m-3 annual average in µg.m-3
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Maps of annual average PM10 concentration maps are presented in Erreur ! Source du renvoi introuvable.Erreur ! Source 

du renvoi introuvable.. for the period 2000-2015. The resolution of the grid (around 4km) allows to see patterns such as 

interconnected cities, especially in the latest years for which the patterns of large inter-regional concentrations are decreasing. 

The impact of meteorological conditions is also visible through the interannual variability. For example, the 2003 heatwave 

year is associated with higher PM10 levels due to increased formation of secondary aerosols.  5 

Figure 10 shows the mapped trends in annual average PM10 expressed as Sen-Theil regression slope in µg.m-3 per year and 

calculated over the period 2000-2015.  

 

Figure 10: Trends in PM10 annual mean concentration. Sen slope coefficient (µg.m-3/year) calculated over the period 2000-2015 

There is a downward trend in PM10 annual mean concentrations everywhere in France, and in particular in the regions with the 10 

highest PM10 concentrations at the beginning of the period: the South of France (East and West), the Auvergne-Rhône-Alpes 

region, the East (Grand-Est) and the extreme north of France. A country-averaged downward trends in PM10 concentrations of 

-0.8 µg.m-3 per year is estimated over the period 2000-2015 (spatial average of the trends calculated on each grid point). This 

trend is statistically significant on average over France with a narrow 95%-confidence interval ([-0.50;-1.09]) that does not 

include zero (see Table 5) and applies to almost all grid points (maps of confidence interval, not shown here) Taking the year 15 

2000 as the base year, this amounts to a 39% reduction. In a study conducted for France over the period 2000-2010, Malherbe 

et al. (2017) estimated a downward trend that was twice as small (0.4). This reflects the accelerated decline in concentrations 

in France in recent years. 

This significant downward trend is the result of the decrease in primary pollutant emissions over these 16 years in response to 

emission reduction measures. From 2000 to 2015, primary PM10 emissions over France have been reduced by 39 %, as well 20 

as emission of PM10 precursors such as NOx emissions (-56 %) and SOx emissions (-87 %) (data calculated by the CITEPA 

and extracted from the 2015 French national air quality report https://www.statistiques.developpement-

durable.gouv.fr/sites/default/files/2018-10/datalab-bilan-de-la-qualite-de-l-air-en-france-en-2015-octobre-2016-c.pdf).  

https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-10/datalab-bilan-de-la-qualite-de-l-air-en-france-en-2015-octobre-2016-c.pdf
https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-10/datalab-bilan-de-la-qualite-de-l-air-en-france-en-2015-octobre-2016-c.pdf
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4.1.2. PM2.5 

   

   

annual average in µg.m-3 annual average in µg.m-3 annual average in µg.m-3

annual average in µg.m-3
annual average in µg.m-3 annual average in µg.m-3
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Figure 11: PM2.5 annual mean concentrations from 2009 to 2015. Concentrations are obtained by combination (kriging) between 

regional modelling and observations. 

The highest PM2.5 values are observed at the beginning of the period and are more concentrated in the main source regions 

than PM10. Significant reductions in annual average background concentrations are observed over the years. The Sen slopes 

coefficients calculated for the annual average PM2.5 (Figure 12.) over the period show negative trends  over the whole territory, 5 

more pronounced over the South-East region, the Auvergne-Rhone-Alpes region, Northern France and Brittany. A downward 

trend of -0.87 µg.m-3 per year on a national average is calculated, again with statistical significance (95 % interval of [-0.48;-

1.41] which does not contain zero). Taking 2009 as a reference year, this amounts to a 35% decrease in 7 years. As for 

PM10, this negative trend is associated with the reduction of primary PM2.5 emissions and in PM2.5 precursors emissions (SOx, 

NOx and VOC).   10 

annual average in µg.m-3
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Figure 12: trends in PM2.5 annual mean concentration. Sen slope coefficients (µg.m-3/year) calculated over the period 2009-2015.  

4.1.3. Ozone 
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Figure 13: SOMO35 indicator for the period 2000 to 2015. Ozone concentrations are obtained by combination (kriging) between 

regional modelling and observations. 

The SOMO35 indicator shows strong interannual variability. O3 is a photochemical pollutant produced by secondary 

reactions in the presence of NOx, VOC and sunlight. The hot year 2003 is distinguished by a very high SOMO35 over almost 5 

the entire territory. For each year, the highest SOMO35 is found in the south-eastern France and to a lesser extent in the 

Alsace region. The trends in SOMO35, annual average O3 and AOT40 over the years are shown in  

a) Yearly mean concentrations b) SOMO35 
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c) AOT40 

 

 

Figure 14 for the period 2000-2015. 
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a)d) Yearly mean concentrations b)e) SOMO35 

  

c)f) AOT40 

 

 5 

µ
g
.m

-3
/y

ea
r

O3 annual average

Sen Slope coefficient

µ
g
.m

-3
.d

ay
/y

e
ar

SOMO35

Sen Slope coefficient

µ
g
.m

-3
.h

o
u
r/

y
e
ar

AOT40

Sen Slope coefficient



29 

 

Figure 14: Trends in annual mean O3 concentrations in µg.m-3.year-1 (a), SOMO35 in µg.m-3.day.year-1 (b) and AOT40 in µg.m-

3.hour.year-1 (c) indicators. Sen slope are calculated over the period 2000-2015. 

For the O3 average annual concentration, small positive trends are found over France. Two exceptions are the south-east 

(PACA region) and the Grand-Est region (East of France), i.e the regions with the highest O3 concentrations, showing 

negative trends. Averaging over France, this leads to a positive trend of 0.32 µg.m-3. year-1 which corresponds to an increase 5 

of 6.5% over 16 years. The same order of magnitude was found for the period 2000-2010 by Malherbe et al. (2016).  Both 

negative (in South of France) and positive trends are significant according to the mapped 95 % confidence interval (not 

shown). SOMO35 and AOT40 indicators, which are indicators with a threshold value below which concentrations are not 

taken into account, show mostly negative trends. However according to the value of the mapped 95 % confidence interval 

(not shown here) on most grid points, the confidence interval is wide and contains zero, indicating a lack of significance of 10 

the calculated trends.  These results are consistent with other European studies (EMEP 2016, Malherbe et al., 2017) that 

show an increase in background concentrations and a decrease in O3 peaks. 

4.1.4. NO2 
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Figure 15: NO2 annual mean concentrations for the period 2000 to 2015. NO2 concentrations are obtained by combination between 

regional modelling and observations. 

NO2 is mainly emitted by road transport. All maps show the same pattern, with cities and interconnected major roads showing 

the highest NO2 concentrations. Trends over the period 2000-2015 are shown in Figure 15. Decreases in NO2 concentrations 5 

are observed in both rural and urban areas throughout the country. However, we recall that rural levels were found to be 

overestimated with our approach (see 3.4). The decrease is more important when NO2 concentrations are high. As with PM2.5, 

these results highlight the combined benefit of large-scale emission management policies that target emission sectors and 

locally-oriented policies. 
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Figure 16: Trends in yearly mean NO2 concentrations. Sen slope coefficients (µg.m-3/year) are calculated over the period 2000-

2015. 

On average, a significant negative trend of -0.46 µg.m-3 is calculated over France, with a narrow 95 % confidence interval (see 

Table 3).  This downward trend is slightly stronger than that calculated in Malherbe et al. (2017) over the period 2000-2010 5 

over France (-0.37 µg.m-3.year-1) and corresponds to a reduction of about 30% (taking 2020 as the base year). 

 

4.2 Exposure trends 

Population-weighted annual average concentrations are good estimates of population exposure as they give more weight to 

the air pollution where people mainly lived. Here, the country-averaged population weighted concentrations of NO2, PM2.5 and 10 

SOMO35, which are the 3 main indicators used to calculate health impact, are calculated for each year, from the hourly kriged 

mapped data over France. For one pollutant, it is obtained adding the result of multiplying the concentration by the population 

on all the country's grids, then dividing by the total population of the country.  The population database used in this study is 

the LCSQA national population database (Létinois et al., 2014) established for the year 2015. It is based on detailed files from 

the French Ministry of Finance with information at building level. It is important to note that the French population used here 15 

has not varied over the years. The French population increased by about 10 % between 2000 and 2015. However, if we 

considered that the demographic evolution is homogeneous over the country (the urban/rural ratio has only increased by about 

2.5% in France over the same period), the weighted population concentration on national average should be the same whatever 

the year of the population database.     

 20 



33 

 

 

(a) 

 

(b)

 

c) 

 

d) 

Exposition Indicator Mean slope (or mean 

trend)  

Mean 95% confidence 

interval  

Country averaged 

population weighted 

NO2 concentration 

-0.5 µg.m-3.year-1 [-0.4 ; -0.6] (µg.m-

3.year-1) 

Country averaged 

population weighted 

PM2.5 concentration 

-1 µg.m-3.year-1 [-0.6 ; -1.5] (µg.m-

3.year-1) 

Country averaged 

population weighted 

SOMO35 

concentration 

5.5 ppb.day.year-1 [-73 ; 110] 

(ppb.day.year-1) 

 

Figure 17: Yearly evolution of the country averaged population weighted of (a) NO2 concentration (b) PM2.5 concentration c) 

SOMO35. Trends and 95% confidence intervals are calculated (d).   

As for the concentrations, a very clear downward trend is observed for population-weighted NO2 with a trend of -0.5 µg.m-

3.year-1 and  a narrow 95 % confidence interval: ([-0.4,-0.6]), i.e  a reduction of about 30 % in 16 years. A downward trend of 5 

-1 µg.m-3.year-1 is also clearly calculated for PM2.5 (95 %-confidence interval: [-0.6,-1.5]) over the period 2009-2015, i.e a 

reduction of about 31 % in 7 years. In contrast, there is no clear trend for the SOMO35 indicator over the period 2000-2015.     
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When the abovementioned indicators are multiplied by the total population (to obtain the total exposure, i.e the sum of the 

population weighted over a country), the outcome indicators are those used to calculate the health impact assessment based on 

dose-response functions, as suggested by the WHO review of “Health Risks of Air Pollution in Europe” (WHO 2013), 

described in  Holland (2014 a and b). Exposure to SOMO35, anthropic PM2.5 and NO2 (with or without threshold depending 

on the health impact indicator) contribute to both morbidity and mortality impacts. For example in France, they were used in 5 

the PREPA-evaluation study for which about fifty political measures to be implemented in France were evaluated and ranked 

on different criteria, such as air quality impact, health impact and cost-benefit assessment (Schucht et al., 2018). At constant 

population evolution, the trends are similar between both indicators (total exposure and population weighted average 

concentration). However, the evolution in population (even if it is homogeneous over the territory) has an impact on the total 

exposure of the population. Therefore, we expected a reduced impact on health impact assessment compared to those on 10 

population weighted concentrations.  

 

5. Data availability 

Mapped regulatory indicators and exposure data for all 15 years and the 4 pollutants described here are available on a zenodo 

repository under the Netcdf format (version n°4) and csv format for data at the municipal or regional level. The DOI link for 15 

the dataset is http://doi.org/10.5281/zenodo.5043645 (Real et al., 2021). It is also available through a web-based 

map library (https://www.ineris.fr/fr/recherche-appui/risques-chroniques/mesure-prevision-qualite-air/20-ans-evolution-

qualite-air). The web-based map library is intended to be updated annually. Those data have been provided to several research 

teams with different field of expertise ranging from epidemiology, to environmental economics and atmospheric science. Most 

of this work is still in progress, but others are the subject of papers submitted or being submitted (Yohan et al., 2020; J. Mink, 20 

in prep, 2022; B. Saintilan, 2021, Cantrell and Michoud, submitted, 2022). 

6. Conclusion 

A 16-year datasets of mapped air pollution concentrations and indicators over France was constructed using a data fusion 

technique (kriging) that combines measurement from background surface monitoring station and modelling from the regional 

model CHIMERE. The resulting data are hourly concentrations at a resolution of about 4km over France for the period 2000-25 

2015 (shorter period for PM2.5 and PM10 hourly indicators).  

The kriging technique implemented combines kriging with external drift for NO2 and O3 and co-kriging with external drift for 

particulate matter, allowing the PM2.5 estimation to benefit from the highest density of PM10 monitoring stations. These datasets 

have been evaluated over several years using a cross-validation process that takes into account the incorporation of 

measurements in the correction process by retaining a data point before calculating the score. The kriging technique 30 

Mis en forme : Police :10 pt, Couleur de police :
Automatique, Anglais (Royaume-Uni)

http://doi.org/10.5281/zenodo.5043645
https://www.ineris.fr/fr/recherche-appui/risques-chroniques/mesure-prevision-qualite-air/20-ans-evolution-qualite-air)
https://www.ineris.fr/fr/recherche-appui/risques-chroniques/mesure-prevision-qualite-air/20-ans-evolution-qualite-air)
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significantly improves the validation scores, especially in urban areas with very low biases and high correlations. However, a 

point of vigilance appears concerning the representativeness of NO2 concentrations in rural areas which are overestimated by 

the model. A new methodology is being developed to better map NO2 concentrations in these rural areas. It should be noted 

that the performance increases with the number of measurements taken into account until a threshold is reached at which the 

addition of stations no longer seems to improve performance. This threshold dependents on the pollutant, higher for pollutant 5 

with a strong spatial gradient (i.e NO2 which has a shorter lifetime). 

 

The main annual indicators (mean NO2, PM10, PM2.5, O3, SOMO35 and AOT40) are analysed in the document, and annual 

trends calculated. Significative downward trends are calculated over the whole period for annual average concentrations of 

PM10, PM2.5 and NO2. They reflect the reductions in precursor emissions that have taken place in Europe since the 1990s. The 10 

trends for O3 over the 16 years are less significant. In general, background O3 level is increasing, mainly due to large-scale 

pollution and high (peaks) O3 levels are decreasing due to reductions in local O3 precursors emissions. This results in a positive 

trend for the annual average O3 concentration over most of France, but a small downward trend is also observed in the regions 

with the highest O3 levels (south-east and east). No significant trend is calculated for the two O3 indicators detailed here 

(SOMO35 and AOT40). Population exposure is also calculated over France. The average weight of NO2 and PM2.5 in the 15 

population of the country decreases respectively by 30 % in 16 years and 31 % in 7 years.  No clear trend was found for the 

population weigh of SOMO35.  
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