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Abstract.  

This paper describes a 16-year data sets of air pollution concentrations and air quality indicators over France.  Using a kriging 

method that combines background air quality measurements of air quality and modelling with the CHIMERE Chemistry 

Transport Model CHIMERE, hourly concentrations of NO2, O3, PM10 and PM2.5 are produced with a spatial resolution of about 10 

4 kilometers. Regulatory indicators (annual average, SOMO35, AOT40 etc…) are also calculated from these hourly data. The 

NO2 and O3 datasets cover the period 2000-2015, as well as the annual PM10 annual data. Hourly PM10 hourly concentrations 

are not available from 2000 to 2007 due to known artefacts in PM10 measurements.  PM2.5 data are only available from 2009 

onwards due to the limited number of measuring stations available before this date.because of the lack of measurement stations 

before. The overall dataset washas been evaluated over all the years through by a cross-validation process against background 15 

measurement stations (rural, sub-urban and urban), to take into account for the data fusion between measurement and models 

in the method. The Rresults are very good for PM10, PM2.5 and O3. TheyIt shows an overestimation of NO2 concentrations in 

rural area, while background NO2 background values in urban areas are well represented. Maps of the main indicators are 

shown presented over several years and trends are calculated. Finally, country exposure and trends are calculated for ofthe 

three main health -related indicators: yearly annual averages ofd PM2.5 , NO2 and SOMO35 are calculated. The DOI link for 20 

the dataset is http://doi.org/10.5281/zenodo.5043645 (Real et al., 2021). We hope that the publication of this open dataset in 

open access will facilitate further studies on the impacts of air pollution.   

 

1. Introduction 

Air pollution is a major environmental risk for human health and ecosystems in Europe. During Over the last past decades the 25 

European Union (EU) has put in place several measures to reduce anthropogenic emissions of pollutants. In response toof 

emissions reductions, concentrations of SO2, NO2 and particles measured over Europe show a clear decrease since 1990 (EEA, 

2018; EMEP, 2016).  
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European background concentrations decreases have been recently evaluated by the EMEP Task Force on Measurements and 

Monitoring (TFMM) through analysis of measurements from the EMEP monitoring network (representatives of rural 

background concentrations) over the period 1990-2012 (EMEP, 2016).  

Sulphur compounds show the largest decrease in response to strong sulfur emissions abatement. NO2, NMVOC and acidifying 

and eutrophying nitrogen pollutant emissions (NOx and NH3) also decreased over the period 1990-2012 with reductions 5 

broadly consistent with the reported emission reductions in Europe for the same period. Decreases in PM10 and PM2.5 were 

also measured over the period 2002-2012. The evolution of O3 trends are is less straight forwardclear, despite the decrease 

inof its precursors. The magnitude of high ozone episodes has decreased whereas while annual mean average ozone levels 

measured at EMEP stations were increasing in the 1990s, and show a limited negative trend starting infrom 2002. As shown 

in the Tropospheric Ozone Assessment Report (TOAR activity from IGACTarasick et al., 2019), Tthis feature is generally 10 

attributed to the evolution changing of the global baseline of tropospheric ozone baseline for which further hemispheric control 

strategies are needed. The same conclusions could be drawn from the Malherbe et al. study, which focused on France, with 

significant reductions in NO2 and particles concentrations and an increase in average O3 offset by a slight decrease in peak O3.   

Based on methodologies established within EMEP, the trends in air pollution concentration for the period 2000-2010 have 

also been evaluated over France by the Laboratoire Central de Surveillance de la Qualité de l’Air (Malherbe et al, 2017) using 15 

observations with more diverse typologies (rural, urban, trafic ..). Significant reductions of NO2 and PM10 concentrations were 

also estimated over France for this period (-17 % and -15 %). The evolution is less favorable for ozone. Even if the peaks 

decrease by 3.8 % in amplitude, the averages increase by 5.5 % over the period. Despite these reductions in pollutant emissions 

and pollutant concentrations (except with the exception for of the annual average O3), part a proportion of French citizens is 

still exposed to concentrations aboveover the EU limit and target value and air quality in EU remains is still one of the main 20 

reasons forof premature deaths (IHME, 2013).      

 

As a cComplementary to observations (that only giveswhich provide only partial spatial information), accurate, highly spatially 

resolutionlved and up- to- date maps of air pollution maps constitute anare important information to for assessing air pollution 

trends and exposure. They are required toshould provide geographically detailed information on the concentrations of air 25 

pollutants concentration over the entirewhole territory. These maps actserve as a basis for informing citizens information, for 

designing and stratifying monitoring networks, and for supporting policy strategies and measuring their impact. They are also 

used to estimate population exposure to air pollutants, which is essential forto epidemiological studies.  

At On a European scale, different mapping approaches have been used to produce maps of pollutant concentrations. These 

maps can be obtained by modeling using a regional Chemistry Transport Model (CTM) that simulates the concentration of 30 

pollutants over Europe. However, these models cannot always be used over all the whole Europe with a high resolution and 

present have some biases and limitations in spatial representativenessity limitations. Regression methods (Briggs et al., 2000; 
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Beelen et al., 2007) are also used at different scale. These stochastic modelling techniques develop statistical associations 

between potential ‘predictor variables’ (land use, emission sources, topography) and measured pollutant concentrations, toin 

order to predict concentration at an unsampled site. Other techniques frequently used techniques are kriging techniques. These 

geostatistical techniques are based on the assemptionhypothesis that the data are spatially autocorrelated, and therforeso take 

into account the distances between measurements and the spatial structure of the variable. Different types of kriging are used 5 

to map the concentrations of air pollutant concentration. Over France, kriging methods that combinecombining information 

from a regional CTM (CHIMERE, (Mailler et al., 2017)) and observations are produced daily by the Prev’air oOperational 

fForecasting and mMapping System for Air Quality Prev’air (Rouïl et al., 2009). Since 2003 (for ozone), and 2005 for PM10, 

the maps of concentrations maps simulated for the day before in Prev’air are corrected each morning using observations. The 

kriging technique used in Prev’Air has evolved overin time, and PM2.5 and NO2 concentrations are now also corrected for the 10 

day before. Today, a kriging ofn hourly observations kriging with CHIMERE as an external drift is applied to map NO2 and 

O3 concentrations. Since 2017, for the mapping of PM10 and PM2.5 concentrations, the method used is an hourly cokriging of 

PM10 and PM2.5 data with CHIMERE asin external drift. These choices are the results of successive studies that compared 

different kriging techniques (Malherbe and Ung, 2009, Beauchamp 2015a). A similar methodology was implemented for an 

earlier reconstruction of outdoor air pollution in Europe for the period 1989-2008 in (Bentayeb et al., 2014). There are also 15 

ambient air pollution maps produced at European scale at 1km resolution by the European Environment Agency, but only for 

selected annual indicators and without consistency for multi-year reconstructions (Horálek et al., 2012, 2020). The Copernicus 

Atmosphere Monitoring Service has also produced European analyses since 2015, but again there is no multi-year consistency 

as these European maps are produced on an annual basis with gradually improving methodologies (Marécal et al., 2015). At 

Global scale, the Global Burden of Disease also makes available air pollution exposure maps, a recent update of the 20 

methodology was presented in (Shaddick et al., 2017), but the resolution is 0.1 degrees or about 10km. 

The purpose of this paper and theits associated datasets is to present and provide mapped data of O3, NO2, PM10 and PM2.5 

concentration mapped data withat high spatial and temporal resolution as well asand associated regulatory indicators covering 

the French metropolitan territory for the period 2000-2015 (2007-2015 and 2009-2015 for hourly concentrations of PM10 and 

PM2.5 concentrations). The same kriging technique as in the Prev’air system is used to combine modelleding and observed 25 

concentrations. Hourly concentrations of PM10, PM2.5, NO2 and O3 are produced and mapped over France and these hourly 

data are then used to calculate and map Air Quality European and French air quality standards.  

2. Methods 

Model outputs and measurements from the permanent monitoring network were combined by external drift kriging (Malherbe 

and Ung, 2009; Benmerad et al., 2017) to build construct hourly concentration maps over France for a long-time period: 2000 30 

to 2015. Details on the input data and methods used are described in the following paragraphs. Using From these corrected 
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hourly concentration data, annual regulatory air quality maps of annual regulatory air quality indicators are subsequently then 

constructederived over France. 

2.1 Monitoring data 

Hourly measurements are extracted from validated reference data sets of validated data. OverFor France, observations are 

extracted from the national air quality databases:  BDQA (Base de Données de Qualité de l’Air) before 2013 and GEODAIR  5 

(https://www.lcsqa.org/fr/les-donnees-nationales-de-qualite-de-lair) after 2013; and from the Airbase   database 

(https://www.eea.europa.eu/themes/air/air-quality/map/airbase) for other European countries from 2000 to 2012 and from AQ 

e-reporting (https://www.eea.europa.eu/data-and-maps/data/aqereporting-8/aq-ereporting-products) from 2013 to 2015. All 

background monitoring data over the spatial domain are used in the kriging procedure, except for stations with measurements 

exceeding above the 95 percentiles. This includes rural, suburban and urban stations but excludes industrial and traffic stations 10 

that are representative of very local concentration, difficult tohardly reproduceible withinin a national- scalewide mapping 

system. The number of background monitoring sites for each type of stations and for each year isare summarize in Table 1. 

Table 1: Number of background French monitoring sites for the years 2000 to 2015 

 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

O3 284 310 337 362 378 396 404 405 399 385 376 360 347 318 319 331 

NO2 274 290 299 322 337 353 353 350 352 337 334 316 299 284 282 300 

PM10 119 125 171 212 219 238 126 219 252 241 249 245 240 218 173 251 

PM2.5 3 7 18 22 25 32 38 6 28 62 69 74 84 89 90 105 

 

Because  15 

As PM2.5 measurements stations were rarescarce in France before 2009, Pmapped PM2.5 mapped data will only be computed 

calculated for the period 2009-2015. AlsoFurthermore, uUntil 1 January 2007, operational monitoring of PM10 and PM2.5 was 

carried out in France by automatic measuring systems of the TEOM (PM10, PM2.5) or Beta (PM10) type. However, compared 

to the reference method EN 12341 (gravimetry), these systems underestimate the concentrations of particlesPM10. This is a 

known artefact related to the loss of semi-volatile compounds. To correct PM10 measured concentrations measured before 20 

2007, a simple approach consists in applying a uniform correcting factor over France. This method is not adapted suitable for 

a correctingon of hourly or daily concentrations, but it has been shown to work well give good results for annual averageyearly 

mean PM10 concentrations (Malherbe et al., 2017, Bessagnet et al., 2008). The factor (1.36) is a median value calculated on 

the PM10 data from "reference" sites (Bessagnet et al., 2008). As a consequence, for the period 2000 to 2006, the only PM10 

indicator available is the annual mean average concentration. Concerning PM2.5, given the few reference measurements 25 

available before 2009, the reliability of even annual measurements is low. It was therefore decided to apply the kriging 

methodology only from the year 2009 onwards, for which the change in measurement method had become widespread. 

 

https://www.lcsqa.org/fr/les-donnees-nationales-de-qualite-de-lair
https://www.eea.europa.eu/themes/air/air-quality/map/airbase
https://www.eea.europa.eu/data-and-maps/data/aqereporting-8/aq-ereporting-products
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2.2 CHIMERE simulations 

The CHIMERE chemistry-transport model (Couvidat et al., 2018) is used to estimate air pollution levels for the metropolitan 

France, with a resolution of approximately about 4 km resolution (0.06°×0.03°) over the year 2000 to 2015. This model has 

long been implemented and assessed in France as the main component of the national air quality forecasting and monitoring 

system PREV’AIR (Honoré et al., 2008). Two types of input data are used to simulate the concentrations.  5 

Prior to 2010, a setup configuration similar to the one use in the EURODELTA-Trends project (Colette et al., 2017) is used. 

The methodology of Colette et al. (2017) is used to reconstruct the emissions of main air pollutants (Non Methanic Volatile 

Organic Compound (NMVOC), NOx, CO, SO2, NH3, and Primary PM): the annual emissions of eachevery countryies, broken 

downdistributed by SNAP (Selected Nomenclature for reporting of Air Pollutants) sectors, are estimated using with the GAINS 

(Greenhouse gases and Air pollution Interactions and Synergies) model (Amann et al., 2011) for the years 2000, 2005, and 10 

2010 . To derive emissions for intermediate years, sectorial results for 5-year periods are linearly interpolated. Meteorological 

data are simulated with the Weather Research and Forecast Model (WRF version 3.3.1; Skamarock et al., 2008) from 2000 to 

2010.  

For the period 2011 to 2015, year-to-year emissions of the main pollutants are issued taken from the EMEP (Cooperative 

programme for monitoring and evaluation of long range transmission of air pollutants in Europe (EMEP)) programme 15 

available at http://www.emep.int. Year-to-yearAnnual meteorological data were provided by ECMWF with the 

Integrated Forecasting System (IFS) model with data assimilation. 

For these two datasets, the spatialization of emissions over France is performed with a 1 km proxy based on the national 

bottom-up emission inventory (available at http://emissions-air.developpement-durable.gouv.fr/) which that feeds the 

CHIMERE emission pre-processor of CHIMERE described in Mailler et al. (2017). MoreoverFurthermore, Denier van der 20 

Gon et al. (2015) showed that primary PM emissions of primary particles from residential wood burning can be underestimated 

by up to a factor 2-3 over Europe because the emissions are lacking a largelargely partlack semi-volatile compounds. To 

compensate this underestimation, a factor ofcountry correction factorby countries determined from Denier van der Gon et al. 

(2015) is applied over the whole period. 

 25 

2.3 Kriging  

Hourly atmospheric concentration fields are estimated by universal kriging, a geostatistical method. Kriging aims to estimate 

the value of a random variable (random process which describes the observations) at locations from the measurements. 

Kriging relies on the concept of spatial continuity which implies that measurements that are close to each other will be more 

similar than distant measurements. In addition, kriging requires a good knowledge of the spatial structure of the interpolation 30 

domain which is represented by the variogram or co-variogram (second order properties) of a random function (Goovaerts, 

1997; Wackernagel, 2003; Chiles and Delfiner, 2012; Lichtenstern, 2013). Kriging involves deriving linear combination of 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/contaminant
https://www.sciencedirect.com/topics/computer-science/transmission-range
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/air-pollutant
http://www.emep.int/
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/forecasting
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/data-assimilation
file:///C:/Users/Couvidat/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/NNG5PQ1A/emission%20inventory
http://emissions-air.developpement-durable.gouv.fr/
https://www.sciencedirect.com/science/article/pii/S136481521830896X#bib15
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the observations which ensures the minimal estimation variance under a non-bias condition. At a point s0, the concentration 

estimate 𝑦(𝑠0)̂ is given by equation 1. 

𝑦(𝑠0) = ̂ ∑ 𝜆𝑖𝑦(𝑠𝑖)

𝑁

𝑖=1

 

Equation 1 

Where 𝑦(𝑠𝑖) , i=1…N, are the observed concentrations at sampling locations through the entire domain (unique 5 

neighborhood) or within a limited neighborhood of 𝑠0 (moving neighborhood), and 𝜆𝑖, i=1…N, are the kriging weights. 

Among the kriging methods, the universal kriging (especially external drift kriging) allows to consider additional information 

to make estimate more accurate. This approach is based on a linear regression with auxiliary variables and a spatial correlation 

of the residuals and allows to combine simultaneously observations and additional information. The main hypothesis is that 

the global mean of the random variable is not constant through the domain and it relies on explanatory variables. This kriging 10 

technique has been used for several years in the monitoring air quality system for spatial interpolation at the regional scale 

(PREV’AIR, Malherbe et Ung, 2009). For 𝑦(𝑠0), which is the pollutant concentration to be estimated at a location s0, the 

hypothesis is a linear relation between 𝑦(𝑠0) and the considered auxiliary variables as explained by equation 2 and 3. 

 

𝑦(𝑠0)  = 𝑚(𝑠0) + 𝜀(𝑠0) 15 

Equation 2 

𝑚(𝑠0) =  𝑏0 +  𝑏1𝑥1(𝑠0) +  𝑏2𝑥2(𝑠0) + ⋯ +  𝑏𝑝𝑥𝑝(𝑠0) 

Equation 3 

Where 𝑚(𝑠0) is the drift of the mean, 𝑏0,  𝑏1, … , 𝑏𝑝, are the coefficients of the linear regression, and 𝑥0,  𝑥1, … , 𝑥𝑝 , are the 

auxiliary variables. 𝜀 corresponds to the stationary random process which is associated with a semi-variogram. In addition, 20 

the kriging weights must satisfy the drift condition described in equation 4. 

∀𝑥𝑝 ∶  𝑥𝑝(𝑠0) =  ∑ 𝜆𝑖𝑥𝑝(𝑠𝑖)

𝑁

𝑖=1

 

Equation 4 

 

In this work, kriging is performed with surface monitoring observations and the drift is described by the outputs from the 25 

CHIMERE chemistry transport model. European stations located outside the French domain are included in the kriging to 

increase accuracy at the borders. The kriging is performed using a moving neighbourhood as this allows for local adjustment 

of the relationship between the measurements and CHIMERE. The concentration at each grid point is estimated within a 

window of 80 monitoring sites. This number has been adjusted in previous studies by sensitivity tests (Benmerad et al., 2017; 

Beauchamp et al., 2017). In addition, smoothing is applied to avoid discontinuities in the map (Beauchamp et al., 2015b); the 30 
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smoothing methodology was adapted from Rivoirard and Romary (2011).  The final output resolution is the same as for the 

CHIMERE model: approximately 4 km resolution (0.06°×0.03°).  

For PM10 (particles with a radius < 10 µm) and PM2.5 (particles with a radius < 2.5 µm) a co-kriging with external drift is 

applied. Co-kriging is an extension of kriging to the multivariate case. It allows the estimate of PM10 or PM2.5 concentrations 

by a linear combination of the two-variable data. The particularity of co-kriging is the use of the cross variance or semi-5 

variance between the principal variable and the secondary variable. In the case of co-kriging with external drift, the simple and 

cross variograms are built based on residuals (Fouquet et al., 2007). Co-kriging allows to take into account the correlation 

between PM10 and PM2.5 and to improve consistency between PM10 and PM2.5 estimates (Beauchamp et al., 2015a). This 

cokriging also allows PM2.5 estimate to benefit from the higher density of PM10 monitoring stations. 

 10 

 

Hourly atmospheric concentration fields are estimated by external drift kriging, combining surface monitoring observations 

and outputs from the CHIMERE chemistry transport model (Malherbe and Ung, 2009). European stations located outside the 

French domain are included in the kriging to increase accuracy at the borders. The Kkriging is performed using a moving 

neighbourhood as this allows for local adjustment of the relationship between the measurements and CHIMERE. The 15 

Cconcentration at each grid point is estimated within a window of 80 monitoring sites.  This number hwas been adjusted in 

previous studies by sensitivity tests (Benmerad et al., 2017; Beauchamp et al., 2017). In addition, a smoothing is applied to 

avoid discontinuities in the map (Beauchamp et al., 2015b); the smoothing methodology was adapted from Rivoirard and 

Romary (2011).  The final output resolution is the same as for the CHIMERE model: approximately 4 km resolution 

(0.06°×0.03°).  20 

For PM10 (particles with a radius < 10 µm) and PM2.5 (particles with a radius < 2.5 µm) a co-kriging with external drift is 

applied to take into account the correlation between PM10  and PM2.5 and to improve consistency between PM10 and PM2.5 

estimates (Beauchamp et al., 2015ab). Such This cokriging also allows PM2.5 estimateion to benefit from the higher density of 

PM10 monitoring stations. 

2.4 Output: regulatory air quality indicators   25 

From the hourly kriged hourly concentrations, several air quality indicators (regulatory and used in health impact assessment) 

are calculated and mapped over France. The complete list and definition of these indicators are given in Table 2.  

 

Table 2: Yearly regulatory air quality indicators from EU legislation or French legislation and usual indicators. 

ID Pollutant  Statistics Threshold Threshold origin Target to protect 

NO2_avgannual NO2 
Yearly average 

 
40 µg.m-3 Limit value (EU) Human health 

O3_avgannual O3 Yearly average    
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O3_AOT40 O3 
AOT40* from May to 

July  
6000 µg.m-3 

Long-term 

objective 
Vegetation 

O3_AOT40_5years O3 
AOT40* from May to 

July (5 years average) 
18000 µg.m-3 Target value (EU) Vegetation 

O3_SOMO35 O3 

Sum of excess of max 

daily 8-hour averages 

over 35 ppb (= 70 µg m-3) 

calculated for all days in a 

year; SOMO35 (Sum Of 

Means Over 35 ppb) 

 
Health Impact 

Assessment 
Human health 

O3_T120 O3 

Number of days for 

which the running 

average over 8h exceeds 

120 μg.m-³ 

 
Quality objective 

(EU)  
Human health 

O3_T120_3years O3 

Number of days for 

which the running 8h 

average exceeds 120 

μg.m-³ (averaged over 3 

years) 

Not to exceed 

more than 25 

days a year 

Target value (EU)  Human health 

O3_T180 O3 

Number of hours 

exceeding the average 

value of 180 μg.m-³ 

 

Recommendation 

and Information 

Threshold 

(France) 

Human health 

O3_T240 O3 

Number of hours 

exceeding the average 

value of 240 μg.m-³ 

 
Alert threshold 

(France) 
Human health 

PM10_avgannual PM10 
Yearly average 

 
40 µg.m-3 Limit value (EU) Human health 

PM10_t50 PM10 

Number of days 

exceeding the average 

value of 50 μg.m-³ 

Not to exceed 

more than 35 

days a year 

Limit value (EU) Human health 

PM10_t80 PM10 

Number of days 

exceeding the average 

value of 80 μg.m-³ 

 
Alert threshold 

(France)) 
Human health 

PM25_avgannual PM25 Yearly average 25 µg.m-3 Limit value (EU)  Human health 
*AOT 40 (expressed in μg / m³.hour) means the sum of differences between hourly concentrations greater than 80 μg / m³ (= 

40 ppb or part per billion) and 80 μg / m³ for a given period using only the values 1 hour measured daily between 8 am and 8 

pm. 

3. Data validation 

Usually the quality of the estimated concentrations maps is assessed using statistical indicators that compare observations and 5 

estimated concentrations at the monitoring stations over in the domain. Here, information of all background stations over inr 

the domain are is already used to producedevelop the maps. Therefore, for a fair comparison, the cross-validation method is 

used.  The cross-validation method computes calculates the quality of the spatial interpolation for each measurement station 
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point from all available information except from the selected station point, i.e. it withholds retains one data point and then 

makes a prediction at the spatial location of thatis point. This procedure is repeated for all measurement points in the available 

set, thus allowingenabling the evaluation of thethe quality of the predicted values to be assessed at locations without 

measurements (as long asprovided they are within the area covered by the measurements). 

It has beenwas noticed that the scores are systematically different over on rural or and urban stations (even ithoughf the kriging 5 

technique used here is not differentiate by the type of station). ThereforeThis is why, the results of the cross-validation are 

described per by pollutant and differentiated by stations type of stations (rural and urban types are shown presented here). 

Three statistical indicators are calculated on the basis of based onthe daily mean average concentration: the mean bias, the root 

mean squared error (RMSE) and the pearson correlation (r2). For each year, they are first calculated onver the “left out” station 

and then the median values over all stations are calculated.   10 

Leave-one-out validation is a commonly used method in the air quality community (see for example ETC reports on air quality 

mapping (ETC, 2020)) which is presently recommended by FAIRMODE (FAIRMODE guidance, 2020).  However scores 

derived from the results of the leave-one-out validation might be influenced by areas where the density of sampling points is 

highest. For this reason, during the FAIRMODE project (Riviere et al., 2019), for which a kriging method similar to the one 

conducted here was conducted, a comparison has been performed between  cross-validation results obtained by the leave-one-15 

out cross-validation and cross-validation results obtained by the 5-fold cross validation (leave-20%-station-out CV). Results 

and related scores were very similar. We therefore decided to keep to the leave-one-out cross-validation process for the 

validation of our kriging results.  

 

3.1.4.3.1. PM10 20 
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(a) (b) 

 
 

                      

Figure 1: PM10: statistical indicators calculated using cross-validation technique on daily mean PM10 values measured and estimated 

over RURAL background stations for the years 2007 to 2015. (a) number of rural stations for each year; (b) mean bias (black circles), 

RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines). 

(a) (b) 

 
 

     5 

Figure 2: PM10: statistical indicators calculated using cross-validation technique on daily mean PM10 values measured and 

estimated over URBAN background stations for the years 2007 to 2015. (a) number of rural stations for each year. (b) Bias (black 

circles), RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal 

lines) 

 10 

The scores show an overalla good representation of the observations by the reanalysed kriged data with correlations between 

0.77 and 0.86 and RMSE around of about 7 µg.m-3, i.e between 30 % and 50 % of the mean yearlyannual mean PM10 
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concentration. The mean biases are particularly low for urban stations with values smaller thanbelow -1 %. For rural stations 

the mean average bias is less thanlies below +3 µg.m-3, i.e below less than +15 %. The proportion between rural and urban 

stations varies between 1/3 and 1/10. The larger number of urban stations leads tallowso a better capture of the spatial 

variability of concentrations in urban environments.  

Looking at the evolution of the scores over the years, for rural stations, the number of stations available first increases from 5 

2009 to 2012 before a decreasedecreasing until up to 2014. In 2015 a new increase starts inin the number of stations over in 

France begins. For urban stations, the decrease starts earlier (2010) but the evolution is the same. The temporal evolution of 

the scores generally follows the number of stations with higher correlations and smaller relative mean biases and RMSE when 

more stations are available. Indeed the largest greateris the number of stations, the more representative the kriging technique 

will be of the real spatial variability will be the kriging technique. There are however eexceptions, however, as shown in 2015 10 

for rural stations, with the second worst scores whereas even though that year has the largest number of stations.   

3.1.5.3.2. PM2.5 

 

 

   15 

(a) (b) 

 

 

Figure 3: PM2.5: statistical indicators calculated using cross-validation technique on daily mean PM2.5 values measured and 

estimated over RURAL background stations for the years 2009 to 2015. (a) number of rural stations for each year. (b) Bias (black 

circles), RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal 

lines) 
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(a) (b) 

 

 

Figure 4: PM2.5: statistical indicators calculated using cross-validation technique on daily mean PM2.5 values measured and 

estimated over URBAN background stations for the years 2009 to 2015. (a) number of rural stations for each year. (b) Bias (black 

circles), RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (dotted 5 
horizontal lines) 

 

There areis between one half and a to one third less fewer PM2.5 stations than PM10 stations. However, thanks to theby usinge 

of a co-kriging technique, the mapping for PM2.5 mapping also benefits from PM10 information, so that the correlations, mean 

bias and RMSE are almost similar to the PM10 scores. The Mmean biases for rural stations do not exceed 20 % of the mean 10 

concentrations and isare very low for urban stations (between 0 and -3 %). As for PM10, this bias is systematically positive 

overn rural stations (overestimation) and slightly negative over urban onesstations (underestimation). This is mainly has related 

to do with datathe resolution of the data thatwhich smoothes outthe concentration gradients, giving a unique value overn each 

grid (aboutround 4 km horizontal resolution). For urban station, located close to PM2.5 precursor emissions and usually 

showinggenerally having high concentration values, this smoothing effect results inleads to an underestimation. OverFor rural 15 

areas located far from emission precursors, the opposite is observed.   

The Ccorrelation is usugenerally higher than 0.8 and the RMSE does not exceed 7 µg.m-3 (at maxima 50 % of the mean 

yearlyannual mean concentration).  

3.1.6.3.3. O3 

 20 
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(a) 

 

(b) 

 

 

Figure 5: O3: statistical indicators calculated using cross-validation technique on daily mean O3 values measured and estimated 

over RURAL background stations for the years 2000 to 2015. (a) number of rural stations for each year. (b)  Bias (black circles), 

RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines) 5 

 

Comparison between estimated and observed ozone aton rural stations shows good correlations (0.8 to 0.87), small relative 

mean negative biases (-4 to -8 %) and low RMSE (around 20 % of the yearly annual meanaverage concentration). Between 
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2000 and 2007, the number of rural stations increased, resulting in an improvedment of the modelled concentration maps. The 

small decrease in the number of stations after 2007 do not penalisze the scores for these years.   

 

(a) 

 

(b) 

 

 

Figure 6: O3: statistical indicators calculated using cross-validation technique on daily mean O3 values measured and estimated over 5 
URBAN background stations for the years 2000 to 2015. (a) number of urban stations for each year. (b) Bias (black circles), RMSE 

(coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines) 

The same conclusions can be drawn for the urban ozone scores. The higher number of urban stations even leads even to slightly 

better scores, with correlations aboveover 0.9 for all years and relative mean positive biases that do not exceeding 5 %. A 

satisfactory RMSE is also obtained for all years with values around 20 % of the yearly annual mean concentration. It can be 10 
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seennoticed that the positive and negative biases is invertedare reverse with respect compared to the PM scores of PM. Indeed, 

the highest larger value of O3 values are generallyusually observed overin rural areas, wheren precursors have had time to 

produce O3 and where O3 destruction is lowerst than in urban areasenvironment. Therefore, the smoothing effect has the 

opposite effect to that ofas for PM.  

 5 

3.1.7.3.4. NO2 

 

 

(a) 

 

(b) 
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Figure 7: NO2: statistical indicators calculated using cross-validation technique on daily mean NO2 values measured and estimated 

over RURAL background stations for the years 2000 to 2015. (a) number of rural stations for each year. (b)  Bias (black circles), 

RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines) 

NO2 Rrural scores for NO2 are worse than for particles or O3. The Ccorrelations stands are between 0.55 and 0.7 but more 5 

above all, importantly, strong positive biases are found observed for all years with an overestimation of the observations by 

aof 60 to 80 %. This also affects RMSE scores that can exceed 100 % of the yearly annual mean concentration. Thisese poorlow 

performances can be explained by the strong spatial gradients inof NO2 concentrations due to its shorterlower atmospheric 

lifetime than O3 or particles. There are too few rural stations to correctly catchproperly capture this variability in the kriging 

technique used here, so theat urban stations have too much of a large weight, and the raw model concentrations also 10 

overestimate the rural concentrations.  

 

 

 

(a) 
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(b) 

 

 

Figure 8: NO2: statistical indicators calculated using cross-validation technique on daily mean NO2 values measured and estimated 

over URBAN background stations for the years 2000 to 2015. (a) number of urban stations for each year. (b) Bias (black circles), 

RMSE (coloured rectangles), correlation (grey crosses and the associated dashed lines) and mean observation (horizontal lines) 

The Uurban scores for NO2 are much better than the rural onesscores. The Ccorrelations areevolve around 0.8, the biases do 5 

not exceed -3.5 % and the RMSE istand between 10 to 12 µg.m-3 (lessower than 25 % of the yearly meanannual mean 

concentration). The high number of urban background stations seems satisfactory to allow the kriging technique to correctly 

reproduce the NO2 spatial variability of  NO2 in urban background environments. It should be noted however that traffic 

stations are not used in the present analysis (neither as observational data to be compared with or included in kriging).   

 10 
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3.5. Comparison with other scores 

In order to evaluate the added value of the kriging technique compared to the raw CHIMERE model simulations, the cross-

validation scores can be compared to the raw model scores. Table 3 shows the scores averaged over all years and all 

observations, without distinction of typology. 

  5 

Table 3: Validation scores for the raw data and the kriged concentrations (cross-validation). Annual scores (bias, RMSE and the 

Pearson correlation coefficient r2) are calculated over France for all year and all stations and are averaged.   

 NO2 O3 PM10 PM2.5 

RAW 

Bias -3.51 3.46 -8.91 -4.02 

RMSE 12.97 17.26 12.63 8.73 

R2 0.55 0.73 0.71 0.75 

KRIGED CONCENTRATION 

Bias -0.51 -0.07 -0.04 -0.15 

RMSE 10.41 12.54 7.64 5.83 

R2 0.81 0.92 0.85 0.87 
 

All scores are strongly improved by the kriging method of observations with CHIMERE in external drift. However, as can be 

seen in the previous figures, this improvement is more pronounced in urban areas than in rural areas, due to the much larger 10 

number of stations in urban areas, which makes the kriging more representative of these areas.  

 

The cross-validation scores can also be compared with those obtained in Europe with other mapping methods. Chein et al. 

(2019) compared 16 algorithms to develop Europe-wide spatial models of PM2.5 and NO2, included linear stepwise regression, 

regularization techniques and machine learning methods. Those models were developed based on the 2010 routine monitoring 15 

data from the AIRBASE dataset, satellite observations, dispersion model estimates and land use variables as predictors. De 

Hoogh et al. (2018) also performed cross validation of their fine spatial scale land use regression models (also based on 

AIRBASE dataset, satellite observations, dispersion model estimates and land use variables as predictors) used in Europe for 

the year 2010. Results from their cross-validation are compared to our own cross-validation results in Table 4Table 3.  

 20 

Table 4: Validation scores for De Hoogh et al. (2018), Chein et al. (2019) and this study (Real et al. (2022)). The following scores are 

calculated by cross validation for the 3 studies : Pearson correlation coefficient R2, the bias, and the Root Mean Square Error 

(RMSE).    

    
De Hoogh et al., 

2018 
Chein et al., 2019 Real et al, 2022 

NO2 R2 0.57 0.57 - 0.62 0.81 0.55 - 0.84 
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RMSE 9.51 9 - 9.5 10.41 9  14 

Bias     -0.51  9 

PM2.5 

R2 0.58 - 0.68 0.48 - 0.63 0.87 0.76 - 0.9 

RMSE 2.97 - 3.3 3.1 - 3.9 5.83 5  7 

Bias     -0.15 7 - 2.5 

O3 

R2 0.63   0.92 0.8 - 0.93 

RMSE 6.87   12.54 12 - 20 

Bias     -0.07  - 0.6 

 

The comparison of performance in these three studies is of course limited by the fact that the spatial coverage differs: in De 

Hoogh et al. (2018) and Chein et al. (2019), the cross validation is computed over the whole of Europe. In this study, the 

performances are assessed over France.  

For all pollutants the spatial correlation (R2) is better in our study. In the same time, higher RMSE are also found for our study. 5 

This may be due to a larger bias, but we also demonstrated in our paper that the bias was very small, except at rural NO2 

stations. Snce the RMSE score also depends on the absolute concentrations, the different spatial coverage may also play a role. 

The lower RMSE over Europe could be an artifact of including areas where absolute concentrations of NO2, PM2.5 or O3 are 

lower than over France.  

The validation scores obtained, as well as the comparison with raw data and with other mapping method, allow us to be 10 

confident about the validity of the concentrations obtained and their good representativeness of background concentrations, in 

particular in urban areas. A point of vigilance appears however when it comes to the representativeness of rural NO2 

concentrations which are overestimated in our results.  

 

  15 

4. Results and discussion 

After ensuring the validation of the kriged concentration data, yearly indicators, trend over years and human exposition are 

calculated. Hourly concentrations fields are calculated produced from 2000 to 2015 for NO2, O3 and PM10, however, as explain 

in section 2, for PM10 only annual mean indicators maps are produced before 2007. PM2.5 hourly concentrations are calculated 

for year 2009 to 2015 due to the limited number of the lack of background stations available before 2009. 20 

4.1 Concentration maps and trends 

All the indicators given presented in section 2 are calculated but the following section focus on the annual averaged annual 

mean concentrations of PM10, PM2.5, NO2 and O3, as well as SOMO35 and AOT (two indicators associated towith O3), for 
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which mapped data are shownpresented. These indicators are presented in this paper and available on a zenodo repository and 

on an online map library (see section 5).35 Trend analyse over the period is performed by calculating the Sen-Theil regression 

slope for each grid point over on the domain. To characterisze the significance of these trend slopes, the 95 % confidence 

interval is calculated.  This confidence interval represents the lower and upper values above or below which you are 

confidentthere is (at  95 %) confidence that the trends will occur. The smaller the confidence interval, the more statistically 5 

significant the trend. Large confidence intervals are considered as unrepresentative, especially those containing 0. Trend slopes 

and confidence intervals are calculated for each grid point in over the domain but and country averaged values are also given 

in Table 5Table 5Table 3.   

  

Table 5: country averaged slope and its 95 % confidence interval 10 

Indicator Mean tendency slope (or mean 

trend) in µg.m-3.year-1 

Mean 95 % confidence interval (in 

µg.m-3.year-1) 

PM10 - avg annual -0.8 [-0.5 ; -1.09] 

PM2.5 - avg annual -0.87 [-0.48 ; -1.41] 

O3 - avg annual 0.32 [0.005 ; 0.59] 

O3 - SOMO35 -5.52 [ -102.7 ; 76.7 ] 

O3 - AOT  -142 [-641 ; 315] 

NO2 - avg annual -0.32 [-0.3 ; -0.63 ] 

 

3.1.1.4.1.1. PM10 

   

annual average in µg.m-3 annual average in µg.m-3 annual average in µg.m-3
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 annual average in µg.m-3 annual average in µg.m-3

annual average in µg.m-3 annual average in µg.m-3 annual average in µg.m-3

annual average in µg.m-3 annual average in µg.m-3 annual average in µg.m-3
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Figure 9: PM10 annual mean concentrations from 2000 to 2015. Concentrations are obtained by combination between regional 

modelling and observations 

 

Maps of annual average Annual mean PM10 concentration maps are shown presented in Erreur ! Source du renvoi 

introuvable.Figure 9. for the period 2000-2015. The grid resolution of the grid (around 4km) allows to see patterns such as 5 

interconnected cities, especially in the latest years for which the patterns of large inter-regional concentrations arepatterns 

decreasinge. The impact of meteorological conditions can os also be seenvisible through the inter annual variability. For 

example, the 2003 heatwave year 2003 is associated with higher level of PM10 levels due to increased higher formation of 

secondary aerosols.  

Figure 10 shows the mapped trends in annual meanaverage PM10 expressed as Sen-Theil regression slope in µg.m-3 per year 10 

and calculated over the period 2000-2015.  

  

annual average in µg.m-3 annual average in µg.m-3 annual average in µg.m-3
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Figure 10: Trends in PM10 annual mean concentration. Sen slope coefficient (µg.m-3/year) calculated over the period 2000-2015 

There is a clear negativedownward trend in PM10 annual mean concentrations over years for all regionseverywhere in France,.  

but the highest ones are observedand in particular overin the regions with the highest PM10 concentrations at the beginning of 5 

the period: the South of France (East and West), the Auvergne-Rhône-Alpes region, the East (Grand-Est) and the extreme 

north of France. On average, aA country-averaged negative downward trends in PM10 concentrations of -0.8 µg.m-3 per year 

is estimated over the period 2000-2015 (spatial average of the trends calculated on eachover each grid point). This trend is 

statistically significant on average over France with a narrow 95%-confidence interval ([-0.50;-1.09]) that does not include 

zero (see Table 5Table 3) and applies to almost all grid points (maps of confidence interval, not shown here). Taking the year 10 

2000 as the base year, this amounts to a 39% reduction. In a study conducted for France over the period 2000-2010, Malherbe 

et al. (2017) estimated a downward trend that was twice as small (0.4). This reflects the accelerated decline in concentrations 

in France in recent years. 

This significant decrease downward trend is the result of the decreasereduction inof primary pollutant  emissions over these 

16 years in response to emission reduction measures. From 2000 to 2015, primary PM10 emissions over France have been 15 

reduced by 39 %, as well as emission of PM10 precursors such as NOx emissions (-56 %) and SOx emissions (-87 %) (data 

calculated by the CITEPA and extracted from the 2015 French national air quality report 
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https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-10/datalab-bilan-de-la-qualite-de-l-air-en-

france-en-2015-octobre-2016-c.pdf).  

 

 

3.1.2.4.1.2. PM2.5 5 

   

   

annual average in µg.m-3 annual average in µg.m-3 annual average in µg.m-3

annual average in µg.m-3
annual average in µg.m-3 annual average in µg.m-3

https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-10/datalab-bilan-de-la-qualite-de-l-air-en-france-en-2015-octobre-2016-c.pdf
https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-10/datalab-bilan-de-la-qualite-de-l-air-en-france-en-2015-octobre-2016-c.pdf
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Figure 11: PM2.5 annual mean concentrations from 2009 to 2015. Concentrations are obtained by combination (kriging) between 

regional modelling and observations. 

The highest PM2.5 highest values are observed at the beginning of the period and are more concentrated inover the main sources 

regions than PM10. Important Significant reductions of yearly meanin annual average background concentrations are observed 

over the years. The Sen slopes coefficients calculated for the yearly meanannual average PM2.5 (Figure 12.) over the period 5 

show negative trends  over the entire whole territory, more pronounced over the South-East region, the Auvergne-Rhone-Alpes 

regionone, the Northern of France and Brittany. A downward country-averaged negative trend of -0.87 µg.m-3 per year on a 

national average is calculated, again with statistical significance (95 % interval of [-0.48;-1.41] that which  does not contain 

zero). Taking 2009 as a reference year, this amounts to a 35% decrease in 7 years. As for PM10, this negative trend is associated 

withto the reduction ofin primary PM2.5 emissions and in PM2.5 precursors emissions (SOx, NOx and VOC).   10 

annual average in µg.m-3
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Figure 12: trends in PM2.5 annual mean concentration. Sen slope coefficients (µg.m-3/year) calculated over the period 2009-2015.  

3.1.3.4.1.3. Ozone 
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Figure 13: SOMO35 indicator for the period 2000 to 2015. Ozone concentrations are obtained by combination (kriging) between 

regional modelling and observations. 

The SOMO35 indicator shows a strong inter-annual variability. O3 is a photochemical pollutant produced by secondary 

reactions in the presence of NOx, VOC and sunlight. The hot year 2003 is noticeable distinguished by awith very high SOMO35 5 

over almost all the entire territory. For every each year, the largesthighest SOMO35 are is found in the south-eastern of France 

and to a lesser extent over in the Alsace region. The Ttrends of in SOMO35, annual mean average O3 and AOT40 over the 

years are represented shown in  

a) Yearly mean concentrations b) SOMO35 
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c) AOT40 

 

 

Figure 14Figure 14. for the period 2000-2015 period. 
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a)d) Yearly mean concentrations b)e) SOMO35 

  

c)f) AOT40 
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Figure 14: Trends in annual mean O3 concentrations in µg.m-3.year-1 (a), SOMO35 in µg.m-3.day.year-1 (b) and AOT40 in µg.m-

3.hour.year-1 (c) indicators. Sen slope are calculated over the period 2000-2015. 

For the O3 average annual concentration, small positive trends are found over France. Two exceptions are the south-east 

(PACA region) and the Grand-Est region (East of France), i.e the regions with the highest O3 concentrations, showing 

negative trends. Averaging over France, this leads to a positive trend of 0.32 µg.m-3.year-1. which corresponds to an increase 5 

of 6.5% over 16 years. The same order of magnitude was found for the period 2000-2010 by Malherbe et al. (2016).  Both 

negative (in South of France) and positive trends are significant according to the mapped 95 % confidence interval (not 

shown). SOMO35 and AOT40 indicators, that which are indicators with a threshold value below which concentrations are 

not taken into accountdo not account for value lower than a threshold, show mostly negative trends. However these trends 

are not significant, according to the value of the mapped 95 % confidence interval (not shown here), on most grid points, the 10 

confidence interval is wide and contains zero, indicating a low representativenesslack of significance of the calculated 

trends. that includes zero. These results are consistent with other European studies (EMEP 2016, Malherbe et al., 2017) that 

show an increase in background concentrations and a decrease in O3 peaks. 

3.1.8.4.1.4. NO2 
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Figure 15: NO2 annual mean concentrations for the period 2000 to 2015. NO2 concentrations are obtained by combination between 

regional modelling and observations. 

NO2 is mainly emitted by road transports. All maps have show the same pattern, with cities and interconnected major large 

interconnecting roads showing the highest NO2 concentrations. Trends over the period 2000-2015 period are shown in Figure 5 

15. Decreases in NO2 concentrations are observed in both on rural and urban areas throughout the countryregions over the 

entire territory. However Wwe recall remind however, that rural levels have beenwere found to be overestimated with our 

approach (see 3.43.1.7). The decrease is larger more important whenre NO2 concentrations are importanthigh. As forwith 

PM2.5, these results highlight the combined benefit of large-scale emissions management policies that target emission sectors 

and locally-oriented policies. 10 
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Figure 16: Trends in yearly mean NO2 concentrations. Sen slope coefficients (µg.m-3/year) are calculated over the period 2000-

2015. 

On average, a significant negative trend of -0.46 µg.m-3 is calculated over France, with a narrow 95 % confidence interval (see 

Table 3).  This downward trend is slightly stronger than that calculated in Malherbe et al. (2017) over the period 2000-2010 5 

over France (-0.37 µg.m-3.year-1) and corresponds to a reduction of about 30% (taking 2020 as the base year). 

 

4.2 Exposure trends 

Population-weighted annual average concentrations are good estimates of population exposure as, because they give 

greatermore weight to the air pollution found where most people mainly lived. Here, the country-averaged population weighted 10 

concentrations of NO2, PM2.5 and SOMO35 (3 health impact indicators), which are the 3 main indicators used to calculate 

health impact,  are calculated for each evaluated year, from the hourly corrected kriged mapped data over France. For one 

pollutant, it is obtained adding the result of multiplying the concentration by the population on all the country's grids, then 

dividing by the total population of the country. by summing over all country grids, the result of the multiplication of the 

concentration per the population in the grid, and then divided it by the total population of the country. The population database 15 

used in this study is the LCSQA national LCSQA population database (Létinois et al., 2014) established for the year 2015. It 

is based on detailed files from the French Ministry of  fFinance department with information at a building level. It is important 

to notice that the French population used here did nothas not varied overy withthe years. The French This population increased 

by about 10 % between 2000 and 2015. However, if we considered that the demographic evolution iwas homogeneous over 

the country (the urban/rural proportionratio has only increased by about 2.5% in France over the same period), the  weighted 20 
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population concentration on national average country-averaged population weighted concentration should be the same 

whatever the year of the population database.     

 

 

(a) 

 

(b)

 

c) 

 

d) 

Exposition Indicator Mean slope (or mean 

trend)  

Mean 95% confidence 

interval  

Country averaged 

population weighted 

NO2 concentration 

-0.5 µg.m-3.year-1 [-0.4 ; -0.6] (µg.m-

3.year-1) 

Country averaged 

population weighted 

PM2.5 concentration 

-1 µg.m-3.year-1 [-0.6 ; -1.5] (µg.m-

3.year-1) 

Country averaged 

population weighted 

SOMO35 

concentration 

5.5 ppb.day.year-1 [-73 ; 110] 

(ppb.day.year-1) 

 

Figure 17: Yearly evolution of the country averaged population weighted of (a) NO2 concentration (b) PM2.5 concentration c) 5 
SOMO35. Trends and 95% confidence intervals are calculated (d).   

As for the concentrations, a very clear downward trend is observed on the country averagedfor population- weighted NO2 with 

a negative trend of -0.5 µg.m-3.year-1 and (with a narrow 95 % confidence interval: ([-0.4,-0.6]), i.e leading to a reduction of 
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about 30 % in 16 years. A negative downward trend of -1 µg.m-3.year-1 is also clearly calculated for PM2.5 (95 %-confidence 

interval: [-0.6,-1.5]) over the period 2009-2015, i.e a reduction of about 31 % in 7 years. On the contraryIn contrast, there is 

no clear trend for the SOMO35 indicator over the period 2000-2015.     

 

When the abovementioned indicators are multiplied by the total population (to obtain the total exposure, i.e the sum of the 5 

population weighted over a country), the results outcome indicators are those used to calculate the health impact assessment 

based on dose-response functions, as suggested by the WHO review of “Health Risks of Air Pollution in Europe” (WHO 

2013), described in  Holland (2014 a and b). Exposure to SOMO35, anthropic PM2.5 and NO2 (with or without threshold 

depending on the health impact indicator) contribute to both to morbidity and mortality impacts. For example, over in France, 

they have beenwere used in the PREPA-evaluation study for which about fifty political measures to be applied implemented 10 

overin France have beenwere evaluated and classified rankedover on different criteria, such as air quality impact, health impact 

and cost-benefit assessment (Schucht et al., 2018). At constant population evolution, the trends are similar between both 

indicators (total exposure and population weighted average concentration). However the evolution in population (even if it is 

when homogeneous over the territory) does has an impact on the total population exposure of the population. Therefore, we 

expected a reduced impact on health impact assessment compared to those on population weighted concentrations.  15 

 

5. Data availability 

Mapped regulatory indicators and exposure data for all 15 years and the 4 pollutants described here are available on a zenodo 

repository under the Netcdf format (version n°4) and csv format for data at the municipal or regional level. The DOI link for 

the dataset is http://doi.org/10.5281/zenodo.5043645 (Real et al., 2021). It is also available through a web-based 20 

map library (https://www.ineris.fr/fr/recherche-appui/risques-chroniques/mesure-prevision-qualite-air/20-ans-evolution-

qualite-air). The web-based map library is intended to be updated annually. 

6. Conclusion 

A 16-year datasets of mapped air pollution concentrations and indicators over France have beenwas constructed using a data 

fusion technique (kriging) that combines measurement from background surface monitoring station and modelling from the 25 

regional model CHIMERE. The resulting data are hourly concentrations at a resolution of about 4km horizontal resolution 

over France for the period 2000-2015 (more restrictedshorter period for PM2.5 and hourly-based PM10 hourly indicators).  

The kriging technique implemented combinesd kriging with external drift kriging for NO2 and O3 and co-kriging with external 

drift for particulate matter, allowing the PM2.5 estimation to benefit from the highestr density of PM10 monitoring stations. 

These overall datasets have been evaluated over several years using a cross-validation process that takes into account for the 30 

http://doi.org/10.5281/zenodo.5043645
https://www.ineris.fr/fr/recherche-appui/risques-chroniques/mesure-prevision-qualite-air/20-ans-evolution-qualite-air)
https://www.ineris.fr/fr/recherche-appui/risques-chroniques/mesure-prevision-qualite-air/20-ans-evolution-qualite-air)
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incorporation of measurements in the correction process by retainingwithholding one a data point before calculating the score. 

The kriging technique significantly improves the validation scores, especially in urban areas with very low biases and high 

correlations. However, a point of vigilance appears concerning the representativeness of NO2 concentrations in rural areas 

which are overestimated by the model. A new methodology is being developed to better map NO2 concentrations in these 

rural areas. It should be noted Concentrations of both rural and background urban stations are very well reproduced for O3, 5 

PM10 and PM2.5 with low mean biases, RMSE and good correlations. The same behaviour is found over background urban 

NO2 stations, while rural NO2 concentrations are systematically overestimated. that tThe performance increases with the 

number of measurements taken into account until a threshold is reached at which the addition of stations no longer seems to 

improve performance.of the dataset to reproduce measurement was generally correlated with the number of stations over the 

domain, up to a threshold where adding station do not seem to increase these performances. This threshold number was 10 

dependeants on the pollutant, higher for pollutant with a strongshowing high spatial gradient (i.e NO2 that which has a shorter 

lifetime). 

A new methodology should be developed for these rural areas in order to better represent them. 
 

The main annual indicators (mean NO2, PM10, PM2.5, O3, SOMO35 and AOT40) are analysed in the document,Some of the 15 

produced mapped concentrations and indicators are detailed in the paper, and yearly annual trends are calculated. Clear and 

sSignificative downward negative trends are calculated over the whole period for annual average concentrations of PM10, PM2.5 

and NO2 yearly mean concentrations. They reflect the reductions in precursor emissions operated that have taken place in 

Europe since the 1990’s. The trends for O3 trends over these 16 years are less significant. In general, background O3 

background level is increasing, mainly due to large-scale pollution and high (peaks) O3 high levels (peaks) are decreasing due 20 

to reductions in local O3 precursors emissions reduction. This leads results in to a positive trend for the annual average O3 

mean annual average concentration over most of France, but a small negative downward trend is also observedfound over in 

the regions showing with the higherst O3 levels (south-east and east). No significant trends areis calculated for the two O3 

indicators detailed here (SOMO35 and AOT40). Population exposureition is also calculated over France with the same trends. 

The average weight The country averaged population weight of NO2 and PM2.5 in the population of the country s decreasesing 25 

by respectively by 30 % in 16 years and 31 % in 7 years.  No clear trend wais found for the population weigh of SOMO35 

population weight.  
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This paper describes a 16-year (2000-2015) datasets of air pollution concentrations and air quality indicators over France 35 

combining background measurements and modeling. Hourly concentrations and regulatory indicators of NO2, O3, PM10 and 

PM2.5 are produced with 4 kilometers spatial resolution. The overall dataset has been cross-validated and showed overall very 

good results. We hope that this publication in open access will facilitate further studies on the impacts of air pollution. 
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