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Abstract. Eddy covariance flux towers measure the exchange of water, energy and carbon fluxes between the 

land and atmosphere. They have become invaluable for theory development and evaluating land models. 

However, flux tower data as measured (even after site post-processing) are not directly suitable for land surface 

modelling due to data gaps in model forcing variables, inappropriate gap-filling, formatting and varying data 10 
quality. Here we present a quality-control and data-formatting pipeline for tower data from FLUXNET2015, La 

Thuile and OzFlux syntheses and the resultant 170-site globally distributed flux tower dataset specifically 

designed for use in land modelling. The dataset underpins the second phase of the PLUMBER land surface model 

benchmarking evaluation project, an international model intercomparison project encompassing >20 land surface 

and biosphere models. The dataset is provided in the Assistance for Land-surface Modelling Activities (ALMA) 15 
NetCDF format and is CF-NetCDF compliant. For forcing land surface models, the dataset provides fully gap-

filled meteorological data that has had periods of low data quality removed. Additional constraints required for 

land models, such as reference measurement heights, vegetation types and satellite-based monthly leaf area index 

estimates, are also included. For model evaluation, the dataset provides estimates of key water, carbon and energy 

variables, with the latent and sensible heat fluxes additionally corrected for energy balance closure. The dataset 20 
provides a total of 1040 site years covering the period 1992-2018, with individual sites spanning from 1 to 21 

years. The dataset is available at http://dx.doi.org/10.25914/5fdb0902607e1 (Ukkola et al., 2021). 

 

 

1 Introduction 25 
 

The global network of flux towers now encompasses >900 sites globally (https://fluxnet.org/), with the longest 

records spanning over three decades. With their increasing spatial and temporal coverage, flux towers have 

become an invaluable dataset for evaluating process representation in land surface models (LSMs). LSMs within 

climate models are key tools for projecting future climates and also operate within operational weather and 30 
seasonal prediction models (Pitman, 2003; Dirmeyer et al., 2019). Their key role is to simulate the terrestrial 

carbon, water and energy cycles both in coupled climate models and uncoupled stand-alone applications. Flux 

towers provide simultaneous observations of the meteorological data needed to force offline LSMs as well as 

estimates of key ecosystem water, energy and carbon fluxes at a spatial scale against which LSMs can be 

evaluated. Flux towers are also one of the few data sources to provide measurements at time scales appropriate 35 
for diagnosing model process representations, providing high frequency sub-daily (typically 30min) observations. 

As such, they have enabled model evaluation ranging from sub-diurnal to seasonal and inter-annual scales 

(Whitley et al., 2016; Williams et al., 2009; Wang et al., 2011; Renner et al., 2021; Blyth et al., 2010; Best et al., 
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2015). Flux tower data have also been instrumental in enabling development of LSMs for extreme events such as 

drought (Harper et al., 2020; Ukkola et al., 2016; Martínez-de la Torre et al., 2019). 

 

Several global multi-site collections such as FLUXNET2015 (Pastorello et al., 2020) have been released that 

provide valuable opportunities for evaluating LSMs across multiple climates and biomes. Whilst these collections 5 
overcome many limitations of raw flux tower data, the data are not provided in a format directly usable in land 

surface modelling. The datasets require varying levels of gap-filling, unit conversions and data formatting to be 

applicable for modelling exercises, and are missing key metadata, such as measurement height and vegetation 

characteristics. Most importantly, not all flux tower data releases provide temporally continuous meteorological 

observations which are essential for forcing LSMs. FLUXNET2015 overcomes this key limitation by providing 10 
fully gap-filled meteorological observations but includes long periods of gap-filling at some sites, resulting in 

missing diurnal and/or seasonal cycles. Extended periods of synthesised meteorological variables are problematic 

in model applications, not only because they bias model estimates at concurrent time steps, but also because they 

bias future model predictions due to model state memory, such as soil moisture. As such, the data quality 

requirements for land modelling present a challenge that is not yet met by standard flux tower data releases. 15 
 

Here we present a collection of 170 globally-distributed flux tower sites collated from three data releases 

(FLUXNET2015, La Thuile and OzFlux) that results from applying land surface model focused quality control 

and ancillary data collation. By combining multiple data sources, we were able to maximise the number of 

available sites to enable model evaluation against a wider range of climate and vegetation conditions. The dataset 20 
covers the period 1992-2018 (although the majority of site records end in 2014) with individual sites spanning 

from 1 to 21 years, with a total of 1040 site years. The dataset provides quality-controlled, fully gap-filled 

meteorological variables for forcing LSMs, together with a comprehensive set of flux variables for model 

evaluation. The data are provided in the Assistance for Land-surface Modelling Activities (ALMA; 

https://www.lmd.jussieu.fr/~polcher/ALMA/) format, the international standard in land surface modelling, and 25 
are Climate and Forecast (CF) NetCDF (https://cfconventions.org/) compliant. The dataset additionally provides 

various metadata for the sites, including reference / measurement height (for emulating the lowest layer of the 

atmospheric model to which the LSM would be coupled), vegetation type (to ensure plant physiological traits are 

appropriate) and two different satellite-derived estimates of each site’s monthly leaf area index (LAI). The dataset 

underpins the second phase of the Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model 30 
Benchmarking Evaluation Project (PLUMBER; Best et al., 2015) which has participants from >20 land surface 

and biosphere modelling groups internationally. Whilst primarily designed for modelling purposes, the dataset 

would also be valuable for other applications requiring quality-controlled meteorological data at multiple sites. In 

the following sections we describe the processing steps to derive the dataset. 

 35 
2 Methods 

 

2.1 Datasets 
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We collated data for 223 flux towers from three flux tower data collections. We first obtained all available 

Australian sites from the OzFlux network (Isaac et al., 2017). We then obtained all Tier 1 (open data policy) 

globally distributed sites from FLUXNET2015 (November 2016 release; Pastorello et al., 2020), excluding sites 

available in OzFlux. For all FLUXNET2015 sites, data from the “FULLSET” release was used. Finally, additional 

sites that were not present in OzFlux or FLUXNET2015 were taken from the La Thuile Free Fair-Use release 5 
(https://fluxnet.org/data/la-thuile-dataset/). The final dataset consisted of 29 sites from OzFlux, 132 from 

FLUXNET2015 and 62 from La Thuile. These sites were further screened to derive the final subset of 170 sites 

using the protocols detailed below. 

 

2.2 Processing steps 10 
 

We undertook multiple processing steps to derive the final, quality-controlled dataset. The data were first pre-

processed with the FluxnetLSM R package (Ukkola et al., 2017) to convert the files to ALMA-formatted NetCDF 

files with consistent units and variable conventions. The data were subsequently screened using expert judgement 

to only retain period of good quality meteorological data. Additional corrections were then made to meteorological 15 
data to remove outliers, non-physical values and gap-fill any remaining missing values. The flux variables were 

not screened but additional latent and sensible heat flux estimates were calculated to correct for energy balance 

closure. Finally, we derived two independent leaf area index time series for each site from remotely sensed data 

to account for uncertainties in satellite-derived LAI. A flowchart of the processing pipeline is shown in Figure 1, 

with each step described in detail below. 20 
 

2.2.1 Initial processing with FluxnetLSM 

 

The three datasets come in various formats, different units and variable naming conventions. We used the 

FluxnetLSM R package (Ukkola et al., 2017) which has been designed to translate flux tower data for use in land 25 
surface modelling. The package was used to process the data into ALMA-formatted CF-compliant NetCDF files 

with consistent variable names and units to be readily usable in land surface modelling (see Table 1 for ALMA 

conventions and variables included in the final dataset). In addition, FluxnetLSM was used to further gap-fill 

meteorological and flux variables and to include additional site metadata, such as elevation, reference and 

vegetation canopy heights, and vegetation type (following the International Geosphere-Biosphere Programme 30 
(IGBP) classification) in the NetCDF files. While some of the information could be obtained from Fluxnet or 

regional networks, we supplemented site metadata available in FluxnetLSM by extracting information from 

publications and site principal investigators. These metadata were collected to inform modelling choices and are 

included in the final NetCDF files. FluxnetLSM is fully reproducible and provides a documented framework to 

replace ad hoc processing methods used in many previous flux tower collections for LSMs. The version of 35 
FluxnetLSM used for processing is documented in the NetCDF file metadata. 

 

FluxnetLSM was run separately for each parent dataset. OzFlux was first pre-processed to remove incomplete 

years as land surface models require whole years of data for spinning up soil water and temperature states. To 

achieve this, the data were first gap-filled data to complete days and incomplete years then removed using the 40 
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FluxnetLSM function “preprocess_OzFlux”. This step was not required for FLUXNET2015 and La Thuile as 

they only report whole years. FluxnetLSM was subsequently used to process each dataset using the commands 

provided in Supplementary Section 1.  

 

FluxnetLSM can be used to screen the data for missing and gap-filled time steps but this option was not used, 5 
instead setting the allowed level of missing and gap-filled data to 100% for all datasets and variables to allow 

subsequent manual visual data screening (section 2.2.2). However, the gap-filling methods for meteorological 

variables were set differently for each dataset. FLUXNET2015 provides continuous, downscaled ERAinterim 

estimates for all meteorological variables; these were used to gap-fill all missing time steps in the meteorological 

variables (setting met_gap-fill to “ERAinterim” in FluxnetLSM). For OzFlux and La Thuile, statistical gap-filling 10 
methods provided in FluxnetLSM were used (setting met_gap-fill to “statistical”). For all variables except surface 

air pressure and incoming long wave radiation, short data gaps (up to 4 hours) were gap-filled using linear 

interpolation. Longer data gaps (up to 10 days for OzFlux and 365 days for La Thuile) were gap-filled using 

“copyfill” which takes the mean of the corresponding time steps during other years. Surface air pressure and 

incoming longwave radiation were synthesised using empirical methods. Air pressure was calculated from air 15 
temperature and elevation using a barometric formula (Ukkola et al., 2017). Longwave radiation was calculated 

from air temperature and relative humidity using the method of (Abramowitz et al., 2012). The synthesised values 

were then used to gap-fill missing time steps. 

 

Flux variables were gap-filled using statistical methods for all datasets. As per meteorological variables, short 20 
gaps of up to 4 hours were gap-filled using linear interpolation. Longer gaps (up to 30 days for OzFlux and 

FLUXNET2015, and 365 days for La Thuile) were gap-filled using a linear regression of each flux variable against 

incoming shortwave radiation, air temperature and humidity (relative humidity or vapour pressure deficit). This 

approach was demonstrated to outperform a range of LSMs in a broad range of metrics in out of sample tests (see 

Abramowitz, 2012; Best et al, 2015). In the absence of air temperature or humidity data, the linear regression was 25 
constructed against shortwave radiation only. A separate linear model was created for day- and night-time data. 

Further details of all gap-filling methods can be found in (Ukkola et al., 2017).  

 

2.2.2 Site and time period selection 

 30 
We screened the original dataset of 223 sites to only retain sites and time periods with good quality meteorological 

forcing data. This was done to ensure models were forced with data that was largely observed to avoid biasing the 

model flux estimates. We used expert judgement to manually screen sites instead of an automated process to be 

able to compromise between data quality and time series length. During screening, we prioritised five key 

meteorological variables in site selection that have the largest influence on LSM simulations: incoming shortwave 35 
radiation (SWdown), precipitation (Precip), air temperature (Tair), air humidity (Qair) and wind speed (Wind). These 

variables were allowed to have approximately 10% or fewer gap-filled time steps in any given year. If no years 

fulfilling this criterion were available, the site was excluded. For sites with heavily gap-filled or missing periods 

in the middle of the time series, we chose the longest continuous period with good quality meteorological data. 

The remaining three meteorological variables (incoming longwave radiation (LWdown), atmospheric CO2 40 

Commented [GA1]: Shameless perhaps, but gives a much 
better explanation of the technique. :)  

Deleted: visually 



 5 

concentration (CO2_air) and air pressure (Psurf)) were allowed to be gap-filled or missing for a site to be selected 

but any missing or poor-quality data were later corrected as a post-processing step (section 3.2.3). Not all sites 

report these variables and as such, the less strict criteria were applied to retain as many sites as possible. The flux 

variables were not screened to allow model evaluation at multiple time scales and specific events. The specific 

criteria for excluding a site or time periods are provided for each site in Table S1. After site selection, the final 5 
dataset included 23 sites from OzFlux, 102 from FLUXNET2015 and 45 from La Thuile. Table S1 provides a list 

of the selected sites, including the criteria for time period selection. Table S2 lists excluded sites and the reason 

for omitting them. 

 

Figure 2 presents examples of how the selection criteria were applied at three sites. AU-Lit shows a site where no 10 
adjustments to the time period were required. All key meteorological variables are largely observed, with only 

3.3-5.1% of the 2-year time series gap-filled. As such, the full time series was selected for this site. BE-Bra shows 

an example where a subset of the years were excluded from the final dataset due to a heavily gap-filled year (2003) 

in the middle of the time series. During 2003, four key variables (SWdown, Precip, Tair and Wind) are largely gap-

filled, leading to unrealistic seasonal cycles in these variables. As such, the longest continuous period with low 15 
levels of gap-filling (2004-2014) was chosen, leading to years prior to and including 2003 being discarded. US-

Tw2 is an example of a site that was excluded from the final dataset. In both available years, four meteorological 

variables (SWdown, Tair, Qair and Wind) are ~50% gap-filled, exceeding our threshold of ~10%. Furthermore, no 

observed precipitation data were available, with the time series fully gap-filled. 

 20 
2.2.3 Further corrections to meteorological data 

 

After selecting the final sites, meteorological variables were further corrected for anomalous values, step changes 

and missing data. These corrections mainly applied to CO2_air and LWdown due a larger proportion of gap-filled 

and missing data in these variables. Anomalous or non-physical values in other variables were also corrected at 25 
individual sites. 

 

For atmospheric CO2 concentration, we screened the data for step changes, unrealistically high concentrations 

and missing data. Where CO2_air was not provided for a site, we used annual concentrations from the Mauna Loa 

atmospheric CO2 time series (https://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html) for the period covered by 30 
site observations. The annual values were repeated to match the site temporal resolution (half-hourly or hourly) 

each year. Missing CO2 values were gap-filled by predicting CO2_air from a linear regression of available CO2_air 

values against time, except when large data gaps (multiple months or longer) existed in which case CO2_air was 

replaced with the annual Mauna Loa values. 

 35 
For OzFlux sites, unphysical values existed in the dataset that were corrected. These included negative Precip, 

SWdown, LWdown, Wind and Qair (vapour pressure deficit and/or relative/specific humidity) which were capped at 

zero. Similarly, relative humidity values above 100% were capped at 100%. At a further 11 sites, we also corrected 

large step changes in CO2_air, heavily gap-filled periods in LWdown (which led to unrealistic seasonal cycles) and 

anomalous values in Psurf and relative humidity. Table S3 summarises the corrections made to meteorological data 40 
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at each site. All corrections done during this post-processing step are documented at 

https://github.com/aukkola/PLUMBER2/blob/master/functions/site_exceptions.R. 

 

2.2.4 Energy balance closure correction of latent and sensible heat fluxes 

 5 
Latent (Qle) and sensible (Qh) heat fluxes were corrected for energy balance closure (EBC) using the Bowen ratio 

method (Mauder et al., 2020) to aid model evaluation. At flux tower sites, the sum of measured latent and sensible 

heat fluxes is commonly lower than available energy (Wohlfahrt et al., 2009), complicating comparison with 

models which conserve energy. The FLUXNET2015 dataset provides EBC-corrected Qle and Qh and as such, for 

sites derived from FLUXNET2015 these estimates were used (variables LE_CORR and H_CORR in 10 
FLUXNET2015; . For La Thuile and OzFlux sites, Qle and Qh were EBC-corrected using a procedure adapted 

from FLUXNET2015. 

 

The EBC-corrected fluxes were obtained by multiplying Qle and Qh by an EBC correction factor (fEBC). fEBC was 

calculated for each time step separately as fEBC = (Rnet-G) / (Qh + Qle) where Rnet is net radiation and G ground 15 
heat flux (all variables are in W m-2).  Only time steps for which all four energy balance components were available 

were used. The fEBC time series was further filtered for data quality to only retain time steps for which observed 

G, and observed or good quality (qc value £1) Qh and Qle data were available. To remove outliers, fEBC values 

outside 1.5 times the interquartile range were then discarded. 

 20 
The fluxes were then corrected using a two-step method. First, for each time step, a moving window of ±15 days 

was used to select fEBC for all time steps within the hours 22:00-2:30 and 10:00-14:30. Other times were discarded 

to avoid periods of large changes in ecosystem heat storage during sunrise and sunset periods which can bias the 

energy balance closure estimates (Pastorello et al., 2020). If at least five fEBC values were available within the 

moving window, the median of these values was used to correct Qle and Qh. Otherwise, the same moving window 25 
of ±15 days and hours of the day was applied to the same time step using the current, previous and next year (if 

available). The median of all available fEBC was then used to correct Qle and Qh. If no available fEBC values were 

found using this method, the fluxes for that time step were not corrected. 

 

2.2.4 Leaf area index processing 30 
 

We obtained two independent remotely sensed leaf area index (LAI) time series for each site inputs to account 

for large uncertainties in satellite-derived LAI estimates (Zhu et al., 2016). The LAI time series can be used to 

force LSMs that do not include a predictive carbon cycle and require prescribed LAI as an input. The standardised 

LAI time series are also useful reducing the degrees of freedom in evaluation studies by allowing the models to 35 
be driven by the same LAI estimates, and allow the minimisation of LAI-driven model errors at sites where 

observed and modelled LAI converge strongly. The LAI data were derived from Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Copernicus Global Land Service products as these products provide long-term 

records at high (£ 1 km) spatial resolution. 

 40 
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2.2.5.1 MODIS LAI 

 

We used the MODIS product MCD15A2H, which is derived from a combination of the Terra and Aqua sensors 

at 500 m spatial resolution and 8-daily temporal resolution, starting in January 2000. The LAI data and associated 

standard deviation and QC flags were obtained using the R package MODISTools (Koen, 2020). The pixel 5 
containing the site and its surrounding pixels (in total nine pixels) were obtained for each site. Only good quality 

data (QC flag values 0, 2, 24, 26, 32, 34, 56 and 58) were kept and all other values were set to missing. At each 

time step, a weighted mean was then calculated from the nine pixels by weighting them by their standard deviation 

error (defined as 1/σ2). The resulting 8-daily time series were then gap-filled using a cubic spline function 

(Forsythe et al., 1977) and any negative LAI values set to zero. To remove unrealistic short-term variability in 10 
LAI, e.g. due to cloud artefacts, that remained after the initial quality control, several steps were taken to further 

smooth the time series. The gap-filled time series was first smoothed using a cubic smoothing spline. A 

climatology (46 time steps) was then calculated from all available years. An anomaly time series was then created 

by removing the climatology and smoothed by taking a rolling mean over a window of ±6 time steps to further 

remove short-term variability. The climatology was then added to the smoothed time series and the 8-daily time 15 
series interpolated to the time resolution of the flux tower data, using the climatological values prior to MODIS 

commencing in January 2000. 

 

2.2.5.2 Copernicus LAI 

 20 
We used the Copernicus Global Land Service LAI v.2.0.2. which provides LAI estimates at 1 km spatial resolution 

and 10-daily temporal resolution for the period 1999-2017. The estimates have been derived from SPOT-VGT 

and PROBA-V sensors (Smets et al., 2019). The 10-daily data were first averaged to monthly by taking the 

maximum of the three 10-daily values for each month following the maximum composite procedure to remove 

low values e.g. due to cloud contamination. The data were then smoothed spatially by averaging each pixel with 25 
its surrounding pixels (with each pixel representing the mean of nine pixels). The monthly values were then 

extracted for each site using the pixel containing the site. If the value for the pixel containing the site was missing, 

the value from the nearest non-missing pixel was used. To remove non-physical short-term variability, the 

monthly site time series was then smoothed using a cubic smoothing spline. A monthly climatology was then 

calculated and an anomaly time series calculated by removing the climatology from the monthly LAI time series. 30 
The anomaly time series was smoothed by taking a rolling mean over a window of ±6 time steps to further remove 

short-term variability, before adding the climatology to the smoothed anomalies. Finally, the resulting monthly 

time series was interpolated to the time resolution of the flux tower data, using the climatology for time periods 

not covered by the product.  

 35 
2.2.5.3 LAI selection for sites 

 

Both Copernicus and MODIS LAI were provided for each site but we selected one as a preferred LAI time series 

for each site to use as the default for use with LSMs that rely on prescribed LAI. Overall, we selected MODIS as 

the default time series due to its higher spatial resolution but where MODIS was deemed unrealistic for the site 40 
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due to its magnitude, seasonal cycle or non-physical short-term variations, using site data where available, 

Copernicus was selected instead. Table S1 summarises the selected LAI time series for each site. The preferred 

LAI variable was called “LAI” in the final NetCDF files and the alternative time series “LAI_alternative”.  

 

 5 
3 Results 

 

3.1 Global distribution of selected sites 

 

The final dataset includes 170 globally-distributed sites shown in Figure 3a. The majority of the sites are located 10 
in North America, Europe and Australia, with 3 sites located in South America, 4 in Africa and 11 in Asia. The 

excluded sites are largely located in data-rich regions and as such did not significantly change the global 

distribution of sites. The dataset covers the periods 1992-2018, with a total of 1041 site years. Individual site 

records span 1 to 21 years, with a median record length of 4.5 years (Figure 3b). 39 sites cover ³10 years and 14 

sites ³15 years.  15 
 

The sites cover a wide range of biomes, ranging from grasslands and savannas to forest ecosystems (Figure 3c). 

The majority of sites are located in grassland (40), forested (89) and cropland (17) ecosystems. 22 sites are located 

in savanna and shrubland ecosystems and 10 sites in wetlands. The sites also cover a wide range of climates, with 

Figure 3d showing the sites within the global range of mean annual precipitation (MAP) and mean annual 20 
temperature (MAT) from the Climatic Research Unit (CRU) TS 4.02 dataset (Harris et al., 2014). The sites capture 

the global climatic range well, but only a limited number of sites were available in wet tropical environments with 

high MAP and MAT and very cold environments (MAT < 0°C). The excluded sites lie largely within the climate 

envelope covered by the final dataset, thus not strongly influencing the climate range covered by the final dataset. 

 25 
3.2 Impact of screening meteorological variables 

 

For the selected sites, the original time series was reduced at multiple sites to exclude periods of poor-quality 

meteorological data. The number of years excluded at each site is shown in Figure 4. Regionally, the average 

number of years excluded was similar over North America (mean: 1.8, median: 1) and Europe (1.9, 1) whereas 30 
fewer years were removed over Australia (0.7, 0) (see sub-panels in Figure 3a for region definitions). The number 

of excluded years was also similar across the FLUXNET2015 (mean: 2.0, median: 1) and La Thuile sites (1.3, 1) 

datasets but lower for OzFlux (as per Australia). Overall, there were no systematic spatial variations in the number 

of years excluded. 

 35 
For the selected sites, our data screening reduced the mean record length by 1.7 years (median: 1), ranging from 

0 to 12 years for individual sites (Figure 4b). A total of 283 site years were removed. The majority of sites (139 

out of 170) had 0-2 years removed, while only 11 sites had >5 years removed. The screening also reduced the 

proportion of gap-filled meteorological data from 21% to 15% on average for all meteorological variables. For 

the key variables, the level of gap-filled data was reduced from 10.4% to 3.6% for Tair, from 16% to 5% for Precip, 40 
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from 10.1% to 7.6% for SWdown, from 7.8% to 2.6% for Qair and from 15.9% to 8.3% for Wind on average across 

all sites. Less strict criteria were applied to LWdown and CO2_air leading to a larger proportion of gap-filled data in 

the final dataset. For LWdown, the proportion of gap-filled data was reduced from 48.8% to 41.5%. For CO2_air, the 

level of gap-filling remained similar (31.5% in screened data and 30.4% in the original data). This was due to the 

additional gap-filling done at multiple sites to correct for step changes and a large proportion of missing data 5 
(7.2%) in the original dataset that was replaced with gap-filled values. The screening and post-processing of all 

meteorological variables also ensured that no missing values are present in the meteorological variables. 

 

3.3 Impact of energy balance closure correction on latent and sensible heat fluxes 

 10 
Flux tower observations do not commonly close the energy balance, with the sum of latent and sensible heat fluxes 

underestimated relative to available energy (Leuning et al., 2012; Wilson et al., 2002). This problem is particularly 

common in sites with heterogeneous land cover (Stoy et al., 2013) but is also driven by other factors such as 

unaccounted energy storage and mesoscale circulation impacts (Panin and Bernhofer, 2008; Leuning et al., 2012). 

As LSMs balance all energy fluxes, latent and sensible heat fluxes were corrected for energy balance closure to 15 
aid model evaluation. In total, corrected fluxes are available for 143 sites which reported all required variables to 

perform the correction (Rnet, G, Qle and Qh). FLUXNET2015 already provided EBC-corrected Qle and Qh estimates 

for 82 sites and we additionally corrected 38 La Thuile sites and 23 OzFlux sites.   

 

At the corrected sites, the instantaneous EBC (i.e. the ratio (Qle+Qh) / (Rnet+G)) was 0.55 on average considering 20 
all available data points (note additional filtering was applied during correction). The EBC correction on average 

increased Qle and Qh by 25% relative to the original estimates. At individual sites, the change in Qle and Qh relative 

to uncorrected data ranged from 82% lower to 88% higher. However, for the majority of sites (123 out of 143) 

the correction increased Qle and Qh.  

 25 
The corrected variables should provide a more robust basis for evaluating model biases but rely on the assumption 

that the measured Bowen ratio is correct. Another limitation of the corrected fluxes is a larger proportion of 

missing data as the corrected fluxes are only provided for time steps for which the correction could be performed 

using our method detailed in section 3.2.4. As such, 9.2% of the corrected Qle is missing across all site years 

compared to 1.3% in the original Qle estimates. Similarly for Qh, 9.2% of corrected fluxes are missing compared 30 
to 0.6% in the original data.  

 

4 Data availability 

 

The final dataset is available at http://dx.doi.org/10.25914/5fdb0902607e1 (Ukkola et al., 2021). The data can 35 
also be obtained through https://modelevaluation.org/, including diagnostic plots of key variables for each site. 

The original flux tower datasets are available upon registration from the following websites: OzFlux 

(http://www.ozflux.org.au/), FLUXNET2015 (https://fluxnet.org/data/fluxnet2015-dataset/) and La Thuile 

(https://fluxnet.org/data/la-thuile-dataset/). MODIS LAI data can be obtained with the freely available 

MODISTools R package. The remaining datasets are freely available from: Copernicus LAI 40 
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(https://land.copernicus.eu/global/products/lai), Mauna Loa CO2 

(https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2/co2_annmean_mlo.txt) and  CRU TS4.02 precipitation 

and mean temperature (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/). 

 

5 Code availability 5 
 

The processing codes are available at https://github.com/aukkola/PLUMBER2. 

 

6 Discussion and conclusions 

 10 
We have presented a quality-controlled flux tower dataset for 170 sites for use in land surface modelling. Whilst 

the dataset was developed with land surface modelling in mind, it is also suitable for other applications requiring 

a large collection of sites with good quality meteorological data. In our site selection, we prioritised long 

continuous periods of high-quality meteorological observations to derive a consistent dataset across individual 

sites. In doing so, shorter good quality periods were discarded for some sites (e.g. Be-Bra in Figure 2); future 15 
work might revisit these choices to retain additional data periods. FluxnetLSM provides one possible reproducible 

tool for automated data screening to achieve this for the FLUXNET2015, La Thuile and OzFlux releases. 

 

The meteorological data were screened and fully gap-filled using multiple criteria. This screening should allow 

model simulations to be produced that are less strongly biased by high levels of gap-filling and other data quality 20 
issues that affect the original data collections. We did not quality control the flux variables used for model 

evaluation. This was to enable model evaluation at multiple time scales, ranging from sub-daily to interannual. 

This also allows models to be evaluated against individual weather and climate events, such as heatwaves and 

drought. The lack of screening leads to a much higher proportion of gap-filled data in the flux variables which 

should be taken into account when selecting sites for individual applications. For example, 31% of all the Qle data 25 
is gap-filled, ranging from 3% to 84% at individual sites. For Qh, 24% of the data is gap-filled (2-84% at individual 

sites). The level of gap-filling also varies strongly by variable, for example NEE estimates are on average 67% 

gap-filled. The level of gap-filling for individual variables can be further vary by climatic conditions, for example 

higher levels of observed data is often available under extreme hot than cold conditions (van der Horst et al., 

2019).  30 
 

Model evaluation, particularly at shorter time scales, should thus be avoided against long periods of gap-filled 

data. Depending on the gap-filling methods, these periods often reflect climatological conditions at the site and 

do not represent diurnal and seasonal variations well. This can be particularly problematic at sites with high 

seasonal or interannual variability in the variables of interest. Longer (daily to monthly-scale) data gaps in flux 35 
variables were gap-filled using the regression method based on SWdown, Tair and air humidity. The quality of these 

gap-filled values obviously depends on how well the site fluxes can be predicted from these three variables. This 

method has for example been shown to predict Qle well under energy-limited conditions but leads to an 

overestimation of Qle under water-stressed conditions (Haughton et al., 2018a, b).  
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The dataset additionally provides two alternative LAI time series for each site. These can be used as inputs to 

those LSMs that require LAI as an input. Alternatively, they can be used to evaluate simulated LAI in those 

models that predict it or to verify whether model biases arise from predictive LAI feedbacks. However, it should 

be noted that the remotely sensed LAI estimates are uncertain at site scales, with large differences between 

Copernicus and MODIS LAI at many sites. This is both because of the difficulties inherent in estimating LAI 5 
from satellites (methodological) and the fact the satellite data may be drawn from a different footprint from the 

one that influences the site scale measured fluxes (De Kauwe et al, 2011). LAI is a key model property and has a 

strong influence on simulated fluxes. As such, more accurate LAI estimates would be highly valuable for 

constraining models. Particularly, where site-level LAI is measured, the inclusion of these data in future flux 

tower collections would allow to better constrain large-scale remote sensing LAI estimates used to drive models 10 
or evaluate model-simulated LAI. Additionally, the inclusion of detailed site properties in future collections would 

strongly benefit model evaluation. This includes information on vegetation composition and crop cycles, 

disturbance events such as fire, soil properties and irrigation. Furthermore, models ideally require parameters such 

as reference height and canopy height to reduce model-observations mismatches arising from model inputs. Key 

metadata were collected from multiple sources for this data collection but the inclusion of site characteristics in 15 
future data releases would allow for more direct access to these metadata.  

 

Finally, whilst our dataset includes a large number of globally-distributed flux tower sites, the flux tower network 

includes >900 sites in total. In constructing our dataset, we used the two most common global multi-site 

collections (FLUXNET2015 and La Thuile), supplemented by OzFlux. Whilst many flux tower sites are not freely 20 
available, regional networks such as AmeriFlux, AsiaFlux and European Fluxes Database provide additional open 

policy sites that would be valuable in expanding our dataset. The current limitation with collating flux tower sites 

across multiple regional networks is the different data formats and standards they provide data in. To this end, 

active discussions are underway with Fluxnet and Ameriflux organisers to incorporate the data processing and 

formatting detailed in this paper into their automated data processing streams, reducing duplication and lag time 25 
for the ecological and modelling community. Standardisation of these datasets into a common format would 

strongly benefit the wider community, modelling applications and theory development and would likely lead to a 

greater uptake of these data.  
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Table 1: Variables provided in the final dataset (NB. not all sites provide all flux variables). Variable 

naming conventions follow the ALMA format where available. Fluxnet variable derivation details can be 10 
found at https://fluxnet.org/wp-content/uploads/FLUXNET2015_FULLSET_variable_list_20170509.pdf 

 

 

Variable Description CF standard name Fluxnet name Unit 

Met:     

Precip Precipitation rate precipitation_flux P mm s-1 

Tair Near surface air temperature air_temperature TA_F_MDS K 

SWdown Downward shortwave 

radiation 

surface_downwelling_shortwave_flux_in

_air 

SW_IN_F_MDS W m-2 

LWdown Downward longwave 

radiation 

surface_downwelling_longwave_flux_in

_air 

LW_IN_F_MDS W m-2 

Qair Near surface specific humidity specific_humidity [VPD_F_MDS, 

TA_F_MDS] 

kg kg-1 

VPD Vapour pressure deficit water_vapor_saturation_deficit_in_air VPD_F_MDS hPa 

RH Near surface relative humidity relative_humidity RH % 

Wind Scalar windspeed wind_speed WS m s-1 

Psurf Surface air pressure surface_air_pressure PA Pa 

CO2air Near surface CO2 

concentration 

mole_fraction_of_carbon_dioxide_in_air 

 

CO2_F_MDS ppm 

Flux:     

Rnet Net radiation surface_net_downward_radiative_flux NETRAD W m-2 

SWup Upward shortwave radiation surface_upwelling_shortwave_flux_in_ai
r 

SW_OUT W m-2 

Qle Latent heat flux surface_upward_latent_heat_flux LE_F_MDS W m-2 

Qh Sensible heat flux surface_upward_sensible_heat_flux H_F_MDS W m-2 

Qg Ground heat flux surface_downward_heat_flux G_F_MDS W m-2 

Qle_cor Energy balance corrected 

latent heat flux 

surface_upward_latent_heat_flux LE_CORR W m-2 

Qh_cor Energy balance corrected 

sensible heat flux 

surface_upward_sensible_heat_flux H_CORR W m-2 
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Qle_cor_

uc* 

Qh_cor_

uc* 

Ustar 

Qle_cor joint uncertainty 

 

Qh_cor joint uncertainty 

 

Friction velocity 

- 
 
 
- 
 
 
- 

LE_CORR_JOINT
UNC 
 
H_CORR_JOINT
UNC 
 
USTAR 

W m-2 
 
 
W m-2 
 
 
m s-1 

NEE Net ecosystem exchange of 

CO2 

surface_net_downward_mass_flux_of_c
arbon_dioxide_expressed_as_carbon_du
e_to_all_land_processes_excluding_anth
ropogenic_land_use_change 

NEE_VUT_REF mmol m-

2 s-1 
 

NEE_uc

* 

NEE joint uncertainty 

 

- NEE_VUT_REF_J
OINTUNC 
 

mmol m-

2 s-1 

 

GPP 

Gross primary productivity of 

CO2 

gross_primary_productivity_of_carbon 
 

 
GPP_NT_VUT_R
EF 

 
mmol m-

2 s-1 

GPP_se* Standard error of GPP - GPP_NT_VUT_S
E 

mmol m-

2 s-1 

GPP_DT

* 

Gross primary productivity of 

CO2 from day-time 

partitioning method 

gross_primary_productivity_of_carbon GPP_DT_VUT_R
EF 

mmol m-

2 s-1 

GPP_DT

_se* 

Standard error of GPP_DT - GPP_DT_VUT_S
E  

mmol m-

2 s-1 

Resp Ecosystem respiration - RECO_NT_VUT_
REF 

mmol m-

2 s-1 

Resp_se* Standard error of Resp - RECO_NT_VUT_
SE 

mmol m-

2 s-1 

*FLUXNET2015 only 
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Figure 1: A flowchart describing the data processing pipeline. The dark boxes show the 
main data processing steps, with the lighter boxes detailing the actions taken within each 
main step. 
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Figure 2: Examples of meteorological data pre-screening plots for three sites (AU-Lit, 
BE-Bra and US-Tw2). For each site different processing approaches were used and 5 
sections of this data discarded. 
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Figure 3: Selected and excluded sites. a) a map of selected sites including the length of 
data period, and excluded sites, b) a histogram of record length for selected sites, c) 
number of selected sites per IGBP vegetation class and d) the distribution of selected and 5 
excluded sites within the global envelope of mean annual temperature (MAT) and mean 
annual precipitation (MAP).  
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Figure 4: Excluded years from selected sites. a) a map of selected sites showing the 
number of excluded years. b) a histogram of excluded site years. 
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