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Abstract 17 

Tibetan Plateau (TP) is well known as the Asia’s water tower from where many large 18 

rivers originate. However, due to complex spatial variability of climate and topography, 19 

there is still a lack of high-quality rainfall dataset for hydrological modelling and flood 20 

prediction. This study, therefore, aims to establish a high-accuracy daily rainfall product 21 

through merging rainfall estimates from three satellites, i.e., GPM-IMERG, GSMaP, 22 

and CMORPH, based on the likelihood measurements of a high-density rainfall gauge 23 

network. The new merged daily rainfall dataset with a spatial resolution of 0.1°, focuses 24 

on warm seasons (June 10th - October 31st) from 2014 to 2019. Statistical evaluation 25 

indicated that the new dataset outperforms the raw satellite estimates, especially in 26 

terms of rainfall accumulation and the detection of ground-based rainfall events. 27 

Hydrological evaluation in the Yarlung Zangbo River Basin demonstrated high 28 

performance of the merged rainfall dataset in providing accurate and robust forcings 29 

for streamflow simulations. The new rainfall dataset additionally shows superiority to 30 

several other products of similar types, including MSWEP and CHIRPS. This new 31 

rainfall dataset is publicly accessible at https://doi.org/10.11888/Hydro.tpdc.271303 32 

(Li et al.,2021). 33 

1. Introduction 34 

Precipitation, linking atmospheric and hydrological processes, serves as a crucial 35 

component of the water cycle (Eltahir & Bras, 1996; Trenberth et al., 2003). Gridded 36 

precipitation datasets become more and more popular with the advent of satellite 37 

precipitation measurement. Most famous satellite gridded precipitation datasets include 38 

Tropical Rainfall Measuring Mission (TRMM) (Huffman et al., 2007) and its successor 39 

the Integrated Multi-satellite Retrievals for Global Precipitation Measurement mission 40 

(GPM-IMERG) (Hou et al., 2014), the Global Satellite Mapping of Precipitation 41 
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(GSMaP) (Ushio et al., 2009), the Climate Prediction Centre (CPC) MORPHing 42 

technique (CMORPH) (Joyce et al., 2004), etc. These products have been successfully 43 

applied in various hydrometeorological studies and water resources management 44 

practices (Kidd, C., & Levizzani, V., 2011; Jiang et al., 2012; Tong et al., 2014; Yang et 45 

al., 2015; Sun et al., 2016; Wang et al., 2017). 46 

However, all existing precipitation datasets show insufficient accuracy in high 47 

mountainous regions (Yilmaz et al., 2016; Derin et al., 2018; Derin et al., 2019; 48 

Anagnostou & Zhang, 2019), which hinders our understanding of climate and 49 

hydrological processes over these areas. This can be attributed to the complex physical 50 

nature of electromagnetic transmission and precipitation forming processes (Hong et 51 

al., 2007; Bitew & Gebremichael 2010; Dinku et al., 2010), and harsh environments in 52 

high mountains that lead to very limited deployment of in-situ rain gauges with 53 

insufficient representation of ground observations for training satellite-based 54 

precipitation retrieval algorithms. For instance, the Tibetan Plateau (TP) as the roof of 55 

the world is surrounded by imposing mountain ranges with an average elevation 56 

exceeding 4000 m. It generates several large rivers in Asia and provides invaluable 57 

freshwater resources for more than 1.4 billion people living downstream (Immerzeel et 58 

al., 2010). However, this vast plateau has very limited number of precipitation gauges 59 

across its 2.5 million km2 area. The precipitation gauge network operated by China 60 

Meteorological Agency (CMA) contains only 86 gauges over the entire TP (Figure 1). 61 

These gauges are essential to correct satellite precipitation datasets. For example, GPM-62 

IMERG ‘Final’ Run dataset uses Global Precipitation Climatology Centre (GPCC) 63 

database, GSMap_Gauge and CMORPH use NOAA Climate Prediction Centre (CPC) 64 

database. Although both GPCC and CPC databases received data through Global 65 

Telecommunication System (GTS), only part of the above-mentioned gauges in TP 66 

were utilized (Xie et al., 2007; Becker 2013). Previous evaluations over the TP 67 

indicated that most products present dependence on topography to varying degrees, and 68 

products adjusted by gauge observations shows better performance than satellite-only 69 
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products (Gao et al.,2013; Lu et al., 2018). Therefore, a better spatial coverage of rain 70 

gauges is critical to correct satellite products in high mountains. 71 

In 2014, the Ministry of Water Resources of China (MWR) launched the flash 72 

flood monitoring and alarming campaign. A large number of rain gauges is now 73 

accessible over the TP, especially in the southern TP. There are 440 new rain gauges 74 

totally involved in 6 years, and are available since 2014, independent of the existing 75 

CMA precipitation gauge network (Figure 1). These gauges provide measurements of 76 

precipitation in liquid phase (i.e., rainfall) at event time scale. A couple of recent studies 77 

have demonstrated the utility of this rain gauge network (Xu et al., 2017; He et al., 2017; 78 

Tian et al., 2018; Wang et al., 2020). For instance, Xu et al. (2017) evaluated the 79 

performance of TRMM and GPM and the dependence on topography and rainfall 80 

intensity based on the network. Their results demonstrated that the data quality of this 81 

dense gauge network is strictly controlled, serving as the currently highest gauge dense 82 

for satellite product evaluation on TP. Wang et al. (2020) used the gauge data to validate 83 

their reproduced precipitation dataset. However, there is not a merging product that 84 

assimilate the observations from this dense rain gauge network. This is apparently a 85 

unique opportunity to improve the performance of existing satellite-based precipitation 86 

datasets for its highest density and quality.  87 

This study aims to provide a high-accuracy rainfall dataset by merging all 88 

available ground gauges and three good-quality satellite precipitation datasets over the 89 

southern TP for the warm seasons (June 10th - October 31st) from 2014 to 2019. The 90 

remainder of this paper is organized as follows: Section 2 describes the study area and 91 

the source data. Section 3 provides details of the data merging method and the methods 92 

adopted to evaluate the quality of dataset. Results are presented in Section 4. The data 93 

availability and summary are provided in Section 5 and Section 6, respectively. 94 



5 

 

2. Study Area and Source Data 95 

2.1. Southern Tibetan Plateau 96 

Tibetan Plateau, known as the Asian water tower, mainly covers parts of China, 97 

India, Myanmar, Bhutan, Nepal and Pakistan.Tibetan Plateau, known as the Asian water 98 

tower, borders India, Myanmar, Bhutan and Nepal to the south and Pakistan to the west. 99 

Various climate systems affect the plateau, including westerly winds in winter and the 100 

Indian monsoon in summer (Yao et al., 2012). Many Asian large rivers originate from 101 

this vast area, including the Yellow River, the Yangtze River, the Yarlung Zangbo River 102 

(YZR), Jinsha River (JR), Lancang River (LR), Salwen River (SR), Irrawaddy River 103 

(IR), Ganges River (GR), and Indus River (IDR). This study is focused on the southern 104 

part of TP (Figure 1), including the upper YZR Basin (YZRB) as a major basin. 105 

 106 

Figure 1. (a) The location and topography of the TP and the spatial distributions of CMA gauges. 107 
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(b) Numbers of ground gauges installed by CMA and MWR in southern TP during 2014-2019, (c) 108 

Locations of CMA and MWR rain gauges and main hydrological stations in southern TP. The names 109 

of hydrological stations are labelled as H1-Yangcun, H2-Lhasa, H3-Nugesha, H4-Gongbujiangda, 110 

H5-Nuxia. The names of tributary rivers are labelled as R1-Duoxiong Zangbo, R2-Nianchu River, 111 

R3-Lhasa River, R4-Niyang River, R5-Yigong Zangbo, R6-Parlung Zangbo. 112 

2.2. Ground gauged rainfall 113 

We combined two rain gauge networks managed by MWR and CMA to obtain a 114 

high-quality ground reference dataset up to date. The number of rain gauge is presented 115 

in Figure 1b, and varies across different years. The spatial distribution of all gauges is 116 

presented in Figure 1c. The gauges are mainly located in the middle reaches of YZRB 117 

and the east part of the study area. Despite the high density, we can see these rain gauges 118 

are not evenly distributed across the space. This makes satellite rainfall products over 119 

varying altitudes and aspects important. Daily rainfall observations during the warm 120 

seasons of 2014-2019 were accumulated from the original event scale measurements. 121 

Total number of the CMA and MWR gauges ranges from 53 in 2015 to 377 in 2018, 122 

forming the densest rain gauge network up till now. 123 

The CMA gauge data has been widely demonstrated as reliable and accurate in 124 

previous studies (Zhai et al., 2005; Su et al., 2020; He et al., 2020). Gauge data used in 125 

this study has been manufactured under strict quality control procedures, including (1) 126 

internal consistency check, (2) extreme values check (0~85mm/h), and (3) spatial 127 

consistency check (Ren et al., 2010). Rain gauges with erroneous values (e.g. 128 

enormously large values) were discarded from the entire records. In cold seasons there 129 

are many missing values and only few gauges meet the requirements of the strict quality 130 

control method. So the warm seasons from June 10th to October 31st were selected as 131 

the study period to maintain the high quality of outcome rainfall dataset. While rainfall 132 

gauged data is continuously collected to update our merged rainfall data. 133 
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2.3. Satellite Precipitation Datasets 134 

Three satellite precipitation products were chosen for the data merging procedure 135 

(Lu et al., 2019; Derin et al., 2019; Tang et al., 2020), including GPM-IMERG ‘Final’ 136 

run (here after referred to as IMERG) from the National Aeronautics and Space 137 

Administration (NASA) (https://disc.gsfc.nasa.gov/), the GSMaP_Gauge (here after 138 

referred to as GSMaP) from Japan Aerospace Exploration Agency (JAXA) 139 

(http://sharaku.eorc.jaxa.jp) and the CMORPH v1.0 from NOAA CPC 140 

(ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/). Spatial resolutions and temporal 141 

frequency of the satellite datasets are listed in Table 1. To be consistent, IMERG and 142 

GSMaP data were accumulated to daily scale (08:00-08:00 of local time, i.e. UTC+8) 143 

and CMORPH was bilinearly interpolated to the grid resolution of 0.1°. 144 

The merged dataset was further compared with two popular merged rainfall 145 

datasets of Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) 146 

(Funk et al., 2015) and Multi-Source Weighted-Ensemble Precipitation (MSWEP) 147 

(Beck et al., 2019). CHIRPS was originated by merging CHPClim, thermal infrared, 148 

TRMM3B42, NOAA CFSv2 precipitation data, and ground observation precipitation 149 

data. MSWEP was merged from multiple datasets including CPC, GPCC, CMORPH, 150 

GSMaP-MVK, GPM-IMERG, ERA5, and JRA-55. CHIRPS and MSWEP showed 151 

great potentials in rainfall estimates in previous studies (Liu et al., 2019). 152 

Table 1. Multiple satellite precipitation datasets used in this study. 153 

Datasets Resolution Frequency Source Reference 

GPM IMERG 0.1° x 0.1° 0.5 hourly NASA (Hou et al., 2014) 

GSMaP_Gauge 0.1° x 0.1° 1 hourly JAXA (Ushio et al., 2009) 

CMORPH v1.0 0.25° x 0.25° daily CPC (Joyce et al., 2004) 

CHIRPS v2.0 0.25° x 0.25° daily USGS and CHC (Funk et al., 2015) 

MSWEP v2 0.1° x 0.1° 3 hourly - (Beck et al., 2019) 
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3. Methodology 154 

We used the Dynamic Bayesian Model Averaging (DBMA) method (Ma et al., 155 

2017) to merge the satellite datasets with in-situ rain gauges. To evaluate the quality of 156 

the new dataset, we carried out statistical and hydrological evaluations and comparisons 157 

with CHIRPS and MSWEP in southern TP. 158 

3.1. Dynamic Bayesian Model Averaging method 159 

The Dynamic Bayesian Model Averaging (DBMA) method developed by Ma et 160 

al. (2018) was utilized in this work. A flow chart of the merging method is shown in 161 

Figure 2. In the first step, a training dataset was formed by selecting samples from the 162 

ground gauged data and three original satellite datasets. The training period was set as 163 

40 days. Increasing the length of the training period did not lead to obvious 164 

improvement of the merging method (Ma et al., 2018). In the second step, the training 165 

dataset was transformed by the Box-Cox Gaussian distribution, and the optimal weights 166 

for each of the original satellite datasets on a specific grid where a ground gauge is 167 

located on each training day were estimated by a logarithmic likelihood equation and 168 

the optimal expectation algorithm. In the third step, an ordinary Kriging interpolation 169 

method was applied to spatially interpolate the daily weights onto grids with no gauges. 170 

Finally, posterior spatiotemporal weights were used to obtain the final merged rainfall 171 

dataset. The DBMA-merged data has been proved in Ma et al. (2017) to outperform 172 

original satellite data during 2007-2012 over TP. 173 
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 174 

Figure 2. Flowchart of the DBMA merging method (adapted from Ma et al., 2018). 175 

For statistical evaluation of the merged data against ground gauges, around 85% 176 

of the gauges were randomly selected to form a training gauge set for the merging 177 

approach in each year during 2014-2019, and the remaining 15% were used for test. 178 

Training method DBMA of 40 days was only conducted in training dataset. Table 2 lists 179 

the numbers of training and test gauges in each of the warm seasons. The spatial 180 

distributions of gauges in each year are presented in Figure S1. Data from all gauges 181 

were involved in the training procedure of the final released version of the merged data. 182 

Table 2. Number of rain gauges for training and test in 2014-2019. 183 

Year 
Total number of 

rain gauges 

Number of 

training gauges  

Number of test 

gauges  

2014 195 166 29 

2015 54 46 8 

2016 373 317 56 

2017 321 273 48 

2018 377 320 57 

2019 106 90 16 

3.2. Statistical Evaluation 184 

Performance of the multiple datasets were statistically evaluated by comparing 185 
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with ground observations on the corresponding statelite grids. Relative bias (RB) and 186 

normalized root mean square error (RMSE) were adopted to measure the amount 187 

difference between the gridded rainfall and the gauged rainfall. Correlation Coefficient 188 

(CC) was used to evaluate the consistency between satellite estimates and gauge 189 

observations. The skill of rainfall data on detecting rainfall occurrence (rainfall events 190 

higher than zero) was evaluated through a set of metrics (similarly to Wilks, 2006): i.e. 191 

the probability of detection (POD) assessing how good the multiple rainfall datasets are 192 

at detecting the occurrence of rainfall, false alarm ratio (FAR) measuring how often the 193 

gridded rainfall datasets detect rainfall when there actually is not rainfall, and critical 194 

success index (CSI) measuring the ratio of rainfall events that are correctly detected by 195 

the gridded datasets to the total number of observed or detected events. Equations for 196 

the above metrics are shown in Table 3. 197 

Table 3. Statistical indices that were used to assess the performance of the gridded rainfall 198 

datasets. 199 

Statistical Indicators Equation 
Optimal 

Value 

Equation 

number 

Relative Bias (RB) 𝐵𝑖𝑎𝑠 =
∑ (𝑆𝑖 − 𝐺𝑖)
𝑛
𝑖=1

∑ 𝐺𝑖
𝑛
𝑖=1

 

0 (1) 

Correlation Coefficient (CC) 𝐶𝐶 =
[∑ (𝑆𝑖 − 𝑆̅) ∙ (𝐺𝑖 − �̅�)𝑛

𝑖=1 ]2

∑ (𝑆𝑖 − 𝑆̅)2𝑛
𝑖=1 ∙ ∑ (𝐺𝑖 − �̅�)2𝑛

𝑖=1  

1 (2) 

Root Mean Square Error 

(RMSE) 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑ (𝑆𝑖 − 𝐺𝑖)

2
𝑛

𝑖=1

 

0 (3) 

Probability of Detection (POD) 𝑃𝑂𝐷 =
𝑎

𝑎 + 𝑐
 

1 (4) 

False Alarm Ratio (FAR) 𝐹𝐴𝑅 =
𝑏

𝑎 + 𝑏
 0 (5) 

Critical success index (CSI) 𝐶𝑆𝐼 =
𝑎

𝑎 + 𝑏 + 𝑐
 1 (6) 

For the equations listed in Table 3, n is the total number of gridded product data 200 

and gauge observation data; i  is the 𝑖th  of satellite product data and gauge 201 
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observation data; Gi  means gauge observation and G̅  is the average of gauge 202 

observation. Si  and S̅  are gridded estimates and their average, respectively. a 203 

represents hit (i.e., event was detected to occur and observed to occur), b represents 204 

false alarm (i.e., event was detected to occur but not observed to occur), and c 205 

represents miss (i.e., event was not detected to occur but observed to occur). 206 

Triple Collocation (TC) technique provides a platform for quantifying the root 207 

mean square errors of three products that estimate the same geophysical variable 208 

(Stoffelen, 1998). Roebeling et al. (2012) successfully applied the TC technique to 209 

estimate errors of three rainfall products across Europe. An extended Triple Collocation 210 

(ETC) introduced in Kaighin et al. (2014), which is able to estimate errors and 211 

correlation coefficients with respect to an unknown target was used in this study to 212 

compare the performance of the DBMA-merged data and two previous merged datasets 213 

of CHIRPS and MSWEP. 214 

3.3. Hydrological Evaluation  215 

In addition to the statistical assessments against rain gauges, hydrological 216 

assessment was used as a tool to test the performance of merged rainfall datasets on 217 

forcing hydrological modelling in the study area (similarly see Yong et al, 2012; Xue 218 

et al, 2013; Yong et al, 2014; Li et al, 2014). In this section, a semi-distributed 219 

hydrological model developed by Tian (2006), namely Tsinghua Hydrological Model 220 

based on Representative Elementary Watershed (THREW), was adopted for the 221 

hydrological assessment of rainfall datasets in the YZRB. YZRB has a drainage area of 222 

approximately 240,480 km2 within China’s boarder. The basin elevation ranges from 223 

143 to 7,261 m, with an average of around 4,600 m. YZR is one of the most important 224 

transboundary rivers in South Asia and the highest river in the world, which is 225 

characterized by a dynamic fluvial regime with exceptional physiographic setting 226 

spreading along the eastern Himalayan region (Goswami, 1985). Due to complex 227 

terrain and strongly varying elevation, the YZRB is under control of a variety of climate 228 
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systems, such as the semi-arid plateau climate prevailing in the upper and middle 229 

reaches, and the mountainous subtropical and tropical climates prevailing in the lower 230 

reaches. In the cold upper reaches, the mean annual rainfall is less than 300 mm. In the 231 

warm middle reaches, the mean annual rainfall falls between 300 mm and 600 mm. 232 

The whole basin area above the Nuxia hydrological station was divided into 63 233 

Representative Elementary Watersheds (REWs). Model parameters were calibrated by 234 

daily discharges measured at the Nuxia station. The calibration period is scheduled to 235 

run in the warm seasons from June 10th to October 31st in 2014- 2017, encompassing a 236 

period length of 576 days. The validation period includes two warm seasons in 2018 237 

and 2019 with a total duration of 288 days. Descriptions of the calibrated model 238 

parameters can be found in Table 4. An automatic algorithm pySOT developed by D. 239 

Eriksson et al (2019) was used to optimize the parameter values based on an objective-240 

function of NSE (Nash and Sutcliffe, 1970) in Eq. 7. To conduct a continuous 241 

hydrological simulation in the study period, the datasets of daily grid-based 242 

precipitation over China (Zhao et al., 2014) were used as model inputs in the non-warm 243 

seasons when merged rainfall is not available. 244 

Table 4. Calibrated parameters of the THREW model. 245 

Symbol Description Unit Value Range 

kv Fraction of potential transpiration rate over 

potential evaporation 

- 0.001-0.8 

nt Manning roughness coefficient for hillslope - 0.0001-0.2 

GaIFL Spatial heterogeneous coefficient for 

infiltration capacity 

- 0.0001-0.7 

GaEFL Spatial heterogeneous coefficient for 

exfiltration capacity 

- 0.0001-0.7 

GaETL Spatial heterogeneous coefficient for 

evapotranspiration capacity 

- 0.0001-0.7 

WM Tensor water storage capacity cm 0.1-10 

B Shape coefficient to calculate the saturation 

excess runoff area 

- 0.01-1 

Gaus Coefficient representing spatial 

heterogeneity of exchange term between t-

zone and r-zone 

- 0.001-10 
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KKA Exponential coefficient to calculate 

subsurface flow 

- 0.01-6 

KKD Linear coefficient to calculate subsurface 

flow 

- 0.001-0.5 

MM Snow melting degree-day factor mm/day 0.001-10 

MMG Ice melting degree-day factor mm/day 0.001-10 

C1+C2 Muskingum parameter - 0.0001-1 

C1/(C1+C2) Muskingum parameter - 0.0001-1 

 𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠

𝑛 − 𝑄𝑠𝑖𝑚
𝑛 )2𝑁

𝑛=1

∑ (𝑄𝑜𝑏𝑠
𝑛 − �̅�𝑜𝑏𝑠)

2𝑁
𝑛=1

 (7) 

where, 𝑁 is the total number of days in the evaluation period，𝑄𝑜𝑏𝑠
𝑛  and 𝑄𝑠𝑖𝑚

𝑛  246 

represent the observed and simulated runoff on the 𝑛th  day, respectively. �̅�𝑜𝑏𝑠 247 

represents the average of observed runoff in the evaluation period. 248 

4. Results and Discussions 249 

4.1. Spatiotemporal Patterns 250 

Based on the merging method, a new daily rainfall dataset with spatial resolution 251 

of 0.1°×0.1° in the warm seasons from June 10th to October 31st (144 days in each year) 252 

in 2014-2019 (864 days in six years) was generated. Figure 3 presents the spatial pattern 253 

of the mean rainfall over the six warm seasons of the merged data in southern TP. It is 254 

shown that extremely high summer rainfall centres concentrate in the south-eastern and 255 

south-western of the study area where is known as a world-famous heavy rainfall centre 256 

(see Biskop et al., 2015; Bookhagen & Burbank, 2006; Kumar et al., 2010).  257 

 258 

Figure 3. Spatial pattern of mean rainfall over six warm seasons in 2014-2019 of the DBMA-259 
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merged data in southern TP. 260 

In addition, Figure 4 compares the time series of average daily weight and rainfall 261 

over the YZRB basin derived from the DBMA-merged data and the original satellite 262 

datasets. As expected, the DBMA-merged daily rainfall in general fall in the envelope 263 

ranges of the three satellite datasets. Merged data is closer to CMORPH in June, 264 

September and October, while showing equal closeness to all the three source satellite 265 

data in July and August. It indicates that CMORPH is closer to the in-situ gauges than 266 

IMERG at basin scale when rainfall value is small, especially for light rainfall events 267 

smaller than 2 mm, but this difference tends to be small for heavy rainfall events. 268 

 269 

Figure 4. Seasonal variations in basin-averaged (a) weights and (b) rainfall estimates of the 270 

multiyear daily values of IMERG, GSMaP, CMORPH and DBMA. 271 

4.2. Statistical Evaluation 272 

Figure 5 shows the statistical evaluation of the merged and original datasets in the 273 

warm seasons. The statistical indices were calculated for three gauge groups including 274 

the training gauges, the test gauges and all gauges at different elevation bands. The 275 
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datasets in general presented comparable performance for the training and test gauge 276 

groups, indicating that the sampling procedure of ground gauges is adequately random. 277 

The comparable performance of merged data in training and test gauge groups 278 

demonstrated robustness of the merging method on varying gauges. In terms of RSME, 279 

CC, and POD, the DBMA-merged data shows much better performance on all gauge 280 

groups and elevation bands than the original satellite datasets. The smallest RSME of 281 

merged data indicate that the total rainfall amount of the merged data during the 282 

evaluation period showed the lowest difference from the total amount of gauged rainfall. 283 

The highest CC and POD highlight the best consistency between merged data and 284 

ground gauge data on days when most regions in the basin were rainy. The RB of 285 

DBMA-merged data is at an intermediate level among the satellite datasets as it is the 286 

weighted average of those three datasets. The higher FAR and lower CSI of DBMA-287 

merged data could be attributed to that the merging method detected rainfall events 288 

when rainfall estimate is higher than zero in any one of the three satellite datasets and 289 

thus resulted in overestimated rainfall occurrence. The overestimated rainfall 290 

occurrence might have small effects on the estimation of rainfall amount, as most of 291 

the falsely alarmed events were tiny. It is noteworthy that the performance of the 292 

merged data shows smaller variance across elevation bands than that of the original 293 

satellite datasets. This is most likely benefiting from the spatially dynamic optimal 294 

weights for the original satellite data. However, the merged data presented the largest 295 

difference from gauged data at the altitudes of 3000-3500 m, because there are much 296 

less gauges on this elevation zone. 297 
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 298 

Figure 5. Comparisons of the statistical indices of (a) RB, (b)RMSE, (c) CC, (d) POD, (e) FAR 299 

and (f) CSI for training gauges, test gauges and all gauges at five elevation bands. 300 

Figure 6 shows CC of different datasets on specific gauges. The merged data 301 

presents higher CC values in regions where are densely gauged, i.e., the middle reaches 302 

of YZRB and the east part of the study region, which can be expected as the dense 303 

ground gauges provided strongly informative benchmark likelihoods for the estimation 304 

of satellite data weights. On most of the gauges (Figure 6a), the merged-data presented 305 

higher CC values than the IMERG data, which is consistent with Figure 5c. On contrary, 306 

the merged-data showed reduced CC than GSMaP and CMORPH on more gauges 307 

(Figures 6b-c), indicating that involving IMERG data in the merging procedure on these 308 

gauges lead to deteriorated consistence performance. 309 
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 310 

Figure 6. Spatial distributions of CC difference between (a) DBMA and IMERG, (b) DBMA and 311 

GSMaP, (c) DBMA and CMORPH 312 

4.3. Hydrological Evaluation  313 

(a) Hydrological simulation 314 

Performance of the THREW model forced by different rainfall datasets are 315 

compared in Table 4. The DBMA-merged dataset achieved the best runoff simulation 316 

among all rainfall inputs, with NSE reaching 0.93 and 0.86 in calibration and validation 317 

period, respectively, indicating an excellent agreement between simulated and observed 318 
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hydrographs. Both IMERG and GSMaP underestimated the measured daily discharge, 319 

but the DBMA-merged dataset improved such underestimations (see RB values in Table 320 

5). 321 

Table 5. Evaluation metrics of hydrological simulations forced by IMERG, GSMaP, CMORPH 322 

and DBMA. 323 

Parameters IMERG GSMaP CMORPH DBMA 

NSEcal 0.91 0.90 0.90 0.93 

NSEval 0.75 0.57 0.81 0.86 

RB -0.07 -0.10 0.02 -0.05 

(b) Uncertainty analysis 324 

The automatic algorithm pySOT was ran 200 times to investigate the modelling 325 

uncertainty caused by parameter calibration. Figure 7 presents the distributions of NSE 326 

values estimated by the ensemble parameter sets of the merged and original rainfall 327 

forces. It is shown that streamflow simulated by the DBMA data at the Nuxia station 328 

presented higher NSEs and smaller uncertainty ranges than that simulated by the 329 

original satellite datasets, indicating that streamflow simulations driven by the merged 330 

dataset showed stronger robustness and were less affected by uncertainty of parameter 331 

calibration. 332 

In addition to the Nuxia hydrological station, model performance on simulating 333 

streamflow at the interior hydrological stations of Yangcun, Nugesha, Gongbujiangda 334 

and Lhasa (Figure 1) were evaluated in Figure 7. It shows that the IMERG forced 335 

simulations presented poor NSE outliers lower than zero at the Lhasa station, in spite 336 

of their good performance at the Yangcun and Nugesha stations; the GSMaP forced 337 

simulations presented large uncertainty ranges in calibration period at Nugesha and 338 

Lhasa, and in validation period at Nuxia and Gongbujiangda; the CMORPH forced 339 

simulations showed the worst performance in validation period at the interior 340 

hydrological stations, despite their sound good performance in calibration period at 341 

Yangcun and Nugesha. In comparison to the satellite datasets, the DBMA forced 342 

simulations tend to perform consistently better with smaller uncertainties at all the 343 
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hydrological stations, which can be attributed to that the merged data incorporated the 344 

advantages of different datasets in different regions and temporal periods and thus 345 

better captured the spatial variability of rainfall inputs in sub-basins. 346 
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  347 

Figure 7. Runoff simulations at Nuxia, Yangcun, Nugesha, Gongbujiangda and Lhasa stations 348 

forced by multiple rainfall inputs. 349 
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4.4. Comparisons with other datasets 350 

To avoid interference of ground gauge data that merged in the DBMA dataset, the 351 

ETC method introduced in Section 3.2 was applied to compare the three merged 352 

datasets in Table 6. The RMSE and CC of DBMA calculated by ETC were 1.11 and 353 

0.80, respectively, both of which are obviously superior compared to the corresponding 354 

values estimated by CHIRPS and MSWEP, indicating that DBMA data is closer to the 355 

true value of rainfall in the study region. 356 

Table 6. Statistical RMSE and CC of merged datasets calculated by the ETC method. 357 

Datasets DBMA CHIRPS MSWEP 

RMSE-ETC 1.11 7.15 2.82 

CC-ETC 0.80 0.28 0.62 

Runoff simulations forced by the three merged datasets during June 10th 2014 to 358 

October 31st 2019 estimated by the corresponding optimal parameter sets were 359 

presented in Figure 8. Note that the daily runoff is normalized as Eq. 8 for data security 360 

reasons. Simulation by the CHIRPS data presented the lowest performance with NSE 361 

values of 0.75 and 0.78 in the calibration and validation periods, respectively. The 362 

DBMA forced simulation showed the highest performance with NSE values of 0.93 363 

and 0.86 in the calibration and validation periods, followed by the MSWEP forced 364 

simulation which estimated NSE values of 0.9 in the calibration period and 0.76 in the 365 

validation period. The performance of streamflow forced by the merged datasets are 366 

consistent with the agreements between the merged rainfall estimates and ground truth 367 

shown in Table 6. 368 

 𝑄𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑛 =

𝑄𝑠𝑖𝑚
𝑛 −min(𝑄𝑜𝑏𝑠)

max(𝑄𝑜𝑏𝑠) − 𝑚𝑖𝑛(𝑄𝑜𝑏𝑠)
 (8) 
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 369 

Figure 8. Simulated daily runoff at Nuxia station forced by DBMA, CHIRPS, and MSWEP. 370 

5 Data Availability 371 

The high-accuracy rain dataset by merging multi-satellite and dense ground 372 

gauges over southern Tibetan Plateau for the warm seasons in 2014-2019 is freely 373 

accessible at the National Tibetan Plateau Data Center 374 

https://doi.org/10.11888/Hydro.tpdc.271303 (Li et al.,2021). 375 
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6. Summary 376 

We collated ground-based rainfall observations from a dense gauge network over 377 

southern TP. The gauged data provides crucial ground references of measured rainfall. 378 

Based on this rain gauge network and three satellite rainfall datasets of IMERG, GSMaP, 379 

and CMORPH, a merged rainfall dataset in six warm seasons from June 10th to October 380 

31st during 2014-2019 over the southern TP was established. The DBMA method was 381 

used to estimate weights varying in space and time of the three satellite datasets for the 382 

merged data. The merged rainfall dataset presented improved performance on 383 

representing the total amount of rainfall and detecting the occurrence of gauged rainfall 384 

events, and provide a more reliable forcing for hydrological simulations in the YZRB, 385 

compared to the original satellite datasets. Comparisons with previous merged rainfall 386 

datasets of CHIRPS v2.0 and MSWEP v2 that used relatively sparse rain gauges in the 387 

study area demonstrated high values of the newly installed rain gauges for providing 388 

robust ground reference for the merging of current satellite datasets. Our results 389 

indicated that the merged datasets can meet the critical needs of accurate forcing inputs 390 

for the simulations of warm season floods and the robustness calibration of hydrological 391 

models. Based on this high-accuracy rainfall data and reliable hydrological modelling, 392 

much further research in this region then could be conducted, for example, fluvial 393 

sediment transport modelling through coupling sediment and hydrology, validation and 394 

correction of precipitation from Global Climate Model, and future runoff projections 395 

based on reliable modelling calibration in history. 396 
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