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Abstract 17 

Tibetan Plateau (TP) is well known as the Asia’s water tower from where many large 18 

rivers originate. However, due to complex spatial variability of climate and topography, 19 

there is still a lack of high-quality rainfall dataset for hydrological modelling and flood 20 

prediction. This study, therefore, aims to establish a high-accuracy daily rainfall product 21 

through merging rainfall estimates from three satellites, i.e., GPM-IMERG, GSMaP, 22 

and CMORPH, based on the likelihood measurements of a high-density rainfall gauge 23 

network. The new merged daily rainfall dataset with a spatial resolution of 0.1°, focuses 24 

on warm seasons (June 10th - October 31st) from 2014 to 2019. Statistical evaluation 25 

indicated that the new dataset outperforms the raw satellite estimates, especially in 26 

terms of rainfall accumulation and the detection of ground-based rainfall events. 27 

Hydrological evaluation in the Yarlung Zangbo River Basin demonstrated high 28 

performance of the merged rainfall dataset in providing accurate and robust forcings 29 

for streamflow simulations. The new rainfall dataset additionally shows superiority to 30 

several other products of similar types, including MSWEP and CHIRPS. This new 31 

rainfall dataset is publicly accessible at https://doi.org/10.11888/Hydro.tpdc.271303 32 

(Li et al.,2021). 33 

1. Introduction 34 

Precipitation, linking atmospheric and hydrological processes, serves as a crucial 35 

component of the water cycle (Eltahir & Bras, 1996; Trenberth et al., 2003). Gridded 36 

precipitation datasets become more and more popular with the advent of satellite 37 

precipitation measurement. Most famous satellite gridded precipitation datasets include 38 

Tropical Rainfall Measuring Mission (TRMM) (Huffman et al., 2007) and its successor 39 

the Integrated Multi-satellite Retrievals for Global Precipitation Measurement mission 40 

(GPM-IMERG) (Hou et al., 2014), the Global Satellite Mapping of Precipitation 41 
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(GSMaP) (Ushio et al., 2009), the Climate Prediction Centre (CPC) MORPHing 42 

technique (CMORPH) (Joyce et al., 2004), etc. These products have been successfully 43 

applied in various hydrometeorological studies and water resources management 44 

practices (Kidd, C., & Levizzani, V., 2011; Jiang et al., 2012; Tong et al., 2014; Yang et 45 

al., 2015; Sun et al., 2016; Wang et al., 2017). 46 

However, all existing precipitation datasets show insufficient accuracy in high 47 

mountainous regions (Yilmaz et al., 2016; Derin et al., 2018; Derin et al., 2019; 48 

Anagnostou & Zhang, 2019), which hinders our understanding of climate and 49 

hydrological processes over these areas. This can be attributed to the complex physical 50 

nature of electromagnetic transmission and precipitation forming processes (Hong et 51 

al., 2007; Bitew & Gebremichael 2010; Dinku et al., 2010), and harsh environments in 52 

high mountains that lead to very limited deployment of in-situ rain gauges with 53 

insufficient representation of ground observations for training satellite-based 54 

precipitation retrieval algorithms. For instance, the Tibetan Plateau (TP) as the roof of 55 

the world is surrounded by imposing mountain ranges with an average elevation 56 

exceeding 4000 m. It generates several large rivers in Asia and provides invaluable 57 

freshwater resources for more than 1.4 billion people living downstream (Immerzeel et 58 

al., 2010). However, this vast plateau has very limited number of precipitation gauges 59 

across its 2.5 million km2 area. The precipitation gauge network operated by China 60 

Meteorological Agency (CMA) contains only 86 gauges over the entire TP (Figure 1). 61 

These gauges are essential to correct satellite precipitation datasets. For example, GPM-62 

IMERG ‘Final’ Run dataset uses Global Precipitation Climatology Centre (GPCC) 63 

database, GSMap_Gauge and CMORPH use NOAA Climate Prediction Centre (CPC) 64 

database. Although both GPCC and CPC databases received data through Global 65 

Telecommunication System (GTS), only part of the above-mentioned gauges in TP 66 

were utilized (Xie et al., 2007; Becker 2013). Previous evaluations over the TP 67 

indicated that most products present dependence on topography to varying degrees, and 68 

products adjusted by gauge observations shows better performance than satellite-only 69 
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products (Gao et al.,2013; Lu et al., 2018). Therefore, a better spatial coverage of rain 70 

gauges is critical to correct satellite products in high mountains. 71 

In 2014, the Ministry of Water Resources of China (MWR) launched the flash 72 

flood monitoring and alarming campaign. A large number of rain gauges is now 73 

accessible over the TP, especially in the southern TP. There are 440 new rain gauges 74 

totally involved in 6 years, and are available since 2014, independent of the existing 75 

CMA precipitation gauge network (Figure 1). These gauges provide measurements of 76 

precipitation in liquid phase (i.e., rainfall) at event time scale. A couple of recent studies 77 

have demonstrated the utility of this rain gauge network (Xu et al., 2017; He et al., 2017; 78 

Tian et al., 2018; Wang et al., 2020). For instance, Xu et al. (2017) evaluated the 79 

performance of TRMM and GPM and the dependence on topography and rainfall 80 

intensity based on the network. Their results demonstrated that the data quality of this 81 

dense gauge network is strictly controlled, serving as the currently highest gauge dense 82 

for satellite product evaluation on TP. Wang et al. (2020) used the gauge data to validate 83 

their reproduced precipitation dataset. However, there is not a merging product that 84 

assimilate the observations from this dense rain gauge network. This is apparently a 85 

unique opportunity to improve the performance of existing satellite-based precipitation 86 

datasets for its highest density and quality.  87 

This study aims to provide a high-accuracy rainfall dataset by merging all 88 

available ground gauges and three good-quality satellite precipitation datasets over the 89 

southern TP for the warm seasons (June 10th - October 31st) from 2014 to 2019. The 90 

remainder of this paper is organized as follows: Section 2 describes the study area and 91 

the source data. Section 3 provides details of the data merging method and the methods 92 

adopted to evaluate the quality of dataset. Results are presented in Section 4. The data 93 

availability and summary are provided in Section 5 and Section 6, respectively. 94 
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2. Study Area and Source Data 95 

2.1. Southern Tibetan Plateau 96 

Tibetan Plateau, known as the Asian water tower, mainly covers parts of China, 97 

India, Myanmar, Bhutan, Nepal and Pakistan. Various climate systems affect the 98 

plateau, including westerly winds in winter and the Indian monsoon in summer (Yao et 99 

al., 2012). Many Asian large rivers originate from this vast area, including the Yellow 100 

River, the Yangtze River, the Yarlung Zangbo River (YZR), Jinsha River (JR), Lancang 101 

River (LR), Salwen River (SR), Irrawaddy River (IR), Ganges River (GR), and Indus 102 

River (IDR). This study is focused on the southern part of TP (Figure 1), including the 103 

upper YZR Basin (YZRB) as a major basin. 104 

 105 

Figure 1. (a) The location and topography of the TP and the spatial distributions of CMA gauges. 106 

(b) Numbers of ground gauges installed by CMA and MWR in southern TP during 2014-2019, (c) 107 
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Locations of CMA and MWR rain gauges and main hydrological stations in southern TP. The names 108 

of hydrological stations are labelled as H1-Yangcun, H2-Lhasa, H3-Nugesha, H4-Gongbujiangda, 109 

H5-Nuxia. The names of tributary rivers are labelled as R1-Duoxiong Zangbo, R2-Nianchu River, 110 

R3-Lhasa River, R4-Niyang River, R5-Yigong Zangbo, R6-Parlung Zangbo. 111 

2.2. Ground gauged rainfall 112 

We combined two rain gauge networks managed by MWR and CMA to obtain a 113 

high-quality ground reference dataset up to date. The number of rain gauge is presented 114 

in Figure 1b, and varies across different years. The spatial distribution of all gauges is 115 

presented in Figure 1c. The gauges are mainly located in the middle reaches of YZRB 116 

and the east part of the study area. Despite the high density, we can see these rain gauges 117 

are not evenly distributed across the space. This makes satellite rainfall products over 118 

varying altitudes and aspects important. Daily rainfall observations during the warm 119 

seasons of 2014-2019 were accumulated from the original event scale measurements. 120 

Total number of the CMA and MWR gauges ranges from 53 in 2015 to 377 in 2018, 121 

forming the densest rain gauge network up till now. 122 

The CMA gauge data has been widely demonstrated as reliable and accurate in 123 

previous studies (Zhai et al., 2005; Su et al., 2020; He et al., 2020). Gauge data used in 124 

this study has been manufactured under strict quality control procedures, including (1) 125 

internal consistency check, (2) extreme values check (0~85mm/h), and (3) spatial 126 

consistency check (Ren et al., 2010). Rain gauges with erroneous values (e.g. 127 

enormously large values) were discarded from the entire records. Through strict quality 128 

control methods, the warm seasons from June 10th to October 31st were selected as the 129 

study period to maintain the high quality of outcome rainfall dataset.  130 

2.3. Satellite Precipitation Datasets 131 

Three satellite precipitation products were chosen for the data merging procedure 132 

(Lu et al., 2019; Derin et al., 2019; Tang et al., 2020), including GPM-IMERG ‘Final’ 133 
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run (here after referred to as IMERG) from the National Aeronautics and Space 134 

Administration (NASA) (https://disc.gsfc.nasa.gov/), the GSMaP_Gauge (here after 135 

referred to as GSMaP) from Japan Aerospace Exploration Agency (JAXA) 136 

(http://sharaku.eorc.jaxa.jp) and the CMORPH v1.0 from NOAA CPC 137 

(ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/). Spatial resolutions and temporal 138 

frequency of the satellite datasets are listed in Table 1. To be consistent, IMERG and 139 

GSMaP data were accumulated to daily scale (08:00-08:00 of local time, i.e. UTC+8) 140 

and CMORPH was bilinearly interpolated to the grid resolution of 0.1°. 141 

The merged dataset was further compared with two popular merged rainfall 142 

datasets of Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) 143 

(Funk et al., 2015) and Multi-Source Weighted-Ensemble Precipitation (MSWEP) 144 

(Beck et al., 2019). CHIRPS was originated by merging CHPClim, thermal infrared, 145 

TRMM3B42, NOAA CFSv2 precipitation data, and ground observation precipitation 146 

data. MSWEP was merged from multiple datasets including CPC, GPCC, CMORPH, 147 

GSMaP-MVK, GPM-IMERG, ERA5, and JRA-55. CHIRPS and MSWEP showed 148 

great potentials in rainfall estimates in previous studies (Liu et al., 2019). 149 

Table 1. Multiple satellite precipitation datasets used in this study. 150 

Datasets Resolution Frequency Source Reference 

GPM IMERG 0.1° x 0.1° 0.5 hourly NASA (Hou et al., 2014) 

GSMaP_Gauge 0.1° x 0.1° 1 hourly JAXA (Ushio et al., 2009) 

CMORPH v1.0 0.25° x 0.25° daily CPC (Joyce et al., 2004) 

CHIRPS v2.0 0.25° x 0.25° daily USGS and CHC (Funk et al., 2015) 

MSWEP v2 0.1° x 0.1° 3 hourly - (Beck et al., 2019) 

3. Methodology 151 

We used the Dynamic Bayesian Model Averaging (DBMA) method (Ma et al., 152 

2017) to merge the satellite datasets with in-situ rain gauges. To evaluate the quality of 153 

the new dataset, we carried out statistical and hydrological evaluations and comparisons 154 
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with CHIRPS and MSWEP in southern TP. 155 

3.1. Dynamic Bayesian Model Averaging method 156 

The Dynamic Bayesian Model Averaging (DBMA) method developed by Ma et 157 

al. (2018) was utilized in this work. A flow chart of the merging method is shown in 158 

Figure 2. In the first step, a training dataset was formed by selecting samples from the 159 

ground gauged data and three original satellite datasets. The training period was set as 160 

40 days. Increasing the length of the training period did not lead to obvious 161 

improvement of the merging method (Ma et al., 2018). In the second step, the training 162 

dataset was transformed by the Box-Cox Gaussian distribution, and the optimal weights 163 

for each of the original satellite datasets on a specific grid where a ground gauge is 164 

located on each training day were estimated by a logarithmic likelihood equation and 165 

the optimal expectation algorithm. In the third step, an ordinary Kriging interpolation 166 

method was applied to spatially interpolate the daily weights onto grids with no gauges. 167 

Finally, posterior spatiotemporal weights were used to obtain the final merged rainfall 168 

dataset. The DBMA-merged data has been proved in Ma et al. (2017) to outperform 169 

original satellite data during 2007-2012 over TP. 170 

 171 

Figure 2. Flowchart of the DBMA merging method (adapted from Ma et al., 2018). 172 

For statistical evaluation of the merged data against ground gauges, around 85% 173 
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of the gauges were randomly selected to form a training gauge set for the merging 174 

approach in each year during 2014-2019, and the remaining 15% were used for test.  175 

Training method DBMA of 40 days was only conducted in training dataset. Table 2 lists 176 

the numbers of training and test gauges in each of the warm seasons. The spatial 177 

distributions of gauges in each year are presented in Figure S1. Data from all gauges 178 

were involved in the training procedure of the final released version of the merged data. 179 

Table 2. Number of rain gauges for training and test in 2014-2019. 180 

Year 
Total number of 

rain gauges 

Number of 

training gauges  

Number of test 

gauges  

2014 195 166 29 

2015 54 46 8 

2016 373 317 56 

2017 321 273 48 

2018 377 320 57 

2019 106 90 16 

3.2. Statistical Evaluation 181 

Performance of the multiple datasets were statistically evaluated by comparing 182 

with ground observations on the corresponding statelite grids. Relative bias (RB) and 183 

normalized root mean square error (RMSE) were adopted to measure the amount 184 

difference between the gridded rainfall and the gauged rainfall. Correlation Coefficient 185 

(CC) was used to evaluate the consistency between satellite estimates and gauge 186 

observations. The skill of rainfall data on detecting rainfall occurrence (rainfall events 187 

higher than zero) was evaluated through a set of metrics (similarly to Wilks, 2006): i.e. 188 

the probability of detection (POD) assessing how good the multiple rainfall datasets are 189 

at detecting the occurrence of rainfall, false alarm ratio (FAR) measuring how often the 190 

gridded rainfall datasets detect rainfall when there actually is not rainfall, and critical 191 

success index (CSI) measuring the ratio of rainfall events that are correctly detected by 192 

the gridded datasets to the total number of observed or detected events. Equations for 193 

the above metrics are shown in Table 3. 194 
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Table 3. Statistical indices that were used to assess the performance of the gridded rainfall 195 

datasets. 196 

Statistical Indicators Equation 
Optimal 

Value 

Equation 

number 

Relative Bias (RB) 𝐵𝑖𝑎𝑠 =
∑ (𝑆𝑖 − 𝐺𝑖)
𝑛
𝑖=1

∑ 𝐺𝑖
𝑛
𝑖=1

 

0 (1) 

Correlation Coefficient (CC) 𝐶𝐶 =
[∑ (𝑆𝑖 − 𝑆̅) ∙ (𝐺𝑖 − 𝐺̅)𝑛

𝑖=1 ]2

∑ (𝑆𝑖 − 𝑆̅)2𝑛
𝑖=1 ∙ ∑ (𝐺𝑖 − 𝐺̅)2𝑛

𝑖=1  

1 (2) 

Root Mean Square Error 

(RMSE) 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑ (𝑆𝑖 − 𝐺𝑖)

2
𝑛

𝑖=1

 

0 (3) 

Probability of Detection (POD) 𝑃𝑂𝐷 =
𝑎

𝑎 + 𝑐
 

1 (4) 

False Alarm Ratio (FAR) 𝐹𝐴𝑅 =
𝑏

𝑎 + 𝑏
 0 (5) 

Critical success index (CSI) 𝐶𝑆𝐼 =
𝑎

𝑎 + 𝑏 + 𝑐
 1 (6) 

For the equations listed in Table 3, n is the total number of gridded product data 197 

and gauge observation data; i  is the 𝑖th  of satellite product data and gauge 198 

observation data; Gi  means gauge observation and G̅  is the average of gauge 199 

observation. Si  and S̅  are gridded estimates and their average, respectively. a 200 

represents hit (i.e., event was detected to occur and observed to occur), b represents 201 

false alarm (i.e., event was detected to occur but not observed to occur), and c 202 

represents miss (i.e., event was not detected to occur but observed to occur). 203 

Triple Collocation (TC) technique provides a platform for quantifying the root 204 

mean square errors of three products that estimate the same geophysical variable 205 

(Stoffelen, 1998). Roebeling et al. (2012) successfully applied the TC technique to 206 

estimate errors of three rainfall products across Europe. An extended Triple Collocation 207 

(ETC) introduced in Kaighin et al. (2014), which is able to estimate errors and 208 

correlation coefficients with respect to an unknown target was used in this study to 209 

compare the performance of the DBMA-merged data and two previous merged datasets 210 
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of CHIRPS and MSWEP. 211 

3.3. Hydrological Evaluation  212 

In addition to the statistical assessments against rain gauges, hydrological 213 

assessment was used as a tool to test the performance of merged rainfall datasets on 214 

forcing hydrological modelling in the study area (similarly see Yong et al, 2012; Xue 215 

et al, 2013; Yong et al, 2014; Li et al, 2014). In this section, a semi-distributed 216 

hydrological model developed by Tian (2006), namely Tsinghua Hydrological Model 217 

based on Representative Elementary Watershed (THREW), was adopted for the 218 

hydrological assessment of rainfall datasets in the YZRB. YZRB has a drainage area of 219 

approximately 240,480 km2 within China’s boarder. The basin elevation ranges from 220 

143 to 7,261 m, with an average of around 4,600 m. YZR is one of the most important 221 

transboundary rivers in South Asia and the highest river in the world, which is 222 

characterized by a dynamic fluvial regime with exceptional physiographic setting 223 

spreading along the eastern Himalayan region (Goswami, 1985). Due to complex 224 

terrain and strongly varying elevation, the YZRB is under control of a variety of climate 225 

systems, such as the semi-arid plateau climate prevailing in the upper and middle 226 

reaches, and the mountainous subtropical and tropical climates prevailing in the lower 227 

reaches. In the cold upper reaches, the mean annual rainfall is less than 300 mm. In the 228 

warm middle reaches, the mean annual rainfall falls between 300 mm and 600 mm. 229 

The whole basin area above the Nuxia hydrological station was divided into 63 230 

Representative Elementary Watersheds (REWs). Model parameters were calibrated by 231 

daily discharges measured at the Nuxia station. The calibration period is scheduled to 232 

run in the warm seasons from June 10th to October 31st in 2014- 2017, encompassing a 233 

period length of 576 days. The validation period includes two warm seasons in 2018 234 

and 2019 with a total duration of 288 days. Descriptions of the calibrated model 235 

parameters can be found in Table 4. An automatic algorithm pySOT developed by D. 236 

Eriksson et al (2019) was used to optimize the parameter values based on an objective-237 
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function of NSE (Nash and Sutcliffe, 1970) in Eq. 7. To conduct a continuous 238 

hydrological simulation in the study period, the datasets of daily grid-based 239 

precipitation over China (Zhao et al., 2014) were used as model inputs in the non-warm 240 

seasons when merged rainfall is not available. 241 

Table 4. Calibrated parameters of the THREW model. 242 

Symbol Description Unit Value Range 

kv Fraction of potential transpiration rate over 

potential evaporation 

- 0.001-0.8 

nt Manning roughness coefficient for hillslope - 0.0001-0.2 

GaIFL Spatial heterogeneous coefficient for 

infiltration capacity 

- 0.0001-0.7 

GaEFL Spatial heterogeneous coefficient for 

exfiltration capacity 

- 0.0001-0.7 

GaETL Spatial heterogeneous coefficient for 

evapotranspiration capacity 

- 0.0001-0.7 

WM Tensor water storage capacity cm 0.1-10 

B Shape coefficient to calculate the saturation 

excess runoff area 

- 0.01-1 

Gaus Coefficient representing spatial 

heterogeneity of exchange term between t-

zone and r-zone 

- 0.001-10 

KKA Exponential coefficient to calculate 

subsurface flow 

- 0.01-6 

KKD Linear coefficient to calculate subsurface 

flow 

- 0.001-0.5 

MM Snow melting degree-day factor mm/day 0.001-10 

MMG Ice melting degree-day factor mm/day 0.001-10 

C1+C2 Muskingum parameter - 0.0001-1 

C1/(C1+C2) Muskingum parameter - 0.0001-1 

 𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠

𝑛 − 𝑄𝑠𝑖𝑚
𝑛 )2𝑁

𝑛=1

∑ (𝑄𝑜𝑏𝑠
𝑛 − 𝑄̅𝑜𝑏𝑠)

2𝑁
𝑛=1

 (7) 

where, 𝑁 is the total number of days in the evaluation period，𝑄𝑜𝑏𝑠
𝑛  and 𝑄𝑠𝑖𝑚

𝑛  243 

represent the observed and simulated runoff on the 𝑛th  day, respectively. 𝑄̅𝑜𝑏𝑠 244 

represents the average of observed runoff in the evaluation period. 245 
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4. Results and Discussions 246 

4.1. Spatiotemporal Patterns 247 

Based on the merging method, a new daily rainfall dataset with spatial resolution 248 

of 0.1°×0.1° in the warm seasons from June 10th to October 31st (144 days in each year) 249 

in 2014-2019 (864 days in six years) was generated. Figure 3 presents the spatial pattern 250 

of the mean rainfall over the six warm seasons of the merged data in southern TP. It is 251 

shown that extremely high summer rainfall centres concentrate in the south-eastern and 252 

south-western of the study area where is known as a world-famous heavy rainfall centre 253 

(see Biskop et al., 2015; Bookhagen & Burbank, 2006; Kumar et al., 2010). 254 

 255 

Figure 3. Spatial pattern of mean rainfall over six warm seasons in 2014-2019 of the DBMA-256 

merged data in southern TP. 257 

In addition, Figure 4 compares the time series of average daily weight and rainfall 258 

over the YZRB basin derived from the DBMA-merged data and the original satellite 259 

datasets. As expected, the DBMA-merged daily rainfall in general fall in the envelope 260 

ranges of the three satellite datasets. Merged data is closer to CMORPH in June, 261 

September and October, while showing equal closeness to all the three source satellite 262 

data in July and August. It indicates that CMORPH is closer to the in-situ gauges than 263 

IMERG at basin scale when rainfall value is small, especially for light rainfall events 264 

smaller than 2 mm, but this difference tends to be small for heavy rainfall events. 265 
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 266 

Figure 4. Seasonal variations in basin-averaged (a) weights and (b) rainfall estimates of the 267 

multiyear daily values of IMERG, GSMaP, CMORPH and DBMA. 268 

4.2. Statistical Evaluation 269 

Figure 5 shows the statistical evaluation of the merged and original datasets in the 270 

warm seasons. The statistical indices were calculated for three gauge groups including 271 

the training gauges, the test gauges and all gauges at different elevation bands. The 272 

datasets in general presented comparable performance for the training and test gauge 273 

groups, indicating that the sampling procedure of ground gauges is adequately random. 274 

The comparable performance of merged data in training and test gauge groups 275 

demonstrated robustness of the merging method on varying gauges. In terms of RSME, 276 

CC, and POD, the DBMA-merged data shows much better performance on all gauge 277 

groups and elevation bands than the original satellite datasets. The smallest RSME of 278 

merged data indicate that the total rainfall amount of the merged data during the 279 

evaluation period showed the lowest difference from the total amount of gauged rainfall. 280 

The highest CC and POD highlight the best consistency between merged data and 281 
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ground gauge data on days when most regions in the basin were rainy. The RB of 282 

DBMA-merged data is at an intermediate level among the satellite datasets as it is the 283 

weighted average of those three datasets. The higher FAR and lower CSI of DBMA-284 

merged data could be attributed to that the merging method detected rainfall events 285 

when rainfall estimate is higher than zero in any one of the three satellite datasets and 286 

thus resulted in overestimated rainfall occurrence. The overestimated rainfall 287 

occurrence might have small effects on the estimation of rainfall amount, as most of 288 

the falsely alarmed events were tiny. It is noteworthy that the performance of the 289 

merged data shows smaller variance across elevation bands than that of the original 290 

satellite datasets. This is most likely benefiting from the spatially dynamic optimal 291 

weights for the original satellite data. However, the merged data presented the largest 292 

difference from gauged data at the altitudes of 3000-3500 m, because there are much 293 

less gauges on this elevation zone. 294 
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 295 

Figure 5. Comparisons of the statistical indices of (a) RB, (b)RMSE, (c) CC, (d) POD, (e) FAR 296 

and (f) CSI for training gauges, test gauges and all gauges at five elevation bands. 297 

Figure 6 shows CC of different datasets on specific gauges. The merged data 298 

presents higher CC values in regions where are densely gauged, i.e., the middle reaches 299 

of YZRB and the east part of the study region, which can be expected as the dense 300 

ground gauges provided strongly informative benchmark likelihoods for the estimation 301 

of satellite data weights. On most of the gauges (Figure 6a), the merged-data presented 302 

higher CC values than the IMERG data, which is consistent with Figure 5c. On contrary, 303 

the merged-data showed reduced CC than GSMaP and CMORPH on more gauges 304 

(Figures 6b-c), indicating that involving IMERG data in the merging procedure on these 305 

gauges lead to deteriorated consistence performance. 306 
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 307 

Figure 6. Spatial distributions of CC difference between (a) DBMA and IMERG, (b) DBMA and 308 

GSMaP, (c) DBMA and CMORPH 309 

4.3. Hydrological Evaluation  310 

(a) Hydrological simulation 311 

Performance of the THREW model forced by different rainfall datasets are 312 

compared in Table 5. The DBMA-merged dataset achieved the best runoff simulation 313 

among all rainfall inputs, with NSE reaching 0.93 and 0.86 in calibration and validation 314 

period, respectively, indicating an excellent agreement between simulated and observed 315 
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hydrographs. Both IMERG and GSMaP underestimated the measured daily discharge, 316 

but the DBMA-merged dataset improved such underestimations (see RB values in Table 317 

4). 318 

Table 5. Evaluation metrics of hydrological simulations forced by IMERG, GSMaP, CMORPH 319 

and DBMA. 320 

Parameters IMERG GSMaP CMORPH DBMA 

NSEcal 0.91 0.90 0.90 0.93 

NSEval 0.75 0.57 0.81 0.86 

RB -0.07 -0.10 0.02 -0.05 

(b) Uncertainty analysis 321 

The automatic algorithm pySOT was ran 200 times to investigate the modelling 322 

uncertainty caused by parameter calibration. Figure 7 presents the distributions of NSE 323 

values estimated by the ensemble parameter sets of the merged and original rainfall 324 

forces. It is shown that streamflow simulated by the DBMA data at the Nuxia station 325 

presented higher NSEs and smaller uncertainty ranges than that simulated by the 326 

original satellite datasets, indicating that streamflow simulations driven by the merged 327 

dataset showed stronger robustness and were less affected by uncertainty of parameter 328 

calibration. 329 

In addition to the Nuxia hydrological station, model performance on simulating 330 

streamflow at the interior hydrological stations of Yangcun, Nugesha, Gongbujiangda 331 

and Lhasa (Figure 1) were evaluated in Figure 7. It shows that the IMERG forced 332 

simulations presented poor NSE outliers lower than zero at the Lhasa station, in spite 333 

of their good performance at the Yangcun and Nugesha stations; the GSMaP forced 334 

simulations presented large uncertainty ranges in calibration period at Nugesha and 335 

Lhasa, and in validation period at Nuxia and Gongbujiangda; the CMORPH forced 336 

simulations showed the worst performance in validation period at the interior 337 

hydrological stations, despite their sound good performance in calibration period at 338 

Yangcun and Nugesha. In comparison to the satellite datasets, the DBMA forced 339 

simulations tend to perform consistently better with smaller uncertainties at all the 340 
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hydrological stations, which can be attributed to that the merged data incorporated the 341 

advantages of different datasets in different regions and temporal periods and thus 342 

better captured the spatial variability of rainfall inputs in sub-basins. 343 
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  344 

Figure 7. Runoff simulations at Nuxia, Yangcun, Nugesha, Gongbujiangda and Lhasa stations 345 

forced by multiple rainfall inputs. 346 
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4.4. Comparisons with other datasets 347 

To avoid interference of ground gauge data that merged in the DBMA dataset, the 348 

ETC method introduced in Section 3.2 was applied to compare the three merged 349 

datasets in Table 6. The RMSE and CC of DBMA calculated by ETC were 1.11 and 350 

0.80, respectively, both of which are obviously superior compared to the corresponding 351 

values estimated by CHIRPS and MSWEP, indicating that DBMA data is closer to the 352 

true value of rainfall in the study region. 353 

Table 6. Statistical RMSE and CC of merged datasets calculated by the ETC method. 354 

Datasets DBMA CHIRPS MSWEP 

RMSE-ETC 1.11 7.15 2.82 

CC-ETC 0.80 0.28 0.62 

Runoff simulations forced by the three merged datasets during June 10th 2014 to 355 

October 31st 2019 estimated by the corresponding optimal parameter sets were 356 

presented in Figure 8. Note that the daily runoff is normalized as Eq. 8 for data security 357 

reasons. Simulation by the CHIRPS data presented the lowest performance with NSE 358 

values of 0.75 and 0.78 in the calibration and validation periods, respectively. The 359 

DBMA forced simulation showed the highest performance with NSE values of 0.93 360 

and 0.86 in the calibration and validation periods, followed by the MSWEP forced 361 

simulation which estimated NSE values of 0.9 in the calibration period and 0.76 in the 362 

validation period. The performance of streamflow forced by the merged datasets are 363 

consistent with the agreements between the merged rainfall estimates and ground truth 364 

shown in Table 6. 365 

 𝑄𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑛 =

𝑄𝑠𝑖𝑚
𝑛 −min⁡(𝑄𝑜𝑏𝑠)

max⁡(𝑄𝑜𝑏𝑠) − 𝑚𝑖𝑛(𝑄𝑜𝑏𝑠)
 (8) 
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 366 

Figure 8. Simulated daily runoff at Nuxia station forced by DBMA, CHIRPS, and MSWEP. 367 

5 Data Availability 368 

The high-accuracy rain dataset by merging multi-satellite and dense ground 369 

gauges over southern Tibetan Plateau for the warm seasons in 2014-2019 is freely 370 

accessible at the National Tibetan Plateau Data Center 371 

https://doi.org/10.11888/Hydro.tpdc.271303 (Li et al.,2021). 372 
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6. Summary 373 

We collated ground-based rainfall observations from a dense gauge network over 374 

southern TP. The gauged data provides crucial ground references of measured rainfall. 375 

Based on this rain gauge network and three satellite rainfall datasets of IMERG, GSMaP, 376 

and CMORPH, a merged rainfall dataset in six warm seasons from June 10th to October 377 

31st during 2014-2019 over the southern TP was established. The DBMA method was 378 

used to estimate weights varying in space and time of the three satellite datasets for the 379 

merged data. The merged rainfall dataset presented improved performance on 380 

representing the total amount of rainfall and detecting the occurrence of gauged rainfall 381 

events, and provide a more reliable forcing for hydrological simulations in the YZRB, 382 

compared to the original satellite datasets. Comparisons with previous merged rainfall 383 

datasets of CHIRPS v2.0 and MSWEP v2 that used relatively sparse rain gauges in the 384 

study area demonstrated high values of the newly installed rain gauges for providing 385 

robust ground reference for the merging of current satellite datasets. Our results 386 

indicated that the merged datasets can meet the critical needs of accurate forcing inputs 387 

for the simulations of warm season floods and the robustness calibration of hydrological 388 

models. Based on this high-accuracy rainfall data and reliable hydrological modelling, 389 

much further research in this region then could be conducted, for example, fluvial 390 

sediment transport modelling through coupling sediment and hydrology, validation and 391 

correction of precipitation from Global Climate Model, and future runoff projections 392 

based on reliable modelling calibration in history. 393 
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