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Abstract. Against the backdrop of global change, both in terms of climate and demography, there is a pressing need for

monitoring the global water cycle. The publicly available global database is very limited in its spatial and temporal coverage

worldwide. Moreover, the acquisition of in situ data and their delivery to the database are in decline since the late 1970s, be

it for economical or political reasons. Given the insufficient monitoring from in situ gauge networks, and with no outlook for

improvement, spaceborne approaches have been under investigation for some years now. Satellite-based Earth observation with5

its global coverage and homogeneous accuracy has been demonstrated to be a potential alternative to in situ measurements.

This paper presents HydroSat as a database containing geometric quantities of the global water cycle from geodetic satellites.

HydroSat provides time series and their uncertainty of: water level from satellite altimetry, surface water extent from satellite

imagery, terrestrial water storage anomaly represented in equivalent water height from satellite gravimetry, lake and reservoir

water volume anomaly from a combination of satellite altimetry and imagery, and river discharge from either satellite altimetry10

or imagery. The spatial and temporal coverage of these datasets varies and depends on the availability of geodetic satellites.

These products, which are complemenary to existing products, can contribute to understanding the global water cycle within

the Earth system in several ways. They can be incorporated for hydrological modelling, they can be complementary to current

and future spaceborne observations, and they can define indicators of the past and future state of the global freshwater system.

HydroSat is publicly available through http://hydrosat.gis.uni-stuttgart.de. Moreover, a snapshot of all the data (taken in April15

2021) is available in GFZ Data Services at https://doi.org/10.5880/fidgeo.2021.017 (Tourian et al., 2021).

Copyright statement. TEXT

1 Introduction

To understand the global hydrological cycle and the Earth system in general, measurements are needed to estimate storages

and fluxes on a spatial scale from local to continental, and on a temporal scale sufficient to resolve even diurnal variations (Let-20

tenmaier, 2006). However, current knowledge of spatial and temporal dynamics of water storage and fluxes on landmasses

is limited (Alsdorf and Lettenmaier, 2003). The water surface elevation variation and bathymetry of rivers and lakes are not
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sufficiently known. The depth of soil moisture is not known on a global scale. Rain gauge measurements are spatially not dense

enough to represent the input to the hydrological cycle. The number of discharge gauge stations that contribute to the global

database has been declining steadily over the past decades. In fact, by today’s knowledge, storage, fluxes, and their changes25

over time cannot be quantified properly. So they still remain our known unknowns on a global scale (Famiglietti, 2012).

Given the above-mentioned limitations, estimates from traditional in situ measurements are subject to large uncertainty (Als-

dorf and Lettenmaier, 2003; Strassberg et al., 2007; Yeh et al., 2006; Rodell et al., 2006; Riegger et al., 2012). In the past, simple

water balance analyses were used to assess spatial patterns of precipitation and evapotranspiration and to produce globally av-

eraged fluxes. The average fluxes were estimated simply as the difference of precipitation minus evapotranspiration, assuming30

that long-term change in net water storage is negligible (Rodell et al., 2015; Lvovitch, 1973; Berner and Berner, 2012). With

the emergence of land surface representations in climate models (e.g. Dickinson, 1984) and large-scale hydrological models

(e.g. Vörösmarty et al., 2000), the limited ground-based observations were augmented by model outputs, leading to a finer

representation of water cycle on landmasses. The problem, however, is that the model outputs themselves should usually be

calibrated or constrained by observations (Rodell et al., 2015).35

Spaceborne geodetic sensors, designed for a variety of purposes, have established themselves as valuable tools for oceano-

graphic, cryospheric and also hydrological applications (Alsdorf et al., 2007). Satellite altimetry, originally aiming at oceanog-

raphy and geodesy, has demonstrated its potential as virtual lake and river gauges (Alsdorf et al., 2007; Papa et al., 2010a;

Berry et al., 2005). The exciting possibility of surface water extent monitoring using satellite imagery (optical and SAR) raises

hopes of better capturing surface water variability and providing a realistic overview of hydrological behavior at the basin scale.40

Since 2002 the satellite mission Gravity Recovery And Climate Experiment (GRACE) has been providing a fundamentally new

remote sensing tool for a wide spectrum of Earth science applications (Tapley et al., 2004). GRACE is able to monitor changes

in the ocean and the global hydrological cycle through measuring changes in the Earth’s gravitational field from space.

The aforementioned missions promote novel approaches in oceanography, geophysics, hydrology and hydro-meteorology.

Among these sciences, as stated above, there is an urgent need for more observational data, particularly in hydrology. This45

necessity arises from the above mentioned limited knowledge of the spatial and temporal dynamics of the freshwater variations

and fluxes (Sneeuw et al., 2014). Given such a pressing need, spaceborne geodetic sensors, with their global coverage and

homogeneous accuracy, are viable choices over in situ measurements. It should be noted, however, that despite being the only

source of information in data-poor regions, satellites do not yet provide the desired spatio-temporal resolution. The spatio-

temporal resolution of spaceborne sensors is defined by their orbital characteristics and their measurement concept. Satellite50

altimetry missions are typically placed in repeat orbits with a given number of revolutions within a certain number of days

e.g. 35 days for ENVISAT, 10 days for Jason series and 27 days for Sentinel-series (Fu and Cazenave, 2001). GRACE can

provide meaningful signals at its best spatial resolution on the monthly time scale. The spatio-temporal resolution problem is

not as pronounced for optical and SAR satellite imaging missions because they provide images with a relatively high spatial

resolution (about 250 m for MODIS and 30 m for Landsat) at an acceptable temporal resolution. However, cloud cover is a55

limiting factor in using the optical images for generating a dense time series of surface water area.

2



Space-based water cycle monitoring is entering a new era in view of the wealth of present and future missions. Satellite

altimetry has already been put on an operational basis by the Sentinel-3 satellites of the European Copernicus program. At

the same time, research satellites such as CryoSat-2, SARAL/AltiKa and Jason-3 remain in orbit and provide complementary

space-time measurements. On the other hand, MODIS sensors on NASA’s Terra and Aqua satellites have been acquiring60

medium resolution satellite images daily since 2000. In addition to the MODIS images, high resolution optical and SAR

satellite images are available from Landsat 8 and Sentinel 1, 2. Moreover, the planned SWOT mission, due for launch in

2022, will represent a paradigm change in monitoring surface water, providing a 2-D swath as opposed to conventional 1-

D profiling. SWOT aims to monitor surface water elevation, extent, slope and also river discharge for all rivers wider than

100 m (Biancamaria et al., 2016). In addition, GRACE Follow-On was launched in 2018 to ensure continuity of the GRACE65

mission after its successful 15-year monitoring of water storage variation. The current constellation addresses many existing

limitations and opens a significant area of investigations into the operational use of satellites for hydrological purposes.

Inspired by the increasing need to monitor the global hydrological cycle and by the potential offered by the existing

constellation, attempts have been made to monitor hydrological cycle variables using geodetic satellites. The Hydroweb

(http://hydroweb.theia-land.fr) initiated and monitored by LEGOS, the Database of Hydrological Time Series of Inland Wa-70

ters (DAHITI) developed by the German Geodetic Research Institute at the Technical University of Munich (DGFI-TUM)

(Schwatke et al., 2015a), the Global Reservoirs and Lakes Monitor (G-REALM) (https://ipad.fas.usda.gov/cropexplorer/global_

reservoir) are some examples of such attempts. With the same motivation, the HydroSat database was initiated in 2016. Hy-

droSat hosts geometric quantities of the global water cycle from geodetic satellites: 1) surface water extent of lakes and rivers,

2) water level of inland water bodies, 3) water storage anomaly of hydrological basins, lakes and reservoirs, and 4) river dis-75

charge for large and small rivers. This is a unique set of products for understanding global water cycle as it contains key

elements of water cycle for many ungauged basins around the world. These quantities, which complement existing databases,

can contribute to the understanding of the global water cycle by incorporating them into hydrological models, serving as the

basis for indicators of the past and future state of the global freshwater system to assess risks under global warming and support

decision making, and also complementing current and future spaceborne observations. Moreover, they can effectively be used80

as potential prior information for future mission products that rely on prior hydrological data for their monitoring concepts,

such as the SWOT mission. HydroSat products are the results of research studies and projects on the application of spaceborne

geodetic sensors for hydrology conducted at the Institute of Geodesy (GIS), University of Stuttgart. This paper describes Hy-

droSat data products with a detailed explanation of the algorithm behind them: water level time series from satellite altimetry

in Section 2, river width estimation from satellite imagery in Section 3, water storage anomaly for hydrological river basins,85

lakes and reservoirs in Section 4 and, finally, river discharge estimation from satellite altimetry and imagery in Section 5. For

each data product, some representative examples are given to support the product description.
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2 Inland water level from satellite altimetry

In the last three decades, satellite altimetry has been used as a monitoring tool for inland water surfaces and the hydrological

cycle. In particular, monitoring water level of large rivers and lakes has been the goal of research since the launch of the90

TOPEX/Poseidon and Envisat missions (Table S1) (Birkett, 1995; Crétaux et al., 2011). The use of satellite altimetry for inland

water monitoring has been facilitated by the advent of two different developments: 1) Open-Loop Tracking Command (OLTC)

(used in missions with gray background in Table S1), 2) Operation in Synthetic Aperture Radar (SAR) mode (implemented in

missions with bolded text in Table S1)

Inspired by recent developments, and the SWOT mission in view, the development of repositories and services to provide95

inland water level time series to supply data for Earth system understanding, hydrological cycle monitoring, and hydraulic

studies is becoming more important than ever. Table 1 lists currently available websites or repositories for providing water

level time series of inland water bodies.

Table 1. Providers of water level time series from satellite altimetry

product operated by source remark

Hydroweb CNES http://hydroweb.theia-land.fr NRT available for some lakes and rivers

River& Lake ESA http://altimetry.esa.int/riverlake no longer maintained

DAHITI Deutsches Geodätisches https://dahiti.dgfi.tum.de Kalman filter approach

Forschungsinstitut (DGFI), TU Munich Schwatke et al. (2015a)

HydroSat Insititute of Geodesy http://hydrosat.gis.uni-stuttgart.de Hi-Rate products are available

University of Stuttgart

G-REALM United States Department of Agriculture https://ipad.fas.usda.gov/cropexplorer/global_reservoir Lakes and reservoirs only

GRRATS The Ohio State University https://doi.org/10.5067/PSGRA-SA2V1 Envisat- and Jason-series over 39 rivers

Coss et al. (2020)

AltEx USAID and NASA https://altex.servirglobal.net/ web application for exploring altimetry data

Markert et al. (2019) Jason-2, Jason-3 and Saral/AltiKa

C3S LWL CLS on behalf of Copernicus https://doi.org/10.24381/cds.5714c668 94 selected lakes are available

and European Commission

Water Level Copernicus Global Land Operations https://land.copernicus.eu/global/products/wl NRT time series are available

on VITO CNES, LEGOS, and CLS

Hydroweb was the first website providing altimetric water level time series. The website, now hosted in THEIA, is a

CNES project, which was initiated and monitored by LEGOS in 2003 based on all existing and past altimetry missions,100

from TOPEX/Poseidon until Sentinel-3B. A substantial portion of water level time series of lakes and rivers are provided in

Near Real Time (NRT). CNES, LEGOS, and CLS have further extended their monitoring services under agreements with

Copernicus. As a results, they provide water level time series of 94 selected lakes within the context of the Copernicus Cli-

mate Change Service, the so-called C3S LWL. They further provide historical and NRT water level time series of several

lakes and rivers through the VITO Earth Observation portal. In 2009, in a cooperation of ESA and De Monfort University,105
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the River&Lake website became available. On this website, which is no longer maintained, Global NRT products were avail-

able. Later in 2013, the Database for HydrologIcal Time Series of Inland waters (DAHITI) was developed by the Deutsches

Geodätisches Forschungsinstitut at the Technical University Munich (DGFI-TUM) to provide water level time series of inland

waters (Schwatke et al., 2015a). DAHITI provides a variety of hydrologial information on lakes, reservoirs, rivers, and wet-

lands derived from different satellite missions. Since 2017, the Global Reservoirs and Lakes Monitor (G-REALM) provides110

time series of water level variations for some of the world’s largest lakes and reservoirs. Unlike G-REALM, the Global River

Radar Altimeter Time Series (GRRATS) focuses on rivers and provides water level time series over 39 rivers spanning the

time period 2002–2016 using Envisat-series and Jason-series (Coss et al., 2020). Within a rather unprecedented framework, the

open source web application, AlteEx allows for exploring altimetry datasets and generating water level time series on-the-fly.

AltEx is supported by the U.S. Agency for International Development (USAID) and NASA (Markert et al., 2019; Okeowo115

et al., 2017).

2.1 HydroSat products for water level

In HydroSat, water level time series are provided in two modes: Standard-Rate (SR) and High-Rate (HR).

– Standard-Rate water level time series from satellite altimetry

– High-Rate altimetric water level over lakes and reservoirs120

– High-Rate altimetric water level over lakes and reservoirs

– High-Rate altimetric water level over rivers

A SR water level time series is the basic altimetry product of HydroSat with a temporal resolution given by the repeat period

of the altimetry (e.g. 35 days for Envisat). It is the input to algorithms which provide HR water level time series over lakes,

reservoirs, and rivers. The HR products come with an improved temporal resolution relying on multi-mission altimetry for125

both lakes and rivers. These products are available over multitude of lakes and rivers around the world. As an example of SR

time series, Figure 1 shows a representative collection of SR water level time series over Lake Bankim in Cameroon and rivers

Mississippi in US, Sao Francisco in Brazil, Karun in Iran, Yangtze in China, and Irrawaddy in Myanmar. One shall notice

that AltEx, C3S LWL, and VITO Water Level are excluded from this comparison. In case of AltEx, any comparison would

have been subjective as the quality of the water level time series are dependent on the geometric choice of a virtual station130

by the user. As for the C3S LWL and VITO Water Level, we have observed no difference between these time series with

those from Hydroweb (the same argument holds for objects shown in 2.2.3). For the rivers Sao Francisco (c) and Mississipi

(f), the altimetric heights agree with the in situ measurements with correlation coefficients of 0.99 and 0.97, respectively. In

case of the Karun river (a), the correlation falls off to 0.85 which is satisfactory given the 250 m crossing width, mountainous

topography, and high seasonality of its semiarid climate. The SR water level time series are well representative of water135

level dynamics, an example being the case of the River Irrawaddy (d) showing the high rank correlation of 0.91 with in situ

discharge measurements. The results over the Yangtze River (e) and Bankim Lake (b) agree well with DAHITI, Hydroweb and
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G-REALM. Over these water bodies — like many other water bodies around the world — no in situ measurements are publicly

available, highlighting the critical contribution of spaceborne measurements and the existing repositories.

Figure 2 shows examples of HR water level time series over selection of five lakes and reservoirs presenting different140

behaviours. Lake water level time series provided by HydroSat and other databases (DAHITI, Hydroweb, and G-REALM)

are in acceptable agreement with in situ measurements, however some differences are noticeable. Over lake Erie, for instance,

HydroSat better captures measurements at the tails of the water level distribution meaning that the actual fluctuations in lake

level are better presented. This is due to the fact that besides outlier rejection, as described in Section 2.2.1, no further smoothing

is applied. The HR water level time series of lake Urmia signals yet another difference. All altimetric time series seem to have145

captured the long-term depletion of the lake level, followed by the recent and ongoing restoration period (Saemian et al., 2020).

The majority, however, overestimate the lake level between late 2010 and early 2019. The altimetric measurements during this

period are mainly from Jason-2 and Jason-3 missions. The satellite’s ground track happens to cross the shallow south east of the

lake. During this 9-year low water period, the altimeters have measured the range to the salt pan that remain in the southern part

after the lake desiccation. Excluding such a measurement without incorporating auxiliary sources of data is rather impossible.150

HydroSat can deal with this issue within the inter-satellite bias estimation (Figure S2) by taking the surface area into account.

Any SR water level time series that exhibits inconsistency with an expected behavior fails to contribute to the HR lake water

level time series.
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Figure 1. Standard-Rate altimetric water level time series over Karun river (Iran) from Jason-2, Bankim lake (Cameroon) from Jason-2 and

Jason-3, Sao Francisco river (Brazil) from Jason-2 and Jason-3, Irrawaddy river (Myanmar) from Jason-2 and Jason-3, Yangtze (China) from

Jason-2 and Jason-3, and Mississippi river (US) from Sentinel-3A.
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Figure 2. High-Rate altimetric water level time series over lakes Ngoring in China (610 km2) from Envisat, SARAL/AltiKa, Jason-1,

Jason-2, Jason-3, and Sentinel-3A, Tana in Ethiopia (2156 km2) from Envisat, SARAL/AltiKa, Jason-1, Jason-2, Jason-3, Sentinel-3A, and

Sentinel-3B, Urmia in Iran (5200 km2) from Envisat, Jason-1, Sentinel-3A, and Sentinel-3B, Sobradinho in Brazil (4214 km2) from Envisat,

SARAL/AltiKa, Sentinel-3A, and Sentinel-3B and Erie in North America (25744 km2) from Envisat, SARAL/AltiKa, Jason-1, Jason-2,

Jason-3, Sentinel-3A, and Sentinel-3B. 8



Figure 3 shows the HR altimetric water level over 6 selected rivers of small, intermediate and large width: Seine in France,

Missouri in the USA, Congo in the Republic of Congo, Weser in Germany, Vistula in Poland, and Po in Italy. For the rivers with155

no in situ water level time series, the HR water level time series are compared with in situ discharge data and rank correlations

are reported. It is worth mentioning that the Weser is a river with an average width of ca. 50 m and a maximum of ca. 150 m,

over which the water level agrees with the discharge with a rank correlation coefficient of 0.71. Similarly, the Vistula River

with its average width of 50 m is an utterly challenging river for satellite altimetry. However, the HR water level time series

shows a rank correlation coefficient of 0.65 with in situ river discharge. Note that the large uncertainty in the HR time series is160

due to the large discrepancy between measurements from different satellite missions along the river (see Figure S4).
                                   

Figure 3. High-Rate altimetric water level over 6 selected rivers with different average width: Seine River (with average width of 170 m and

67 VSs) in France, Missouri River in US (with average width of 220 m and 61 VSs), Congo River in Republic of the Congo (with average

width of 2700 m and 59 VSs), Weser River in Germany (with average width of 100 m and 47 VSs), Vistula River in Poland (with average

width of 50 m and 31 VSs) and Po River in Italy (with 350 m average with and 46 VSs). HydroSat ids are provided in the figures bottom left.

2.2 Data and methodology for generating water level time series

HydroSat water level time series are generated using following datasets from different satellites 1) Envisat GDR-v3, 2) Saral

GDR T, 3) ICESat-2 ATL13 v3 4) CryoSat-2 SIR GDR, 5) Jason-1 GDR data, 6) Jason-2 (PISTACH) GDR, 7) Jason-2 GDR

data, 8) Jason-3 GDR data, 9) Sentinel-3A NTC data, 10) Sentinel-3B NTC data. In the following a detailed description of SR165

and HR products will be provided.

2.2.1 Standard-Rate water level time series from satellite altimetry

Whenever the satellite ground track crosses a hydrological object, a so-called Virtual Station (VS) can be determined. Bound-

aries of a VS are typically defined based on the type of the water body and the disposition of the altimetry track over the object.
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All measurements inside a lake or reservoir, for instance, could belong to the same virtual station. This is to assume that the170

along-track geoid height and altimetric corrections are properly known. In case of a river, the assumption further implies that

the spatial dynamics of the water body is locally negligible. Defining a VS, in effect, allows for reducing random noise carried

by the altimetric measurements.

HydroSat follows a rather flexible approach in defining a VS. The boundaries can be determined using static or dynamic

shapefiles, a radial extent around a specific point of interest, or an intersection of the two. Furthermore, HydroSat employs175

auxiliary sources of information like the water occurrence frequency derived from Landsat imagery by Pekel et al. (2016). This

allows for removing measurements over areas with a water occurrence frequency below a certain threshold. Figure S1 shows

the block diagram for generating SR water level time series, where the properties of the VS is the basic setup information to

be introduced. Defining the VS setup is in fact the only subjective choice made throughout the whole procedure. Nevertheless,

flexibility in defining a VS is tolerated as long as reproducibility of the results is guaranteed.180

The altimetric water level is initially determined for each sample within the VS. First, range measurements are corrected for

geophysical effects (solid earth tide and pole tide) and path delays caused by the atmosphere (wet tropospheric, dry tropospheric

and ionospheric). The water level is then calculated by subtracting the corrected range from the satellite altitude. In the next

step, the reference height is changed to geoid according to static gravity field models from XGM2019e (Pail et al., 2018),

EGM2008 (Pavlis et al., 2012), or EIGEN6C3 (Förste et al., 2012). To ensure a robust estimation at each overpass, the median185

of orthometric heights inside the VS is chosen to be the representative height.

It is important to notice that regardless of the choice of the VS, retracker, corrections, and statistics by which a typical

altimetric water level time series is generated, the result may be affected by many outliers. As already mentioned, missions

supporting OLTC and SAR mode are less likely to provide erroneous range measurements. However, neither the OLTC nor the

delay/Doppler concept are capable of compensating for all unwanted radar processes over inland water bodies. Their usefulness190

may even be restricted by a number of known factors – e.g. crossing angle for SAR missions. An outlier identification algorithm

is, therefore, required to clean the final water level time series from erroneous measurements.

In order to identify the outliers, HydroSat uses an automated, data-driven outlier identification methodology designed within

an iterative, non-parametric adjustment scheme. As indicated in Figure S1, the inputs to the algorithm are the water level time

series and stochastic information derived from a number of outlier indicators (e.g. standard deviation of along-track estimates195

within a VS). The algorithm uses Singular Spectrum Analysis (SSA) for gap-filling, Savitzky-Golay filtering for smoothing,

and a specially developed outlier identification method. The identification method benefits from applying a local kernel derived

based on a local definition of an outlier. The identified outliers are not discarded instantly. The overall scheme allows for a

possible correction of the outlying estimation through a retracking method that identifies the leading edge by benefiting from

prior information. Such possibility is assessed via comparing the single water level estimations inside the VS with the water200

level estimation coming from an ensemble model. The model, which is a by-product of the outlier identification algorithm,

is used to bound the search area for identifying the true leading edge of the waveform. After retracking, the newly estimated

heights are verified by their similarity to the along-track pattern of outlier-free cycles.
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It is important to notice that after rejecting or correcting the outlying measurements, HydroSat does not low-pass filter the

water level time series. It can therefore fully capture the high frequency behavior within the limitations of satellite sampling.205

However, this strategy may come at the cost of a higher error level for some stations, e.g. the Mississippi river.

2.2.2 High-Rate water level time series from satellite altimetry

In order to obtain a HR product and cope with the limitation of temporal sampling of single-satellite inland water monitoring,

multi-mission altimetry is applied. The multi-mission altimetry for lake monitoring is now a standard approach practiced by

various studies and data providers (Crétaux et al., 2013). Assuming that a lake surface is an equipotential surface, allows210

to perform even calibration studies over lakes. However, for multi-mission altimetry one challenge is posed by the inter-

satellite biases, which impedes a straightforward combination of water level measurements. Moreover, inaccurate atmospheric

corrections (wet tropospheric) may cause large biases of several decimeters, which is even more pronounced for rivers due

to inhomogeneous neighboring topography (Fernandes et al., 2014). Unlike lakes, multi-mission studies over rivers are very

limited. Only a few studies have been dedicated to water level monitoring of rivers using a multi-mission approach with the215

focus on improving the temporal resolution (Tourian et al., 2016; Boergens et al., 2017). Here the challenge is to combine

measurements from different missions at different locations with dissimilar dynamic behavior and hydraulic parameters. In

general, HydroSat follows two different approaches for obtaining the HR product over lakes and rivers, outlined in the following

sub-sections.

2.2.3 High-Rate altimetric water level over lakes and reservoirs220

HR lake and reservoir level time series are provided based on the well-known multi-mission concept. As already mentioned,

however, the integration of single water level time series is hampered by unknown biases, typically referred to as inter-satellite

biases. Studies have been performed to tackle the problem, some targeting the specific case of lakes and reservoirs. Crétaux

et al. (2009) provide an overview of research studies aiming at quantifying the absolute altimeter bias of each satellite. They

also establish an absolute calibration site over the Lake Issyk-Kul in central Asia for estimating the absolute bias of altimetry225

satellites and retrackers. Bosch et al. (2014) conduct a global cross-calibration analysis over the oceans to estimate the so-

called radial bias – defined as the overall error of an altimeter system – in a relative manner. These results are interpolated

by Schwatke et al. (2015b) and applied over inland altimetry water level time series. In order to minimize other sources of

bias, DAHITI applies identical retracker and geophysical corrections to all measurements. Wang et al. (2019) correct for inter-

satellite biases based on a maximum likelihood approach either for two missions with overlapping periods or by introducing230

ICESat-2 as intermediary for non-overlapping ones.

HydroSat resolves biases in a relative, generic, regional and mission independent manner (see Figure S2). First, SR water

level time series are categorized into groups of temporally overlapping and non-overlapping time series. For a group of over-

lapping time series, relative biases are estimated by minimizing a cost function for the merged time series. The cost function

represents the difference between the power content of individual SR time series. If stationarity holds, minimizing such a cost235

function ensures the estimation of a correct relative bias. If stationarity does not hold, or in case any unresolved bias remains
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(scenario 2), remotely sensed surface area time series are used to act as an anchor of biased time series, allowing for estimation

of the relevant biases. Here, a 2D cost function in surface area-water level coordinates is minimized within a Gauss-Helmert ad-

justment scheme. Such a cost function is also used in case measurements have no overlap (scenario 1), leading to bias removed

SR lake water level time series. It is important to notice that relative biases are not necessarily estimated between missions but240

between time series. This allows for considering the inaccuracies of geoid or altimetry corrections within one lake and over

different tracks.

A relative solution is preferred because absolute estimation of biases requires along-track in situ measurements. The absolute

inter-satellite biases over a specific region, on the other hand, are not necessarily applicable elsewhere due to inhomogeneity

of correction models at global scale. It shall also be mentioned that a great portion of lakes and reservoirs are monitored by245

a few altimetry missions, often times with less than sufficient periods of overlap. For instance, the long-term, overlapping,

10-day-revisiting Jason series, only monitor a small number of lakes given their coarse ground-track pattern. Our proposed

method is therefore designed to be least affected by these restricting conditions.

2.2.4 High-Rate altimetric water level over rivers

HR water level time series are obtained over rivers based on a method developed by Tourian et al. (2016), in which SR time250

series from individual altimetry missions are merged. This method allows combining all VSs from multiple satellite altimeters

along a river hydraulically and statistically. As an example, Figure S4 shows individual SR time series from different satellite

missions along the Weser River in Germany. The idea of a HR product is to combine all these measurements for an arbitrary

location along the river into a time series with improved temporal resolution.

Figure S3 shows the main processing steps of the densification method. Initially, the time lag due to streamflow between255

the altimetric virtual stations and the selected location is estimated. The average river width from satellite imagery together

with the slope derived from satellite altimetry are used as inputs to a simple empirical hydraulic equation, which ultimately

estimates the average flow velocity and thus the time lag (Tourian et al., 2016; Bjerklie et al., 2003)

Using the estimated time lag, the water level hydrographs of all measurements are shifted and stacked at the selected location.

The stacked time series is then normalized according to its statistical distribution with the 3rd percentile assigned to 0 and the260

85th percentile to 1. Outliers are then identified and removed from the normalized time series by a Student’s t-test for a sliding

time window of one month. All measurements outside the confidence limit are identified as outliers and removed from the

measurements. The outlier-free normalized time series is then rescaled according to the statistical water level distribution of

the selected site. Details on the implementation of the method can be found in (Tourian et al., 2016).

3 Surface water extent from satellite imagery265

Surface water storage is an important component of the hydrological cycle and its accurate monitoring requires a realistic

representation of the surface water extent (Elmi et al., 2016). Lack of such observations, however, has obscured the proper

quantification of the freshwater storage and its spatio-temporal dynamics over many water bodies. With their global coverage
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and fine temporal resolution, satellite images provide an opportunity to monitor the surface water extent on a global scale and

for almost all river basins. To this end, attempts have been made to generate dynamic water masks from different spaceborne270

missions with various temporal and spatial resolution. Some studies (Klein et al., 2017; Zhang and Gao, 2016; Khandelwal

et al., 2017) take advantage of MODIS images to generate time series of surface water mask with a fine temporal resolution.

Due to the coarse spatial resolution of MODIS images, however, small water bodies are excluded from their dataset. On the

other hand, some studies (Donchyts et al., 2016; Yang et al., 2017; Pickens et al., 2020; Yao et al., 2019; Schwatke et al., 2020)

use Landsat images to generate time series of surface water bodies. In comparison to MODIS, Landsat images have a better275

spatial resolution (30 m). Nevertheless, their coarse temporal resolution is a limiting factor for monitoring the fast dynamics of

the water bodies.

Surface water area of any lake, reservoir and river reach can be extracted from an available global inland water data set like

the SRTM Water Body Data (SWBD) (NASA JPL, 2013), the Global Inundation Extent from Multiple Satellites (GIEMS)

(Papa et al., 2010b) or the Global Surface Water Dataset (GSW) (Pekel et al., 2016). The derived surface water estimates are280

restricted to the temporal and spatial limitations of the initial data set. In this vein, Zhao and Gao (2018) present the Global

Reservoir Surface Area Dataset (GRSAD) which contains the monthly estimates of surface water area of the 6817 reservoirs

between the years 1984–2015 obtained from the GSW data set. The global reservoir bathymetry data set (Li et al., 2020)

presents the 3-D reservoir bathymetry of 347 global reservoirs integrating surface water area time series from the GRSAD and

GSW data set and altimetric water level measurements from Hydroweb and G-REALM data sets and ICESat measurements.285

Similar to altimetric water level time series, Hydroweb is the first website to provide lake surface area time series (Crétaux

et al., 2011). Recently DAHITI (Schwatke et al., 2019) has also boosted its database by the time series of lake area from optical

satellite images (Table 2). Moreover, since recent years the Bluedot observatory provides reliable and timely information about

surface area of lakes and reservoirs based on Sentinel-2 imagery, globally.

Table 2. List of sources for providing time series of surface water extent from satellite imagery

product operated by source remark

Hydroweb CNES http://hydroweb.theia-land.fr available for lakes

DAHITI Deutsches Geodätisches https://dahiti.dgfi.tum.de available for lakes

Forschungsinstitut (DGFI)

HydroSat Insititute of Geodesy http://hydrosat.gis.uni-stuttgart.de available over rivers and lakes

University of Stuttgart

Bluedot observatory Copernicus, European commission https://blue-dot-observatory.com available for lakes and reservoirs

ESA, USGS, Amazon Web Services

While over lakes and reservoirs dynamic water masks exist (Table 2), to the best of our knowledge, no specific dataset for290

dynamic river masks has been developed so far. Given the complexities in extracting river water masks from stacks of satellite

imagery, most efforts have been limited to the development of static water masks. Allen and Pavelsky (2018) and Yamazaki

et al. (2019), for instance, have extracted river water masks through stacks of satellite images.
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3.1 HydroSat products for surface water extent

HydroSat provides surface water extent time series of lakes, reservoirs and river reaches from optical satellite images. From295

the obtained river reach area an effective river width can be determined by dividing the area by the length of the river reach.

Figure 4 shows examples of time series of surface water extent for rivers and lakes derived from Landsat imagery in the

Mississippi River Basin.
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Figure 4. Time series of river reach area of selected river reaches in the Mississippi River basin are in the middle panel.

To support an analysis of the performance of the algorithm, the time series of monthly river masks from 9 river sections

(average length of 10 km) in the Mississippi River basin are shown together with in situ discharge measurements from nearby300
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USGS stream gauging stations. In all river reaches, we observe a relatively high rank correlation. However, in some river

sections, as in Figure 4(g, f), the sections are too narrow (about 25 and 40 m), even for Landsat imagery with 30 m spatial

resolution.

For lakes and reservoirs (second set of time series in Figure 4), the time series of surface water area are compared with

altimetric water level time series. For this comparison, 9 small to medium-sized lakes or reservoirs in the Mississippi River305

basin are selected. In general, water level time series and surface water area show a good agreement represented by the reported

rank correlation coefficients. For water bodies with smaller size, it is expected that the rank correlation decreases. As shown

in Figure 4, the rank correlation falls off to 0.57 and 0.61 for Rathbun and Barren Lakes with average areas below 30 km2 and

50 km2.

3.2 Data and methodology for generating surface water extent time series310

HydroSat estimates of surface water extent are obtained from 1) MODIS MOD09Q1 imagery data and 2) Monthly Water

History product from the Global Surface Water dataset (Pekel et al., 2016). A classic approach to extract water mask from

optical images is to use pixel-based image segmentation algorithms, which are typically based on defining a threshold in

the image pixel value histogram. While pixel-based algorithms are easy to implement, they fail to provide accurate water

masks, especially over river reaches. The method performs well when the pixel values of the object and background create a315

combination of two normal distributions in the image histogram. This assumption, however, does not hold for the complicated

river medium where the water body occupies only a small portion of the whole image. In fact, for a river reach, pixel values

depend on several factors like water quality, roughness of water surface, chemical properties, load of sediments, vegetation

canopy, and the depth of the water column (Elmi, 2019). Therefore, along the shorelines the complicated combination of water,

vegetation, wet and dry soil within a pixel makes it almost impossible to find a unique threshold for distinguishing water from320

land. Region-based segmentation techniques, on the other hand, consider each pixel as an element of a larger region and use

spatial information as well as pixel value to assign labels to the areas. Like other natural phenomena, water bodies show a

strong spatial correlation in satellite images. Therefore, including contextual information can significantly improve the results

water mask. Moreover, every pixel has a certain behavior during the time of monitoring, dominated by the seasonal cycle.

Hence, in addition to spatial correlations, strong temporal correlations can be used as an additional source of information.325

In order to derive a river mask, Elmi et al. (2016) estimate a Maximum A Posterior solution of a Markov Random Field

(MAP-MRF), in which the spatial interactions between pixels and temporal variation of the pixel values is considered. Figure

S5 (top panel) presents the block diagram of the proposed method. First, the cloud-covered images are removed. Initial water

masks are then generated by applying a dynamic threshold. The procedure continues by developing the joint conditional

models, rearranging the problem as one of energy minimization, and developing a graph. In the next step the MAP solution is330

found by applying the graph cuts technique. Using the MAP solution, the initial water masks and the frequency coverage map

are updated, allowing for modifying the already developed graph. The final river mask is then obtained by finding the MAP

solution for the modified graph. The uncertainty of the derived masks are estimated by marginalizing the final residual graph

(Elmi et al., 2016; Elmi, 2019).
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Although MODIS provides homogeneous daily snapshots of the Earth’s surface for more than 20 years, its coarse spatial335

resolution is a limiting factor for generating dynamic river masks of relatively narrow river reaches and small lakes. To tackle

this limitation, we use the Global Surface Water Dataset (GSWD) – developed by the European Commission’s Joint Research

Centre in the framework of the Copernicus Programm (Pekel et al., 2016) – as an alternative to MODIS data. Derived from

Landsat data, GSWD is a unique product for analyzing the spatial and temporal distribution of water surfaces at the global

scale over the past 3 decades. In its estimate of the surface water area, however, the dataset is subject to significant over - and340

underestimations. The main reason for underestimating the surface water area is the pixels labeled as No observations in the

dataset. In the GSWD’s Monthly Water History product, some pixels are contaminated due to the Scan Line Corrector (SLC)

failure of Landsat 7 and cloud coverage. Discarding all pixels with the No observations not only leads to an underestimation

of the area, but also to the generation of an erroneous water mask. On the other hand, a high noise level in the Landsat images

might be the main reason for a possible overestimation of surface water extent. To generate enhanced dynamic water masks345

from this dataset, the algorithm described in Figure S5 (bottom panel). The algorithm performs similar steps as for MODIS

relying on the GSWD masks instead of the original images.

4 Water storage anomaly

Global observation of total water storage change is vital for understanding the water cycle and climate system dynamics.

The variations of water storage indirectly reflect the Earth’s energy storage, ocean heat content, land surface water storage,350

biogeochemical, and ice-sheet response to global warming (Tapley et al., 2019; Famiglietti, 2004). Water storage variation,

both globally and regionally, influences our societies as it affects agricultural, industrial, and domestic water use. Moreover,

the dynamics of lake and reservoir storage is a key parameter in studies about the global hydrological cycle. Nevertheless, for a

long time, monitoring of terrestrial and lake water storage changes relied on insufficient site measurements, which was costly

and time-consuming. Moreover, on continental scales, it was not possible to map water storage because of the sparseness of the355

station networks (Rodell and Famiglietti, 1999). Furthermore, measurements of water storage changes by gauging groundwater

level and soil water saturation changes are not reliable due to the lack of accurate storage coefficients (Strassberg et al., 2007;

Riegger et al., 2012). Hydrological and land surface models have alleviated the problem to some extent. Such models estimate

TWS and its components via simplifying real-world systems. The model outputs, however, are subject to high uncertainty and

low accuracy due to the lack of global and systematic hydrological data (Jiang et al., 2014).360

4.1 Terrestrial water storage anomaly

The GRACE launch in 2002 (Tapley et al., 2004) added unprecedented observations to the existing earth monitoring system.

The satellite program was jointly developed by the National Aeronautics and Space Administration (NASA) of the United

States and the German Aerospace Center (DLR), which allowed for the recovery of the time variable gravity field at catchment

scales using the so-called low-low satellite to satellite tracking concept. The GRACE mission ended in October 2017 while365

providing over 15 years of near-continuous measurements of the Earth’s gravity field. The monthly gravity variations are
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used to track mass changes in the hydrosphere, cryosphere, and oceans, quantifying Total Water Storage Anomaly (TWSA).

GRACE observations paved the way to monitor continental water storage, including deep soil water, for the first time. It

contributed to various applications, including determining the natural and anthropogenic footprints in the global and regional

water changes (Saemian et al., 2022), ice-sheet mass balance (Chen et al., 2009), ocean circulation, sea-level rise (Chen et al.,370

2013; Jacob et al., 2012), atmospheric circulation patterns, drought monitoring (Long et al., 2013; Thomas et al., 2014), and

flood forecasting (Reager et al., 2014). GRACE Follow-On (GRACE-FO), launched in May 2018, is continuing GRACE’s

legacy of monitoring Earth’s temporal gravity field using the same constellation as GRACE while additionally equipped with

an experimental Laser Ranging Interferometer (LRI).

The collected GRACE/GRACE-FO measurements of each month are processed to estimate the Earth’s gravity field in terms375

of spherical harmonics. The Science Data System (SDS), a joint US/German cooperation consisting of the Jet Propulsion Lab-

oratory (JPL), the University of Texas Center for Space Research (UT-CSR), and the German Research Centre for Geosciences

(GFZ), provides quality-controlled data from Level-0 (KBR range data) to Level-3 (grids). Moreover, Level-3 data from the

mascons approach in terms of TWSA can be accessed from UT-CSR, JPL, and NASA-GSFC, while the latter does not pro-

vide GRACE-FO observations. Other than Level-3 data, several centers help to visualize GRACE TWSA. The JPL and GSFC380

mascons, for instance, can be visualized using the Mascon Visualization Tool from the University of Colorado Boulder, and

the basin-wise variability of TWS can be obtained from the Gravity over basins Information Service (GravIS) website. Fur-

thermore, several data browsers allow the interactive retrieval of GRACE and GRACE-FO data, including the one developed

within the International Center for Global Earth Models (ICGEM) project, the GRACE Plotter, and NASA data Analysis Tool.

Table 3 lists the above mentioned centers and products, including HydroSat.385

4.1.1 HydroSat products for terrestrial water storage anomaly

HydroSat provides time series of terrestrial water storage anomaly for major hydrological basins and also over 0.5◦ by 0.5◦ grid

cells. Figure 5 shows examples of terrestrial water storage anomaly for some selected basins. Figure 5 (top) shows the long-

term trend of the global major hydrological basins. Figure 5 (bottom) compares the time series of GRACE and GRACE-FO

TWSA estimation over the selected basin from HydroSat (black) with two mascon products: CSRv2 (red) and JPLv2 (blue).390

For visual simplicity and better comparison, only two common and updated mascon products have been selected. In general, in

all catchments, TWSA estimation follows the two mascons products well. Minor discrepancies are observed over Yangtze river

basin and Murray-Darling, which can be explained due to the different GIA models and low signal to noise ratio, respectively.

4.1.2 Data and methodology for generating terrestrial water storage anomaly

As input data HydroSat uses the ITSG-Grace2018 unconstrained gravity field model from the Institute of Geodesy at the Graz395

University of Technology (Mayer-Gürr et al., 2018; Kvas et al., 2019) is used as the input to the HydroSat processing.

Figure S6 presents the scheme of the data processing handled in HydroSat to retrieve TWSA from GRACE Level-2 solutions.

Each monthly solution contains the full hydrological, cryospheric, and Glacial Isostatic Adjustment (GIA) signal in the form
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Table 3. List of centers which provide Level-3 TWSA from GRACE and GRACE-FO.

product sensor source remark

Level-3 datasets

JPL GRACE Landerer (2020e); Landerer and Swenson (2012) gridded (1 ◦ spatial resolution), up to d/o 60

GRACE-FO Landerer (2020d) gridded (1 ◦ spatial resolution), up to d/o 60

GRACE/GRACE-FO Wiese et al. (2020) mascon approach based on the Level-1 data

CSR GRACE Landerer (2020b) gridded (1 ◦ spatial resolution), up to d/o 60

GRACE-FO Landerer (2020a) gridded (1 ◦ spatial resolution), up to d/o 60

GRACE/GRACE-FO Save (2020); Save et al. (2016) mascon approach based on the Level-1 data

GFZ GRACE Landerer (2020c) gridded (1 ◦ spatial resolution), up to d/o 60

GRACE-FO Landerer (2020a) gridded (1 ◦ spatial resolution), up to d/o 60

GRACE/GRACE-FO Boergens et al. (2020), http://gravis.gfz-potsdam.de/land basin-wise

HydroSat GRACE/GRACE-FO http://hydrosat.gis.uni-stuttgart.de corrected for leakage and tidal aliasing error

Visualization centers

University of Colorado Boulder GRACE/GRACE-FO https://ccar.colorado.edu/grace JPL and GSFC mascons

GravIS GRACE/GRACE-FO http://gravis.gfz-potsdam.de/home Basin-wise from COST-G solution

ICGEM GRACE/GRACE-FO http://icgem.gfz-potsdam.de/home JPL and CSR Level-3

The GRACE Plotter GRACE/GRACE-FO http://thegraceplotter.com Level-3 from various level-2 products

NASA GRACE/GRACE-FO https://grace.jpl.nasa.gov/data-analysis-tool Level-3 product from JPL and CSR solutions

of fully normalized Spherical Harmonic (SH) coefficients, after removing the contributions from other phenomena like tides

(ocean, solid earth, and atmospheric), atmospheric and non-tidal oceanic mass changes.400

To obtain TWSA, HydroSat applies several corrections on GRACE solutions, known as post-processing steps. The degree-1

coefficients are added to the GRACE solutions, accounting for the movement of the Earth’s center of mass (Swenson et al.,

2007). Since GRACE estimations of the lowest-degree zonal harmonic coefficient are not accurate, we replace GRACE C2,0

and C3,0 by the coefficients derived from Satellite Laser Ranging (SLR) data Cheng et al. (2013). The real shape of the Earth

is much closer to an ellipsoid than a sphere. Therefore, each solution is corrected from spherical to ellipsoidal coefficients405

following the method proposed by Li et al. (2017). To calculate the geoid anomalies, we remove the long-term (2004–2010)

mean of spherical harmonics. Due to imperfect tidal models, GRACE SHs are contaminated by residual tidal aliasing error, a

primary and a secondary one (Tourian, 2013). Therefore, HydroSat eliminates the primary and secondary tidal aliasing errors

of the main tidal constituents, S1, S2, P1, K1, K2, M2, O2, O1, and Q1 from GRACE monthly solutions using a least-squares

Fourier analysis (Tourian, 2013).410
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Figure 5. Top: Annual trend of TWSA over global major river basins from april 2002 to 2020. Selected basins are numbered in the map.

The borders are defined based on GRDCs major river basins of the world (https://www.bafg.de/GRDC). Bottom: Time series of TWSA

from GRACE and GRACE-FO for the selected basins, comparing the results from HydroSat, JPLv02 global mascons, and CSRv02 global

mascons. The corresponding HydroSat number for each basin is provided in the gray box.

Furthermore, the monthly solutions are contaminated by noise from different sources including the high-frequency noise in

the spherical harmonic coefficients due to the orbit geometry and sensor noise. In order to reduce the high-frequency noise

and retrieve mass changes, Gaussian filtering with a radius of 400 km is applied (Wahr et al., 1998). Moreover, to correct

20
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for leakage due to filtering, existing methodologies are employed e.g data-driven approach proposed by Vishwakarma et al.

(2017) and forward-modelling (Chen et al., 2013). Finally, HydroSat corrects the GIA signal following (A et al., 2012). The415

uncertainty for the GRACE-based TWSA at each month is estimated by propagating the calibrated error of the GRACE and

GRACE-FO level-2 solutions.

4.2 Lake and reservoir water storage anomaly

The variation of water height and surface area of lakes and reservoirs have been successfully monitored using spaceborne

measurements, as demonstrated in previous studies. Table 4 lists some of these studies providing either time series of water420

volume change or lake and reservoir bathymetry.

Table 4. Overview of studies providing time series of lakes and reservoirs water volume variations

study water level surface area remark

Crétaux et al. (2011) HYDROWEB
MODIS, Aster,

water volume variation for 100 lakes are provided in Hydroweb
Landsat, Cbers

Gao et al. (2012) HYDROWEB MODIS water volume variation of 34 reservoirs from 2000–2010

Yao et al. (2018)
obtained from SRTM

Landsat, Huanjing annual lake water storage changes across the Changtang Plateau from 2002–2015
and ASTER DEM

Wang et al. (2018)
DAHITI, HYDROWEB

obtained from lake water water storage changes in 142 large water bodies across endorheic basins
G-REALM area-stage functions

Li et al. (2019)
Jason 1-3, ENVISAT,

Landsat, GaoFen-2 water volume variation of 52 large lakes on the Tibetan Plateau during 2000–2017
Cryosat, ICESat

Busker et al. (2019) DAHITI GSWD water volume variation of 137 lakes are provided

Schwatke et al. (2020) DAHITI DAHITI water volume variation of 62 lakes and reservoirs are available on 2021

Li et al. (2020)
ICESat, Hydroweb,

GSWD 3-D reservoir bathymetry of 347 global reservoirs are provided
G-REALM

Klein et al. (2021) DAHITI Global WaterPack
water volume variations of 1267 reservoirs are analyzed

the dataset is not publicly available

The mentioned studies follow almost the same strategy to generate water volume anomaly time series or a bathymetry

map. In these studies, after collecting the simultaneous surface water area and level measurements, the empirical relationship

between lake water level and area is developed. Then the water volume variations are estimated using by the so-called end-area

formula or pyramid formula.425

4.2.1 HydroSat products for lake water storage anomaly

HydroSat estimates the water volume anomaly for lakes and reservoirs by combining water level and surface water area

variation obtained from satellite altimetry and imaging measurements. Figure 6 shows selected time series of water volume

anomaly for some small, medium and large lakes with different climate characteristics. A statistically representative joint time

period for altimetry and imagery data is crucial to obtain a reliable estimate of water volume. For example Tana, Sobradinho,430
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and Dale Hollow Lakes, simultaneous surface water area and water level measurements are available for more than 10 years,

resulting in a reliable area-volume model. Over the Arkabutla Lake and Barren Lake, the joint time period is rather short but

representative as it covers the entire statistical distribution of both variables. On the other hand, the time series of lake volume

anomaly of McConaughy, Harlan County, Rathbun and Mark Twain lakes carry mismodelling error as their joint time periods

are short and non-representative of the entire distribution.435
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Figure 6. Time series of water volume change of selected lakes and reservoirs. The location of these lakes can be found in figures 2 and 4

4.2.2 Data and methodology for generating Lake and reservoir water storage anomaly

HydroSat follows a straightforward approach relying on monotonic relationship of water level and surface area (Figure S7).

The algorithm starts by acquiring the water area from satellite imagery (explained in Section 3) and the time series of the water

level (explained in Section 2). To derive the time series of the water volume anomaly and also the water level-area-volume

model, the following steps are performed:440

– Generating monthly water level time series with the same temporal sampling as the surface area time series

– Creating the scatterplot of the simultaneous surface water area and level and removing the blunders in the scatterplot

– Defining the water surface area-level model through either parametric and non-parametric approaches
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– Estimating the water volume variations by assuming that between two successive pair of measurements (water level H

and lake area S), the lake morphology is regular and has a pyramidal shape, (Abileah et al., 2011).445

∆V =
1

3

[
S(t) +S(t− 1) +

√
S(t)S(t− 1)

][
H(t)−H(t− 1)

]
(1)

– Obtaining the water area-level-volume model

5 River discharge from space

Monitoring of river discharge, defined as the volume of water passing a river section in a given time, is a critically impor-

tant part to understanding a broad range of science questions focused on hydrology, hydraulics, biogeochemistry and water450

resources management. Especially the river discharge quantification in ungauged basins anywhere and anytime is the holy

grail of hydrology. River discharge reflects the drainage basin dynamics and affects environmental conditions like currents

and hydrography in coastal waters; it is a function of precipitation and meteorological elements controlling evapotranspiration,

geology, relief, and vegetation.

Despite its importance, the publicly available in situ river discharge database has been declining steadily over the past455

decades due mainly to economic and political reasons. From about 8000 (pre-1970), the number of available gauging stations

has decreased to less than 1000 (around the year 2015) (Lorenz et al., 2014, 2015; Tourian et al., 2017b).

Given the insufficient monitoring from in situ gauge networks, and without any outlook for improvement, spaceborne ap-

proaches come to the rescue. Satellite-based Earth observation with its global coverage has been demonstrated to be a potential

alternative to in situ measurements. In future, the SWOT mission with wide-swath altimetry is expected to attain global river460

discharge given its unprecedented temporal resolution, spatial coverage and the synchronous availability of river height, width

and slope (Biancamaria et al., 2016; Durand et al., 2016).

5.1 HydroSat products for river discharge

In HydroSat, discharge estimates are available from both altimetric river water level and imagery-based effective river width

also in the two modes of Standard-Rate (SR) and High-Rate (HR). While the SR product relies on standard temporal resolution465

of the spaceborne data, the HR data comes with a higher temporal resolution through an assimilation process. To the best of

our knowledge, there is no repository or website providing similar space-based river discharge estimates.

Figure 7 presents the discharge estimated from river width, using the stochastic quantile mapping function algorithm over

four different river reaches along the Niger, Congo and Po rivers (Elmi et al., 2021). High NSE values for the Niger River

reaches (Figure 7 (a,b)) shows that the developed method can accurately estimate the discharge given that both discharge and470

width measurements have a representative statistical distribution in the training period. The performance of the method signif-

icantly decreases over the Congo River reach (Figure 7 (c)) mainly because of the complex relationship between river width

and discharge in this part of the river. The performance of the algorithm over the Po River reach is only minimally acceptable

(NSE=0.13). Here, the discharge is not estimated accurately due to insufficient width measurements at high discharge and low
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signal-to-noise ratio of the same measurements. The obtained rating curve over the Po River, however, highlights the advantage475

of using a non-parametric model through the quantile mapping function compared to choosing a parametric model. With the

help of the proposed method, spaceborne discharge estimates can be obtained for all non-active gauges in politically-ungauged

basins (see Gleason and Durand (2020)).
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Figure 7. Adopted from Elmi et al. (2021): Four river reaches defined as case studies (a) and (b) are the river reaches over the Niger River.

(c) is part of Congo River and (d) is selected over the Po River. For each case, the estimated discharge (green dots), scatterplots of the

simultaneous observations used for developing models together with the developed rating curve models and stochastic quantile mapping

function.

Figure 8 shows an example of a HR river discharge time series over River Niger at Lokoja. The inputs to the dynamic system

are the altimeric and in situ river discharges. During the period when the only source of observations is the in situ data (before480

1992), the Kalman filter estimates a discharge that matches the in situ data with a relative RMSE of less than 2% (not visible

in the figure). After 1992, when altimetric river discharge is available, the Kalman filter is less dependent on the in situ data,

leading to a relative RMSE up to 50%. The validation over the entire Niger basin and 22 gauges along the main stem show an

average correlation of 0.9, an average relative RMSE, a relative bias of about 15%, and a NSE greater than 0.5 for 15 gauges.
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Figure 8. Daily river discharge over the Niger River at Lokoja by assimilating altimetric discharge with available in situ data

The proposed method is applicable in all river networks with available legacy in situ data. It allows for obtaining a smoothed485

daily discharge time series without data outages at any given location along a river.

5.2 Data and Methodology for generating river discharge time series

The input data for generating both SR and HR river discharge are either SR or HR water level time series or the effective river

width obtained from satellite imagery. In the following the methodology of generating discharge time series are described.

5.2.1 Standard-Rate river discharge490

Standard-Rate river discharge Q at selected gauges can be estimated from space-based water level H (or river width W )

measurements using an empirical relationship between river height (or width) and discharge (Kouraev et al., 2004; Birkinshaw

et al., 2010). The most common form of this relationship is the so-called rating curve Q = F (H) or Q = F (W ). Rating

curves are conventionally generated for simultaneous measurements of space-based water level (or river width) and in situ

river discharge. Once the model is developed, the discharge can be determined from water level or width measurements. The495

restriction however remains that for deriving a rating curve, simultaneous measurements are required, meaning the availability

of in situ measurements during the satellite era.

Globally a great portion of existing gauges are not active during the satellite era although they provide a wealth of legacy

data. For such gauges, Tourian et al. (2013) suggest a statistical approach based on quantile mapping of in situ discharge and

altimetry water level measurements. Since the quantile functions of discharge and river water level (width) have a same x-500

axis (cumulative probability), it is possible to connect their y-axis directly and obtain F (.). As this approach does not involve

the time coordinate explicitly, the requirement for synchronous datasets is obsolete. This is to say that the pre-satellite river

discharge data records can be salvaged and turned into usable data for the satellite altimetry or imagery time frame.

The method is further improved by Elmi et al. (2021) to infer a nonparametric model for estimating the river discharge and

its uncertainty. The algorithm employs a stochastic quantile mapping function scheme by iteratively 1) generating realizations505

of river discharge and height (width) time series using a Monte Carlo simulation, 2) obtaining a collection of quantile mapping

functions by matching all possible permutations of simulated river discharge and height (width) quantile functions, and 3)

25



adjusting the measurement uncertainties according to the point cloud scatter. The flowchart in Figure S8 describes the procedure

of SR discharge estimation using spaceborne river height or width.

5.2.2 High-Rate river discharge510

HydroSat provides High-Rate (HR) river discharge time series based on the method developed by Tourian et al. (2017a) that

goes beyond the conventional one-on-one relationship between virtual station (or reach) and (legacy) in situ station explored

in SR discharge products. A multitude of altimetric discharge time series over a river network are used in this approach to

estimate time series of daily river discharge. This is fundamentally done via assimilating multiple altimetric discharge – the

SR time series – and in situ measurements using a linear dynamic system. The dynamic system consists of a stochastic process515

model that benefits from the cyclostationarity of discharge. This model is informed by the covariance and cross-covariance

generated out of old in situ data. The process model is then combined with observation equations fed by several altimetric

and in situ discharge time series to form a linear dynamic system. Ultimately, the system is solved using the Kalman filter,

followed by smoothing the solutions using the Rauch-Tung-Striebel (RTS) scheme (Rauch et al., 1965). In fact, the Kalman

filter produces an a posteriori discharge estimate with a likelihood function of discharge based on the available observations520

and the prior information derived from the stochastic process model. In case of an observation gap, the posterior estimates rely

on the stochastic process model and its cyclostationary mean discharge. Figure S9 represents the flowchart for estimating the

HR river discharge. The implementation details of the method can be found in Tourian et al. (2017a).

6 Summary, conclusion and outlook

The development of repositories and services to provide global water cycle products from spaceborne sensors is getting more525

attention than ever before, which is motivated by the urgent need for more hydrological evidence, the absence of perspective

for improving in situ data, the existence of an abundance of satellite missions, the prospect of cutting-edge missions such as the

SWOT mission, and also the promise of operational satellites in space. Such products support studies focused on understanding

the water cycle and the Earth system in general. HydroSat provides the following water cycle quantities:

– surface water extent of lakes and rivers: HydroSat provides surface water extent time series of both lakes and rivers530

from optical satellite images. For generating dynamic water masks, region-based classification is employed, which ben-

efits from the spatio-temporal behavior of pixel-intensity. This allows us to deal with the complexities in extracting

dynamic river masks. Moreover, such an algorithm setup allows obtaining a probabilistic water mask leading to an esti-

mate for surface water extent uncertainty. While datasets of surface water extent variation over lakes are available from

various data centers, HydroSat additionally provides time series of river width for major river basin. For a quality as-535

sessment, time series of surface water extent over lakes are compared with available in situ and or altimetric water level

time series. Over rivers, such a quality assessment is predominantly done through comparing the time series against in

situ river discharge.
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– water level time series of lakes and river: HydroSat provides water level time series of rivers, lakes and reservoirs in two

modes, standard-Rate (SR) and High-Rate (HR), with their uncertainty estimates. For water level time series HydroSat540

uses an automated, data-driven outlier rejection methodology designed within an iterative, non-parametric adjustment

scheme. The outlier-free measurements form the final time series without any further smoothing. While water level time

series over inland water bodies are available from similar data centers, HydroSat additionally provides HR water level

time series over rivers through densifying individual SR time series along a river. For the HR products over the lakes,

inter-satellite biases are removed through a hybrid approach by incorporating lake surface area information. The quality545

of water level time series is assessed through a validation against in situ water level or proxy data like river discharge,

river width or lake surface area.

– terrestrial water storage anomaly: HydroSat provides Terrestrial Water Storage Anomaly (TWSA) time series and its

uncertainty in form of equivalent water height over global major river basins using GRACE and GRACE-FO observa-

tions. To estimate TWSA time series from level-2 data (shperical harmonics up to degree/order 96), the C2,0 and C3,0 are550

replaced and degree-1 is added from the corresponding SLR estimates. Moreover, ellipsoidal and GIA correction are fol-

lowed together with a smoothing Gaussian filter with a radius of 400 km. The final TWSA in HydroSat are corrected for

tidal aliasing error and leaked signals. For the field product, the Gaussian filtering is applied together with a de-striping

filter and leakage is corrected using forward modeling approach. The quality of TWSA time series is assessed through a

comparison with two mascons products, CSR RL06 version 02 and JPL RL06 version 02.555

– water storage anomaly of lakes and reservoirs: HydroSat provides time series of surface water storage anomaly

for lakes and reservoirs using the time series of water level and surface area measurements. For developing the surface

water level-area-volume model, the scatterplot of simultaneous water level and area measurements is obtained. HydroSat

performs an iterative data snooping procedure to obtain a reliable empirical relationship between surface water level and

area. In this way, the quality of the obtained time series of water storage anomaly is ensured, since the non-representative560

measurements are eliminated.

– river discharge estimates for large and small rivers: HydroSat provides SR and HR river discharge estimates together

with their uncertainties. To obtain the SR products, HydroSat relies on a non-parametric quantile mapping approach that

salvages gauging stations that are no longer updated with in situ measurements. Since no model assumptions are required

under the non-parametric approach, the HydroSat discharge time series are less contaminated by a mis-modeling. For the565

uncertainty estimation HydroSat applies a stochastic quantile mapping function algorithm supported by a Monte Carlo

simulation. The availability of enough SR time series over a river network allows approximating the spatio-temporal

dynamics of a river system by a linear dynamical system. The HR products are the solutions of such a dynamic system

by Kalman filters obtained with up to daily temporal resolution at potentially any location along the river. For the quality

assessment, SR and HR discharge time series are compared with in situ and spatial river discharges, water levels, and570

river widths.
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The above geometric hydrological variables are unique as they provide key elements of water cycle in many gauges and un-

gauged regions around the world. They can directly be used in hydrological modelling, either as inputs or for calibration

purposes. Global hydrological modeling has been improved in terms of modeled processes leading to a better recognition of

modeling uncertainties. Such recognition clearly signals that the modeling uncertainties are not reduced. To reduce the un-575

certainty one solution is indeed, to use the best available input data for modelling. Space-based data together with process

knowledge allow a realistic modelling of water flows and storages in the different compartments. Moreover, spaceborne mea-

surements can be used to calculate indicators of the past and future state of the global freshwater system to assess risks under

1.5◦C and 2◦C global warming and support decision making (Döll et al., 2018).

In addition, variables of water level, surface water storage anomaly and surface water extent support downscaling of mass580

transport monitoring in time and space. The success of GRACE has created a new demand for scientists and decision makers for

a sustained observation of the terrestrial water storage change (Pail et al., 2015). Although the utility of GRACE data has been

mainly limited to large catchments, understanding of water storage changes in regions with some local weak signatures play an

important role within the Earth system and the sustainable development of water resources (Lorenz et al., 2015). Therefore, an

urgent priority is to mitigate the spatial resolution limitation of GRACE through incorporating additional hydrological variables585

such as surface water storage and river and lake water level variation. This will improve in particular our understanding of the

water cycle in many small vulnerable catchment areas with large populations.

Another added value of the HydroSat data is its complementary role to the SWOT mission. Over rivers, SWOT will estimate

discharge from multiple algorithms as well as consensus values computed over multiple individual algorithms (Stuurman and

Pottier, 2020). The majority of algorithms are Bayesian, relying on prior data. Hydrological variables provided by HydroSat590

can effectively be used as potential prior information for each of the discharge algorithms through available water levels (SR

and HR), river width from satellite imagery, and discharge estimates (SR and HR). Over lakes and reservoirs, our estimates

of surface water extent and volume anomaly will boost SWOT’s estimates both in terms of temporal resolution and coverage.

This supports studies aiming to understand long-term behavior of lakes and reservoirs.

7 Data availability595

The data are publicly available in the HydroSat database via http://hydrosat.gis.uni-stuttgart.de. All time series in this paper are

assigned a number, the so-called HydroSat ID, by which the time series can be found in the HydroSat database via the search

field. In this database all data can be browsed, visualized and analyzed without registration. However, registration is required

to download the data. A snapshot of all data (taken in April 2021) with a total of 10810 time series: 34 time series on surface

water extent, 1323 time series on water level, 36 time series on river discharge, and 463 time series on water storage anomaly600

are available in GFZ data services, which is accessible during the peer review process via https://dataservices.gfz-potsdam.de/

panmetaworks/review/a250099b6bb14c162399cf78b1a3182b1e4420b2db8373ebd6a647d50c0e0326/ (see Files) and will be

published at https://doi.org/10.5880/fidgeo.2021.017 (Tourian et al., 2021).
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