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Abstract 42 
Permafrost-affected ecosystems of the Arctic-boreal zone in northwestern North America are 43 
undergoing profound transformation due to rapid climate change. NASA’s Arctic Boreal Vulnerability 44 
Experiment (ABoVE) is investigating characteristics that make these ecosystems vulnerable or resilient 45 
to this change. ABoVE employs airborne synthetic aperture radar (SAR) as a powerful tool to 46 
characterize tundra, taiga, peatlands, and fens. Here, we present an annotated guide to the L-band and P-47 
band airborne SAR data acquired during the 2017, 2018, 2019, and 2022 ABoVE airborne campaigns. 48 
We summarize the ~80 SAR flight lines and how they fit into the ABoVE experimental design. We 49 
provide hyperlinks to extensive maps, tables, and every flight plan as well as individual flight lines. We 50 
illustrate the interdisciplinary nature of airborne SAR data with examples of preliminary results from 51 
ABoVE studies including: boreal forest canopy structure from tomoSAR data over Delta Junction, AK 52 
and the Boreal Ecosystem Research and Monitoring Sites (BERMS) site in northern Saskatchewan and 53 
active layer thickness and soil moisture data product validation. This paper is presented as a guide to 54 
enable interested readers to fully explore the ABoVE L- and P-band SAR data. 55 
 56 
 57 
Short Summary 58 
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar 59 
(SAR) surveys of over 120,000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 60 
2022. This paper summarizes those results and provides links to details on ~80 individual flight lines. 61 
This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-62 
band SAR data. 63 
 64 
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1 Introduction 76 

The Arctic region contains a remarkable diversity of cold-adapted biota, habitats, and permafrost-77 
affected ecosystems [McGuire et al. 2009; Vincent et al. 2011]. As with other components of the Arctic 78 
system, Arctic ecosystems are strongly interdependent and the rapid degradation of the Arctic 79 
cryosphere is altering their physical, biogeochemical, and biological linkages in ways that may be 80 
irreversible [Vincent et al. 2011; Hinzman et al. 2013]. Understanding characteristics that make Arctic 81 
ecosystems vulnerable or resilient to this change is the overarching objective of NASA’s Arctic Boreal 82 
Vulnerability Experiment (ABoVE, https://above.nasa.gov/). Miller et al. [2019] describes how airborne 83 
campaigns fit into the broader ABoVE research strategy and how the foundational synthetic aperture 84 
radar (SAR) measurements formed the framework around which all other airborne data acquisitions 85 
were planned. 86 
 87 
  88 

 89 
Figure 1. Flight lines for the L-band and P-band PolInSAR measurements capture critical bioclimatic, permafrost, and geographic 90 
gradients as well as key field sites and long-term measurement records across the 4 Mkm2 ABoVE domain. The flight lines are 91 
collected into 10 composites which roughly correspond to the Alaskan (A1-A4) and Canadian (C1-C6) regions sampled on 92 
individual flight days. © Google Maps 93 
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ABoVE SAR flight lines (Figure 1) were planned to leverage legacy L- and P-band SAR transects 94 
acquired during the pre-ABoVE period; remotely-sensed permafrost active layer thickness time series 95 
derived from satellite interferometric SAR observations (ReSALT) [Schaefer et al. 2015]; SAR data 96 
from PALSAR, PALSAR-2, RadarSat, RadarSat-2, and Sentinel-1; historic or planned airborne LiDAR 97 
acquisitions; and data from existing field sites [Hoy et al. 2018]. Legacy airborne SAR flight lines 98 
include the L-band grid acquired over the Boreal Ecosystem Research and Monitoring Sites (BERMS) 99 
area near Prince Albert, SK during SMAP CanEx 2010 [Magagi et al. 2012], the P-band lines over the 100 
BERMS area acquired from 2012-2015 during the Airborne Microwave Observatory of Subcanopy and 101 
Subsurface (AirMOSS) Earth Ventures Sub-orbital (EV-S1) investigation [Allen et al. 2010; 102 
Moghaddam et al. 2016], and a collection of 10 L- and P-band flight lines acquired over the Seward 103 
Peninsula, Northwestern Interior, and North Slope of Alaska during 2014 and 2015 [Chen et al. 2019a, 104 
2019b]. The BERMS area observations, in particular, link ABoVE to the Boreal Ecosystem–105 
Atmosphere Study (BOREAS) studies of the 1990s [Sellers et al. 1995; 1997]. 106 
 107 
Hoy et al. [2018] compiled information on more than 6,700 field sites and previous remote sensing data 108 
sets to help plan the SAR flight lines and the ABoVE Airborne Campaigns [Miller et al. 2019]. This 109 
compilation is intended to help investigators understand flight line choices and identify ground locations 110 
used to anchor individual flight lines. SAR data users may also search for the underlying data available 111 
within each flight line. Key anchor points for the SAR flight lines include: Active layer thickness 112 
measurements from the Circumpolar Active Layer Monitoring network (CALM); Permafrost 113 
temperatures and annual thaw depths from the Global Terrestrial Network for Permafrost (GTN-P) 114 
database; Soil moisture and permafrost state data from the Department of Energy’s Next Generation 115 
Ecological Experiment-Arctic (NGEE-Arctic) field sites on the Seward Peninsula and near Utqiaġvik 116 
(formerly Barrow), AK; Extensive in situ terrestrial and aquatic ecosystem data as well as airborne 117 
LiDAR and spectral imagery from NSF’s National Ecological Observatory Network (NEON) D18 118 
tundra field sites near Utqiagvik (Barrow), AK and Toolik Lake, AK, and from the D19 taiga field sites 119 
near Caribou/Poker Creek, AK, Delta Junction, AK, and Healy, AK; Detailed ecological and physical 120 
climate time series from NSF’s Long Term Ecological Research (LTER) Arctic (Toolik Lake) and 121 
Boreal Forest (Bonanza Creek) sites; Long-term boreal forest inventory data from the Canadian 122 
Forestry Service’s (CFS) Climate Impacts on Productivity and Health of Aspen (CIPHA) and High 123 
Elevation & Latitude Climate Change Impacts & Adaptation (HELCIA) plots; and Long term 124 
permafrost, hydrology and ecology time series records from the Canadian Changing Cold Regions 125 
Network (CCRN) sites at Trail Valley Creek, NWT, Havikpak Creek, NWT, Scotty Creek, NWT, 126 
Baker Creek, NWT, Wolf Creek Research Basin, YT, and the BERMS site at White Gull Creek, SK. 127 
 128 
Airborne SAR data enable numerous ecosystem and ecosystem change research investigations [NRC 129 
2014]. ABoVE researchers are using the airborne L- and P-band data to: Quantify permafrost active 130 
layer thickness and soil moisture content [Bakian-Dogaheh et al. 2020]; Complement AirSWOT Ka-131 
band acquisitions to determine water surface elevations in Arctic lakes, wetlands, and rivers [Pitcher et 132 
al. 2019a,b]; Investigate boreal forest and tundra fire scars, especially in conjunction with fire 133 
disturbance plots [Tank et al. 2018; Walker et al. 2018 a,b; 2019a,b; French et al. 2020; Holloway et al. 134 
2020; Loboda et al. 2021]; Map tree density and distribution across the Tundra-Taiga ecotone; Provide 135 
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control point data for the ArcticDEM [Porter et al. 2018; Meddens et al. 2018]; Investigate lidar-radar 136 
fusion remote sensing for boreal forest characterization as a precursor to NISAR/IceSAT-2 137 
investigations [Silva et al. 2021]; Quantify expansion and sediment mass flow from massive 138 
retrogressive thaw slumps – so-called megaslumps – on the Peel Plateau along the Dempster Hwy west 139 
of Fort McPherson [Kokelj et al. 2013; 2015]; Classify Arctic wetlands and habitats [French 2020]; and 140 
Support algorithm development for NISAR (L-band) and BIOMASS (P-band) estimates of boreal forest 141 
structure and above ground biomass [Quegan et al. 2019; Saatchi et al. 2019]. Goetz et al. [2021] 142 
summarizes how the ABoVE airborne SAR data are helping advance Arctic-boreal understanding and 143 
the remaining knowledge gaps still to be addressed. 144 
 145 
This paper presents an annotated guide to enable interested readers to fully explore the ABoVE L- and 146 
P-band SAR data acquired during the 2017, 2018, 2019, and 2022 ABoVE airborne campaigns. Section 147 
2 provides details on the L- and P-band SAR instruments and the flight line catalog. Section 3 148 
summarizes the daily sorties from each airborne campaign. Section 4 briefly describes the tomographic 149 
SAR (tomoSAR) experiments flown over Delta Junction, AK and the BERMS site near Prince Albert, 150 
SK. Section 5 describes some of the ABoVE SAR data products and their validation. Section 6 151 
highlights the synergies between the L- and P-band airborne SAR data and other airborne sensors. 152 
Section 7 summarizes access to the data products. Section 8 discusses potential future acquisitions and 153 
outlooks for exploiting these data. Additionally, we include an Appendix which describes the ~80 154 
ABoVE SAR flight lines and how each line fits into the ABoVE experimental design. The Appendix 155 
also provides extensive maps and tables for every flight plan and individual flight lines as well as a list 156 
of the acronyms and abbreviations. The Supplemental Information includes hyperlinked versions of the 157 
tables for direct access to flight lines and flight plans. 158 

2 The L-Band and P-band Airborne SAR Instruments and Data Acquisition 159 

Both the L- and P-band airborne SARs are sensitive to geometrical and material properties of 160 
vegetation, soil surface, and subsurface profiles [Saatchi and Moghaddam 2000; Tabatabaeenejad et al. 161 
2011; 2015]. The joint use of both L- and P-band gives enhanced sensitivity to near-surface (< 5 cm, L-162 
band) and root zone (10-40 cm, P-band) portions of the subsurface profile compared to use of either 163 
wavelength alone [Du et al. 2015]. Airborne acquisitions with both SARs provide 6-10 m spatial 164 
resolution, ~15 km swaths and transect lengths of 100 – 200 km, making them ideal for surveying 165 
above-ground biomass and vegetation canopy structure [Hensley et al. 2014; 2016] as well as the 166 
tundra-taiga ecotone [Montesano et al. 2016]. Special tomoSAR data were acquired over the well 167 
characterized BERMS site in northern Saskatchewan and the NEON site in Delta Junction, AK to 168 
quantify the performance of both SARs in reproducing the structure and biomass of boreal forests. 169 
 170 

2.1 The L-band SAR Instrument 171 

NASA’s airborne L-band SAR (initially named the Uninhabited Aerial Vehicle Synthetic Aperture 172 
Radar (UAVSAR) system) is a compact pod-mounted polarimetric instrument for interferometric 173 
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repeat-track observations that was developed at the NASA Jet Propulsion Laboratory (JPL) and Dryden 174 
Flight Research Center (DFRC) in Edwards, CA. It operates at a center frequency of 1.2575 GHz 175 
(wavelength = 23.8 cm) with 80 MHz bandwidth. It is deployed on a Gulfstream III aircraft and images 176 
the Earth surface from a nominal 12.5 km altitude. The image swath is collected off-nadir in a ~22 km 177 
wide with incidence angles ranging from ~22°–67°. The instrument spatial resolution is 0.8m (along 178 
flight-line) by 1.7m (slant range, along line-of-sight (LOS) from the antenna to the ground). 179 
Topographic information is derived from phase measurements that, in turn, are obtained from two or 180 
more passes over a given target region. Its 1.26 GHz frequency results in radar images that are well-181 
correlated from pass to pass. Polarization agility facilitates terrain and land-use classification. 182 
 183 
All L-band SAR data are publicly available at http://uavsar.jpl.nasa.gov/ as individual InSAR products 184 
or as a single look complex (SLC) stack product of coregistered images for individual flight lines. 185 
Products are also available from the UAVSAR data portal at the Alaska SAR Facility Distributed 186 
Active Archive Center (https://asf.alaska.edu/data-sets/sar-data-sets/uavsar/). The L-band SAR provides 187 
key pre-launch algorithm development and validation data sets [Saatchi et al. 2019] for the NASA-188 
ISRO SAR (NISAR) mission [Rosen et al. 2017]. 189 
 190 

2.2 The P-band SAR Instrument 191 

The P-band SAR was developed circa 2012 for the Earth Ventures Sub-orbital (EV-S1) Airborne 192 
Microwave Observatory of Subcanopy and Subsurface (AirMOSS) investigation [Allen et al. 2010; 193 
Moghaddam et al. 2016]. The radar is based on JPL's L-band UAVSAR system. The P-band SAR 194 
inherits UAVSAR's existing L-band RF and digital electronics subsystems. New up- and down-195 
converters convert the L-band signals to UHF frequencies (280-440 MHz). The passive antenna is based 196 
on the legacy GeoSAR design [Chapin et al. 2012]. 197 
 198 
The P-band SAR was flown more than 1200 h from 2012 to 2015, covering regions of 2500 km2 spread 199 
over nine major biomes in North America during the AirMOSS EV-S1 investigation [Tabatabaeenejad 200 
et al. 2020]. Legacy acquisitions in Alaska [Chen 2019a, b] and over the BERMS site in northern 201 
Saskatchewan [Chapin et al. 2012, 2018] provide an opportunity for extended time series analysis. All 202 
P-band SAR data are publicly available at http://uavsar.jpl.nasa.gov/. Additionally, ABoVE P-band 203 
SAR data will provide valuable insights into the characterization of boreal forest and tundra ecosystems 204 
by the upcoming BIOMASS mission [Le Toan et al. 2011; Quegan et al. 2019]. 205 
 206 

2.3 The Platform Precision Autopilot (PPA) System  207 

To support cm-precision interferometric land surface characterization, repeat pass measurements 208 
acquired by the SARs need to be taken from flight paths that are nearly identical. Both the L- and P-209 
band SARs utilize real-time GPS that interfaces with the platform flight management system (FMS) to 210 
confine the repeat flight path to within a 10 m tube over a 200 km course in conditions of calm to light 211 
turbulence. The FMS is also referred to as the Platform Precision Autopilot (PPA). Additionally, the 212 
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radar vector from the aircraft to the ground target area must be similar from pass to pass. This is 213 
accomplished with an actively scanned antenna designed to support electronic steering of the antenna 214 
beam with a minimum of 1º increments over a range to exceed ±15º in the flight direction. 215 
 216 
ABoVE SAR measurements were typically acquired with platform RMS deviations less than ±3 m. Any 217 
platform deviations larger than ±10 m from the programmed flight path resulted in the acquisition being 218 
terminated and a real time decision made to reacquire the line from the beginning or to continue with 219 
the flight plan and proceed to the next line. This decision balanced the science priority of the flight line, 220 
fuel consumption and remaining endurance, the number of flight lines yet to be acquired in the day’s 221 
flight plan, distance from our base of operations, and whether there would be future opportunities to 222 
collect a given line by adding it to an upcoming flight plan. The flight team was extremely efficient in 223 
executing these decisions, resulting in 95% flight line acquisition success across the 2017-2019 period. 224 
 225 

2.4 Airborne SAR Flight Line and Flight Plan Designations 226 

The JPL SAR team devised a convenient and powerful way to identify airborne SAR data acquisitions 227 
for the Facility and PI instruments under their charge. Each L-band or P-band SAR flight line receives a 228 
unique 5-digit identifier consisting of the three-digit GPS compass heading followed by a two-digit 229 
index.  A 6-character text string is also associated with each line for ease of identification. The text 230 
string proceeds the numerical ID and usually provides abbreviated geographic or infrastructure 231 
information that characterizes the line. For example, L-band flight line Teller_04901 identifies the flight 232 
line on the Seward Peninsula that overflies the NGEE-Arctic Teller watershed. The flight line identifier 233 
is a constant and, once assigned, is used whenever a line is reflown. In some cases, there are 234 
overlapping or nearly identical flight lines which differ slightly in their ID number. L-band and P-band 235 
flight lines use the same flight line identification system, allowing rapid identification of overlapping L- 236 
and P-band data acquisitions. 237 
 238 
Flight Plans are assembled from the composite flight lines for a given sortie. Each flight plan also 239 
receives a unique 5-digit identifier based on the year flown (digits 1 and 2) and the flight number for 240 
that year (digits 3-5). For example, L-band flight plan 17093 was flown in 2017 and was the 93rd sortie 241 
flown that year. Note that there may be more than one sortie flown on a given day, in which case each 242 
would have a unique flight plan identifier even though they were flown on the same calendar day and 243 
may include some or all of the same flight lines. 244 
 245 
In the Supplemental Information we provide hyperlinks to the JPL UAVSAR data portal 246 
(https://uavsar.jpl.nasa.gov/cgi-bin/data.pl). This provides links to the individual flight line data, maps, 247 
and related flight plans that acquired data over one or more of the individual flight lines. We hope this 248 
enables interested readers to explore the ABoVE L- and P-band SAR data more fully. These data and all 249 
other airborne data from the ABoVE campaigns may be explored on NASA’s EarthData ABoVE Portal 250 
(https://search.earthdata.nasa.gov/portal/above/search). Ground sites used to design the orientation and 251 
locations of the flight lines are archived at the ORNL DAAC [Hoy 2018].  252 



ESSD-2021-172-2024-01-22 - ABoVE L- & P-Band SAR Surveys - Revised - clean.docx  Last Saved: 22/01/2024 14:55 

8 
 

 253 

3 The ABoVE Airborne SAR Campaigns 254 

The L-band (Figure 2) and P-band (Figure 3) SARs were considered foundational measurements in the 255 
ABoVE airborne campaign strategy [Miller et al. 2019]. The ~80 flight lines described in the Appendix 256 
formed the framework for the remainder of the airborne remote sensing acquisitions. The ABoVE SAR 257 
strategy was to execute same day acquisitions of both L- and P-band flight lines (Figure 1) for a given 258 
sortie during 2017 to optimize dual frequency retrievals; however, technical issues forced us to fly the 259 
instruments sequentially. The baseline L-band campaigns were flown in June (DOY 164-173) and 260 
September (DOY 251-263) of 2017 to characterize the land surface during periods of minimum and 261 
maximum active layer thickness, respectively. Subsequent L-band campaigns in 2018 (DOY 231-241), 262 
2019 (DOY 247-260) and 2022 (DOY 226-237) provide a time series synched to maximum annual 263 
active layer thickness. P-band campaigns were conducted in May-June (DOY 142-157) and August 264 
(DOY 219-227) of 2017. There was a 2-day P-band mini-campaign in October 2017 to extend the 265 
legacy time series of early cold season acquisitions over the Seward Peninsula, NW Alaska and North 266 
Slope Alaska (DOY 280-283). 267 
 268 
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 269 
Figure 2. Sahtu students Mandy Bayha (front left) and Joanne Speakman (front center) pose with their mentor Cindy Gilday 270 
(front right) and NASA flight crew in Yellowknife, NT after completing a L-band SAR survey flight around the Great Slave Lake 271 
Region on 22 August 2018 (Flight Plan 18048). This experience gave these Northerners a new appreciation for how NASA was 272 
helping understand, preserve, and protect their lands. Photo Credit: Stephen M. Fochuk, Government of Northwest Territories. 273 

 274 
 275 
 276 
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 277 
Figure 3. The P-band SAR team with the NASA JSC G-III (N992NA) on the tarmac in Fairbanks, AK on 18 August 2017 after 278 
completing a survey of the Upper Mackenzie Valley (Flight plan 17083). Photo Credit: M. Moghaddam. 279 

  280 
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3.1 Alaskan Flight Lines 281 

The Alaskan SAR flight lines are broken into four main regional collections: A1) North Slope Alaska, 282 
A2) Seward Peninsula and Northwest Alaska, A3) Eastern Interior, and A4) Southwest Alaska and the 283 
Yukon-Kuskokwim Delta (Figure 1). Individual flight 284 
lines were planned based on long-term ground 285 
monitoring sites [Hoy et al. 2018], existing or planned 286 
field research, recent disturbances, important geographic 287 
or ecological gradients, complementary remote sensing 288 
data, and consultation with indigenous peoples and 289 
governments [Miller et al. 2019]. Legacy L- and P-band 290 
flight lines from the AirMOSS EV-S1 investigation 291 
[Allen et al. 2010; Moghaddam et al. 2016] in the 292 
Seward Peninsula, NW Alaska, and the North Slope 293 
were adapted for ABoVE use. Acquisition of P-band 294 
flight lines in the central Interior was not possible due to 295 
a military radar keep-out zone centered near Clear, AK. 296 
The keep-out zone is shown in all P-band flight plan 297 
maps (Ex. Figure 4). 298 
 299 

3.2 Canadian Flight Lines 300 

The Canadian SAR flight lines are broken into six regional collections: C1) Lower Mackenzie Valley 301 
and Northern Yukon Territory, C2) Southern Yukon Territory, C3) Upper Mackenzie Valley, C4) Great 302 
Slave Lake Region, C5) Transboundary Watershed, and C6) Southern Boreal Forest/BERMS. 303 
Individual lines were planned based on long-term ground monitoring sites [Hoy et al. 2018], existing or 304 
planned field research, recent disturbances, important geographic or ecological gradients, 305 
complementary remote sensing data, and consultation with local inhabitants and governments [Miller et 306 
al. 2019]. Legacy L- and P-band flight lines in the BERMS area from the CANEX 2010 campaign 307 
[Magagi et al. 2012] and the AirMOSS EV-S1 investigation [Chapin et al. 2012, 2018] provide the 308 
potential to establish longer time series.  309 
 310 
Flight planning for the Canadian transects benefited tremendously from consultations with our 311 
Canadian colleagues and interested parties in Yellowknife, NT and Whitehorse, YT in 2015 and 2016. 312 
Extensive discussions with the Government of the Northwest Territories (GNWT), the Government of 313 
the Yukon Territory, First Nations representatives, and scientists from Polar Knowledge Canada 314 
(POLAR), the NWT Center for Geomatics, and the Canadian Forestry Service (CFS) Northern Forestry 315 
Centre (NoFC) were critical to designing a strategy that captured many of their observing priorities. 316 
Subsequent discussions in Yellowknife during 2017 and 2018 enabled us to disseminate preliminary 317 
results and coordinate the flights with same-day field data acquisitions. 318 
 319 

Figure 4. The military radar at Clear, AK creates a large P-
band operations keep-out zone in the central Interior (red 
areas). The aircraft symbol marks our Fairbanks International 
Airport (PAFA) base of operations. Data acquisitions (blue 
bars) are from Flight Plan 17054. © Google Maps 
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4 TomoSAR Measurements of Boreal Forest Structure 320 

SAR tomographic methods have proven extremely adept at measuring vegetation vertical structure at a 321 
variety of wavelengths including L- and P-bands. The three-dimensional vegetation structure and its 322 
changes resulting from either natural or anthropogenic causes are key ecosystem monitoring parameters. 323 
ABoVE collected tomographic L- and P-band SAR data over the boreal forest near Delta Junction, AK 324 
in September of 2017. UAVSAR (L-band) and the German Space Agency’s F-SAR (L- and S-bands) 325 
acquired coordinated tomographic SAR data at the BERMS site near Saskatoon, SK in August 2018. 326 
Ground truth data sets and LiDAR data from the NASA LVIS system were also acquired at BERMS in 327 
2017 [Blair et al. 2018]. We compared L- and P-band tomography at Delta Junction and L-band and S-328 
band tomography from the two systems, to each other, and to the LiDAR data sets at BERMS. Here we 329 
provide a preliminary analysis of the data acquired at BERMS.  330 
 331 
BERMS is a southern boreal forest site with gentle topography dominated by Jack Pine and Aspen 332 
stands. There is active logging in the area and the site contains clear cut areas and new growth stands in 333 
various maturity states. The tomography data acquisition at BERMS was planned jointly in cooperation 334 
with the German Space Agency (DLR) who flew the F-SAR radar and acquired data at L-band and S-335 
band. The UAVSAR and F-SAR flight lines were designed to overlap each other and LVIS data 336 
acquired at the site in 2017. LVIS reacquired BERMS area data again in 2019 with the LVIS-F and 337 
LVIS-C instruments [https://lvis.gsfc.nasa.gov/Data/Maps/ABoVE2019Map.html]. Figure 5 (left) 338 
shows swaths for the UAVSAR and F-SAR radars along with the LVIS data. UAVSAR acquired L-339 
band tomography data on a racetrack pattern to get multiple incidence angle data for most points in the 340 
swath. Because UAVSAR and F-SAR fly at 12500 mAGL and 4200 mAGL, respectively, it is not 341 
possible to acquire data with the same incidence angles across the swath. Thus, we configured the flight 342 
lines to overlap so that the 40˚ incidence angle points would coincide. Figure 5 (right) shows photos 343 
collected at four of our seventeen ground truth sites during the tomoSAR acqusitions. 344 
 345 
LVIS full waveform LiDAR provides surface elevations and tree height estimates as well as LiDAR 346 
echo strength throughout the canopy and thereby information on the canopy internal structure. From 347 
LVIS waveforms many products are possible including surface elevation, tree height, moments of the 348 
returned waveform distribution and cumulative percentile elevations. We compared these waveforms to 349 
radar tomographic profiles for the different radar wavelengths.  350 
 351 
BERMS field measurements consist of soil moisture measurements at the 17 sites using the average of 352 
15 measurements distributed over 60 m × 60 m plots on the day of the UAVSAR radar observations. At 353 
BERMS the soil was very dry, roughly 10% volumetric soil moisture or less, during the radar 354 
observations. During the summer of 2020 diameter at breast height (DBH) measurements, used to 355 
estimate biomass, for a subset of our selected sites was planned but postponed due to COVID-19.  356 
 357 
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 358 
Figure 5. LEFT: Experimental design for the BERMS area TomoSAR flights in August 2018. The large White and yellow 359 
boxes show the ~18 km-wide UAVSAR L-band swaths. The offset is due to the off-nadir viewing angle of the L-band SAR – 360 
it is pointed to the south when flying the 270º swath and pointed north when flying the 90º swath. The small white box near 361 
the center of the image marks the ~3 km-wide F-SAR swath. LVIS LiDAR data are the ~1.5 km-wide colored swaths across 362 
the image; the color scaling reflects the canopy height. RIGHT: Photos from four of the 17 plots used for in situ ground truth 363 
measurement at BERMS. Vegetation at BERMS was mostly Jack Pine and Aspen with many areas having dense understory 364 
vegetation. Most areas have substantial detritus and ground litter left over from previous logging operations. © Google Earth 365 

Figure 6 compares UAVSAR L-band tomography with F-SAR L-band and S-band tomography and 366 
LVIS LiDAR data along a transect shown as a yellow line on the right in the figure. Tree height along 367 
the transect varied from 10-20 m. Middle of Figure 2 is the UAVSAR L-band transect. Top of the figure 368 
shows the LVIS RH25m RH50, RH75 and RH95 profiles overlaid on the UAVSAR tomogram and 369 
below are the radar and LiDAR vertical profiles. On the left of Figure 2 are the F-SAR L-band and S-370 
band tomographic profiles along with the LVIS RH100 data. The L-band radar profiles exhibit power 371 
concentrated at the base of the canopy whereas the LVIS LiDAR data show more return from the 372 
middle portion of the canopy. S-band obtains greater returns in the upper canopy compared to L-band 373 
and show more uniform scattering within the canopy. 374 
 375 

 376 
Figure 6. On the left shows location of transect as yellow line overlaid on UAVSAR imagery in grayscale and LVIS RH95 data is color 377 
where UAVSAR L-band, DLR F-SAR L and S-band and LVIS LiDAR profiles are compared. Center figure shows UAVSAR L-band 378 
tomographic profiles along the transect along with the corresponding LVIS LiDAR profiles. On the right are the corresponding F-SAR L 379 
and S-band tomographic profiles. The L-band radar profiles exhibit power concentrated at the base of the canopy whereas the LVIS LiDAR 380 
data show more return from the middle portion of the canopy. S-band obtains greater returns in the upper canopy compared to L-band and 381 
show more uniform scattering within the canopy. 382 
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5 ABoVE SAR Data Products 383 

Here we highlight some data sets enabling or derived from the ABoVE L- and P-band airborne SAR 384 
acquisitions. They represent the current state of the art for the study of permafrost-affected ecosystems 385 
using SAR. The ABoVE science team continues to develop additional products and the insights from 386 
these studies will be published separately. Links to the repositories for each of these data sets are 387 
provided below. 388 
 389 

5.1 Active Layer Thickness (ALT) 390 

The Permafrost Dynamics Observatory (PDO) data product estimates seasonal subsidence, active layer 391 
thickness (ALT), soil Volumetric Water Content (VWC), and uncertainties at 30-m resolution for 66 392 
flight lines across Alaska and Northwest Canada [Michaelides et al. 2021; Chen et al. 2021a,b].  The 393 
PDO retrieval uses L-band Synthetic Aperture Radar (SAR) data acquired by the Uninhabited Aerial 394 
Vehicle Synthetic Aperture Radar (UAVSAR) instrument and P-band data acquired by the Airborne 395 
Microwave Observatory of Subcanopy and Subsurface (AirMOSS) instrument.  The PDO results for 396 
each flight line appear in separate netcdf files. Each line has a spatial resolution of 30 meters on the 397 
ABoVE common grid with a width of 22 km based on the swath width of the AirMOSS instrument. The 398 
flight lines as a whole cover many ecosystem types and provide north-south and east-west gradients in 399 
ALT and soil moisture across the ABoVE domain (https://daac.ornl.gov/cgi-400 
bin/dsviewer.pl?ds_id=1796). 401 

Table 1 defines all variables in PDO data files.  The first eight variables represent the four primary 402 
outputs of the PDO algorithm and associated uncertainties.  Subsidence and ALT represent one-time 403 
measurements for the 2017 thaw season [Schaefer et al. 2021]. VWC, defined as the ratio of water 404 
volume to total soil volume, represents soil moisture at maximum thaw for 2017.  We assume a vertical 405 
profile of VWC and estimate Sw0 and wtd, the parameters that define the exact shape of the assumed 406 
profile. The product includes a Python script that will create a map of VWC averaged over any user 407 
specified depth range.  We included maps of VWC averaged over depth ranges of hand-held soil 408 
moisture probes commonly used in ABoVE fieldwork. 409 
 410 
Table 1. Variables in the Permafrost Dynamics Observatory (PDO) data files 411 

Variable Full Name Units Description 
alt Active Layer 

Thickness 
M Maximum thaw depth at the end of summer 

sub Subsidence M Surface subsidence from start of thaw after snow melt 
to maximum thaw depth in August or September 

Sw0 Surface Saturation 
Fraction 

m3/m3 The ratio of water volume to pore space volume at the 
surface or zero meters depth 

wtd Water Table Depth M The depth from the surface to the level where the soil 
is 100% saturated 
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alt_unc Uncertainty ALT M Uncertainty of estimated ALT 
sub_unc Uncertainty 

Subsidence 
M Uncertainty of estimated seasonal subsidence 

Sw0_unc Uncertainty Surface 
Saturation Fraction 

m3/m3 Uncertainty of estimated surface water saturation 
fraction 

wtd_unc Uncertainty Water 
Table Depth 

M Uncertainty of estimated water table depth 

mv_6cm VWC from 0 to 6 cm m3/m3 The ratio of water volume to soil volume averaged 
over zero to 6 cm depths 

mv_12cm VWC from 0 to 12 cm m3/m3 The ratio of water volume to soil volume averaged 
over zero to 12 cm depths 

mv_20cm VWC from 0 to 20 cm m3/m3 The ratio of water volume to soil volume averaged 
over zero to 20 cm depths 

mv_alt VWC from 0 to ALT m3/m3 The ratio of water volume to soil volume averaged 
over the entire active layer, from zero to ALT 

 5.2 Alaska Active Layer and Soil Moisture Properties from Airborne P-band SAR 412 
Chen et al. [2019b] synthesized the P-band polarimetric synthetic aperture radar (PolSAR) data 413 
collected in August and October of 2014 and 2015 during the AirMOSS EV-S1 investigation with the 414 
ABoVE P-band measurements collected in August and October of 2017 to estimate soil geophysical 415 
properties over 12 study sites in Northern Alaska (see Figure S2). Soil properties reported include the 416 
ALT, soil dielectric constant, soil moisture profile, surface roughness, and their respective uncertainty 417 
estimates at 30-m spatial resolution (https://doi.org/10.3334/ORNLDAAC/1657).  418 
 419 
Most of the study sites are located within the continuous permafrost zone and where the aboveground 420 
vegetation consisting mainly of dwarf shrub and tussock/sedge/moss tundra has a minimal impact on P-421 
band radar backscatter. These data were used as inputs to the L-band ReSALT data described in Section 422 
5.1.  423 

5.3 In Situ Soil Moisture and Thaw Depth Measurements 424 

In situ measurements of soil moisture, thaw depth, and other quantities are essential to calibrate and 425 
validate ABoVE SAR retrievals. The ABoVE team established a set of standardized measurement 426 
protocols for field plots to ensure uniform data products and quality in measurements collected by 427 
different groups across the ABoVE domain and across multiple years. Numerous teams collected in situ 428 
data during the initial 2017 Airborne Campaign, with more targeted field acquisitions conducted in 429 
2018 and 2019 [Bourgeau-Chavez et al. 2019a,b, 2021; Bakian-Dogaheh et al. 2020; Loboda et al. 430 
2021]. 431 
 432 
Bourgeau-Chavez and coworkers [2019a,b; 2021] collected soil moisture at 6, 12, 20, and 50 cm depths, 433 
ALT, soil profiles and biophysical measurements of aboveground canopy and ground layers in the 434 
Greater Slave Lake Region (C4). These data provide vegetation community characteristics and 435 
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biophysical data collected in 2018 from areas that were burned by wildfire in 2014 and 2015, and from 436 
nine unburned validation sites. Vegetation data include vegetation inventories, ground cover, regrowth, 437 
tree diameter and height, and woody seedling/sprouting data at burned sites, and similar vegetation 438 
community characterization at unburned validation sites. Additional measurements included soil 439 
moisture, collected for validation of the UAVSAR airborne collection, and depth to frozen ground at the 440 
nine unburned sites. This 2018 fieldwork completes four years of field sampling at the wildfire areas. 441 
 442 
Bakian-Dogaheh et al. [2020] measurements included soil dielectric properties, temperature, and 443 
moisture profiles, active layer thickness (ALT), and measurements of soil organic matter, bulk density, 444 
porosity, texture, and coarse root biomass from the surface to permafrost table in soil pits at selected 445 
sites along the Dalton Highway in Northern Alaska (A1). Their investigation sites included Franklin 446 
Bluffs, Sagwon, Happy Valley, Ice Cut, and Imnavait Creek. Measurements collected at Franklin Bluffs 447 
were concurrent with an August 2018 ABoVE L-band flight. 448 
(https://doi.org/10.3334/ORNLDAAC/1759). 449 
 450 
Loboda et al [2022] collected field measurements from unburned sites and single and repeated burns in 451 
the Noatak River valley and the Seward Peninsula regions of the Alaska tundra in July-August in the 452 
years 2016-2018. The data include ocular assessment of vegetation cover, soil moisture at 6 and 12 cm, 453 
soil temperature at 10 cm, organic soil thickness, thaw depth, and weather measurements. 454 
(https://doi.org/10.3334/ORNLDAAC/1919)  455 
 456 
The strong partnership between the ABoVE and NGEE-Arctic projects also resulted in coordinated 457 
same-day acquisition of airborne L- and P-band SAR data with in situ soil moisture and thaw depth 458 
measurements over the NGEE-Arctic study site at Barrow (Utqiagvik), AK and the Seward Peninsula 459 
watersheds near Teller, AK, Council, AK, and Kougarok, AK [Wilson et al. 2018]. These data provide 460 
critical calibration for the ABoVE SAR retrievals under continuous (Utqiagvik) and discontinuous 461 
(Seward Peninsula) permafrost conditions. Version 2 (V2) of the in situ soil moisture and thaw depth 462 
measurements covering years 2017-2019 was released in November 2020. 463 
(https://doi.org/10.5440/1423892) 464 

6 Synergy with Other Airborne Sensors 465 

Miller et al. [2019] described the overall ABoVE Airborne Campaign design strategy and anticipated 466 
airborne sensor synergies. Here, we highlight three SARs and a LiDAR – AirSWOT (NASA), F-SAR 467 
(DLR), LS-ASAR (ISRO) and LVIS (NASA) – whose acquisitions in the ABoVE domain were 468 
specifically designed to complement and leverage the ABoVE L- and/or P-band SAR acquisitions. 469 
Many other airborne sensor synergies are being exploited by the ABoVE science team and are reported 470 
separately.    471 
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6.1 AirSWOT 472 

NASA’s AirSWOT airborne instrument suite has been developed to support the Surface Water and 473 
Ocean Topography (SWOT) mission. The heart of AirSWOT is the Ka-band SWOT Phenomenology 474 
Airborne Radar (KaSPAR). KaSPAR collects two swaths of across-track interferometry data: one swath 475 
from nadir to 1 km and a second swath that extends from 1 km to 5 km off-nadir. AirSWOT flight lines 476 
for ABoVE were designed to center the AirSWOT swath on the center of the P-band swath for 477 
maximum overlap. KaSPAR is complemented by a high-resolution color-infrared (CIR) Digital Camera 478 
System [Kyzivat et al. 2019a,b] and a Precision Inertial Measurement Unit (IMU) for accurate attitude 479 
and positioning information. In 2015 AirSWOT made pre-ABoVE deployments to the Tanana River 480 
Valley [Altenau et al. 2017] and the Yukon Flats [Pitcher et al. 2019a, 2019b] in Region A3. 481 
 482 
In 2017, AirSWOT deployed to acquire 483 
early season (May-June) and late season 484 
(August) WSEs across the ABoVE 485 
domain. Figure 7 shows the concentration 486 
of AirSWOT lines in wetlands complexes 487 
in the boreal forest, across the Canadian 488 
Shield, along the Mackenzie River Valley, 489 
and into the Arctic tundra. All of these 490 
regions contain overlapping L- and P-491 
band acquisitions. Of special interest are 492 
the lines in the Peace-Athabasca Delta 493 
(36000: PADelE and 18035: PADelW) 494 
and the Yukon Flats (21508: YFlatW, 495 
21609: YflatE, and 04707: FtYuko) and 496 
Trail Valley Creek, NT (01703: TukHwy) 497 
where extensive on-water measurements 498 
were made [Pitcher et al. 2020]. Future 499 
joint analyses of the Ka- and L-band data 500 
will highlight the advances possible in 501 
pan-Arctic hydrology from the upcoming NISAR and SWOT missions.  502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
 511 
 512 

Figure 7. AirSWOT flight lines acquired during the 2017 ABoVE airborne 
campaign sampled wetlands ranging from the Arctic Ocean coast to the southern 
boreal forest. AirSWOT’s Ka-band acquisitions were designed to overlap with 
the L- and P-band SAR near-field acquisitions (See Fig. 1). © Google Earth 
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 513 
 514 
 515 

6.2 F-SAR 516 

The German Space Agency (DLR) developed 517 
the F-SAR instrument as an advanced 518 
airborne SAR testbed for technology and 519 
remote sensing applications [Reigber et al. 520 
2013]. F-SAR operates fully polarimetric at 521 
X-, C-, S-, L- and P-bands and features 522 
single-pass polarimetric interferometric SAR 523 
(PolInSAR) capabilities in X- and S-bands 524 
[Reigber et al. 2013]. The radar covers an 525 
off-nadir angle range of 25 to 60 degrees and 526 
provides sub-meter scale spatial resolution 527 
from flight altitudes up to 6000 mAGL.  528 
  529 
During August 2018 and April 2019, F-SAR 530 
was deployed to northern Canada as part of 531 
DLR’s permafrost airborne SAR experiment 532 
(PermASAR). It was configured in X-, C-, S- 533 
and L–band mode and flew onboard a Dornier 534 
Do 228-212 research aircraft. Measurements 535 
were acquired from ~4500 mAGL. 536 
Coordinated tomoSAR transects were flown 537 
over the BERMS site in the southern boreal 538 
forest on 18 August (UAVSAR) and 23 539 
August (F-SAR). Preliminary results [Hensley 540 
et al. 2020] are summarized in Section 6. F-541 
SAR also acquired data over the Scotty Creek 542 
watershed, flux towers, and AOIs (Figure 8), 543 
the Smith Creek flux tower (Wrigley, NT), 544 
Baker Lake, Havipak Creek, Trail Valley Creek, and Herschel Island, providing extensive opportunities to cross-545 
compare F-SAR and the ABoVE SAR 546 
acquisitions. 547 
 548 
  549 

Figure 8. Overlap of the F-SAR acquisition at Scotty Creek, NT (yellow box) 
and the ABoVE L-band SAR line 16713 (red box & polarized SAR false color). 
The ABoVE line also captures Scotty Creek AOIs 2 – 6 (see Region C3 details, 
Sec. 5.3). The SAR data will complement and benefit from the extensive ground-
based data acquired in this area [Quinton et al. 2019]. © Google Earth 
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6.3 LS-ASAR (ISRO) 550 

The Indian Space Research Organisation (ISRO) 551 
and NASA are jointly developing the NASA-552 
ISRO Synthetic Aperture Radar (NISAR), which 553 
will map Earth's surface in L-band and S-band 554 
every 12 days [Rosen et al. 2017]. As a precursor 555 
to the NISAR mission, ISRO has developed a L- 556 
and S-Band-Airborne SAR (LS-ASAR) to 557 
prepare the community to maximize the scientific 558 
and societal benefits of NISAR data [Ramanujam 559 
et al. 2016; 2019; Mehra et al. 2019]. LS-ASAR 560 
operates in Dual, Quad, and Hybrid Polarization 561 
modes in both L- and S-bands. It covers 562 
incidence angles from 24°-77° with swaths 563 
ranging from 5.5 km to 15 km. 564 
 565 
In December 2019 LS-ASAR flew a series of 566 
Arctic sea ice sorties from Fairbanks, AK. During 567 
this deployment, LS-ASAR also acquired data 568 
over a number of the ABoVE flight lines in 569 
Regions A1 (North Slope) and A3 (Eastern 570 
Interior) as well as over a number of glacier sites 571 
in the Alaska Range. The acquisitions are 572 
available via the NASA & ISRO ASAR 573 
Campaign page (https://uavsar.jpl.nasa.gov/cgi-574 
bin/deployment.pl?id=L20191101) and are summarized in Figure 9. These data provide snow-on 575 
coverage that was a known deficiency of previous ABoVE airborne campaigns. Additionally, the LS-576 
ASAR data extend coverage of these regions to S-band.  577 
 578 

6.4 LVIS 579 

The Land, Vegetation, and Ice Sensor (LVIS) is an airborne, full waveform scanning laser altimeter 580 
which produces topographic maps with decimeter accuracy as well as vegetation vertical height and 581 
structure measurements [Blair et al. 1999a,b]. Flight lines for LVIS (~1.4 km swath) were slaved to the 582 
centerline of the P-band swath during ABoVE, except where deviations were required to capture critical 583 
ground sites. LVIS-C (classic configuration) was deployed in 2017 aboard a B-200 and achieved limited 584 
coverage (Figure 10, left panel). During 2019, the new LVIS Facility instrument (LVIS-F) as well as 585 
LVIS-C were deployed on the NASA Gulfstream-V and achieved coverage of all legacy SAR lines 586 
(Figure 10, right panel). 587 
 588 

Figure 9. L- and S-band SAR lines acquired over Alaska during 
the December 2019 ASAR Campaign. ASAR flight lines on the 
North Slope, in the Yukon Flats, and in the Western Interior 
exactly overlap ABoVE flight lines. These early winter acquisitions 
provide a preliminary look at cold season SAR data that will be 
explored in greater detail in the planned ABoVE-SnowEx 
campaign. © Google Earth 
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LVIS’ unique capability for measuring the sub-meter topography beneath boreal forest canopies 589 
complemented the tomoSAR acquisitions over Delta Junction, AK and the BERMS site in northern 590 
Saskatchewan [Hensley et al. 2020; Section 6]. LVIS altimetry will also prove valuable in analyses of 591 
such variables as permafrost degradation, active layer thickness, and water surface elevation; however, 592 
LVIS’ significantly narrower swath limits the spatial extent over which these analyses may be 593 
performed.    594 
 595 
In June-July 2017, the NASA LVIS Facility was deployed to sites in northern Canada and Alaska as 596 
part of NASA's Arctic-Boreal Vulnerability Experiment (ABoVE) 2017 airborne campaign. During the 597 
4-week deployment of LVIS-F, a total of 15 flights were flown over diverse science targets based out of 598 
multiple airports in Canada and Alaska. Data are available in both Level1B and Level2 formats (Table 599 
2). The Level1b data files contain the geolocated laser waveform data for each laser footprint. The 600 
Level2 data files contain canopy top and ground elevations and relative heights derived from the 601 
Level1b data. ABoVE LVIS L1B Geolocated Return Energy Waveforms, Version 1 [Blair and Hofton, 602 
2018a] and L2 Geolocated Surface Elevation Product, Version 1 [Blair and Hofton, 2018b] may be 603 
obtained from the National Snow and Ice Data Center via https://doi.org/10.5067/UMRAWS57QAFU 604 
and https://doi.org/10.5067/IA5WAX7K3YGY, respectively. 605 
 606 

 607 
Figure 10. Flight lines for the LVIS 2017 flights (left) and 2019 flights (right) were designed ot overlap with the near-filed portions 608 
of the L-band and P-band SAR swaths to maximize opportunities for synergistic science. Aircraft and weather limited coverage 609 
during the 2017 campaign, but complete coverage of the SAR flight lines was achieved in 2019. These data will enable studies of 610 
SAR/LiDAR fusion over the Arctic-boreal regions as a precursor to NISAR/IceSat-2 studies. © National Geographic Society 611 
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 612 

Table 2. 2017 LVIS Data Products 613 

LVIS Data Products Format 
Flight Trajectories KMZ 
Camera Trajectories KMZ 
LVIS L1A Camera Imagery JPG* 
LVIS L1B Geolocated Waveforms HDF, LDS 2.0.2 
LVIS L2 Elevation and Height Products ASCII TXT, LDS 2.0.2a 

 614 
In July-August 2019, the NASA LVIS Facility and LVIS Classic were deployed to sites in northern 615 
Canada and Alaska as part of NASA's ABoVE 2019 airborne campaign. The increased range and 616 
endurance of the Gulfstream-V platform enabled extensive sampling, including: all L-band SAR lines, 617 
multiple IceSAT-2 underflights, and numerous ABoVE field sites. The available data products are given 618 
in Table 3. 619 
 620 
Table 3. 2019 LVIS Data Products 621 

LVIS Data Products Format 
Flight Trajectories KMZ 
Coverage Maps KMZ 
LVIS Classic L1B Geolocated Waveforms HDF, LDS 2.0.3 
LVIS Classic L2 Elevation and Height Products ASCII TXT, LDS 2.0.3 
LVIS Facility L1B Geolocated Waveforms HDF, LDS 2.0.3 
LVIS Facility L2 Elevation and Height Products ASCII TXT, LDS 2.0.3 

6.5 G-LiHT 622 

Zhao et al. [2022] used ABoVE airborne L- and P-band SAR to map boreal forest species and canopy 623 
height in the Tanana Valley State Forest (TVSF) near Delta Junction, AK. They employed machine 624 
learning (random forests) to train separate regression models for canopy height mapping and a 625 
classification model for forest species mapping. Data derived from NASA’s Goddard LiDAR, 626 
Hyperspectral, and Thermal Imager (G-LiHT) system [Cook et al. 2013] were treated as ground truth 627 
for the canopy height model (CHM). Forest species prediction were referenced against (TVSF) Timber 628 
Inventory and Forest Inventory and Analysis (FIA) data. The experimental results show the proposed 629 
method yields a root-mean-square error of 1.90 m for forest height estimation and overall accuracy of 630 
79.5% for forest species classification. A significant finding was that PolSAR decomposition 631 
parameters, such as volume scattering and entropy, strongly influenced the canopy height estimates. 632 
Interestingly, topography played a crucial role in the species classification. 633 
 634 
 635 
 636 
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7 Data Availability 637 

 638 
Links to the ABoVE L- and P-band SAR products, supporting data, derived products, and ancillary 639 
measurements are provided in the Appendix. Formal citations to all DOIs are provided in the 640 
References. The L- and P-band SAR data may be found at the JPL UAVSAR data portal, 641 
https://uavsar.jpl.nasa.gov/cgi-bin/data.pl. L-band data may also be accessed via the UAVSAR portal at 642 
the Alaska SAR Facility (ASF) DAAC (https://asf.alaska.edu/data-sets/sar-data-sets/uavsar/) while 643 
AirMOSS P-band data may be accessed via the ORNL DAAC, https://daac.ornl.gov/get_data/#projects, 644 
select “AirMOSS”. 645 
 646 
Miller et al. [2023; https://doi.org/10.3334/ORNLDAAC/2150] provides a detailed description of all 80 647 
SAR flight lines and how each fits into the ABoVE experimental design. Extensive maps, tables, and 648 
hyperlinks give direct access to every flight plan as well as individual flight lines. It is a guide to enable 649 
interested readers to fully explore the ABoVE L- and P-band SAR data. 650 
 651 
 652 

8 Summary 653 

The ABoVE project conducted airborne L-band PolInSAR surveys in 2017, 2018, 2019 and 2022 across 654 
Alaska and northwestern Canada. These were complemented by a P-band PolInSAR survey in 2017 655 
along the same transects. This time series provides a powerful data set with which to evaluate the state 656 
of permafrost, active layer thickness, soil moisture, boreal forest structure, above ground biomass, and 657 
water surface elevation. Additional studies leverage the PolInSAR data to address fire disturbance and 658 
recovery, thermokarst feature development, and retrogressive permafrost thaw megaslumps. Many of 659 
these analyses are in progress and will be published separately.  660 
 661 
Miller et al. [2023] provides extensive, fully hyperlinked notes on the airborne SAR data. Researchers 662 
may discover these data via daily sorties and/or individual flight lines. Alternatively, they may be 663 
explored via the interactive map at the JPL UAVSAR data portal, (https://uavsar.jpl.nasa.gov/cgi-664 
bin/data.pl) which provides links to the individual flight line data, maps, and related flight plans that 665 
acquired data over one or more of the individual flight lines. We have also identified the ground-based 666 
anchor points for each flight line to facilitate comparisons with those data. Calibration and validation 667 
data sets as well as many derived products produced by the ABoVE Science Team may be found at the 668 
Arctic Boreal Vulnerability Experiment (ABoVE) landing page at the ORNL DAAC 669 
(https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=34).  670 
 671 
The example studies (Sections 4 and 5) and multi-instrument synergies (Section 6) described here are 672 
only a small portion of the studies currently being undertaken by the ABoVE Science Team and the 673 
SAR Working Group. We anticipate many new and innovative uses of the L-band and P-band SAR data 674 
as the ABoVE team expands its range of synthesis activities in Phase 3. 675 
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 676 
The ABoVE L-band SAR flights planned for 2020 and 2021 were postponed due to the global COVID-677 
19 pandemic and safety considerations; however, flights were resumed in 2022 and we anticipate at 678 
least one more thaw season campaign in 2024. Finally, we note that the data and analyses discussed 679 
here set the stage for the upcoming NISAR mission (expected launch in 2023). NISAR will deliver 680 
global L- and S-band imagery with a 12-day revisit. Its emphasis on snow- and ice-covered surfaces has 681 
obvious applications in the ABoVE domain, and its global coverage will allow researchers to test the 682 
methods developed for the ABoVE domain across the pan-Arctic. Beyond NISAR, NASA is studying 683 
architectures for the Surface Deformation and Change (SDC) Earth System Observatory Mission and 684 
ESA are developing the Rose-L Copernicus expansion mission. SDC and Rose-L are also envisioned as 685 
an L-band sensors. NISAR, SDC, and Rose-L will all benefit from the ABoVE SAR studies, 686 
algorithmic advances, and lessons learned.  687 

9 Supplemental Information 688 

The Supplemental Information (SI) contains detailed descriptions of all L-band flight lines plus tables 689 
with hyperlinks to all L-band lines and sorties. Additionally, the SI includes tables and links to the P-690 
band flight lines acquired during the ABoVE campaigns and to all Legacy L-band and P-band flight 691 
lines. The SI is identical to the file  <Summary ABoVE L- & P-Band SAR Surveys - hyperlinked.pdf> 692 
that may be found in the /data folder of the uncompressed data download from Miller et al. [2023; 693 
https://doi.org/10.3334/ORNLDAAC/2150]. 694 
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