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Abstract.

In recent decades the decline of the Arctic sea ice has modified vertical momentum fluxes from the atmosphere to the ice and

the ocean, thereby affecting the surface circulation. In the past ten years satellite altimetry has contributed to understand these

changes. However, data from ice-covered regions require dedicated processing, originating inconsistency between ice-covered

and open ocean regions in terms of biases, corrections and data coverage. Thus, efforts to generate consistent Arctic-wide5

datasets are still required to enable the study of the Arctic Ocean surface circulation at basin-wide scales. Here we provide and

assess a monthly gridded dataset of sea surface height anomaly and geostrophic velocity. This dataset is based on Cryosat-2

observations over ice-covered and open ocean areas of the Arctic up to 88º N for the period 2011 to 2018, interpolated using

the Data-Interpolating Variational Analysis (DIVA) method. Geostrophic velocity was not available north of 82° N before

this study. To examine the robustness of our results, we compare the generated fields to one independent altimetry dataset10

and independent data of ocean bottom pressure, steric height and near-surface ocean velocity from moorings. Results from

the comparison to near-surface ocean velocity show that our geostrophic velocity fields can resolve seasonal to interannual

variability of boundary currents wider than about 50 km. We further discuss the seasonal cycle of sea surface height and

geostrophic velocity in the context of previous literature. Large scale features emerge, i.e. Arctic-wide maximum sea surface

height between October and January, with the highest amplitude over the shelves, and basin wide seasonal acceleration of15

Arctic slope currents in winter. We suggest that this dataset can be used to study not only the large scale sea surface height and

circulation but also the regionally confined boundary currents. The dataset is available in netCDF format from PANGAEA at

[data currently under review].

1 Introduction

The sea ice decline due to atmospheric warming in the Arctic Ocean has resulted in the modification of vertical momentum20

fluxes from the atmosphere to the ice and the ocean. Evidence of a positive trend, particularly strong in the summer season,

has been found in sea ice drift observations (Spreen et al., 2011; Kwok et al., 2013; Kaur et al., 2018). Likewise, strong

intensification of the surface ocean circulation has been documented in large scale circulation systems such as the Beaufort

Gyre and the Transpolar Drift (McPhee, 2012; Armitage et al., 2016; Ma et al., 2017). However, it is currently not well known
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how near-surface ocean currents diverge from the ice drift, since the presence of ice limits the amount of direct observations of25

the upper ocean.

Before the advent of satellite observations, the large scale Arctic Ocean surface circulation was partially reconstructed from

in-situ data and models, albeit with limitations in terms of spatial extent or processes represented. On the one hand, in-situ

observations of surface ocean currents are sparse due to the remoteness of the Arctic environment and to the high risk of

loosing sensors in ice-covered areas (Haller et al., 2014). On the other hand, while numerical models allow for the study of30

basin-wide processes, they rely largely on theoretical formulation of physical processes, often constrained by insufficient in-

situ observations (Proshutinsky and Johnson, 1997; Jahn et al., 2010). Satellite-derived data then provided novel alternatives to

tackle these issues. For instance, based on assumptions of the ice response to wind forcing (i.e., free drift), Kwok et al. (2013)

used satellite sea ice drift observations to deduce near-surface ocean circulation.

Beyond ice drift observations, satellite altimetry can provide a more direct way to observe near-surface ocean currents. This35

is because altimetry derived sea surface height can be used to compute the geostrophic velocity, a component of the ocean

surface velocity which is dominant in the Arctic on spatial scales larger than ten kilometres (Nurser and Bacon, 2014) and

time scales longer than a few days. Satellite altimetry missions over the Arctic Ocean started twenty years ago, with the first

missions covering it only partially in space and time (e.g., ERS 1 and 2, Envisat, CryoSat-2, ICEsat-1 and -2, Sentinel-3), but

with coverage up to 88° N being provided by the CryoSat-2 mission since 2010 (Wingham et al., 2006).40

Methodological developments of altimetry were originally aimed at the study of the cryosphere (Laxon, 1994; Alexandrov

et al., 2010; Ricker et al., 2014; Armitage and Davidson, 2014), with efforts towards the generation of altimetric datasets for

oceanographic purposes being made later (e.g., Bouffard et al., 2017). Initially, oceanographic datasets were limited either to

the open ocean or to the ice-covered ocean (Kwok and Morison, 2011, 2016; Mizobata et al., 2016). Only in the last five years

have few basin-wide multi-annual gridded sea surface height datasets been generated (Armitage et al., 2016; Rose et al., 2019;45

Guillot and Prandi, 2020).

There are some caveats though. It is not known how these products compare to each other, nor to what extent are their spatial

and temporal resolution robust (e.g., noise to signal ratio). Differences between these datasets might be introduced by the

altimeter signal processing (Ricker et al., 2014; Armitage and Davidson, 2014; Passaro et al., 2014), measurements corrections

(Carrère et al., 2016; Ricker et al., 2016; Birol et al., 2017) and/or interpolation of observations onto regular grids. Yet, to date50

there have been only few assessments of altimetry-derived sea surface height and circulation relative to in situ data. These have

focused on few areas such as the Nordic seas, the Barents Sea, the Beaufort Gyre and coasts. Assessments for other regions

where currents play an important role for the global climate, such as the Arctic gateways and the Arctic continental slopes,

remain to be done.

In this study we provide a new Arctic-wide gridded dataset of sea surface height and geostrophic velocity at monthly55

resolution over the period 2011 to 2018. This dataset was obtained from Cryosat-2 observations covering both the ice-covered

and ice-free Arctic Ocean. Our specific objectives are:

– to document the methods used to produce the monthly sea surface height and geostrophic velocity fields;
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– to indicate methodological steps likely to introduce noise or biases in altimetry gridded products at monthly resolution,

via a comparison with an independent altimetry dataset;60

– to assess this dataset through comparisons with in situ data from the Fram Strait and the Laptev Sea continental slope,

and to provide indications regarding its temporal and spatial resolution.

This paper is structured as follows. In Sect. 2 we describe how altimetry-derived variables are commonly calculated, thereby

defining the notation used in this work. In Sect. 3 we provide a description (e.g, sources, spatial and temporal coverage) of: the

altimetry data used to derive our monthly dataset; the independent altimetry and moorings datasets used for evaluation; and the65

model data used to determine the appropriate length scales for the interpolation of altimetry. In the methods section we first

describe the in-situ data processing (Sect. 4.1) and then the derivation of monthly gridded sea surface height and geostrophic

velocity from altimetry observations (Sect. 4.2, 4.3, 4.4). In Sect. 5 we present the monthly fields and their evaluation against

independent altimetry measurements and in-situ data. Comparing against in-situ data we identify the temporal and spatial

scales over which they have highest agreement. In the same section we also describe the seasonal cycle emerging from the70

final monthly maps. Lastly, in Sect. 6 we discuss the spatial and temporal resolution of our dataset and put its seasonal cycle in

context with other studies.

2 Ocean altimetry background

Relevant to physical oceanography are the steric and mass changes affecting the vertical extent of the ocean water column.

The sum of these two components, known as dynamic ocean topography (η), can be derived from measurements of sea surface75

height (h), as obtained from satellite altimetry. h is the ocean height over a reference ellipsoid (WGS84 for Cryosat-2) and is

calculated by subtracting the measurement of the satellite range to the sea surface (R) from the satellite altitude H over the

ellipsoid (Eq. 1):

h=H − (R+C) (1)

where C are corrections to the R measurement. η is then derived from h by removing the geoid height (G), i.e. the static ocean80

height component given the Earth’s gravitational field, as follows (Eq. 2):

η(t) = h(t)−G (2)

We use in this work along track datasets of sea surface height anomaly η′, the time varying component of η. This is given by h

referenced to a long-term mean sea surface height 〈h〉 (Eq. 3):

η′(t) = h′(t) = h(t)−〈h〉 (3)85

In order to compute the absolute geostrophic velocity, we reconstruct the full η by adding the mean dynamic topography 〈η〉,
the temporal mean of η. This is derived from 〈h〉 by removing G, as estimated via a geoid model (e.g., Rio et al., 2011; Farrell

et al., 2012; Knudsen et al., 2019; Mulet et al., 2021).
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η is used to derive geostrophic velocities at the sea surface. Geostrophic velocities result from the balance of the pressure

gradient force and the Coriolis force (Eq. 4):90



ug =− g

f
∂η
∂y

vg = g
f
∂η
∂x

(4)

where g is the gravitational acceleration and f is the Coriolis parameter.

The nomenclature introduced in this section will be used below to describe the datasets used and the ones resulting from the

present analysis.

3 Data95

3.1 Cryosat-2 sea surface height in ice-covered and ice-free regions

The monthly gridded dataset generated in this study is based on two sets of η′ observations, one over ice-covered and a second

over ice-free areas. Observations are from the European Space Agency’s (ESA) Cryosat-2 mission, provided along the satellite

tracks (ESA level L2, Bouzinac (2012)). For ice-covered areas we use the Alfred Wegener Institute (AWI) dataset data version

2.2 (Hendricks and Ricker, 2019); year round (including summer), with along-track resolution of 300 m. In this dataset, radar100

echoes from the surface are classified into sea ice and open water. Then, sea surface elevations from openings in the sea ice

cover (i.e. leads) are retrieved using a retracking algorithm (Ricker et al., 2014). The processing includes waveforms in the

Synthetic Aperture Radar (SAR) and the interferometric SAR (SARIn) modes (ESA level L1b dataset; see the areas covered

by each altimeter mode at http://cryosat.mssl.ucl.ac.uk/qa/mode.php). Over the open ocean we use observations archived in the

Radar Altimetry Database System, with along-track resolution of 7 km (RADS, Scharroo et al. (2013)).105

From both datasets we select observations between 60º N and 88º N over the period 2011-2018. A caveat is however,

that neither of these two datasets includes observations in the marginal ice zone (ice concentration between 15% and 70%),

given that neither the AWI nor the RADS retracking models can fit both of open ocean and leads waveforms. Therefore, we

acknowledge a data gap between 15% and 70% ice concentration.

All η′ observations are referenced to the global DTU15MSS mean sea surface (Technical University of Denmark, updated110

from the DTU13MSS described in Andersen et al. (2015)), which uses multimission altimeter data including the satellites

Envisat, ICEsat and Cryosat-2. To reconstruct η, we added our final gridded η′ to the mean dynamic topography DTU17MDT,

which is the DTU15MSS relative to the OGMOC geoid model (Knudsen et al., 2019).

3.2 Datasets used for comparisons

We use independent satellite and in-situ datasets to evaluate the final altimetry-derived η′ and (ug,vg) monthly fields. Further-115

more, model data are used to determine the decorrelation length scale used for the interpolation. These datasets are described

below and their location is indicated in Fig.1.
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Figure 1. Arctic Ocean map and bathymetry (IBCAO) with the main sub-regions (green acronyms) and the mean surface circulation path-

ways (purple arrows and acronyms). Depth contours are drawn at 1000 m and 2000 m depth. Regions: Nordic Seas: Greenland Sea (GS),

Norwegian Sea (NS); Arctic Shelves: Barents Sea (BS), Kara Sea (KS), Laptev Sea (LS), Eastern Siberian Shelf (ESS), Chukchi Sea (CS),

Greenland Shelf (GSh); Arctic Deep Basins: Canada Basin (CB), Eurasian Basins (EB) (Nansen Basin (NB)); Baffin Bay (BB); Canadian

Arctic Archipelago (CAA); Fram Strait (FS); Bering Strait (BeS). Currents: West Spitsbergen Current (WSC); Norwegian Atlantic Cur-

rent (NwAC); Barents Sea Branch (BSB); Vilkitsky Strait Current (VSC); Arctic Circumpolar Boundary Current (ACBC); Siberian Coastal

Current (SCC); Pacific Water inflow (PW); Beaufort Gyre (BG); TransPolar Drift (TPD); East Greenland Current (EGC); West Greenland

Current (WGC); Baffin Island Current (BIC).
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3.2.1 Sea surface height

Monthly η′ fields were compared to an independent satellite gridded dataset over the entire Arctic. This dataset is described by

Armitage et al. (2016) and will be hereafter referret to as CPOM DOT (Centre for Polar Observation and Modelling Dynamic120

Ocean Topography, available at http://www.cpom.ucl.ac.uk/dynamic_topography). The CPOM DOT is a regional Arctic dataset

spanning the years 2003-2014, derived from sea surface height observations (relying on the Envisat and Cryosat-2 satellite

missions) and a geoid model (GOCO3s). Monthly fields are provided on a 0.75°×0.25° longitude-latitude grid, up to a latitude

of 82° N.

We also compared η′ locally, to the sum of in-situ measurements of steric height (the height component due to changes in125

density) and bottom pressure equivalent height (related to changes in water mass). These two components were derived from

temperature, salinity and ocean bottom pressure data from moorings at three sites. The moorings were located in the southern

Fram Strait ([78.17º N, 0º E], hereafter FS_S), at the shelf break north of Arctic Cape, the headland of Severnaya Zemlya

([82.22º N, 94.85º E], hereafter AC), and down the continental slope north of the Laptev Sea ([78.46º-81.15º N, 125.70º E],

moorings M1_4 and M1_6). FS_S is part of a meridional mooring array deployed by the Alfred Wegener Institute (AWI)130

in the Fram Strait between 2016 and 2018. This mooring was composed of three Conductivity-Temperature-Depth (CTD)

sensors at depths of 49 m, 231 m, and 729 m. Data are available through PANGAEA (von Appen et al., 2019). The AC is

one of seven moorings deployed between 2015 and 2018 within the context of the German-Russian project Changing Arctic

Transpolar System (CATS). This mooring was composed of six CTD sensors at 50 m, 131 m, 196 m, 293 m, 593 m, and 1448

m. Moorings M1_4 and M1_6 are part of a six mooring array deployed in the Laptev Sea continental slope between 2013135

and 2015 within the Nansen and Amundsen Basins Observations System II project (NABOS-II). Steric height and bottom

pressure equivalent height were calculated from the moorings M1_6 and M1_4 respectively, given that not all measurements

were available from a single mooring. M1_4 was composed of one McLane Moored Profiler measuring between 70 m and 760

m, and three CTD sensors at 26 m, 42 m and 53 m. Hereafter, we indicate the combination of data from the two moorings as

as M1_4p6. Data are available from the Arctic Data Center, (Polyakov, 2016, 2019; Polyakov and Rembert, 2019).140

3.2.2 Velocity

We used measurements of near-surface velocity from two mooring lines to evaluate monthly geostrophic velocity in the Fram

Strait and down the continental slope of the Laptev Sea. The Fram Strait array comprises 17 moorings located along a zonal

section at 78°50’ N, between the longitudes 9° W and 8° E, maintained since 1997 by the AWI (moorings F1–F10 and F15/F16;

Beszczynska-Möller et al. (2012)) and the Norwegian Polar Institute (NPI, moorings F11–F14 and F17; de Steur et al. (2009)).145

Velocity measurements were acquired by Acoustic Doppler Current Profilers (ADCP) and Current Meters (CM). We performed

the comparison using the time series recorded by the shallower CM (75 m) and ADCP measurements interpolated to the CM

sensor depth. The measurement depth can vary between 75 m and 200 m if the mooring line is slanted by currents. We limited

our analysis to the period 2011-2018. Mooring positions and the monthly data availability for the period 2011-2018 are detailed

in Table 1. The mooring data are available through PANGAEA (von Appen et al., 2019; von Appen, 2019). For the Laptev150
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Table 1. Names, position and monthly data availability from the moorings along the Fram Strait array. Variable positions indicate the

relocation of the moorings in some years. In the third column, values in parenthesis indicate the years of data availability.

Name Longitude Latitude num. months (years)

F1 8°40’ E 78°50’ N 7 (2015)

F2 8°20’ E 78°49’–79°00’ N 42 (2011-2012,2015-2018)

F3 8°00’ E 78°50’–79°00’ N 73 (2011-2018)

F4 7°01’ E 78°50’–79°00’ N 71 (2011-2018)

F5 5°40’–6°01’ E 78°50’–79°00’ N 73 (2011-2018)

F6 4°20’–5°00’ E 78°50’–79°00’ N 34 (2015-2018)

F7 4°00’–4°05’ E 78°50’ N 38 (2012-2015)

F8 2°45’–2°48’ E 78°50’ N 25 (2012-2014)

F15 1°35’–1°36’ E 78°50’ N 42 (2011-2014)

F16 0°00’–0°26’ E 78°50’ N 70 (2011-2014, 2016-2018)

F9 0°49’ W 78°50’ N 21 (2011-2012, 2014)

F10 2°03’–1°59’ W 78°50’ N 68 (2011-2016)

F11 3°04’ W 78°48’ N 9 (2011-2012)

F12 4°01’–3°59’ W 78°48’ N 13 (2011-2012)

F13 5°00’ W 78°50’ N 20 (2011-2012)

F14 6°30’ W 78°49’ N 12 (2011-2012)

F17 8°7 ’ W 78°50’ N 13 (2011-2012)

Sea, data were used from four (out of six) moorings deployed in a meridional transect along the 126° E meridian within the

context of the NABOS-II project (moorings M1_1 to M1_4). ADCP velocity measurements were averaged in the upper 50 m.

These deployments have been carried out twice, in 2013 and 2015. Moorings were respectively recovered in 2015 and 2018,

providing a record spanning 5 years (data are available from the Arctic Data Center, Polyakov (2016, 2019); Polyakov and

Rembert (2019)). Moorings positions and the monthly data availability are detailed in Table 2.155
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Table 2. Names, position, monthly data availability and depth range over which ADCP data were averaged, for the mooring array along

the Laptev Sea continental slope. Variable positions indicate the relocation of the moorings in some years. In the third column, values in

parenthesis indicate the years of data availability.

Name Longitude Latitude num. months (years) Used depth range (m)

M1_1 125°48’–125°50’ E 77°04’ N 62 (2013-2018) 30-50

M1_2 125°48’ E 77°10’ N 60 (2013-2018) 10-50

M1_3 125°48’ E 77°39’ N 61 (2013-2018) 10-50

M1_4 125°54’–125°58’ E 78°28’ N 61 (2013-2018) 10-50

3.3 Finite Elements Sea ice-Ocean Model (FESOM) output

The decorrelation length scale used for the interpolation of along-track sea surface height was determined based on model data.

We used monthly geostrophic velocity derived from sea surface height outputs of the Finite Elements Sea ice-Ocean Model

(FESOM) version 1.4. FESOM 1.4 is a coupled sea ice - ocean model, working on a triangular unstructured mesh. The model

has a resolution of 4.5 km over the Arctic Ocean and has been described and validated by Wang et al. (2018) and Wang et al.160

(2019). The run used in this work is the historical run described by Wang et al. (2020), forced by atmospheric reanalysis data

of JRA55-do v.1.3 (Tsujino et al., 2018).

4 Methods

In this section we provide a description of the in-situ data processing (Sect 4.1) and of the steps followed to derive altimetry

monthly fields from along-track satellite measurements (Sect. 4.2, 4.3 and 4.4). In the last two subsections we provide details165

on how we performed the comparisons with independent datasets and how we computed the seasonal cycle (Sect. 4.5, 4.6).

4.1 Processing of in situ data

In-situ steric height anomaly (η′S) and bottom pressure equivalent height anomaly (η′P ) were computed from measurements of

water density and ocean bottom pressure. The relation between η′ and the time anomaly of i) the vertical density profile (ρ′(z))

and ii) the ocean bottom pressure (P ′b), is derived by integration of the hydrostatic balance from the sea surface down to the170

bottom depth, D (Eq. 5):

P ′b = ρ0gη
′+ g

0∫

−D

ρ′(z)dz (5)
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where g is the gravitational acceleration and ρ0 is a reference ocean water density, set to 1028 kg m−3. Based on this relation,

we defined η′S and η′P as (Eq. 6):



η′S =− 1

ρ0

∫ 0

−H ρ
′(z)dz

η′P = P ′b
ρ0g

(6)175

We computed η′S and η′P from measurements of ρ′(z) and P ′b, at the FS_S, AC and M1_4p6 mooring positions. Vertical

profiles, ρ′(z), were obtained from temperature and salinity profiles using the UNESCO (1983) formula for density. In turn,

temperature and salinity profiles were obtained from moored-sensor data by linear interpolation on a regular pressure grid (2

dbar) between the shallowest sensor (FS_S = 50 m, AC = 50 m, M1_4p6 = 26 m) and the deepest sensor (FS_S = 729 m, AC =

1448 m, M1_4p6 = 700 m). Data was extrapolated from the shallowest sensor to the sea surface assuming constant temperature180

and salinity, and equal to the uppermost measurement. Below the deepest sensor we assumed the density anomaly to be zero

and did not perform extrapolation to the bottom. This conservative approach might have resulted in the underestimation of η′S .

Ocean bottom pressure records P ′b were de-tided using the Matlab function t_tide (Pawlowicz et al., 2002) and instrumental

drifts were removed. Unfortunately the time series at FS_S exhibited large pressure anomalies, developing on timescales of

several months, whose amplitude was at least one order of magnitude too large to be explained by changes in ocean currents.185

Therefore, we high-pass filtered this time series with a cutoff frequency of 2 months. All other bottom pressure time series

were not affected.

4.2 Along-track sea surface height anomaly

We generated an Arctic-wide dataset of along-track η′ by merging the AWI and RADS η′ datasets. Inconsistencies between

the two datasets were reduced by: i) creating a uniform along-track sampling, ii) reducing biases due to different retracking190

algorithms, and iii) substituting geophysical corrections where two different corrections were used in the two source products.

Here we first give details about these methods and present an estimate of the η′ observational uncertainty at the end of the

section.

4.2.1 Merging leads and open ocean data

Prior to merging the AWI and RADS datasets we standardized their along-track sampling rates, which originally were respec-195

tively 300 m and 7 km. With this aim, the AWI dataset was first smoothed with a moving window of 7 km and then linearly

interpolated, following time, onto equally spaced locations (7 km) along the satellite tracks.

A step-like variation in the η′ observations at ocean-ice transitions appeared because different models are used to retrack

signal returns in ice-covered and ice-free regions (Fig. 2). This is commonly referred to as the “lead-open ocean bias” (Giles

et al., 2012). Due to the technical nature of this bias, it is difficult to determine the true bias in this post processing phase.200

Therefore, we simply removed the offset in η′ between leads and open ocean data, estimated directly from the along-track η′.

To do so, we identified along-track transitions between the AWI and RADS datasets where the gap was shorter than 200 km.

Then we selected observations from the two datasets within an along-track distance of 200 km from the last ice-covered data

9
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Figure 2. Bias in the η′ data in the ice-covered (AWI) relative to the ice-free (RADS) regions. Panel (a) shows data points at the along-track

transitions between the AWI and RADS datasets in April 2011 (along-track distance of 200 km on each side) before removing the bias. Black

dots indicate the ice edge. Panel (b) shows the temporal evolution of the bias for the period 2011-2018. Note the minimum spread and highest

mean of the bias is observed in summer (July to September).

point (Fig. 2a). We calculated the offset at each transition as the difference between the mean values of the selected ice-covered

and ice-free η′ observations. The offset distribution is different by season (Fig. 2b), but no sensitivity was shown to the ocean-205

ice transition direction or to the gap between last ocean and first ice data points. Accordingly, we derived monthly offset values

as the median of the offsets in that month.

4.2.2 Corrections

As second step, we checked that all corrections applied to the satellite rangeR (Eq. 1) were consistent between ice-covered and

ice-free regions (Table 3 lists the products used here). Standard corrections (European Space Agency, 2016) were applied to210

both regions to account for i) the reduction in satellite signal speed caused by the presence of the atmosphere (dry gases, water

vapour, ions); ii) the difference in reflection properties of wave troughs and crests at the sea surface (sea state bias correction,

applied solely in the open ocean); and iii) solid earth tides and ocean tides.

A further correction removes the high frequency ocean response to atmospheric pressure and wind forcing. For ice-covered

regions ESA suggests using an Inverted Barometer (IB) formula. Here instead, we applied the Dynamic Atmosphere Correction215

(DAC, Carrère and Lyard (2003); Carrère et al. (2016)) to both, ice-covered and ice-free regions. DAC is conventionally used

in the global ocean because it better suppresses high frequency variability, avoiding aliasing of sub-monthly temporal changes

into spatial variability (Carrère and Lyard, 2003; Quinn and Ponte, 2012; Carrère et al., 2016).

No study to date shows which of the DAC and IB corrections performs better in ice-covered regions. However, gaining insight

into this issue was relevant to us because residual sub-monthly variability emerges in the monthly η′ fields as meridionally220

elongated patterns (meridional “trackiness”, Stammer et al. (2000)). Therefore, to support our choice of using DAC over IB,
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Table 3. Altimetry corrections applied in this study. Acronyms: ECMWF (European Centre for Medium-range Weather Forecast); CNES

(Centre National d’Etudes Spatiales); MOG2D (Modèle d’ondes de gravité 2D); FES2004 (Finite Element Solution 2004); GDR-E (Geo-

physical Data Record, version E).

Correction Source References

Dry troposphere derived from mean surface pressure, based on the ECMWF model European Space Agency (2016)

Wet troposphere derived from mean surface pressure, based on the ECMWF model European Space Agency (2016)

Ionosphere Global Ionospheric Map, provided by CNES Komjathy and Born (1999)

Dynamic Atmosphere Inverted Barometer + MOG2D barotropic model Carrère et al. (2016)

Sea State Bias (only open ocean) Hybrid (mix between parametric and non-parametric techniques) Scharroo and Lillibridge (2005)

Ocean Tide FES2004 Lyard et al. (2006)

Solid Earth Tide Cartwright model Cartwright and Edden (1973)

Geocentric Polar Tide Instantaneous Polar Location files (sourced from CNES) Wahr (1985)

Orbit GDR-E European Space Agency (2016)

we looked at which of them reduced the η′ standard deviation the most with respect to the uncorrected η′ (see Appendix A).

Results showed that DAC outperforms the IB in shallow shelf regions (particularly the East Siberian Sea and the Chukchi Sea)

and that they perform equally well over the deep basins (Fig. A1). For instance, in the East Siberian Sea the DAC reduced the

uncorrected η′ standard deviation by 50% at periods shorter than 20 days, in contrast to no reduction when applying a simple225

IB (see Table A1). The improvement of DAC with respect to IB over the shelves appears also in the η′ monthly grids, where

meridionally oriented patterns of η′ are evidently reduced (two examples are given for the months of November 2014 and

November 2017 in Fig. A2).

4.2.3 Final along-track dataset and uncertainty estimate

Following the steps above we generated a final merged along-track dataset, composed of two sub-datasets; one for the ice-230

covered region and one for the ice-free region. The consistency of these two sub-datasets is indicated by their comparable

Arctic-wide standard deviation over the period 2011-2018 (10.4 cm and 10.5 cm, respectively). An example is illustrated for

the month of July 2015 in Fig. 3, which shows a smooth transition between the two sub-datasets. We note though, there is some

residual sub-monthly variability. For instance, Fig. 3a shows a decrease of η′ of ∼20 cm north of Greenland between the first

and the fourth week of July 2015. The residual sub-monthly variability is one of the two main contributions to the error on235
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along track 𝜂’ (cm)

(a)

(b)

WEEK 1 WEEK 2 WEEK 3 WEEK 4

Figure 3. Example of the along-track η′ dataset covering the ice-covered and ice-free Arctic Ocean. (a) The weekly availability of along-track

data in the month of July 2015 (weeks defined as days 1-8, 9-15,16-23,24-31). The black solid line indicates the 15% sea ice concentration as

derived from the OSI SAF ice concentration products (archive OSI-401-b, available at ftp://osisaf.met.no/archive/ice/conc/). (b) η′ along the

satellite track indicated with a dashed black line in panel (a) (track passing over the Arctic Ocean on the 1st of July 2015, between 16:00 and

17:00 UTC). The distance along the track goas from the Canada Basin towards the coasts of Russia. Data in ice-covered areas are marked by

a green line and data from the ice-free areas by a blue line.

the monthly η′ fields. This contribution is estimated as part of the processing algorithm during the interpolation phase (Sect.

4.3.3). The second contributor to the error is the observational uncertainty.

The observational uncertainty associated to the along-track η′ stems from several sources, namely the altimeter measure-

ment uncertainty, the waveform retracking method, the corrections and orbit uncertainty. Given the difficulty of assessing the

contribution of each of these sources, we provide here a comprehensive estimate of the observational uncertainty based on the240

differences of the along-track η′ at satellite tracks crossovers (Fig. 4). We first defined crossovers as those pairs of η′ observa-

tions within a distance of 7 km. We excluded pairs belonging to the same satellite pass by verifying that they are separated by

more than one hour. Considering the large number of data, we organised observations in an equal area grid of about 100 km
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Figure 4. η′ difference at crossovers for satellite tracks crossing in a period of time up to 1 year. The solid line in the main panel is the

crossover difference averaged every 5 days; the shaded area shows the standard deviation of crossover differences averaged every 1 day.

Crossovers differences have been computed within 100 km around the locations indicated in the inset panel.

and computed the η′ differences at crossovers only within selected cells (red dots in the inset of Fig. 4). We expect that the η′

differences tend to the observational uncertainty as the crossovers get closer in time. Thus our uncertainty estimate was given245

by the average η′ difference at crossovers separated by no more than 5 days, which is 4.2 cm.

This analysis provides additional information about the η′ de-correlation time scale. The η′ crossover difference increases

with time above the uncertainty due to local variability. Fig. 4 shows that variability increases by ∼2 cm in the first 20 days,

then by a further ∼1 cm after 6 months, until it finally reaches a plateau. This indicates that, at time scales shorter than one

year, η′ has a short de-correlation time scale of 20 days and a long de-correlation time scale of 6 months.250

4.3 Gridded sea surface height anomaly

We produced monthly η′ fields over the period 2011-2018, by interpolation of the along-track data onto a longitude-latitude

grid of resolution 0.75°×0.25°, from 60° N to 88° N. Gridding creates regular fields from irregularly distributed data points.

Below we first describe the technique used to reduce residual sub-monthly variability in the along-track η′ (Sect. 4.3.1). Then

give details about the interpolation method used, including the selection of the length scale and signal to noise ratio (Sect.255

4.3.2). Finally we provide an estimate of the standard error of the monthly η′ fields (Sect. 4.3.3).
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4.3.1 Minimisation of sub-monthly variability

The residual sub-monthly variability (described in Sec. 4.2.3) produces marked meridional trackiness if the interpolation is

performed on a monthly set of η′ observations (see Fig. 5a, July 2015). To reduce this variability we performed the interpolation

on weekly data subsets instead. The monthly maps were then obtained as the average of four weekly maps, with the associated260

error given by the quadratic sum of the weekly error maps (shown below in Fig. 6). Fig. 5b shows data along a latitude circle

as an example of the trackiness reduction obtained thanks to this approach. Fig. 5c shows the contribution of the sub-monthly

variability to the error on the monthly η′ fields and it is explained below in Sect. 4.3.3.

(a)

(b)

(c)

Figure 5. Residual sub-monthly variability in the η′ observations and gridded field. (a) The July 2015 monthly gridded η′ field obtained by

interpolation performed on monthly data input. (b) η′ along a latitude (83º N) circle; η′ obtained from weekly and monthly interpolations are

shown with magenta and cyan lines, respectively. (c) The sub-monthly contribution to the standard error on monthly η′ maps, averaged over

the period 2011-2018. In panel (a) bathymetry contours are drawn at 100 m, 1000 m and 2500 m depth.
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4.3.2 Interpolation via DIVA

In oceanography, regular fields are commonly created via a technique called optimal interpolation (Bretherton et al., 1976). This265

approach though, has the disadvantage of generating the interpolated field based on an a priori functional form of the covariance

between data points. The variational inverse method that we use here is an alternative which does not assume an a priori

behaviour of the analysed field. Instead, it improves the quality of the interpolated field (e.g., closeness to data, smoothness),

by minimizing a cost function dependent on the data and few input parameters (Troupin et al., 2012). An additional advantage

of this method is that it decouples ocean basins separated by land by minimizing the cost function on a finite elements mesh,270

whose nodes are not connected across land.

We used a specific realization of the variational inverse method, namely the Data-Interpolating Variational Analysis (DIVA,

Troupin et al. (2012)). Further information is provided in Appendix B. As input to DIVA, the along-track η′ data and two

parameters, the length scale L and the data signal to noise ratio λ are provided. DIVA gives the possibility to introduce an

anisotropic weighting of the data points, which we tested via an input vector field.275

The selection of values for λ and Lwas done as follows. First we carried out twenty interpolation runs with λ=0.1, 0.3, 1, 10

and L=20 km, 50 km, 100 km, 300 km, 600 km. These values of λ cover the cases when a) data contain little information with

respect to the noise level or the data are not representative of the monthly mean (λ=0.1), and b) when the noise level is only

10% of a real signal (λ=10). The range of length scales L covers Arctic Ocean circulation scales, from mesoscale dynamics

to basin wide flow (e.g., Nurser and Bacon, 2014; Armitage et al., 2016). Since λ and L are the main input parameters for280

the interpolation, we did not include the anisotropic weighting initially, but its effect was tested separately at a later stage

(described below).

Next, we compared the results of each interpolation run with two independent datasets:

– η′P + η′S time series at the FS_S, AC and M1_4p6 moorings (Sect. 3.2.1);

– average geostrophic transport from the FESOM model outputs (Sect. 3.3), normal to two transects; one crossing the285

opening of the Laptev Sea into the Eurasian Basin and another across the north-western Fram Strait (both transects are

indicated in Fig. 1).

The aim of these comparisons was to select the λ and L values whose interpolated field best captured i) the high temporal

resolution patterns exhibited by the in-situ data and ii) the large scale features simulated by the model.

The comparisons were assessed by defining a score S(λ,L), such that (Eq. 7):290

S(λ,L) =
1
5

∑

i

[
(1−Ci(λ,L)) +

RMSDi(λ,L)
Xi,max−Xi,min

]
(7)

where Ci(λ,L) represents the correlation of a given run (with parameters λ and L) with the in-situ or model time series i;

RMSDi(λ,L) is the root mean square difference between each run and the time series i; and Xi,max and Xi,min are the

maximum and minimum values of the interpolation (either η′ or (ug,vg)) in each comparison. This score is designed to be
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Table 4. Scores of interpolation runs (as expressed in Eq. 7) using different length scale L and signal-to-noise ration λ.

L = 20 km L = 50 km L = 100 km L = 300 km L = 600 km

λ= 0.1 0.822 0.756 0.766 0.803 0.839

λ= 0.3 0.788 0.752 0.764 0.797 0.820

λ= 1 0.779 0.749 0.752 0.776 0.813

λ= 10 0.787 0.772 0.762 0.773 0.805

minimum for the best agreement with the independent datasets. Each term in S is normalised so that it has a similar relative295

weight.

The scores (S) are presented in Table 4. They vary only by a small fraction, indicating that the patterns in the altimeter fields

are insensitive to the choice of parameter values. There is though, a minimum score for λ= 1 and L= 50 km, which were thus

selected as a suitable set of parameter values.

Finally, we tested the anisotropic weighting (Eq. B3) by including it in interpolation runs with the selected λ andL. As vector300

field we used the long-term mean (1992-2012) geostrophic velocity field from the FESOM model. We used two amplification

factors a (a= 100, a= 106) to represent the effect of weak or strong advection. Results showed the effect of advection of η′

by the mean flow to be negligible, even with high a. Therefore, we did not apply this constraint to compute the final η′ gridded

fields.

The error maps associated with the interpolation were provided by DIVA through the poorman’s estimate method (Troupin305

et al., 2012). This method circumvents the high computational cost of calculating the real covariance in DIVA by assuming a

constant covariance between data points. The poorman’s estimate method generates maps of relative error, given as fraction of

the variance of the background field (Troupin et al., 2012). These maps allow to assess the data coverage given by the distri-

bution of the data in space scaled by the decorrelation scale L. An approximate way to scale the relative error to observational

units is by multiplication with the standard deviation of the input data. For the final product we provide the relative error maps.310

4.3.3 Error on monthly fields

The error in the monthly η′ fields comprises a component arising from the observational uncertainty and another arising

from the sub-monthly variability. The error arising from the observational uncertainty varies spatially depending on the data

distribution and the interpolation method. However, given that the poorman’s estimate method does not provide an estimate

of the absolute error, we used an alternative procedure to yield an average estimate of the standard error components over315

the entire Arctic Ocean. The components of the domain-averaged standard error were computed for each month as follows.

The component deriving from the observational uncertainty was obtained by dividing the uncertainty estimate of an individual

measurement (i.e. 4.2 cm, Sect. 4.2.3) by the square root of the average number of data points per cell. The component

16

https://doi.org/10.5194/essd-2021-170

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 25 May 2021
c© Author(s) 2021. CC BY 4.0 License.



stemming from the sub-monthly variability was calculated at each grid point as the standard deviation of the four weekly η′

maps divided by the square root of four, and then averaged across the Arctic. The monthly standard error contributions arising320

from the observational uncertainty and the sub-monthly variability, averaged over the period 2011-2018, amount respectively

to 1.7 cm and 1.8 cm. The two components contribute equally to the total monthly standard error over the period 2011-2018,

which is 3.5 cm. The spatial distribution of the time-averaged sub-monthly contribution is shown in Fig 5c. This varies between

1 and 4 cm. Values between 1 and 2 cm are found in areas deeper than 100 m and values above 3 cm are found along the coasts

of the Barents, Kara and Laptev Seas, in the East Siberian and Chukchi Seas, and in the southern Canadian Arctic Archipelago.325

4.4 Gridded geostrophic velocity

The geostrophic velocity was computed on the output grid following Eq. 4, with partial derivatives approximated by finite

differences. The components of velocity on the longitude-latitude grid at indices i, j are given by (Eq. 8):



ug,ij =− g

f0Re
· ηi+1,j−ηi−1,j

θi+1,j−θi−1,j

vg,ij = g
f0Re

· 1
cos(θij) ·

ηi+1,j−ηi−1,j

Φi+1,j−Φi−1,j

(8)

where θ and Φ are latitude and longitude converted to radian angles, f = 2Ωsin(θ) is the Coriolis parameter (with Ω =330

7.29 · 10−5 s−1) and Re is the Earth radius. In the equation above, ηi,j is the η field at indices i, j obtained by adding the

gridded η′ to the DTU17MDT linearly interpolated to the grid.

4.5 Comparison to independent datasets

The monthly η′ maps were first evaluated over the whole Arctic Ocean by comparison to the CPOM DOT product. The

comparison was done at grid points south of 82º N (the northernmost latitude covered by the CPOM DOT), for the period335

January 2011 to December 2014. Both datasets were referred to their own temporal average over this period.

In the next step we evaluated our η′ fields locally via comparison with time series of in-situ sea surface height η′i = η′P + η′S

(Eq. 5 and 6) from moorings FS_S, AC and M1_4p6. The altimetry η′ was linearly interpolated to the in-situ locations, and the

time average over the period of mooring deployments were removed from in-situ and altimetry observations.

Lastly, we assessed geostrophic current fields (ug,vg) by comparison to in-situ measured currents from the two mooring lines340

crossing the Fram Strait and the Laptev Sea continental slope. We compared the (ug,vg) component normal to the transects,

linearly interpolated to the moorings positions, to monthly averages of the in-situ measured velocities normal to the transects.

These are hereafter referred to as vn and vni respectively, positive northward in the Fram Strait and eastward in the Laptev Sea.

The comparison was limited to those mooring locations where more than 24 months of in-situ data were available at the time

of manuscript preparation.345

To establish spatial scales over which altimetry-derived currents approximate best the in-situ measured currents, we com-

pared vn and vni spatially averaged over different sets of neighbouring moorings. The averaging was performed by assigning to

each mooring a weight proportional to its distance to the two neighbouring moorings (e.g., for mooring j: wj = dj−1,j+dj,j+1
2 ,

where d is the distance). We performed three tests in the Fram Strait and two at the Laptev Sea continental slope, using moor-
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ings closest to the shelf break (tests 1 to 5). We evaluated the improvement of each test based on the results at those moorings350

where the pointwise correlation was highest. Finally, we looked at which time scales are dominant in each dataset. To do so,

we evaluated the percentage of variance explained by the seasonal to interannual frequency band (lower than 4 months) and by

the intra-annual frequency band (higher than 4 months) as (Eq. 9):

E = 100 · (1− var(x−xF )
var(x)

) (9)

where x is the horizontally averaged velocity time series (tests 1 to 5), and xF is the correspondent filtered time series.355

4.6 Seasonal cycle

The seasonality of the Arctic sea level and surface currents has been studied in several previous works (e.g., Volkov et al., 2013;

Armitage et al., 2016; Beszczynska-Möller et al., 2012; Baumann et al., 2018), giving us the opportunity to assess our dataset

based on this literature. We defined the seasonal cycle of η′, following Volkov et al. (2013), as the harmonic least-square fit to

η′ with period of one year (Eq. 10):360

η′seas =A · cos
[
2π
(
t−α
P

)]
(10)

where t is the number of the month in the time series (t= 1 correspond to January 2011) and P = 12 is the oscillation period.

We evaluated the fraction of variance explained by η′seas at each grid point following Eq. 9, with η′ as x and η′seas as xF .

5 Results

Here we first describe the characteristics of the η′ and geostrophic velocity (ug,vg) monthly maps, then show the results of365

their comparison against independent datasets, and lastly present the η′ and (ug,vg) seasonal cycle.

5.1 Monthly fields of sea surface height anomaly and geostrophic velocity

Given our data set spans 96 months within the 2011-2018 period, here we present results from the month of July 2015 as

an example to describe general characteristics of a given map. Fig. 6 shows fields of η′, relative error (associated with the

interpolation) and (ug,vg) for July 2015. The description below makes reference to the Arctic Ocean sub-regions and long370

term mean surface circulation pathways presented in Fig. 1.

In the η′ monthly fields we find that there are extended regions of either positive or negative values. From Fig. 6a for

instance, it can be appreciated that η′ is positive in the Nordic Seas and across the Arctic Deep Basins, but negative over the

Eurasian Shelves. η′ also varies within these regions, being maximum (∼10 cm) north of 85º N, and minimum in the Laptev

Sea. Superimposed on these large scale patterns, residual meridional trackiness appears south of 80° N, especially in shallow375

areas, where the error related to sub-monthly variability is relatively high (Fig. 5c). For example, enhanced trackiness is visible

in the Barents Sea, where previous work has shown that intra-seasonal sea surface height variability explains between 50% and

80% of the total variability (Volkov et al., 2013).
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(a) (b)

(c) (d)

20 cm s-1
20 cm s-1

Figure 6. Example of monthly gridded fields provided in the final data product (July 2015). (a) The η′ field. (b) Relative error field on

the interpolated η′. (c) The (ug,vg) field; arrows in (c) represent the absolute (ug,vg) field, whereas colour highlights the anomaly of

the monthly geostrophic speed (Vg =
√
u2

g + v2
g) with respect to the long term mean geostrophic speed. (d) Mean dynamic topography

DTU17MDT (background color) and the DTU17MDT-derived mean geostrophic velocity. In panels (a) and (c), bathymetry contours are

drawn at 100 m, 1000 m and 2500 m depth.
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The relative error for the month of July 2015 is on average 0.27, with a minimum of 0.16 around the North Pole and a

maximum of 0.50 in the Southern Canada Basin (Fig. 6b). Largest relative errors are found in regions with data gaps (see data380

distribution in Fig. 3a): i) south of 75° N, where the distance between the satellite tracks increases considerably; ii) in a zonal

band around 80° N, where the weekly data distribution is not uniform due to the satellite orbit geometry; and iii) in the Canada

Basin, where there is a large and persistent marginal ice zone. Neither the AWI nor by the RADS processing provide data over

marginal ice zones.

In Fig. 6c we present the geostrophic vector field (ug,v,g ), with background colors highlighting monthly speed anomalies385

relative to the DTU17MDT-derived mean velocity. The distribution of anomalies aligns well with known circulation pathways,

such as those found along steep bottom topography gradients or large scale current patterns like the Beaufort Gyre and the

Transpolar Drift. The map shows that currents around the Nordic Seas (East Greenland Current, West Spitsbergen Current and

the Norwegian Atlantic Current) and at the Laptev Sea continental slope (Arctic Circumpolar Boundary Current) are weak,

while they are intensified in the westernmost branch of the Beaufort Gyre and in the Pacific Water inflow across the Bering Strait390

currents. This indicates our data set yields realistic variability over a large span of the Arctic Ocean. Still, there are small areas

where speed anomalies appear along meridionally elongated stripes, i.e., not following bottom topography contours. These

patterns result from gradients between residual η′ sub-monthly variability and do not correspond to real monthly velocity

anomaly.

5.2 Comparison to independent datasets395

5.2.1 Sea surface height anomaly

Results of the comparison with the CPOM DOT show good agreement over most of the domain, with a correlation between

datasets above 0.7 for 62% of the grid points (Fig. 7a). The comparison yields intermediate correlation values (0.3 to 0.7)

south of 65ºN, in some areas around the central Arctic, and along the Canadian and Greenland coasts (where the multi year

ice persists for most of the year). Only in 2% of the domain the correlation is below 0.3 (central Baffin Bay and northeast400

Greenland Shelf). The root-mean-square deviation (RMSD) is presented in Fig. 7b, showing low values (2 cm to 4 cm) over

75% of the domain, including most of the regions with water depth greater than 100 m. The RMSD is high (7-8 cm) over the

East Siberian Sea and Chukchi Sea, where the sub-monthly variability is most enhanced.

Time series of the comparison of η′ with in-situ data are shown in Fig. 8, and the associated RMSD and correlation coeffi-

cients are presented in Table 5. The correlation between the η′ and η′i time series is relatively low (0.3 to 0.5), but significant405

(p-value < 0.05). η′ and η′i follow roughly a similar pattern, varying within a range of ±10 cm over the comparison period at

all three sites. At the FS_S mooring there are hints of a seasonal oscillation, with the signal decreasing from October 2016 to

March-April 2017 and then increasing towards October 2017 (Fig. 8). At the AC and M1_4p6 moorings short term variability

appears in phase at times, for instance between December 2016 and May 2017 in the former, and between September 2014 and

February 2015 in the latter (Fig. 8). There are however, differences as large as the altimetry variability in some months, which410

is reflected in the RMSD and the η′ standard deviation (Table 5).
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(a) (b)

Figure 7. (a) Correlation (Pearson’s correlation coefficient) and (b) RMSD between the gridded η′ fields as derived in this work and the

CPOM DOT published by Armitage et al. (2016). Areas north of 82° N are not covered by the CPOM DOT. In panel (a), areas within the

thick black lines show correlations <0.3 and p-values >0.05. In panel (b), thick black lines are contours of 4 cm, 7 cm and 8 cm. Bathymetry

contours (dotted lines) are drawn at 100 m, 1000 m and 2500 m depth.

Table 5. Comparison between altimetry and in-situ sea surface height anomaly. The first row show the correlation (Pearson’s correlation

coefficient, p-values were computed using the effective number of degrees of freedom (Emery and Thomson, 2001)). The second row shows

the RMSD between altimetry η′ and in-situ η′i at moorings FS_S, AC and M1_4p6.

Fram Strait Arctic Cape Laptev Sea

Correlation η′i (p-value) 0.30 (0.05) 0.42 (<0.01) 0.50 (0.01)

RMSD η′i [cm] 3.3 3.5 5.4
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(a)

(c)

(b)

Figure 8. The η′i = η′P + η′S (blue line) derived from in-situ observations at the three moorings (a) FS_S, (b) AC, (c) M1_4p6 is displayed

against the η′ interpolated at the mooring location (red line). Standard deviations of η′ and η′i are displayed in the bottom left corners.
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Table 6. Comparison of altimetry and in-situ velocities. The first four rows show the mean and standard deviation of the altimetry-derived

vn and mooring vni velocities normal to the transects. The next two rows show RMSD and correlation (Pearson’s correlation coefficient)

between vn and vni; correlations with p-value<0.05 are highlighted in bold. P-values were computed using the effective number of degrees

of freedom (Emery and Thomson, 2001).

Fram Strait Laptev Sea

F10 F16 F15 F8 F7 F6 F5 F4 F3 F2 M1_1 M1_2 M1_3 M1_4

mean vn (cm s−1) -9.4 -5.6 -3.5 -1.8 -0.1 0.9 2.3 3.1 3.5 3.5 4.5 4.4 3.9 2.6

mean vni (cm s−1) -7.9 1.1 -0.8 6.1 -2.5 -2.6 5.3 6.0 17.0 18.1 12.1 3.5 3.4 1.6

std vn (cm s−1) 1.5 1.2 0.9 0.9 0.9 1.0 1.3 1.5 1.5 1.7 2.1 2.0 1.2 0.8

std vni (cm s−1) 5.0 7.1 6.9 5.5 6.9 7.0 6.7 7.2 7.6 7.6 7.4 4.2 1.8 1.2

RMSD (cm s−1) 5.0 7.0 6.9 5.6 6.6 6.9 6.3 6.8 6.8 7.0 5.9 4.5 1.9 1.3

Correlation 0.11 0.06 -0.04 -0.14 0.34 0.06 0.34 0.32 0.53 0.38 0.77 0.04 0.29 0.24

5.2.2 Velocity

The agreement of in-situ and altimetry-derived velocities is summarized in Table 6, which presents their correlation and RMSD,

together with the mean velocities and standard deviation at each mooring (computed over the months when in-situ data were

available). Time series across the Fram Strait and Laptev Sea mooring lines are displayed in Fig. 9 and 10. In the Fram Strait,415

the correlation is significant (p-value < 0.05) and higher than 0.3 at moorings F2 to F5. At these 4 moorings, both the mean

vn and vni are consistently positive and comparable or higher than the corresponding standard deviation. The correlation was

highest at mooring F3; the mooring with the longest continuous time series. In the Laptev Sea continental slope the correlation

is highest at the M1_1 mooring. Further down the slope the correlation is lower, being still significant at mooring M1_3, but

non-significant at moorings M1_2 and M1_4.420

There are differences between altimetry and in-situ data in terms of spatial and temporal resolution. The mean vn shows low

spatial variability and smooth transitions between nearby sites (Table 6). Note that this variability is governed by the averaging

scales underlying the DTU17MDT product. The scales captured by the DTU17MDT are defined by the resolution of the geoid

model used to compute it. Previous studies indicate that these scales are not smaller than 100-150 km (Gruber and Willberg,

2019; Bruinsma et al., 2014; Farrell et al., 2012). These large scales contrast with the high spatial variability of the vni mean425

flow, which is derived by pointwise measurements. This is shown for instance by abrupt changes between moorings F15 and F7

(50 km apart) or between M1_1 and M1_2 (11 km apart). High spatial variability observed by the mooring data is ascribable

to the small Arctic first baroclinic Rossby radius, which is below 10 km in the two study regions (Nurser and Bacon, 2014; von
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Table 7. Comparison of spatially averaged altimetry and in-situ velocities. The first two rows show the correlation (Pearson’s correlation

coefficient) and RMSD between horizontally averaged vn and vni. Each test corresponds to the averaging of two or more moorings (names

of moorings used and distance covered in each test are indicated in the header). The last two rows show correlations at frequencies lower

and higher than 4 months. All correlations in this Table have a p-value <0.01, as computed using the effective number of degrees of freedom

(Emery and Thomson, 2001).

test 1 test 2 test 3 test 4 test 5

22 km 45 km 86 km 11 km 65 km

F3, F4 F3 to F5 F3 to F7 M1_1, M1_2 M1_1 to M1_3

Correlation 0.53 0.63 0.55 0.60 0.37

RMSD (cm s−1) 5.0 3.2 2.5 4.1 2.2

Correlation 4 months low-pass 0.57 0.66 0.64 0.59 0.39

Correlation 4 months high-pass 0.41 0.46 0.12 0.60 0.22

Appen et al., 2016; Pnyushkov et al., 2015). Furthermore, the time variability of the mesoscale processes is smoothed out in

the altimetry dataset due to the 50 km decorrelation scale applied through the interpolation. This is reflected in the vn standard430

deviation, which is about four to five times smaller than that of vni at most moorings.

Tests 1 to 5 show the scales over which spatial averaging improved the comparison (Table 7). In the Fram Strait, averaging

over moorings F3 to F5 (test 2) yielded a correlation higher than that using data only from the F3 mooring (Tables 6 and 7).

Results from tests 1 and 3 yielded correlations comparable to that from F3. All three tests reduce the RMSD by about 2-3 cm

with respect to that at F3. At the Laptev Sea continental slope, neither test 4 nor test 5 improved the correlation with respect to435

the comparison at the M1_1 mooring. Both tests though reduce the RMSD with respect to the one at M1_1 (2-4 cm lower).

With regards to temporally filtering of the time series in tests 1 to 5, we find that seasonal to interannual frequencies explain

most of the variability both in vn and in vni. They constitute about 80% of the total variability in the Fram Strait, and about

90% at the Laptev Sea continental slope. In this frequency band vn and in vni correlate better or equally than without filtering

(Table 7), whereas in the intra-seasonal frequency band the correlation worsen.440

The fact that seasonal to interannual frequencies explain a high percentage of the total variability can be attributed to the

dominant seasonal oscillations. These are visible for instance in Fig. 9a and Fig. 10a, which show the low-pass filtered vn

and vni from tests 2 and 4. Seasonal cycles of vn and vni are in phase, with peaks occurring in winter, and troughs in early

summer; both in the Fram Strait and at the Laptev Sea continental slope. Furthermore, vn and vni show similarities in the

interannual variability. For instance, in the Fram Strait both datasets feature a double peaked seasonal oscillation in some years445

(e.g. winters 2013-2014, 2014-2015, 2017-2018). At the Laptev Sea continental slope the seasonal cycle amplitude decreases

in both datasets between 2016 and 2018 .
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(b)(a)

F1

F2F3
F4

F5
F6

F7

F8F15

F16

F9

F10

F11

F12

F13F14

F17

mooring 
monthly mean

--- depth 300 m
--- depth 500 m 

--- depth 1000 m 
--- depth 2000 m

Figure 9. The altimetry-derived geostrophic velocity is shown against the in-situ surface velocity at the moorings transects in the Fram

Strait (see Fig. 1). The component of the velocity normal to the transect is evaluated, and positive values represent northward velocity. (a)

Scatterplot of all monthly values of satellite-derived velocities against in-situ velocities. (b) longitudinal average of altimetry and in-situ

velocity across moorings indicated with red letters in panel (c) (corresponding to test 2, see Sect. 5.2.2); both time series have been filtered

with a 4-months low pass filter. (c) Hovmöller diagram representing the monthly temporal evolution of the altimetry-derived cross-transect

geostrophic velocity. The circles represent monthly mean values of in-situ cross-transect velocity measured at 75 m water depth. Dashed

vertical lines represent the positions, along the transect, of the bottom topography isolines at 300 m (orange), 500 m (red), 1000 m (violet)

and 2000 m (cyan) depth. On the top part of the diagram we indicated the position of each mooring; moorings with bold letters have more

than 24 months available.
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(b)(a)
M11M12 M13 M14

mooring 
monthly mean

--- depth 300 m
--- depth 500 m 

--- depth 1000 m 
--- depth 2000 m

Figure 10. As in Fig. 9, for velocities at the Laptev Sea continental slope (see Fig. 1). The component of the velocity normal to the transect

is positive eastward. in-situ velocity is averaged vertically between 50 m and 8 m depth (except at M1_1, averaged between 50 m and 30 m).

The time series in panel (b) correspond to test 4 (see text).
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5.3 Seasonal cycle

In the following text we give an overview regarding the seasonal cycle observed in η′ and (ug,vg), highlighting which are the

regions where it explains a high fraction of the total variability.450

5.3.1 Sea surface height anomaly

The amplitude A and the phase α of the η′ seasonal cycle (i.e., month when the maximum occurs) are shown in Fig. 11. Regions

where the seasonal cycle explains less than 20% of the total variability are blanked in Fig. 11b. The seasonal cycle explains

more than 20% of the total variability in shallow shelf regions (with a peak of 60% in the Barents Sea) and in few deep regions

like the southwestern Canada Basin, the Baffin Bay and the Nordic Seas. Here, the amplitude ranges between 3 cm and 8 cm455

(Fig. 11a). Instead, seasonal variability seems to play little role in the Arctic Deep Basins, where its amplitude is <1 cm. η′seas
is maximum in early winter across the Arctic Ocean, even though not uniformly. η′seas peaks earliest (September-October) in

the Nordic Seas, the Chukchi Shelf and the Baffin Bay (Fig. 11b). A maximum around November-December is found further

inside the Arctic, in the Barents and western Kara Seas, in the Laptev Sea and East Siberian Sea and in the southwestern

Canada Basin. The maxima in the eastern Kara Sea (January) and the northeast Greenland Shelf (January-February) are later460

in the winter.

In Fig. 11c we also display the observed η′ monthly climatology in selected regions, computed as the January to December

monthly averages over the years 2011-2018. We see that the harmonic fit is a good approximation of the climatology in most

of these regions, with few exceptions. For instance, in the Canada Basin, the Baffin Bay and the northeastern Greenland Shelf

the climatology exhibits a secondary peak in April.465

5.3.2 Geostrophic velocity

Fig. 12 shows the winter (January to March) and summer (June to August) (ug,vg) fields, averaged over the period 2011-2018.

Seasonal speed anomalies are most pronounced south of 80ºN, namely along the shelf edges, in some coastal regions, in the

southern Canada Basin and in the Barents Sea. The strongest variation in current speed between summer and winter is about 3

cm s−1. The time of seasonal maximum of some of the main Arctic currents is shown in Table 8. From the comparison between470

summer and winter current anomalies we observe a basin wide, coherent seasonal acceleration of the Arctic slope currents in

winter and a deceleration in summer. The speed of these slope currents peaks between September and April. Namely, currents

along the Nansen Basin shelf break, between the Fram Strait and the Lomonosov Ridge, peak in early winter (September

to December); currents along the eastern shelf break of the Nordic Seas, in the Barents Sea and in the Baffin Bay peak in

mid winter (November to February); the East Greenland Current peaks in late winter (February to April). Seasonality is also475

recognisable in some currents not along the continental slopes. For instance, currents along the Siberian coasts, in the Kara Sea

(maximum between September and December) and in the East Siberian Sea (maximum between March and May). Another

example are the southern and western branches of the Beaufort Gyre, where currents peak respectively in November-January

and March-May.
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(a)

(b)

(c)

Figure 11. (a) Amplitude and (b) phase of the η′ annual harmonic oscillation between 2011 an 2018. Blanked areas in (b) are those areas

where the seasonal cycle explains less than 20% of the total variance. Panels in (c) are the η′ monthly climatology (blue line, with standard

deviation as shading) and the η′seas (red line) averaged over the areas marked in the map with the corresponding color. Bathymetry contours

are drawn at 100 m, 1000 m and 2500 m depth.
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(a) (b)

20 cm s-120 cm s-1

Figure 12. Averages of the the (ug,vg) fields over the (a) winter months January-February-March and the (b) summer months June-July-

August. Bathymetry contours are drawn at 100 m, 1000 m and 2500 m depth. Arrows and colours are to be interpreted as described for Fig.

6b.

6 Discussion480

The dataset presented in this paper provides 8 years of monthly maps of altimetry-derived sea surface height anomaly η′ up to

88° N. In addition, we also provide the associated geostrophic velocity (ug,vg), which was not available before north of 82°

N. We performed an Arctic wide comparison against an independent altimetry product. Results from this comparison indicate

isolated areas where the correlation between data sets is low. Thus, here we discuss whether this is related to the methods

used. We also carried out a comparison to in-situ data of both sea surface height and surface velocity in three seasonally ice-485

covered regions. We discuss these results in terms of the spatial and temporal resolution of our altimetry-derived velocity and

the underlying dynamic regimes. Finally we put our findings on the seasonal cycle of sea surface height and geostrophic flow

in the context of previous literature.

6.1 Impact of methodology

The comparison with the CPOM DOT (Sect. 5.2.1) yielded a correlation higher than 0.7 over most of the domain, but lower in490

some regions, with non-negligible differences between the datasets there. What are the methodological steps that may generate

differences between these two data sets?

Regional differences might occur due to different data density, which results from distinct algorithms used for the processing

of waveforms. In our comparison the correlation is low in some areas of the ice-covered Arctic. In ice-covered regions the
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Table 8. Time of seasonal maximum occurrence in the currents of the Arctic Ocean in the results of this study. The acronym of currents

correspond to those indicated in Fig. 1 and slope currents are marked in bold. The third column indicate studies which find seasonality in

agreement with our results.

Current Time of seasonal maximum Other studies

WSC November to February Beszczynska-Möller et al. (2012); von Appen et al. (2016)

(and NwASC)

BSB November to February Schauer et al. (2002)

VSC September to December Janout et al. (2015)

ACBC October to January (western Nansen Basin) Pérez Hernández et al. (2019)

September to December (Laptev Sea continental Slope) Baumann et al. (2018)

BG November to January (southern branch) Proshutinsky et al. (2009); Armitage et al. (2017)

March to May (western branch) Min et al. (2019)

SCC March to May Weingartner et al. (1999); Osadchiev et al. (2020)

BIC November to February Tang et al. (2004) (peak in June-August)

EGC February to April Bacon et al. (2014); Le Bras et al. (2018); de Steur et al. (2018)

detection of leads is based on surface classification techniques. These differ substantially between studies, and are to date a495

source of uncertainty (Dettmering et al., 2018). For instance, more observations are discarded the more conservative a technique

is. This yields lower uncertainty, but also lower data density in the central and western Arctic, where the most compact multi

year ice is located and lead density is low (Willmes and Heinemann, 2016). Thus, differences in the ice-covered regions are

expected, given that Cryosat-2 observations are not classified in the AWI and CPOM DOT datasets using the same parameters

and thresholds (Ricker et al., 2014; Armitage et al., 2016).500

Generating data over the marginal ice zone still represents a challenge to overcome. This is because neither ocean-type

retrackers nor ice-type retrackers are suitable to process altimetry waveforms there. Thus the coverage of these areas depends

on the integration of data from ice-free and ice-covered areas, e.g. via interpolation, which is thus less constrained by actual

data. It is perhaps not surprising then, that the correlation lower than 0.7 resulting from our comparison corresponds to open

ocean areas of the central Arctic, where large patches of low ice concentration form at the end of summer. While we are aware505

that in our case neither the AWI nor the RADS dataset provide data in the marginal ice zone, not enough information on the

CPOM DOT data coverage is available from Armitage et al. (2016).

We also found that sub-monthly η′ variability in the Arctic can yield substantial noise in the monthly maps, especially on

the shelves (Sect. 4.3.1). To reduce this noise we took two steps: first, we substituted the IB with the DAC correction in ice-

30

https://doi.org/10.5194/essd-2021-170

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 25 May 2021
c© Author(s) 2021. CC BY 4.0 License.



covered regions (Sect. 4.2.2); second, we performed the interpolation on weekly data input rather than monthly (Sect. 4.3.1).510

This approach yielded improvements relative the CPOM DOT dataset. For example, in the East Siberian Sea and the Chukchi

Sea regions, where the sub-monthly variability is strongest, our monthly η′ fields have average spatial standard deviation of 6

cm for the period 2011-2014. This significantly lower than the corresponding value of 11 cm for the same region and period in

the CPOM DOT. This might be attributable to larger unresolved sub-monthly variability in the CPOM DOT.

6.2 Comparison between satellite altimetry retrievals and in-situ data515

Independent in-situ sea surface height from mooring data were used to assess our altimetry product in two separate regions

of the central Arctic, i.e. the Fram Strait and the Nansen Basin. Results showed that altimetry and in situ data yield roughly

consistent patterns, e.g. a clear seasonal signal in the Fram Strait and enhanced monthly variability in the Nansen Basin. Thus,

both datasets consistently suggest that the sea surface height variability has different dominant time scales in the two basins.

Correlations for our open ocean comparison between altimetry and mooring observations were low relative to previous studies520

which compared altimetry and near-shore tide gauge measurements (Volkov and Pujol, 2012; Armitage et al., 2016; Rose

et al., 2019). This can be expected given that tide gauges measure sea surface height, directly comparable to altimetry. Also,

we expect sea surface height variability near the coast to show larger amplitudes than in the open ocean (see Fig. 11). At the

same time, uncertainties arise when estimating sea surface height from mooring data, as a result of limited vertical resolution

of density observation. Nevertheless, the amplitude of RMSD between altimetry and open ocean mooring observations were525

consistent with other studies comparing altimetry to in-situ observations. RMSD values in the range of 2 to 12 cm has been

found both from the comparison with tide gauges across the Arctic (Volkov and Pujol, 2012; Armitage et al., 2016; Rose et al.,

2019) and with steric height measured in the Arctic Deep Basins (Kwok and Morison, 2011).

One comparison of altimetry-derived currents with moored currents velocity was done previous to this work by Armitage

et al. (2017). Despite this comparison was performed in a region other than those considered here, results are consistent with530

those of this work. Their correlation to ADCP measurements in the interior of the Beaufort Sea, lower or equal to 0.54, are in

line with our findings at most mooring sites except for mooring M1_1, which shows higher correlation (0.77). RMSD of 1-2

cm s−1 over currents of 1-6 cm s−1 also agrees well with the RMSD that we find in the interior of the Eurasian Basin (1.3-1.9

cm s−1).

6.3 Temporal and spatial resolution of altimetry-derived currents535

The large spatial extent of mooring velocity measurements and their long deployment period allowed us to examine the corre-

lation of altimetry and in-situ velocity over both different dynamic regimes and spatio-temporal scales.

We found that correlation was higher in regions where the flow variability is dominated by steady currents (i.e. boundary

currents) and lower where it is dominated by nonstationary eddy activity. In the Fram Strait, altimetry and in-situ data had

the highest correlation on the shore and continental slope east of 5°E, within the West Spitsbergen Current, with maximum540

correlation in the core non-eddying part of the current (mooring F3, Beszczynska-Möller et al. (2012)). In the Laptev Sea

the correlation was highest at mooring M1_1, close to the shelf break, where the the Arctic Circumpolar Boundary Current
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is strongest (Aksenov et al., 2011; Baumann et al., 2018). On the contrary, in both regions the correlation broke down where

mean currents are slow and the mesoscale activity is enhanced. Namely, correlation was low and non significant at moorings

in the central Fram Strait, where the surface circulation is dominated by westward eddies propagation (von Appen et al., 2016;545

Hattermann et al., 2016). Similarly, correlation was low in the offshore part of the Laptev Sea continental slope, where current

speed is low and eddy activity increases (Pnyushkov et al., 2015, 2018; Baumann et al., 2018). The correlation varies with the

dynamic regime due to the different sampling of mesoscale activity by moorings and by altimetry. Mesoscale features are not

resolved in our monthly altimetry fields because of the 50 km smoothing scale used in the interpolation. This is equivalent to

about ten times the local first baroclinic Rossby radius (Nurser and Bacon, 2014; von Appen et al., 2016; Pnyushkov et al.,550

2015), which roughly sets the horizontal scale of mesoscale eddies.

In-situ surface velocities were used thus to evaluate the effective spatial and temporal resolution of altimetry-derived currents.

In the region of the West Spitsbergen Current, the correlation was higher when averaging horizontally the in-situ observations

over 50 km relative to 20 km. This indicates that the boundary current variability as observed by our altimetry-derived velocity

agree most closely with the in-situ observed variability when both are averaged across at least 50 km. Slightly lower correlation555

was shown when averaging data further into the central Fram Strait (see test 3 in Table 7), where we entered a different dynamic

regime. Eddies are there a source of variability at intra-seasonal time scales, which is not resolved by altimetry and which biases

the large scale average velocity from moorings. The considerations above suggest that our monthly geostrophic velocities can

resolve seasonal to interannual variability of boundary currents wider than about 50 km. Mesoscale intra-seasonal variability

is instead not resolved.560

6.4 Seasonality

The sea surface height seasonal cycle is driven by changes in its steric component (due to sea ice melting and refreezing,

solar insolation) and mass component (due to water accumulation or release, precipitation, evaporation, river runoff). Previous

studies identified the seasonal cycle as the dominant component of the sea surface height variability in the Arctic (e.g., Volkov

et al., 2013; Armitage et al., 2016; Müller et al., 2019). Our results confirm these findings, showing that this variability explains565

a fraction higher than 20% of the total variability in large areas of the Arctic, including the Arctic Shelves, the Nordic Seas

and part of the Canada Basin. Additionally we found that seasonal to interannual variability explains more than 80% of the

geostrophic velocity variability within boundary currents in the Fram Strait and at the Laptev Sea continental slope.

Large scale features emerge in the seasonal cycle of η′ and (ug,vg). For instance, η′ has over most of the Arctic seasonal

maximum in the winter months between October and January. This is in agreement with previous studies of both steric height570

and ocean mass seasonality from in-situ data. From hydrographic profiles the steric height was found to peak between Septem-

ber and November in the Greenland and Norwegian Seas (Siegismund et al., 2007), in the central Barents Sea (Volkov et al.,

2013) and in the Canada Basin (Proshutinsky et al., 2009). From bottom pressure records, Peralta-Ferriz et al. (2011) found

winter-enhanced basin-wide ocean mass oscillations. This suggests that both density and mass changes favour the rise of sea

surface height during winter in the Arctic. Furthermore, we found that the amplitude of the seasonal cycle of η′, as well as575

the fraction of variability explained, are higher over the shelf regions than in deep ocean regions of the Arctic interior. This
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decoupling of shallow and deep region, as well as the Arctic-wide occurrence of the winter maximum, agree well with the two

first Empirical Orthogonal Functions of sea surface height derived by Bulczak et al. (2015) and Armitage et al. (2016): a basin-

wide oscillation and an anti-phase oscillation between shelf regions and deep basins. Lastly, geostrophic currents consistently

strengthen along the continental slopes in winter and weaken in summer. The strengthening of boundary currents in winter was580

documented for several regions by previous studies based on in-situ data, satellite data and model output (Table 8).

Our dataset is thus able to describe the seasonality of sea surface height and geostrophic currents across the Arctic consis-

tently with previous studies.

7 Conclusions

With this work we aim to support and contribute to basin scale observational studies of the Arctic Ocean circulation by585

providing a new gridded product of satellite-derived sea surface height anomaly (η′) and geostrophic velocity (ug,vg). In this

paper we present Arctic-wide monthly maps of η′ and (ug,vg), spanning the years 2011 to 2018, covering both the ice-free

and ice-covered parts of the ocean. We believe that this well documented and validated Arctic-wide dataset will be of help to

the scientific community to further understand the Arctic Ocean surface circulation and sea surface height variability down to

50 km scale at seasonal to interannual time scales.590

In our description and discussion of processing methods we find that residual sub-monthly variability in the Arctic Ocean is a

source of noise for the η′ monthly maps. Therefore, we average four weekly maps of interpolated data. Further, the integration

of altimetry data over ice-free and ice-covered regions raises limitations in terms of data coverage between these two regions.

Isolated differences in the comparison with the CPOM DOT are also attributable to the correction of sub-monthly variability

and the data coverage in ice-covered regions, even though there is overall good agreement.595

The comparison to in-situ sea surface height and near-surface velocity shows that the agreement varies between regions

depending on the nature and scales of the variability. Geostrophic currents and in situ velocity have the highest correlation in

regions where a stable flow (e.g. boundary currents) dominates the mesoscale eddy activity. There, the correlation is improved

by spatially averaging in-situ data over cross-flow distances of at least 50 km and by filtering out intra-seasonal variability.

Overall, the comparison with in-situ data yields correlation and RMSD consistent with previous studies. The average cor-600

relation of η′ with the sum of steric height and bottom pressure equivalent height is 0.41 and the average RMSD 4.1 cm. The

correlation between (ug,vg) and near-surface moored velocity is highest at mooring sites within boundary currents both in the

Fram Strait (0.53) and at the Laptev Sea continental slope (0.77). The average RMSD between velocities is 6.5 cm s−1 in the

Fram Strait and 3.4 cm s−1 at the Laptev Sea continental slope.

Large scale patterns emerge from our preliminary analysis of the seasonal cycle of η′ and (ug,vg). The η′ shows a basin605

wide, coherent seasonal cycle, with maximum between October and January, and higher amplitude on the shelves. The (ug,vg)

features intensification of the Arctic slope currents in winter and weakening in summer. These characteristics are in agreement

with several regional studies of the Arctic Ocean sea surface height and boundary currents.
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Further uses of the sea surface height data product are the analysis of large-scale variability in upper ocean salinity and

freshwater inventories.610
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8 Data availability

The final monthly maps of sea surface height anomaly and geostrophic velocity (2011-2018) can be downloaded from PAN-

GAEA at [data under review]. These files include as auxiliary fields the sea surface height relative error and the DTU17MDT

mean dynamic topography. The time series of steric height and bottom pressure equivalent height at moorings FS_S, AC and

M1_4p6 as processed in this work are available from PANGAEA at [data under review].615

The along-track sea surface height anomaly data used in this study are freely available online: open ocean data can be

downloaded from the online Radar Altimetry Database System (RADS, http://rads.tudelft.nl/rads/rads.shtml); data from ice-

covered regions can be obtained from the Meereisportal of the Alfred Wegener Institute (https://www.meereisportal.de). The

CPOM DOT dataset can be accessed at http://www.cpom.ucl.ac.uk/dynamic_topography/. The in-situ velocity data from

the Fram Strait can be downloaded from PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.900883 and https://doi.620

pangaea.de/10.1594/PANGAEA.904565 (von Appen et al., 2019; von Appen, 2019). The in-situ velocity data from the Laptev

Sea continental slope can be downloaded from the NFS Arctic Data Center at https://arcticdata.io/catalog/view/doi:10.18739/

A28G8FJ3H and https://arcticdata.io/catalog/view/doi:10.18739/A2HT2GB80 (Polyakov, 2016, 2019).
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Appendix A: Dynamic Atmospheric Correction625

The DAC corrects the local and the dynamic ocean response (waves) to pressure and wind changes and is derived from the

sea surface height output of a barotropic model (Carrère and Lyard, 2003; Carrère et al., 2016). Up until the early 2000s, the

effect of atmospheric pressure and winds on sea surface height had instead been corrected using an Inverse Barometer formula

(IB, e.g., Ponte and Gaspar (1999); Carrère and Lyard (2003)). In the IB assumption, the sea surface height responds locally to

changes in pressure, decreasing of approximately 1 cm for each increase in pressure of 1 mbar (atmospheric loading). However,630

it has been shown that the IB is not always a good approximation of the ocean response, especially on time scales shorter than

20 days (Carrère and Lyard, 2003).

Studies from the last two decades have shown that the deviation of ocean barotropic response from a simple IB is larger at

higher latitudes (Stammer et al., 2000; Vinogradova et al., 2007; Quinn and Ponte, 2012). For instance, Quinn and Ponte (2012)

found that the coherence between ocean mass variability (from GRACE satellite) and altimetric sea surface height variability635

after applying only IB correction, increases with latitude. In the Arctic, the effect of pressure and wind forcing is not only local

but also travels eastwards over the shelves in the form of mass waves (Fukumori et al., 1998; Danielson et al., 2020; Fukumori

et al., 2015; Peralta-Ferriz et al., 2011). However, to date there is no study showing the effect of this waves on sea surface

height measured from altimetry.

Here we compare the reduction in altimetry standard deviation obtained by applying DAC with respect to IB in ice-covered640

regions of the Arctic Ocean. Fig. A1a shows the binned difference in standard deviation applying the two corrections, where

positive values indicate better performance of DAC over IB. The DAC outperforms the IB in shallow shelf regions, and the two

corrections perform equally well over the deep basins.

To understand which frequency bands have mostly contributed to this improvement, we take as an example the East Siberian

Sea (yellow square indicated in Fig. A1a). We generated three time series of uncorrected η′, η′ corrected by IB and η′ corrected645

by DAC, averaged with timestep of 1 day over the indicated region. For each year we analysed periods between November and

July, which are the only months when data from leads are available. For each time series, we computed the standard deviation

in frequency bands with periods T > 20 days, 5 days < T < 20 days, T < 5 days (Table A1). Results show that DAC reduced the

uncorrected η′ standard deviation by 50% at periods shorter than 20 days, in contrast to no reduction when applying a simple

IB.650

Furthermore, standard deviation at periods between 20 days and 5 days is larger then 60% the standard deviation at periods

longer than 20 days, confirming how high frequency variability is relevant in the Arctic Ocean. The improvement of DAC with

respect to IB over the shelves appears also in the η′ monthly grids, where meridionally oriented patterns of η′ are evidently

reduced (two examples are given for the months of November 2014 and November 2017 in Fig. A2).
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Table A1. Standard deviations of the three time series of along-track η′, averaged over the East Siberian Sea box (Fig. A1), using uncorrected

η′, η′ corrected by IB and η′ corrected by DAC. For each year only ice-covered data are used, in the months November-July. Standard

deviations are presented for the time series filtered in three different frequency bands.

standard deviation (cm) T > 20 days 20 days > T > 5 days T < 5 days

[uncorrected / IB / DAC]

2011-2012 16.2 / 14.3 / 13.3 9.3 / 9.2 / 5.8 3.1 / 3.4 / 2.2

2012-2013 14.7 / 10.8 / 9.7 8.9 / 9.7 / 4.8 3.2 / 3.7 / 2.2

2013-2014 12.0 / 12.5 / 9.9 8.5 / 9.1 / 4.0 3.2 / 3.6 / 2.4

2014-2015 7.3 / 8.0 / 7.7 9.3 / 9.9 / 4.5 2.4 / 2.9 / 1.9

2015-2016 19.3 / 15.7 / 15.7 7.3 / 7.8 / 3.6 3.0 / 3.6 / 2.2

2016-2017 15.3 / 13.5 / 13.1 8.8 / 9.7 / 4.4 3.2 / 4.0 / 2.3

2017-2018 10.0 / 7.4 / 6.8 9.2 / 11.0 / 4.8 3.4 / 3.8 / 2.5

Figure A1. The along track improvement of DAC correction, with respect to IB, in removing η′ high frequency variability. Colours indicate

the difference between the standard deviation of along track η′ corrected IB and corrected with DAC. The yellow square indicate the region

of the East Siberian Sea where the frequency analysis was performed.
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(a) (b)

(c) (d)

Figure A2. Effect of using correction DAC (panels (b) and (d)) instead of IB (panels (a) and (c)) on the monthly gridded η′ fields (see Sect.

4.3). Two examples are shown for the months of November 2014 (panels (a) and (b)) and November 2017 (panels (c) and (d)).

Appendix B: Data-Interpolating Variational Analysis655

The basic cost function applied in DIVA to derive the analysis field ϕ is expressed as a sum of terms which constrain the

solution as follows (Eq. B1):

J(ϕ) =
N∑

i=1

µi · [di−ϕ(xi)] + ‖ϕ‖2 + Jc(ϕ) (B1)

where di is the observation at the location xi, µi is the weight associated with each data point and ‖·‖2 is a norm operator. The

two fundamental properties minimized by this cost function (B1) are: 1) the deviation of the analysis field from observations660

(first term) and 2) abrupt changes in the analysis field (second term). Additional constraints Jc(ϕ) can be applied.

The first term minimizes the misfits between data and analysis; weight associated to the misfits µi are directly proportional

to the signal-to-noise ratio λ. λ is to be interpreted both as a measure of the observational error and as an indication how well

data represent the final analysis field (e.g., instantaneous measurements are not a good representation of a long term mean).

The second term generates a smooth analysis by applying the norm operator ‖ϕ‖2 over the grid domain Ω,:665

‖ϕ‖2 =
∫

Ω

(α0L
4ϕ2 +α1L

2∇̃ϕ · ∇̃ϕ+ ∇̃2ϕ · ∇̃2ϕ)dΩ (B2)
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where α0 and α1 are internal DIVA coefficients which set the relative importance of the derivatives (Troupin et al., 2012), ∇̃ is

the unitless gradient operator and L is the length used to scale the interpolation.

Additional constraints can be applied in DIVA, for instance the "advection constraint" which introduces anisotropic weight-

ing of the data points:670

Jc(ϕ) =
∫

Ω

(v · ∇ϕ)2 dΩ (B3)

where v = a·(u,v) is a vector field with a the scaling factor. Minimising Jc(ϕ) constrains the analysis isolines along the vector

field v.
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