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Abstract. The Italian earthquake waveform data are here collected in a dataset suited for machine learning analysis (ML)

applications. The dataset consists of near
:::::
nearly 1.2 million three-component (3C) waveform traces from about 50,000 earth-

quakes and more than 130,000 noise 3C waveform traces, for a total of about 43,000 hours of data and an average of 21 3C

traces are provided per event. The earthquake list is based on the Italian seismic bulletin (http://terremoti.ingv.it/bsi) of the

“Istituto Nazionale di Geofisica e Vulcanologia” between January 2005 and January 2020 and it includes events in the mag-5

nitude range between 0.0 and 6.5. The waveform data have been recorded primarily by the Italian National Seismic Network

(network code IV) and include both weak (HH, EH channels) and strong motion recordings (HN channels). All the waveform

traces have a length of 120 s, are sampled at 100 Hz, and are provided both in counts and ground motion
:::::::
physical

:
units after

deconvolution of the instrument transfer functions. The waveform dataset is accompanied by metadata consisting of more than

100 parameters providing comprehensive information on the earthquake source, the recording stations, the trace features, and10

other derived quantities. This rich set of metadata allows the users to target the data selection for their own purposes. Many of

these metadata can be used as labels in ML analysis or for other studies. The dataset, assembled in HDF5 format, is available

at http://doi.org/10.13127/instance (Michelini et al., 2021).

Copyright statement. This article can be distributed under the CC BY 4.0 license

1 Introduction15

Important breakthroughs in the understanding of earthquake phenomena can be achieved through the analysis of the very large

number of continuous waveform recordings stored in the existing seismic archives. To this end it can be important to dispose

of
::::
make

::::::::
available

:
well organized representative subsets of the archives together with their associated metadata information.

The recent developments of machine learning (ML) software platforms like
:::::::::
TensorFlow

::
(https://www.tensorflow.org,

:
),

:::::::
PyTorch

:
(https://pytorch.org,

::
),

:::::
Keras

:
(https://keras.io,

:
),
:::::
Caffe

:
(https://caffe.berkeleyvision.org(Abadi et al., 2016; Paszke et al., 2019; Chollet and others, 2015; Jia et al., 2014, respectively)20

:
)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Abadi et al., 2016; Paszke et al., 2019; Chollet and others, 2015; Jia et al., 2014, respectively), the availability of high per-
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formance computing hardware (i.e., GPUs) and the access to thoroughly selected benchmark datasets (e.g., STEAD https:

//github.com/smousavi05/STEAD, LEN-DB https://doi.org/10.5281/zenodo.3648231) offer new opportunities to apply ML

methodologies to seismological and earthquake engineering problems. In particular, the use of sophisticated and optimized

ML algorithms for the analysis of large amounts of seismic data can lead to remarkable improvements for automated tasks

like seismic waveform onset picking, ground motion prediction, earthquake early warning or for the detection of hidden sig-5

nals currently recognized as noise or for novel modeling and inversion strategies (see Kong et al., 2018; Bergen et al., 2019;

Dramsch, 2020, for recent reviews). Specifically, the advent of ML into seismology has shown
:
in
:::

the
:::::

field
::
of

:::::::::
seismology

::::
has

:::::::::
highlighted

:
the importance of reference datasets for benchmarking the developed methodologies and it has fostered more thor-

ough and statistically sound schemes for analyzing the data, like splitting all the available data into training, validation and test

sets. Moreover, the introduction of competitions like those for predicting laboratory earthquakes launched on the Kaggle plat-10

form (https://www.kaggle.com/c/LANL-Earthquake-Prediction/data) or the SeismOlympics (Fang et al., 2017), that attracted

several thousand teams, evidences even more the great potential of benchmark datasets (Johnson et al., 2021) and the general

interest to tackle seismology problems with ML.

The application of ML techniques to seismological waveform data can be quite straightforward. Indeed, large amounts of

labelled data are already available thanks to the analyses carried out since many decades by expert analysts that have compiled15

and reviewed earthquake catalogs (that include phase onset readings, earthquake location and size estimates) or that have

assembled ground motion parameters in special flat files and maps of strong ground motion amongst the most common tasks.

Their work provides effectively metadata that can be associated with the recorded waveforms and that can be used as labels

when performing ML analysis. A main bottleneck in wide-scale implementation of ML is, however, the fast access to the

waveforms and to the associated metadata. Open access waveforms archives available to the seismological community (e.g.,20

EIDA, Strollo et al. (2021) http://eida.ingv.it/, or IRIS, Ingate (2008)) were mainly designed for preserving the continuous data

and making them available to the scientific community. In practice, one of the main goals of seismological data centers has

been the seamless acquisition of continuous data from the networks and the preservation, curation and archiving of the entire

record of continuous waveforms. In this context, the users have complete flexibility in the selection of the data to download but

accessing large data volumes can be very time consuming. Thus, despite the achievements attained in the last decades with the25

implementation of well tested and efficient web services (e.g., FDSN dataselect), the accessibility of remote servers still

remains cumbersome (Quinteros et al., 2021).

Overcoming this difficulty and attracting
:
It
:::::::
follows

:::
that

::
in

:::::
order

::
to

::::::
attract a broader audience of developers can be achieved

by providing publicly available
::::
users

:::
and

::::::::::
developers

::::
there

::
is
::
a

:::::
strong

:::::
need

::
to

::::::::
assemble

:::
and

:::::::
publish benchmark datasets that

can be readily used on
::::
with

:
the existing software platforms (Mousavi et al., 2019). Therefore

::
In

:::::::
practical

:::::
terms, the matter30

consists of organizing the large amount of quality checked seismic
:::::::::
assembling

::::::
quality

:::::::
checked

:
data and metadata according to

the format
::::::
volume

:::
and

:::::::
formats ready to be used in ML applications.

Recently, effort has been made to assemble and make publicly available datasets consisting of waveforms and associated

metadata. In detail, the dataset used in the works by Ross et al. (2018a, b); Meier et al. (2019) is downloadable from the

Southern California Earthquake Data Center at the web portal https://scedc.caltech.edu/data/deeplearning.html. This dataset35
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includes 4.8 million time series recorded by nearly 700 receivers from more than 270,000 earthquakes in southern California.

The STEAD dataset assembled by Mousavi et al. (2019) includes 1.2 million of 3C traces comprising 450,000 local earthquakes

and 100,000 noise windows recorded by more than 2600 stations at global scale. The LEN-DB dataset (Magrini et al., 2020)

is also a global dataset of local earthquakes and includes 1.2 million 3C waveform traces, half belonging to earthquakes and

half to noise. The NEIC dataset (Yeck and Patton, 2020) includes global data and has been used by Yeck et al. (2020) to train5

the 1.3 million seismic-phase arrivals using three separate convolutional neural network models to predict arrival time onset,

phase type, and distance.

Results attained by Ross et al. (2018b), Zhu et al. (2019a), Zhu et al. (2019b), Mousavi et al. (2020), and Mousavi and Beroza

(2020) are excellent examples of successful applications of ML which can improve substantially the earthquake detection level

with respect to most traditional methods, leading to the location of tiny and previously undetected earthquakes improving our10

knowledge on the heterogeneity of stress release on known and unknown faults. This enhanced information is crucial to make

more thorough assessments of the ongoing seismotectonics and seismic hazard. The ML methods are likely to become an

irreplaceable tool in seismology to extract as much information as possible from the large amount of data already stored in the

archives. Among the indirect advantages, the enhanced detection can, to some extent, also govern network densification with

sensible reductions in equipment investments and maintenance costs.15

In general, the good
::::::::
impressive

:
performances of ML applications are

::::
have

::::
been

:
strongly related to the availability of large

amounts of data with associated properly labeled metadata. Large amounts of data are critical to perform proper training and

avoid data overfitting. However, the preparation of a ML dataset is also tedious and very time consuming. These are the main

reasons that motivated the work presented in this article. Our goal is to provide an open access dataset consisting of raw and in-

strument removed waveform data and associated metadata to study earthquake occurrence in Italy. The data collection, named20

INSTANCE, gathers seismic waveform data from weak and strong motion stations that have been extracted from the Italian

EIDA node (Danecek et al., 2021)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Danecek et al., 2021, see section 6 for a full list of the FDSN networks included in the dataset)

. The metadata associated to the waveforms are extracted from the INGV earthquake catalogue and from the waveform traces

themselves. We expect this reference dataset to be used for several different purposes spanning from improvements of the ex-

isting configurations of seismic monitoring in Italy to the development and testing of new techniques for earthquake detection25

and ground motion estimation.

2 Earthquakes

2.1 Data preparation

The data collection was assembled following the main stages listed below:

1. earthquake selection;30

2. station selection;

3. waveform data selection and download;
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4. cross-validation between phase-based station selection and downloaded waveform data;

5. processing of the data counts waveforms;

6. application of the instrument transfer function to the waveforms.

2.1.1 Earthquake selection

To compile the waveform dataset, we started from the INGV earthquake bulletin
:::::
Italian

:::::::
Seismic

:::::::
Bulletin

:
(http://terremoti.ingv.5

it/en/bsi
:
,
:::::
INGV

:::::::
bulletin

::::::::::
hereinafter) and seismic stations archives (http://terremoti.ingv.it/iside). These data are public and can

be queried using the fdsnws-event (https://www.fdsn.org/webservices/fdsnws-event-1.2.pdf) and the fdsnws-station

web services provided by INGV. The
::::
event

::::
data

::::::
belong

::
to

:::
the

:::::
INGV

:::::::
bulletin

:::::
which

:::
has

::::
been

::::::::
adopting

:::
the

::::
same

:::::::
velocity

::::::
model

:::
and

:::::::::
earthquake

:::::::
location

:::::::
software

:::
in

::
the

:::::
time

:::::
period

::::::::
included

::
in

:::
this

:::::
study

::::
(see

::::::::
Appendix

::
B

:::
for

::::::
detail).

:::
The

:
first step consisted of retrieving all the earthquakes with M ≥ 0 from 1 January 2005 to 31 January 2020 in an enlarged10

area within the latitude and longitude corners (35.0,5.0) and (49.0,19.0). A total of 315,225 earthquakes were found. The

beginning of the query corresponds approximately with the update, renovation and increase in the number of stations of the

national seismic network (Michelini et al., 2016; Danecek et al., 2021; Margheriti et al., 2021). Around 2005, the INGV

network (FDSN code IV) underwent a major upgrade with the existing, predominantly analog, instruments being replaced

by high quality digital seismic data loggers and new, mostly broadband (and some extended short period), three-component15

(3C) sensors. Selected stations were also complemented with additional 3C strong motion sensors. The upgrade resulted in

more than a two fold increase of the number of stations of IV network. Also and since 2005, there have been many temporary

deployments of seismic stations coinciding with earthquake sequences and specific experiments which data are also available

through the EIDA INGV node (Danecek et al., 2021). The total number of stations also increased thanks to the contribution

of the networks belonging to other Italian institutions (e.g., the University of Genoa, National Institute of Oceanography20

and Experimental Geophysics-OGS, and the University of Naples amongst others). This increment resulted in a significant

improvement of the detection of low magnitude earthquakes. At the regional scale of Italy, the magnitude of completeness of

the INGV earthquake bulletin is around ∼M1.7−M1.8 although significant differences occur depending on the area.
::
To

::::
this

::::::
regard,

:::
the

:::::::
preferred

::::::
INGV

::::::::
catalogue

:::::::::
magnitude

::
is

:::
the

:::::
local

:::::::::
magnitude,

:::
Ml,

::::::::::::::
(Richter, 1935)

::
but

:::::::::
sometimes

::::
also

::::
Mw

:::
and

::::
Md

:::
(see

::::::
below

::
for

:::::::::
additional

::::::
detail).25

A relevant aspect when compiling a large dataset to be used for ML purposes consists of gathering a balanced distribution

of data. In seismology, when taking
::::
using

:
earthquake magnitude for classification, balanced representation is impossible to

achieve because small size earthquakes, following the Gutenberg-Richter magnitude versus the number of earthquakes power-

law (Gutenberg and Richter, 1944), outnumber larger earthquakes. To address this issue (or at least to mitigate its influence),

we choose to select in our target area:30

• the great majority of the earthquakes with M ≥ 4.0.
:::
The

::::::::::
earthquakes

::::
that

::::
have

::::
been

::::::::
discarded

::::
(30)

::::::::
occurred

::
all

:::
but

::::
five

::::::
outside

:::
the

::::::
Italian

:::::::
country

::::::
borders

::::
and

::::::
mainly

::
in

:::
the

:::::::
Balkan

::::
area.

:::::
(The

::::::::::
earthquakes

::
in

:::::
Italy,

:::
all

::::
with

::
M

::
<
::
5,
::::

will
:::
be

:::::::
included

::
in

:
a
::::::
future

:::::
update

:::
of

:::
the

:::::::
dataset.);
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• earthquakes with origin times differing by more than 120 s in the range 2.0≤M < 4.0;

• additional 20,000 earthquakes, randomly selected, with origin times differing by more than 120 s for M < 2.0.

The resulting distribution of the earthquakes according to their magnitude is detailed in Table 1 and they are mapped in Fig. 1a.

Table (1). Final data selection. “All” indicates the total number of earthquakes in then
::
the

:
INGV bulletin in the time period between

01/01/2005 and 01/31/2020, “Selected” and “Percent kept” refer to the earthquakes, and “Nb. 3C records” to the waveform traces included

in the dataset.

≥Mmin < Mmax All Selected Percent kept Nb. 3C records

0 1 57746 4462 7.73 39794

1 2 209652 15249 7.27 202572

2 3 43109 30845 71.55 757129

3 4 4342 3106 71.53 139338

4 5 342 315 92.11 18659

5 6 31 28 90.32 1593

6 7 3 3 100.0 164

0 7 315225 54008 17.13 1159249

2.1.2 Station selection

In order to gather high quality earthquake signals, we based our choice on the most accurately picked P- and S-wave onset5

phases published in the INGV bulletin(). To this regard, the manual picking of the arrival phases is routinely performed by a

group of about 20 INGV highly trained staff personnel who also review the hypocenter locations and magnitude determination

before bulletin publication. These manually reviewed locations are indicated as preferred solutions in the INGV earthquake

bulletin. In practice, we have selected only those stations that had P- and, if available, S-wave onset picks associated to the

preferred location of the INGV bulletin.
::
We

::::
note

::::
that

:::
the

::::::
strong

::::::
motion

::::
data

:::::::
provided

:::
by

:::
the

:::::::
national

:::::
strong

:::::::
motion

:::::::
network10

:::::
(“Rete

::::::::::::::
Accelerometrica

:::::::::::
Nazionale”)

:::::::
operated

:::
by

:::
the

::::::
Italian

::::::::::
Department

::
of

:::::
Civil

:::::::::
Protection

:::
do

:::
not

:::::
enter

::
in

:::
the

::::::::::
earthquake

::::::
picking

:::
and

:::::::
location

:::::::::
performed

:::
by

:::
the

:::::
INGV

::::
staff

::::
and

:::
the

:::::
same

:::
data

:::
are

::::
not

:::::::
available

:::::::
through

::::::
EIDA.

::::
They

::::
may

:::
be

::::::::
included,

:::::::
however,

::
in

::::::
future

::::::
releases

:::
of

::
the

:::::::
dataset.

:

In summary, we have adopted the following criteria to identify the waveform records to be included in the dataset after the

earthquake selection above was applied:15

• all stations that feature P-wave (and S-wave when available) onset phases used for the preferred earthquake location
:::
(no

::::::::
distinction

::
is
:::::
made

:::::::
between

:::
Pg

:::
and

:::
Pn

:::
and

:::
no

::::::::
secondary

::::::
phases

::::
like

::::
PmP

:::
are

::::::
picked);

•
::
all

:::::::
stations

::::
with

::::::::
waveform

::::
data

::::::::
available

::::::
through

:::
the

::::::
INGV

:::::
EIDA

::::
node

::::
(see

:::
the

::::::
dataset

::::::::::
contributing

::::::::
networks

::
in

:::
the

:::
pie

:::::::
diagram

::
of

:::
Fig.

::::
5b);

:

5



• P- and S-wave location residual times less than 1.0 s;

• P- and S-wave phases that contributed to the location with a weight larger than 10 %.

This selection procedure reduced the number of P- and S-wave phases from∼ 1.9 to∼ 1.2 and from∼ 1.1 to∼ 0.7 millions,

respectively.

2.1.3 Waveform data selection and download5

The selection procedure described in section (2.1.2) resulted in the compilation of a list of waveform data time windows to be

downloaded from the EIDA continuous waveform archive. We choose a time window of 120 s in order to include both P- and

S-waves from stations whose distance is up to ~600 km from the hypocenter. Indeed, in these cases, the S−P time differences

are approximately 75-80 s. Adding about 20 s of signal before the P-wave time and about 20 s after the S-wave, we end up with

a 120 s window choice providing the most significant earthquake signals for either the most distant stations, in case of crustal10

depth earthquakes, or closer stations, in case of deep earthquakes of the Calabrian arc subduction. Traces that, according to

the INGV earthquake catalog, would include more than one earthquake within the 120 s time window, were removed from the

dataset.

More technically, the time windows
::
set

:::
for

::::
data

::::::::
download were defined by inserting a randomly selected buffer time ranging

between 15 and 20 s before the P-wave onset arrival phase and enlarging the time window to 125 s.
:::
The

::::::::
adoption

::
of

:::
125

::
s
::::
long15

:::::::
windows

::
at

:::
the

::::
data

::::::::
download

:::::
stage

::
is

:::::::
arbitrary

:::::
since

::::
after

::::
data

:::::::::
processing

:::
the

::::
time

::::::::
windows

::::
have

:::::
been

::
all

:::
set

::
to

::::
120

::
s. This

criterion ensured that the great majority of the waveform traces downloaded featured a pre-P-wave onset buffer time between

15 and 20 s. However, we found that, when dealing with such a large number of waveforms acquired by diversified instruments

configured differently, some discrepancies may occur. In practice, since the data are archived in miniSEED compressed format

that feature different sizes of the logical records, and since the web service extracts the full logical record containing the pre-20

defined trace start time, it can occur that the starting
::::
start time of the trace is earlier than the predefined minimum time of 20 s

(i.e., in this case, there is a longer time interval between the P-arrival and the actual trace start time). In contrast, when data are

missing before the P-wave onset time (i.e., in the 15-20
:::::
15–20

:
s
:
pre-P-onset buffer time), start time of the extracted window

can be delayed and a shorter time interval will separate the trace window start time from the P-wave arrival time (i.e., < 15 s).

See Fig. D1 in the appendix for the distribution of the P- and S-wave phase arrival time samples. The data (miniSEED format)25

were downloaded using the FDSN dataselect web services provided by INGV (http://terremoti.ingv.it/en/webservices_

and_software). Using a set of 14 container based querying procedures running in parallel, this stage required about 7 days

to complete the ~4 million waveform traces (i.e., ~1.3 million of 3C traces) download for a storage requirement of ~80 GB

(miniSEED STEIM1 compression).
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2.1.4 Cross-validation between phases-based metadata and downloaded waveform data

After the massive data download was concluded, a list of all the downloaded files was generated. This list was intersected

with the originally selected metadata (section 2.1.2) to have a one-to-one correspondence between the miniSEED data and the

metadata (i.e., each 3C waveform record — three miniSEED files —must correspond to a row of the metadata file).

2.1.5 Processing
::::::::::
Preparation

:
of the data counts

::::::::
processed waveforms

::
in

::::::
digital

::::
units5

This part of our data assembling procedure targets the preparation of the digital counts waveform traces. It includes the follow-

ing steps.

– removal of traces containing data gaps (i.e., missing data);

– trimming the waveform trace to the nearest sample to the start time;

– 120 s trace windowing;10

– removal of mean and linear trends from the data;

– re-sampling at 100 Hz;

– calculation of the signal-to-noise ratio;

– extraction of the data quality metrics.

::
No

:::::::
rotation

::
of

:::
the

:::::::::
horizontal

:::::::::
component

:::::
along

:::
the

::::
N-S

:::
and

:::::
E-W

::::::::
directions

::::
was

:::::::
required

:::::
since

::
all

:::::::
sensors

::::
used

:::
are

:::::::
oriented15

::::::::::
accordingly. For each waveform trace (i.e., each component), the maximum value of signal-to-noise ratio (SNR) was extracted

and kept as metadata. The SNR was calculated as

SNR= 20 log10
|S95|
|N95|

(1)

where |S95| and |N95| are the 95 % percentile of the data absolute values in a 5 s window immediately after the S-wave onset

and right before the P-wave arrival time. If the S-wave onset were not available, the S-wave window was determined after20

calculation of the predicted S-wave arrival using an average velocity of 3.0 km s−1 and the hypocentral distance.

During this stage of the data preparation, we have also calculated some quality parameters extracted from the waveform

traces to the purpose of a later inclusion in the metadata information. These additional parameters, providing the distribution

of the trace values, have been computed using the MSEEDMetadata class of the obspy python software (Beyreuther et al.,

2010; Megies et al., 2011; Krischer et al., 2015). To the same purpose, we have determined the number of spikes using a25

Hampel filter on a 161 samples sliding window to find outliers in the traces.

The final dataset consists of a total of 1,159,249
::::::::
1,159,249 3C waveform data records from 54,008

::::::
54,008 earthquakes in

counts units assembled within an hdf5 format file. Table 1 provides the number of traces within each magnitude interval of

the final assembled dataset.
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2.1.6 Application of the instrument transfer function to the waveforms

To make the dataset of more general use, we have also generated the associated ground motion units dataset
:
a
::::::
dataset

::
in

:::::
units

::
of

:::::::
physical

::::::
ground

::::::
motion

:
after deconvolving the instrument response. To this end, we have downloaded the station response

files for all the stations used and applied the transfer functions to the individual traces with frequency filtering corners 0.01,

0.04, 25, 40 Hz using a cosine flank frequency domain taper (see cosine_sac_taper
:::::::::::::::::::
cosine_sac_taper in Obspy), and5

applying a 5 % cosine tapering at both ends of the trace signal. After removing the instrument response, we extracted the

intensity measures (IMs, i.e., peak ground acceleration, PGA, peak ground velocity, PGV, and the spectral accelerations at 0.3,

1.0 and 3.0 seconds period) on each component so that they could be included amongst the metadata parameters. Peak ground

displacements are not included since they result
::
be

:
from single or double integration of velocity and acceleration records,

respectively, and their determination can result inaccurate when performed automatically.10

2.2 Metadata description

The 114
:::
115

:
metadata associated to each 3C waveform trace of our collection are listed in Table 2. They provide different

kind of information that can be subdivided into four main types — source, station, trace and path metadata. The unit of each

metadata is provided in its denomination.

The source metadata provide information on the earthquake with description of the source origin time, location, size and,15

when available, the focal mechanism, the moment tensor, and the finite fault.

The station metadata provide information on the characteristics of the recording station which include the station, channel,

network and location (SCNL) (cf. http://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf), the geographical coordinates

and the average shear-wave velocity of the top 30 m of the Earth, VS,30, which is an important parameter for classifying sites

in seismic engineering applications (e.g., Boore, 2004) and is extracted from the map used in the INGV implementation of the20

USGS-ShakeMap software in Italy (Michelini et al., 2019).

The trace metadata consists of parameters that are extracted from the waveform traces like maximum and minimum ampli-

tudes, root mean squared values of the traces and, after application of the transfer function, intensity measures (IMs) of the

ground motion. In this class of metadata, we include the P- (and S-wave) provided by the INGV bulletin and, in addition, the

number of P and S picks obtained by processing the waveforms with two deep learning phase picking and event detection25

algorithms (GPD and EQTransformer; Ross et al., 2018a; Mousavi et al., 2020) to make the user aware that the waveform trace

being used may include more than a single earthquake (see discussion further below).

The path metadata follow from the calculation of parameters that link the types of metadata above (e.g., traveltimes, hypocen-

tral and epicentral distances).

The rationale of our metadata selection reflects our intention of providing the users with comprehensive information about30

the data. This appears an important issue since the data, being recorded automatically, can suffer of many diverse problems

deriving from malfunctioning of the data loggers, of the sensors or from poor data transmission. Since we seek to assemble a

8
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data set that can be used also for analysing real time data streams using ML, we note that the automatic processing summarized

above does not differ significantly from that routinely applied to the streamed data.

One alternative to our metadata “comprehensive” approach would have consisted of “cleaning” the dataset by removing the

faulty traces from the dataset altogether. We do not think this approach appropriate since in this case the dataset would not be

representative of the “true” data that are collected in real-time by the monitoring networks. Thus, the basic idea behind our5

criterion is that we would like to enable the users to make their own choices using opportune filters to exploit the data for their

own purposes. For example, if a user looks for the cleanest data, this can be achieved by filtering the metadata accordingly

(e.g., saturated velocimetric data acquired by broadband sensors equipped with 24 bit data loggers could be removed in a

conservative fashion just by selecting only those traces with counts within ±0.8 ∗ 223). In contrast, the user could also opt to

leave the ML model to learn the “data problems” so that they can be detected when using real data. An approach of this kind10

has been used by (Jozinovic et al., 2020) for missing data. In
::::::::::::::::::
Jozinovic et al. (2020)

:
,
:::
the

::::::
dataset

::::
used

:::
for

:::
ML

:::::::
consists

::
of

:
a
:::::
fixed

::::::
number

::
of

:::::::
stations

:::
and

:::::
when

::::
data

::::
from

::::
one

::
or

:::::
more

::::::
stations

:::
are

:::::::
missing

::::::
(either

:::
the

:::::
whole

::::
trace

:::
or

::::
parts

::
of

:::
it),

:::
the

:::::
signal

:::::
trace

:
is
:::
set

::
to

:::
be

::
an

:::::
array

::
of

:::::
zeros.

::::
The

:::
ML

::::::
model

::::
used

::::
there

::::
was

:::::
found

::
to

:::::
detect

::::
and

::::
learn

:::
the

::::::::::
problematic

::::::
values,

::::
and

::::::::::
compensate

::
for

::
it,
::::::
having

::
a

::::::
similar

::::::::
prediction

::::::::
accuracy

::
on

:::::
those

:::::::
stations

::
as

:::
the

:::::::
accuracy

:::
on

:::
the

::::::
stations

:::::
which

::::
had

:::
the

::::
input

::::
data

::::::::
available

:
.

::
In practice, the provision of a rich set of waveform descriptive metadata is important not only to make use of an enlarged suite15

of labels that can be used for diverse purposes but also to identify problems with the waveform data and include or filter them

out.

Our metadata includes P- and S-wave onset
:::::
onsets

:
manually picked by INGV analysts as provided in the INGV bulletin.

Recall that the traces were selected to include just one P-wave arrival time and possibly one S-wave arrival time since we

sought to assemble one earthquake per window trace. This criterion was chosen to the purpose of facilitating the training of20

ML models upon
::::
using

:
traces containing just one earthquake (e.g., for phase picking, peak ground motions, ...). However,

even though we have made considerable efforts to isolate only one earthquake per time window, more than one can be present

effectively within the same time window (e.g., the analyst did not see or just disregarded other events with smaller amplitudes).

Because the presence of additional, unidentified earthquakes adds complexities to the ML training phase, we followed the

same approach taken by Mousavi et al. (2019) to run automatic picking algorithms upon the waveform dataset and include as25

metadata also the number of P- and S-wave phases picked automatically by the generalized phase detection, GPD, technique

proposed by Ross et al. (2018a) and the EQTransformer technique by Mousavi et al. (2020). In the analysis we have used as

detection threshold: 0.99 for P- and S-phase detection for GPD, and 0.2, 0.1 and 0.1 for earthquakes, P- and S-phase detection,

respectively, for EQTransformer.
::::
Both

::::
GPD

:::
and

::::::::::::::
EQTransformer

::::
have

::::
been

:::
run

::::
only

:::
on

:::
the

::::
high

:::
gain

::::::::
channels

::::
(i.e.,

::::
HH,

::::
EH).

:

As presented above, metadata are important constituents of data collections. They can be used for identifying the data to be30

analyzed and they can be used as labels in ML applications. Besides
::
In

:::::::
addition

::
to

:::
the

:::
fact

:
that not all the metadata information

in INSTANCE is always available (e.g., moment tensors are
:::::::
generally available only for events with magnitudes

:
~M ≥ 3.5 or

the S-wave onset pick retrieved from the INGV bulletin may not be present), we have found that the automatically processed

ground motion trace data may suffer from errors because the original traces contained already undetected malfunctioning prob-

lems (e.g., spikes, anomalous trends) which, after application of the instrument transfer function, are mapped into erroneous35

9



ground motion traces and IM values. Analogously
::::::::
Similarly, it may have also occurred that in isolated cases the coefficients of

the instrument transfer functions were found incorrect producing also in this case incorrect traces and IM values. To address

these problems, we have operated in two ways. First, we have chosen to detect the traces’ maximum and minimum values lying

outside the acceptable physical range and to replace them with numpy nan in the metadata file. This acceptable range was

based on the IMs reported in the “flat” file of the ESM DB (https://esm-db.eu/, Lanzano et al., 2018) which includes all the5

IMs (obtained from analyst processing) of all the recordings available of earthquakes with M ≥ 4.0 in Europe. Secondly, we

have verified our instrument transfer function processing procedure by cross-validating all our IM values with those reported

in the ESM DB “flat” file. To this regard, we found a very good correspondence between the IMs obtained using the two

methodologies giving us confidence in the quality of the applied data processing and of the IM metadata being provided.
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Table (2). List of the metadata for the events and noise waveform traces. The units are given in parenthesis in the “Description” column.

Only a subset of metadata can be associated to the noise traces (star in the “Noise” column).

Metadata parameter-name Noise Description

source_id ? Earthquake and noise ID (INGV and UTC time, respectively)

source_origin_time Location preferred origin time (YYYY-MM-DDTHH:MM:SS.SSZ)

source_latitude_deg Location preferred latitude (◦)

source_longitude_deg Location preferred longitude (◦)

source_depth_km Location preferred depth (km)

source_origin_uncertainty_s Location preferred origin time uncertainty (s)

source_latitude_uncertainty_deg Location preferred latitude uncertainty (◦)

source_longitude_uncertainty_deg Location preferred longitude uncertainty (◦)

source_depth_uncertainty_km Location preferred depth uncertainty (km)

source_stderror_s Preferred earthquake location standard deviation (s)

source_gap_deg Location preferred location gap (◦)

source_horizontal_uncertainty_km Location preferred horizontal uncertainty (km)

source_magnitude Preferred magnitude

source_magnitude_type Preferred magnitude type

source_mt_eval_mode Moment tensor evaluation mode (e.g., manual)

source_mt_status Status of the evaluation (’reviewed’ or ’final’)

source_mt_scalar_moment Scalar moment (N m)

source_mechanism_strike_dip_rake Strike, dip, rake of the two planes (2 tuples)

source_mechanism_moment_tensor 6 components of the moment tensor (m_rr, m_tt, m_pp, m_rt, m_rp, m_tp)

::::::::::::
source_type

::::::::
earthquake

::
or

::::
other

::::::
sources

::::
(e.g.,

::::::::::
quarry_blast,

::::::::
controlled

::::::::
explosion,

:::::::::
experimental

::::::::
explosion,

:::
...)

station_network_code ? Two characters FDSN network code (e.g., IV)

station_code ? Station name (International Registry of Seismograph Stations (IR))

station_location_code ? Location name (International Registry of Seismograph Stations (IR))
:::::::
identifier

:::::::::::
(Buland, 2006)

station_channels ? Two characters identifying the sampling and the intrument gain (e.g., HN, HH, EH, ...)

station_latitude_deg ? Station latitude (◦)

station_longitude_deg ? Station longitude (◦)

station_elevation_m ? Station elevation (m)

station_vs30_mps ? VS,30 (m s−1)

station_vs30_detail ? VS,30 information

path_ep_distance_km Epicentral distance

path_hyp_distance_km Hypocentral distance

path_azimut
::::::::
azimuth_deg Direction from event location to station (◦)

path_backazimut
::::::::::::
backazimuth_deg Direction from station location to event epicenter (◦)

path_residual_[P,S]_s P- or S-arrival time residual between picked arrival time and traveltime using preferred location (s)

path_weight_phase_location_[P,S] P- or S-phase location weight resulting from preferred location (range 0-100)

path_travel_time_[P,S]_s P- or S-wave traveltime (s)
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Table (2). List of the metadata, continued.

(a) The horizontal
:::::
double

:
line separates the additional metadata obtained after application of the instrument response transfer function.

Metadata parameter-name Noise Description

trace_name ? Waveform name within the hdf5 file

trace_start_time ? Waveform trace UTC start time (YYYY-MM-DDTHH:MM:SS.SSZ)

trace_dt_s ? Sampling interval (s)

trace_npts ? Number of samples in waveform trace (integer)

trace_[P,S]_uncertainty_s Assigned P- or S-onset arrival time uncertainty (s)

trace_eval_[P,S] P- or S-type of picking (currently only ’manual’)

trace_[P,S]_arrival_time P- or S-arrival UTC start time (YYYY-MM-DDTHH:MM:SS.SSZ)

trace_polarity P onset polarity (’negative’,’positive’,’undecidable’)

trace_[P,S]_arrival_sample P-, S-onset sample number on waveform trace (integer)

trace_[E,N,Z]_median_counts ? E-, N- or Z-component sample median (counts, integer)

trace_[E,N,Z]_mean_counts ? E-, N- or Z-component sample mean (counts, integer)

trace_[E,N,Z]_min_counts ? E-, N- or Z-component sample minumum (counts, integer)

trace_[E,N,Z]_max_counts ? E-, N- or Z-component sample maximum (counts, integer)

trace_[E,N,Z]_rms_counts ? E-, N- or Z-component sample root mean squared

trace_[E,N,Z]_lower_quartile_counts ? E-, N- or Z-component sample lower quartile (counts, integer)

trace_[E,N,Z]_upper_quartile_counts ? E-, N- or Z-component sample upper quartile (counts, integer)

trace_[E,N,Z]_snr_db E-, N- or Z-component signal to noise ratio

trace_[E,N,Z]_spikes ? E-, N- or Z-component number of spikes (integer)

trace_GPD_[P,S]_number ? P, S number of picks retrieved with GPD

trace_EQT_[P,S]_number ? P, S number of picks retrieved with EQT

trace_EQT_number_detections ? Number of detections retrieved with EQT

trace_[E,N,Z]_pga_cmps2 E-, N- or Z-component PGA (cm s−2)

trace_[E,N,Z]_pgv_cmps E-, N- or Z-component PGV (cm s−1)

trace_[E,N,Z]_pga_perc E-, N- or Z-component PGA (% g)

trace_[E,N,Z]_pga_time E-, N- or Z-component PGA UTC time (YYYY-MM-DDTHH:MM:SS.SSZ)

trace_[E,N,Z]_pgv_time E-, N- or Z-component PGV UTC time (YYYY-MM-DDTHH:MM:SS.SSZ)

trace_[E,N,Z]_sa03_cmps2 E-, N- or Z-component spectral acceleration at t=0.3 (cm s−2)

trace_[E,N,Z]_sa10_cmps2 E-, N- or Z-component spectral acceleration at t=1.0 (cm s−2)

trace_[E,N,Z]_sa30_cmps2 E-, N- or Z-component spectral acceleration at t=3.0 (cm s−2)

trace_pga_cmps2 Max.horizontal components PGA value (cm s−2)

trace_pgv_cmps Max.horizontal components PGV value (cm s−2)

trace_pga_perc Max.horizontal components PGA value (% g)

trace_sa03_cmps2 Max.horizontal components spectral acceleration (t=0.3) (cm s−2)

trace_sa10_cmps2 Max.horizontal components spectral acceleration (t=1.0) (cm s−2)

trace_sa30_cmps2 Max.horizontal components spectral acceleration (t=3.0) (cm s−2)

trace_deconvolved_units ground motion units of the traces in the HDF5 volume (e.g., mps and mps2 for m s−1 and m s−2, respectively)
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2.3 Dataset description

Figure (1). Earthquakes
:::
Map

::
of
:::

the
:::::::::
earthquakes

:::::::
included

::
in

:::
the

:::::
dataset

:::::
shown

::
as
::::

solid
::::::

circles
:::
with

:::::
colors

:::::::
selected

:::::::
according

::
to
:::::
depth (a)

:
,

and
:::
map

::
of
:::

the
:::::::
available

:
moment tensors

:::
with

:::::
colors

:::::::
assigned

::::::::
depending

::
on

:::
the

::::
focal

:::::::::
mechanism

:
(b)of the dataset. Symbol size, in both

maps, is proportional to earthquake magnitude.

Figure 1a shows the earthquakes included in the dataset. The symbol size is proportional to the earthquake magnitude. We

observe that the 54,008 selected earthquakes composing the dataset can be considered a representative subset of the entire

seismicity in Italy and, for the larger events, also for those earthquakes occurring outside the
:
in
:::
the

::::
near

:::::::
vicinity

::
to

:::
the

:
Italian

national borders. During the time span of our data selection three important sequences have occurred in Italy after the main5

shocks of the 2009 L’Aquila M 6.0, the 2012 Emilia M 5.9 and the 2016 central Italy extended sequence which featured three

main earthquakes with magnitudes M 6.0, M 5.9, and M 6.5.

In Fig. 1b we plot the 527 moment tensors included in the metadata. The size of the moment tensors symbol is proportional to

source_magnitude while the colors are defined according to the prevalent strain regime: black, red and blue
:::
blue

::::
and

:::
red

for strike slip, normal and inverse
:::::
thrust

:
faults, respectively. The prevalent strain regime is determined according to the fault’s10

rake as derived form
:::
from

:
source_mechanisms_strike_dip_rake: strike slip for -45◦ < rake < 45◦ and 135◦ < rake

< 225◦; normal for 225◦ ≤ rake ≤ 315◦; inverse
::::
thrust

:
for 45◦ ≤ rake ≤ 135◦.

In Fig. 2 we show the maps of the stations included in the events and noise datasets, respectively. The symbol size in panel

a) is proportional to the number of reported phase arrivals by each station, while in panel b) is proportional to the number of

waveforms included in the dataset for each station. Figure 2a evidences that quite
:::::::::::
demonstrates

::::
that

::::
quite

::
a different number15
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of phases have been reported by the stations included in the event dataset. These differences depend on several factors like

whether the stations are permanent or temporary, the time length of the acquisition, the noise level and the level of seismicity

of the area where the stations have been deployed. For example, it is evident that many stations in central Italy display many

phases (and associated trace recordings) mainly because the area was struck by the 2009 and 2016 earthquake sequences. In

contrast, stations that are located in the Po Plain generally feature small number of phases mainly because the noise level is5

high making it difficult the phase picking
:::::::
difficult. The same diversification in the number of available traces is not observable

for the noise dataset shown in Fig. 2b. This occurs because it was an intentional choice to select a more or less even number of

traces for all the station channels.

Figure (2). Stations included in
:::
Map

::
of

:
the

:::::
stations

::::
used

::
to
::::::::

assemble
:::
the events (a) and noise (b) datasets. The symbol size in (a) is

proportional to the number of the number of P-phases and corresponding waveform traces available for each station. In (b) the symbol size

is proportional to the number of traces. A total of 620 stations are included.

In Fig. 3, we show the distribution according to magnitude, earthquake to station epicentral distance, earthquake depth and

backazimuth of the 3C record traces composing the dataset. The panels show the histograms using the log10 scale to provide a10

complete representation of the distribution of the dataset.
:::
We

:::::
adopt

:::
the

:::::
linear

:::::
scale,

::::::::
however,

::
to

:::::::::
emphasize

:::
the

::::::::::
distribution

::
of

::
the

:::::::::::
backazimuth

::
in

::::
Fig.

:::
3d. Despite the attempt to balance the distribution of earthquakes according to magnitude (Sect. 2.1.1),

Fig. 3a shows that our selection still reflects (inevitably) the Gutenberg-Richter increase of the number of earthquakes at smaller

magnitudes. The largest amount of trace records in the dataset belongs to earthquakes in the magnitude range 2≤M < 3. The
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Figure (3). Histograms of the distribution of the trace records composing the dataset according to magnitude (a), epicentral distances (b),

earthquake depth (c) and backazimuth (d).
:::
The

::::
labels

::
of
:::
the

::::::::
horizontal

:::
axis

:::
are

::::::
assigned

:::::
using

::
the

:::::::
metadata

:::::
names

:::::
listed

::
in

::::
Table

::
2.

significant decrease of the number of traces for M < 2 follows from our choice to balance the dataset at small magnitudes

by taking only about 7 % of the whole dataset. For what concerns the epicentral distances of the stations (Fig. 3b), the great

majority of the traces have been recorded within 200 km. A better appreciation of the selected traces can be obtained from the

observation of Fig. 4 where we show the magnitude versus hypocentral distance distribution of the dataset traces represented

as density plots using hexagon binning (hexbin, Hunter, 2007). The earthquake depth distribution (Fig. 3c) shows that the great5

majority of the traces belong to shallow crustal earthquakes although a few thousand included occur in the depth range 100

to 300 km. At greater depths, the number of traces decreases sharply and only a few hundred or less recordings are included

in the depth range 400 to 550 km. Figure 3d shows that the great majority of the P- and S-wave onsets belong to paths more

frequent along the NW-SE direction in agreement with the geographical trend of the Apennines and of peninsular Italy overall.

Figure 5a shows the distribution of the trace channels of the dataset (station_channels). The weak motion, high gain10

channels represent more than 70 % of the total number of traces. These are subdivided into HH channels associated to the

broadband high gain velocimeters (51 %) of the total whereas the extended short period channels (EH) traces account for

20 %. The low gain accelerometric channels form the remaining part of the dataset. In Fig. 5b, we show the distribution of the

records subdivided according to the different networks (station_network_code) operating in Italy and in neighboring

countries that have been included in the dataset. The dominant portion of the data (~96 %) have been acquired by the Italian15

National Seismic Network (IV code) and by the MedNet (MN code) both operated by INGV (Michelini et al., 2016; Danecek

et al., 2021). The full list of the contributing networks is provided in the caption.

The polarities associated to the P-wave onsets (trace_polarity) are shown in Fig. 5c and have been reported in only

20 % of the total number of traces. Although this represents only a fraction of the dataset, we are confident that its number

(~235,000 ) is likely large enough to be used in a ML dedicated model (e.g., Ross et al., 2018b) for training and testing, and20
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Figure (4). Diagrams
:::::::
Diagram of the

::::::::
earthquake magnitude distribution

::
of

::
the

::::::
dataset versus

:::::
receiver

:
distance

:::::::::
represented as hexbin plot.

:::
The

::::
labels

:::
are

:::::::
assigned

::::
using

:::
the

:::::::
metadata

:::::
names

::::
listed

::
in

::::
Table

::
2.

then used to recover the polarities of the remaining batch.
::
To

:::
this

:::::::
regard,

:
it
::

is
::::::::::

noteworthy
::
to
:::::::

observe
::::

that
:::
the

:::::::
positive

::::
and

:::::::
negative

::::::::
polarities

::::
have

::
a

::::
ratio

::::::
nearly

:::
2:1.

:::
In

:::
the

::::::::
Appendix

::
C
:::

we
:::::

have
::::::::
examined

:::
the

:::::::
possible

::::::
origin

:::
for

:::
this

::::::::::
asymmetry.

:::
In

:::::::
addition,

:::
we

::::::
would

:::
like

::
to

:::::
point

:::
out

::::
that,

::::::::
although

:::
the

::::::::::::::
source_type

::
is

:::::::
provided

::::::::
amongst

:::
the

::::::::
metadata,

:::::
there

:::
are

:::::::
inherent

:::::::::
difficulties

::
to

::::::
identify

::::
man

:::::
made

:::::::
sources

::
by

:::
the

::::
staff

:::::::
analysts.

:

The magnitude type distribution (source_magnitude_type) is shown in Fig. 5d. The Wood-Anderson local magnitude5

ML (Richter, 1935) is calculated predominantly (~96 %). The moment magnitude Mw is determined for earthquakes with

~ML ≥ 3.3
::::::::
ML ≥ 3.5 and when enough good quality station data are available (Scognamiglio et al., 2009). The Md magnitude

is used only when it is impossible to determine the ML and it is provided mainly in the first years of the dataset when the IV

network still included a considerable number of analog stations.

In Fig. 6a,c we present the histograms of the P- and S-wave residual times included in the dataset. Fig. 6b,d shows the phase10

arrival weights resulting from the earthquake locations for P- and S-phases, respectively.

To provide a broader perspective of the dataset and with the intent of showing the wide range
::
of waveform paths that have

been included we present, in Fig. 7, the hexbin plots of the traveltime for both P- and S-wave arrival times used in the locations.

These panels have been arranged using four different maximum distances and are useful for visualizing the dominant structure

of the data selection given the large number of data. More specifically, it can be observed that the hexagon binning panels for15

the larger distance ranges (700 and 200 km max distance) and for both P- and S-wave traveltimes (Fig. 7a,b,e,f) highlight well

both the direct and Moho refracted travel times. At smaller distance ranges (100 and 40 km, Fig. 7c,d,g,h), it is evident that our

dataset includes waveforms that propagated across crustal structures with different velocities. This is very evident, for example,

for both P- and S-wave in the hexbin plots where at small distance are observable very low Vp and Vs velocities.
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Figure (5). Pie diagrams
:

of
:::
the

::::::::
earthquake

::::::
dataset summarizing the distribution of the channels (a), the data contributing networks (b), the

P-wave polarities (c) and the magnitude types (d) of the dataset. The full list of station_network_code with % < 1 collected in Others

in decreasing order is OX, ST, SI, XO, NI, IX, OT, RF, YD, TV, B1, AC, HL, ZM, 3A.
:::
See

:::
the

:::::::
metadata

:::::
names

::::
listed

::
in
:::::
Table

:
2
:::
for

:::
the

:::::
specific

:::::::
metadata

:::::
being

:::::::::
represented.

In the following, we will focus on the trace amplitude metadata. These parameters , provided as metadata, are important

for refined selection of the traces and are extracted from both the raw waveforms expressed in “counts” and from the traces

in physical units after application of the instrument transfer function. Some of these parameters can be obtained without any

knowledge on the earthquake source parameters whereas others, like the SNR, require knowledge on the arrival times of P-

and S-wave onset times.5

The panels of Fig. 8 display the median (trace_[E,N,Z]_median_counts) and the mean values

(trace_[E,N,Z]_mean_counts) of the dataset traces. To evidence the whole range of values attained by these two

metadata, we adopt the base-10 log scale. The histograms show, for all the three components, remarkable differences of the

distributions. The mean values, which have been removed in the pre-processing preparation stage (cf Sect. 2.1.5), are tightly

:::::::::
(obviously)

:
centered about the zero value whereas the median histograms, while being similarly centered about the zero value,10
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Figure (6). Histogram of the P- and S-wave residuals (a,c) and of the
:::::::::
pre-assigned phase arrival weights, expressed as percent, resulting from

the location (b,d).
:::
The

:::::::
metadata

:::::
names

::::
listed

::
in
:::::
Table

:
2
:::
are

:::
used

::
as
:::::
labels

:::
for

::
the

::::::
specific

:::::::
metadata

:::::
being

:::::::::
represented.

do evidence
::::::
display

:
a broader distribution of values around zero. This last behaviour occurs whenever the waveform trace

values are unevenly distributed about the mean and it derives from the pre-processing of faulty traces that, for example, results

into defective removal of the linear trend. The same figure for the full range of the parameters, is available in Fig. D2.

In Fig. 9, we present the histograms of the distribution of the trace quality control parameters obtained from the application

of the MSEEDMetadata module of the Obspy seismological software suite. The figure shows the distribution of the quality5

control parameters in a closer view (see the full range of values in Fig. D3). The histograms show that the largest majority of

the traces feature root mean square values less than 2.5× 104 with a minor contribution from traces featuring higher values.

The minimum and maximum values follow a similar trend for negative and positive values, respectively. The lower and upper

quartile values of the traces show that the peak of the distributions are at ∓2× 103, respectively.

The SNR distributions are shown in Fig. 10 as histograms and versus distance and magnitude (M ≥ 2) as hexbin plots in10

Fig. 11. The histograms show that the peak values for the whole dataset are at ~10 db for the two horizontal components and

slightly less for the vertical (~6 db). This is expected because the S-wave motion is polarized
::
in

:::
the

:::::::
shallow,

::::
near

::::::
surface

::::
low

::::::
velocity

::::::
layers

:
is
::::::::
polarized

:::
on

:
a
:::::
plane

:
perpendicular to the nearly vertical propagation direction at the surface

::
of

:::
the

::::::::
wavefront,

implying that the ground motion occur
:::::
occurs

:
mainly along the horizontal components. In any event, the distribution of the

SNR values of our dataset can be considered rather satisfying
::::::
sensible

:
given that values larger than 2 already provide distinct15

earthquake signals.
::
In

:::::::
contrast

:::
and

::
at

:::
the

:::::
lower

::::
end

::
of

:::
the

::::
SNR

:::::::::::
distribution,

:::
we

:::
find

::::
that

::::
10%

::::
(see

:::::
Table

::
3)

::
of

:::
the

:::::
trace

::::
data
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Figure (7). Hexbin plot of the traveltimes for different
::::::::
hypocentral

:
distance ranges for P- (top panels) and S-waves (bottom panels).(a,e)

0-700 km; (b,f) 0-200 km; (c,g) 0-100 km; (d,h) 0-40 km.
:::
The

:::::::
metadata

:::::
names

::::
listed

::
in

::::
Table

::
2

::
are

::::
used

::
as

:::::
labels.

::
of

:::
the

:::
HH

::::::::
channels

:::::
have

::::
SNR

::::::
values

::::
less

::::
than

:::
2.3

::::
(1.2

:::
for

:::
the

:::::::
vertical

::::::::::
component)

::::
that

::::::::::
corresponds

::
to

:::::::
roughly

:::
to

::::::
59,000

::::::::
waveform

:::::
traces

:::
out

:::
of

:::
the

:::::::
592,000

:::::
traces

:::
of

:::
the

:::
HH

::::::::
channels

:::::::
included

::
in

:::
the

:::::::
dataset.

::::
This

::::::
number

:::
of

:::
low

:::::
SNR

:::::
traces

:::::
could

:::
still

::
be

:::::
used,

:::
for

::::::::
example,

::
to

::::
train

:::::::
machine

::::::::
learning

::::::
models

:::::
aimed

::
to
:::
the

::::::::
detection

::
of
:::::

very
::::
small

:::::::::
magnitude

:::::::::::
earthquakes

::::
little

:::::
above

:::
the

::::::::::
background

::::
noise

:::::
level.

:

The hexbin plots of Fig. 11 provide a snapshot of the dominant levels of SNR with distance and magnitude. It is observed5

that higher values occur for nearby earthquakes and that the SNR progressively decreases at farther distances. Conversely and

as expected, the SNR generally increases with larger magnitude earthquakes.

The hexbin plots of the distribution of the IMs with distance for earthquakes with M ≥ 2 are shown in Fig. 12 whereas their

associated distributions are shown in Fig. D4. The panels evidence a broad concentration of ground motion values deriving

from the inclusion of earthquake recordings from different distances and magnitudes. The panels also evidence some horizon-10

tal stripes at higher
:::
and

:::::
lower

:
values of ground motion resulting presumably from the acquisition and processing problems

mentioned in Sect. (2.2).

To show the distance dependence of the IMs for a given magnitude, in Fig. 13 we plot the values for M = 3 earthquakes

(i.e., IMs in the range 2.9≤M ≤ 3.1). The maximum concentration of IMs can be assimilated to
::::::::
represent an average ground

motion model for for M = 3 earthquakes in Italy.15
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Figure (8). Close view of the histogram of the distribution of the median and mean values of the
:
E,

::
N
::::

and
:
Z
:::::::::

component
:
earthquake

waveform traces.
:::
The

::
full

:::::::::
distribution

::
is

:::::
shown

::
in

:::
Fig.

:::
D2.

::::
Note

:::
that

:::
the

::::
mean

:::::
values

::::::
(bottom

::::
row)

:::
are

:::::
shown

::
to

::
the

::::
sole

::::
scope

::
of

::::::::
reference.

:::
The

:::::::
metadata

:::::
names

::::
listed

::
in

::::
Table

::
2
::
are

::::
used

::
as

:::::
labels

::
for

:::
the

::::::
specific

:::::::
metadata

::::
being

:::::::::
represented.

2.4 Examples of event data traces

Some examples of the data traces are shown in Fig. 14, 15 and 16. The traces have been selected randomly according to

certainly non-exhaustive criteria described in the figure caption using, as a guideline, the metadata distribution illustrated in

Sect. 2.3.

In Fig. 14 we show the traces in counts of events recorded by the broadband instruments (HH channels). Specifically, the5

first three rows (Fig. 14a-i) show traces for different ranges of magnitude which, taken together, represent more than 80 %

of the total HH traces. In the following two panel rows (Fig. 14j-o) we show examples of traces selected according to SNR

and distance criteria that evidence that more than 65 % of the traces feature relatively high SNR (i.e., ≥ 10) within the whole

distance range covered by our data collection. The seismograms shown in the last panel row (Fig. 14p-r) provide some samples

of recordings of the largest events (M ≥ 4) where we found that ∼ 87 % feature SNR ≥ 10.10

To provide an exhaustive exploitation
::::
show

::::
how

:::::::
metadata

::::
can

::
be

::::
used

::
to
::::::
isolate

::::
end

:::::::
members

:
of the dataset, we focus next

on examples of problematic traces. Although different criteria could have been used given the comprehensive set of metadata

available, here for simplicity, we base our identification on: i.) the number of picks and detections resulting from application of

the GPD and EQTransformer algorithms to isolate those traces likely containing more than a single event; ii.) the value of the

SNR to identify poor quality noisy traces; iii.) the values of the trace median values which are expected to diverge from zero15
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Figure (9). Histogram of the distribution of quality control metadata of the earthquake
:
E,
:::
N,

:
Z
:::::::::
component waveform traces: rms, min, max,

first and third quartile. The width of the bins is 2× 103. The full distribution of values is provided in Fig. D3.
:::
The

:::::::
horizontal

::::
axis

:::::
labels

::::::::
correspond

::
to

::
the

:::::::
metadata

:::::
being

:::::::::
represented

::::
which

:::
are

::::
listed

::
in
:::::
Table

::
2.

whenever the trace values are unevenly distributed about the mean value as result of acquisition or processing problems; and

iv.) the values of peak acceleration and velocity ground motion parameters. The user, depending on desiderata, can customize

the selection criteria. In Table 3
:
, we provide a basic quantification of the distribution of the relevant metadata shown in Fig. 15

and, in Table 4, we present the distribution of the values of the maximum horizontal ground acceleration and velocity expressed

as % g and cm s−1
:::
cm

:::
s−1, respectively. Some of the values reported in these two tables are used for our trace selections.5

In Fig. 15 (a-c) and Fig. 15 (d-f) we show some traces that have been selected from the HH channels according to the number

of P- and S-wave onset picks greater than 3 detected through the application of the GPD and EQTransformer techniques,

respectively. Based on the values reported in Table 3, the presence of these multiple event traces in the dataset is less than the

10 %. In Fig. 15 (g-i), we focus attention on the traces that feature SNR values on at least one component within the lowest

10 % of the dataset. These traces are good examples of noisy traces and low amplitude event signals. In Fig. 15 (j-l), we plot10
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Figure (10). Distribution of the signal-to-noise ratio of the earthquake
::
E,

::
N,

:
Z
:::::::::
component waveform traces.

:::
The

:::::
panels

::
on

:::
the

:::
top

:::
row

::::
have

::::
linear

::::::
y-axes,

::::::
whereas

::::
those

:::
on

::
the

::::::
bottom

::
are

::
in
:::::::::
logarithmic

:::::
scale.

:::
The

::::::::
horizontal

:::
axis

:::::
labels

::::::::
correspond

::
to

:::
the

:::::::
metadata

::::
being

:::::::::
represented

::::
which

:::
are

::::
listed

::
in
:::::
Table

:
2.

Table (3). Distribution according to different quantiles of selected metadata
::
(cf.

:::::
Table

::
2) for the HH channels of the event dataset.

Metadata parameter-name min 10 % 25 % 50 % 75 % 90 % max

trace_E_median_counts -6.57e+06 -22 -6 0 6 22 3.03e+06

trace_N_median_counts -6.51e+05 -22 -6 0 6 22.5 2.5e+06

trace_Z_median_counts -7.63e+05 -11.5 -3 0 3 12 9.92e+05

trace_E_snr_db -25.5 2.31 7.29 15 25 35.4 95.4

trace_N_snr_db -26.9 2.3 7.27 15.1 25.1 35.5 95.8

trace_Z_snr_db -23.3 1.21 5.51 12.5 22.2 32.5 95.4

trace_EQT_number_det. 0 1 1 1 1 1 7

trace_GPD_P_number 0 0 1 1 1 2 13

trace_GPD_S_number 0 0 1 1 2 3 22

three traces for which the median values of all the three components fall within the two 10 % extremes. They represent about

6 % of the entire HH channels dataset. In the bottom row of Fig. 15 (m-o), we show that excluding the very low 25 % of

SNR values from the previous selection (Fig. 15 (j-l)) it is possible to select traces that do not suffer of particular problems.
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Figure (11). Hexbin representation of the distribution of the signal-to-noise ratio with
::
for

:::
the

::
E,

::
N
:::
and

::
Z
:::::::::
components

::
of
:::

the
:::::::::
earthquake

:::::
dataset

::
as

::::::
function

::
of
:::::::::

hypocentral
:

distance
::::::
distance

:
and magnitude.

:::
The

:::::::
metadata

:::::
names

:::::
listed

:
in
:::::

Table
:
2
:::
are

::::
used

::
as

::::
labels

:::
for

:::
the

::::::
specific

::::::
metadata

:::::
being

:::::::::
represented.

In particular, we see that just by selecting a higher threshold of SNR values, about 85 % of the first and last 10 % of the

distribution of median values, the traces appear acceptable.

Table (4). Distribution according to different quantiles of IMs selected metadata for the HH, EH and HN channels

Metadata parameter-name 10 % 25 % 50 % 75 % 90 % max

trace_pga_perc (HH) 0.000219 0.000506 0.00148 0.00532 0.0201 57.6

trace_pgv_cmps (HH) 7.81e-05 0.000158 0.000413 0.00139 0.00499 58.6

trace_pga_perc (EH) 0.000341 0.000927 0.00328 0.0139 0.0559 71

trace_pgv_cmps (EH) 0.000174 0.00035 0.000882 0.00302 0.0114 55.6

trace_pga_perc (HN) 0.000329 0.000875 0.00328 0.0141 0.0509 77.8

trace_pgv_cmps (HN) 0.000392 0.000582 0.00134 0.00501 0.0153 59.1

In Fig. 16, we show the instrument corrected traces randomly chosen in groups of 6 for each channel. The traces drawn from

the entire dataset belong to the 75 % with the largest values of the maximum horizontal acceleration (i.e., second, third and

fourth quartile of the value distribution, cf. Table 4). The total of traces satisfying this criterion amounts to more than 860,0005
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Figure (12). Hexbin plot of the distribution of the intensity measures (IMs) with hypocentral distance
::
of

:::
the

::::::::
earthquake

:::::
dataset

:
for the M ≥ 2

earthquakes. The units are km along the horizontal axis in all panels, and, along the vertical axis, cm s−2 in panels (a,d-f), cm s−1 in panel

(b), and % g in panel (c).
:::
The

:::::::
metadata

:::::
names

:::::
listed

:
in
:::::

Table
:
2
:::
are

::::
used

::
as

::::
labels

:::
for

::
the

::::::
specific

:::::::
metadata

:::::
being

:::::::::
represented.

3C traces. Application of the instrument transfer function appears to be generally successful without introduction of particular

side effects with the exception of some amplification of the very low frequencies for some very low amplitude traces of the

EH channels (e.g., panels (h,k) in Fig. 16). This effect results from our choice to bandpass filter all the traces channels in the

same frequency range: this has the negative effect of boosting the low frequencies of the narrower band EH channels although

it can be promptly removed by high-pass filtering. Overall, the quality of the ground motion units dataset can be considered of5

satisfactory quality to perform analysis of ground motions.

3 Noise

Noise is generated by many different sources such as ocean waves, wind, traffic, instrumental noise, electrical noise, etc. and

its suppression in earthquake recordings represent a long standing objective (Zhu et al., 2019b, and references therein). The in-
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Figure (13). Hexbin plot of the distribution of the intensity measures (IMs) with hypocentral distance for M = 3 earthquakes. The units are

km along the horizontal axis in all panels, and, along the vertical axis, cm s−2 in panels (a,d-f), cm s−1 in panel (b), and % g in panel (c).

:::
The

:::::::
metadata

:::::
names

::::
listed

::
in

::::
Table

::
2
::
are

::::
used

::
as

:::::
labels

::
for

:::
the

::::::
specific

:::::::
metadata

::::
being

:::::::::
represented.

clusion of noise data in a dataset like INSTANCE is thus important because it provides information on the noise characteristics

of the individual stations in the absence of earthquake generated signal. ML models can reveal to be effective for noise removal

or, in a classification analysis, for improving the detection of earthquakes. The noise data have been assembled starting from

the stations gathered in the event selection stage described above.

3.1 Data Preparation5

Starting from the entire catalogue consisting of more than 300,000 events (Table 1), we first identified 600 s long time windows

free of any earthquake. Secondly, we obtained the operational times of acquisition of each station. The third step consisted of

identifying the 120 s time windows to be included in the dataset for each station and channel. This was achieved by intersecting

the time window series obtained in the previous two stages (i.e., the event free windows and the periods of station acquisition).

25



Figure (14). Example of randomly selected earthquake waveforms of the broadband HH channels contained in INSTANCE
:::::::
randomly

:::::
drawn

:::::::
according

::
to

:::::::
different

::::::
criteria

::::
based

:::
on

:::
the

:::::::
metadata

:::::::
provided

::
in

:::::
Table

:
2. Each row contains three

:
, randomly selected,

:::
3C traces drawn

according to
::::
based

::
on

:
the following criteria: (a-c) earthquakes 2≤M < 3 (66.8 % of the total of the HH channels); (d-f) earthquakes

3≤M < 4 (13.5 %); (g-i) earthquakes M ≥ 4 (2.0 %); (j-l) earthquakes trace_E_snr_db ≥ 10 and path_ep_distance < 100

km (55.0 %); (m-o) earthquakes trace_E_snr_db ≥ 10 and path_ep_distance ≥ 100 km (10.8 %); (p-r) earthquakes M ≥ 4 and

trace_E_snr_db ≥ 10 (1.7 %). The arrival times of P- and S-wave onsets
:::
(i.e.,

:::::::
trace_[

:::
P,S]

::::::::::::::
_arrival_time

:
)
:
are shown by blue

and red vertical lines, respectively.

26



Figure (15). Example of randomly selected
:
“problematic

:
”
:
earthquake waveforms of the broadband HH channels. Each row contains

three,
:
randomly selected

:
,
::
3C

:
traces drawn according to the following criteria

::::
based

:::
on

::
the

::::::::
metadata

::::
listed

::
in
:::::

Table
:
2: (a-c) traces with

trace_GPD_[P,S]_number > 3 (7.96 % of the total of the HH channels); (d-f) traces with trace_EQT_number_detections >

3 (0.38 % of the total of the HH channels); (g-i) traces trace_[ENZ]_snr_db with at least one component in the 10 % quantile (18.10 %

of the total of the HH channels); (j-l) traces with all trace_[ENZ]_median_counts either in the first 10 % or the last 10 % quantiles

(5.90 % of the total of the HH channels); (m-o) traces with trace_[ENZ]_median_counts either in the first 10 % or the last 10 %

quantiles and corresponding trace_[ENZ]_snr_db excluded from the first quartile (5.06 % HH dataset). The arrival times of P- and

S-wave onsets
:::
(i.e.,

:::::::
trace_[

:::
P,S]

::::::::::::::
_arrival_time

::
) are shown by blue and red vertical lines, respectively.
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Figure (16). Example of randomly selected event waveforms in ground motion
::::::
physical

:
units of the HH, EH and HN channels in IN-

STANCE. The traces are representative of 75 % of the data and belonging
:::::
belong

:
to the second, third and fourth quartiles of each channel.

Each row contains three,
:

randomly selected
:
,
:::
3C traces drawn as follows

:::::::
according

::
to

:::
the

:::::::
following

::::::
criteria

:::::
based

::
on

:::
the

:::::::
metadata

:::::
listed

:
in
:::::

Table
::
2

:::
and

:::
the

::::::
quantile

::::::
values

:::::::
provided

::
in

::::
Table

::
4: (a-f) HH traces with trace_pga_perc > 5.1e-4 % g; (g-l) EH traces with

trace_pga_perc> 9.3e-4 % g; (m-r) HN traces with trace_pga_perc> 8.7e-4 % g; The arrival times of P- and S-wave onsets
::::
(i.e.,

::::::
trace_[

:::
P,S]

::::::::::::::
_arrival_time

::
) are shown by blue and red vertical lines, respectively.
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:
It
:::::::
follows

:::
that

:::
the

:::::::
adopted

:::::::::
procedure

::::
does

:::
not

:::::
entail

:::
the

::::::::
selection

::
of

:::
the

::::
same

:::::
time

:::::::
window

::
for

::::::::
multiple

:::::::
stations. For stations

acquiring more than one channel type (e.g., HH and HN), noise windows for all the channels were identified and downloaded.

The resulting total number of noise trace windows is 132,288 corresponding to about 10 % of the total number of traces of

INSTANCE.
::
We

::::
note

::::
also

:::
that

::::
this

::::::::
procedure

:::::
does

:::
not

:::::::
preclude

:::
the

:::::::
presence

:::
of

::::
noise

::::::
traces

:::
that

::::::
include

::::::
energy

:::::
from

:::::::
regional

:::
and

:::::::::
teleseismic

::::::
events.

:
5

3.2 Metadata description

The 46 metadata
:::::::
elements (Table 2) used for the noise data selection include for each 3C waveform trace an identifier based on

the start time, the station parameters, the trace quality control that include the automatic picks and event detection obtained us-

ing the GPD and EQTransformer procedures. These picks provide potential insights on whether any earthquake not catalogued

in the INGV bulletin might be present in the selected time windows.10

Figure (17). Pie diagrams summarizing the distribution of the channels (a) and the data contributing networks (b) of the noise dataset. The

full list of station_network_code with % < 1 collected in Others in decreasing order is SI, YD, 3A, XO, ZM, BA, AC, HL, TV, RF.

In Fig.17 we show the channel subdivision of the downloaded noise together with the networks the stations belong to. In

Fig. 18 and 19, in analogy with what presented for the event data, we present the trace characteristics of the metadata. The

trace_[E,N,Z]_mean_counts and trace_[E,N,Z]_median_count provide an outlook on the distribution of the

mean and median values and, likewise the same parameters extracted from the event traces, could be used to identify high

quality data. The histograms of the trace_[E,N,Z]_rms_counts noise values fall mainly in the range of values from 015

to 2000 counts with similar peak values for either trace_[E,N,Z]_max_counts or trace_[E,N,Z]_min_counts.

This all would suggest that the gathered noise traces are of fairly good quality responding to the expectation of traces charac-

terized by amplitudes with small number of counts.
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Figure (18). Histogram
::::
Close

::::
view of the

:::::::
histogram

::
of

:::
the distribution of the noise quality control metadata: median (a-c) and mean (d-f).

The width
:::::
values of the bins is 2× 103

:
E,

::
N
:::
and

::
Z

::::::::
component

:::::
noise

:::::::
waveform

:::::
traces. The complete

::
full

:
distribution is provided

:::::
shown in

Fig. D5.
::::
Note

:::
that

:::
the

::::
mean

:::::
values

::::::
(bottom

::::
row)

:::
are

:::::
shown

::
to

::
the

::::
sole

::::
scope

::
of
::::::::
reference.

:::
The

:::::::
metadata

:::::
names

:::::
listed

::
in

::::
Table

:
2
:::
are

::::
used

::
as

::::
labels

:::
for

::
the

::::::
specific

:::::::
metadata

:::::
being

:::::::::
represented.

3.3 Examples of noise data traces

Examples of the noise traces are shown in Figure 20. To perform the selection, we have used the distribution of the trace rms

values that is provided in Table 5.

In the top two rows of Fig. 20, there are shown some examples of events detected using the GPD and EQTransformer

algorithms on the EH channels. As it was the case with the event dataset, the noise traces also contain undetected events5

although their number according to our analysis seems rather small especially for the earthquakes detected by EQTransformer.

This result gives us good confidence that the noise traces are for the great majority free of earthquake events. The following

rows of Fig. 20 provide waveform samples drawn from the 90 % of the dataset (panels g-i and m-o) for the HH and EH

channels, respectively. Both sets of panels exemplify some of the features of the great majority of the noise data. In contrast,

the panels (j-l) and (p-r) have been chosen to show what could be considered traces exceeding noise values or that contain finite10

duration events of uncertain origin.
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Figure (19). Histogram of the distribution of the noise quality control metadata
:
of
:::
the

::::
noise

::
E,

::
N,

::
Z
:::::::::
component

:::::::
waveform

:::::
traces: rms, min,

max, first and third quartile. The width of the bins is 2× 103. The complete
::
full

:
distribution

:
of

:::::
values is provided in Fig. D6.

:::
The

::::::::
horizontal

:::
axis

:::::
labels

::::::::
correspond

::
to

::
the

:::::::
metadata

:::::
being

:::::::::
represented

::::
which

:::
are

::::
listed

::
in
:::::
Table

::
2.

4 Discussion

The primary objective of this work has been to assemble a benchmark dataset consisting of seismic waveforms and associated

metadata. It has been designed to be used for the analysis of earthquakes in Italy (and neighboring areas) using ML techniques

and it could prove useful for ML analysis also elsewhere in other active tectonic regions by adopting transfer learning method-

ologies (Jozinović et al., 2021). The dataset consists of three HDF5 volumes — raw and instrument removed event traces, and5

raw noise traces — and of the associated metadata.

The selection of the waveform traces to be included was based on the availability of low (≤ 1 s) P- and S-phase location

residual times and large location weights taken from the preferred solutions listed in the Italian Seismic Bulletin ()
:::::
INGV

::::::
bulletin. To counteract the Gutenberg-Richter power law which affects the compilation of seismological datasets targeting ML

analysis applications, attention was paid towards assembling a dataset that was not completely skewed by a large number10
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Figure (20). Example of randomly selected noise waveforms of the HH and EH channels contained in INSTANCE.
:::
The

:::::
traces

:::
are

::::
drawn

::::::::
randomly

::::::::
according

::
to

:::::::
different

:::::
criteria

:::::
based

:::
on

:::
the

:::::::
metadata

:::::::
provided

::
in

:::::
Table

:
2
:::
and

:::
on

:::
the

::::::
quantile

:::::
values

:::::
listed

::
in

:::::
Table

::
5.

Each row contains three,
:

randomly selected
:
,
:::
3C traces drawn according to the following criteria: (a-c) trace_GPD_[P,S]_number

> 3 (11.6 % of the total of the EH channels); (d-f) trace_EQT_number_detections > 3 (0.13 % of the total of

the EH channels); (g-i) all the trace_[E,N,Z]_rms_counts < [1013,1071,793] (86.31 % of the total of the HH chan-

nels); (j-l) any of the trace_[E,N,Z]_rms_counts > [1013,1071,793] (13.69 % of the total of the HH channels); (m-

o) all the trace_[E,N,Z]_rms_counts < [327.1,332,307] (86.36 % of the total of the EH channels); (p-r) any of the

trace_[E,N,Z]_rms_counts > [327.1,332,307] (13.64 % of the total of the EH channels);
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Table (5). Distribution according to different quantiles of rms selected noise metadata
:::
(cf.

::::
Table

::
2)

:
for the HH and EH channels.

Metadata parameter-name 10 % 25 % 50 % 75 % 90 % max

trace_E_rms_counts (HH) 52.79 101.6 205 447.9 1013 1.919e+07

trace_N_rms_counts (HH) 53.47 102 207.3 465.8 1071 1.902e+07

trace_Z_rms_counts (HH) 44.68 85.42 166.3 364 793.1 9.986e+05

trace_EQT_number_det. (HH) 0 0 0 0 0 5

trace_GPD_P_number (HH) 0 0 0 0 1 31

trace_GPD_S_number(HH) 0 0 0 1 2 24

trace_E_rms_counts (EH) 7.53 22.92 58.29 141.8 327.1 7.54e+05

trace_N_rms_counts (EH) 7.864 22.88 57.65 140.9 332.6 2.913e+05

trace_Z_rms_counts (EH) 5.639 18.44 50.09 119.8 307.1 6.236e+05

trace_EQT_number_det. (EH) 0 0 0 0 0 5

trace_GPD_P_number (EH) 0 0 0 1 2 23

trace_GPD_S_number (EH) 0 0 0 2 4 26

of small magnitude earthquakes. To this end, we included all the traces available of the larger size earthquakes and then we

decreased progressively the number of smaller size earthquakes and associated traces. Our effort, however, trades-off with the

need of assembling a dataset that is sufficiently large for ML purposes. The distribution of the selected traces shown in Fig. 3

and Fig. 4 according to magnitude, distance and focal depth allows the users to make the appropriate choices for their purposes

even though we recognize that the achievement of the sought balanced distribution remains difficult. Other data selection5

criteria could have been used (e.g., select all the data acquired within distance ranges depending on earthquake magnitude)

but the (un)balanced magnitude and distance distribution would have persisted. Thus, given the criteria adopted it is pleonastic

to remark that this dataset is not designed for studies addressing the earthquake magnitude power-law distribution (e.g., the

b-value).
::::::::
Similarly,

:::::::
although

:::
the

::::::
dataset

:::::::
contains

:::
an

:::::::
average

::
of

::
21

::::::
traces

:::
per

::::::::::
earthquake,

:
it
::::
may

:::
not

:::
be

:::::::
optimal

::
for

:::::::::
dedicated

:::::::::
earthquake

::::::::
relocation

:::::::
studies.10

Our criterion, based on the available high-quality P- and S-phases with low location residual times, is expected to provide a

large number of traces with distinct earthquake signal and high SNR ratios. The distribution of SNR values shown in Fig. 10

and 11 and in Table 3, and the example seismograms shown in Fig. 14(j-r) and Fig. 15(m-o), appear to confirm our choices.

The selection of 120 s trace length time window is longer than those made by other authors for analogous benchmark datasets

(e.g., Mousavi et al., 2019; Magrini et al., 2020). This relatively long time window was required, however, because we sought15

to include the entire seismicity occurring in Italy that spans from very shallow to very deep (Fig. 3). Unfortunately, this long

window trades-off with a higher probability of including earthquakes close in time that had not been reported in the INGV

catalogue. For this reason, we carried out also a (preliminary) automatic picking and earthquake detection analysis using two

well established recent ML techniques (GPD and EQTransformer; Ross et al., 2018a; Mousavi et al., 2020) to possibly isolate
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those traces that include multiple events. The results of this analysis summarized in Table 3 would indicate that about 90 % of

the event data contain only one earthquake according to the EQTransformer analysis whereas the GPD analysis returned some

slightly higher numbers of P- and S-phase detections.

Our metadata for the earthquake part of the dataset consist of more than 100
:::
115

:
parameters. They are subdivided into three

main classes plus one additional class derived from the previous ones. This is a rather rich set of parameters that can be used5

either to select subsets of the dataset, or as additional features to rely on when developing ML models, or as labels in supervised

ML analysis, or for unsupervised ML applications. In addition, the metadata could be used by themselves for specific studies

(e.g., seismic velocity model regionalization, travel time tomography, ground motion prediction models, local site corrections,

...).

Earthquake data gathered by seismic instruments and streamed in realtime to earthquake monitoring centers or preserved10

within archives can suffer from problems of different nature (e.g., sensor, data logger, equipment installation, data transmission,

and processing among the most common). Thus, the compiled dataset could be useful for the development of robust techniques

of analysis and this is one main reason for including several trace quality parameters as metadata since they can help the user

to identify the possibly “faulty” records which can be then either removed or included to train the ML model just to “learn”

them. This approach may seem to contradict one of the main purposes of compiling a high-quality dataset and it may also be an15

obstacle when attempting to reveal deep information therein but the expectation is that, by including all the data together, the

rich set of metadata leaves the users enough freedom to identify the “good” data for their purposes. It is worthwhile to mention

that Yeck et al. (2020) have found that inclusion of only “good”, high SNR trace data during training of various body waves

resulted in lower performance when applied to real-time pick data.

The INSTANCE dataset includes intensity measures (i.e., PGA, PGV, spectral accelerations) obtained after deconvolution20

of the instrument response performed automatically and possibly affected by digital signal processing problems induced, for

example, by the presence of abnormal drifts and spikes. Given the difficulty to verify the quality of all the individual processed

traces, the availability of a rich set of trace metadata can be useful (again) to detect the faulty traces.

The example traces drawn randomly from the dataset that we have presented in Figs. 14, 15, 16 and 20 provide some

evidence of the characteristics of the traces contained in the dataset and how they can be promptly selected through the provided25

metadata. Although the great majority of the data appear to be of very good quality, we are also aware that low quality data are

almost inevitable to occur. Inspection of the waveform traces by using other selection criteria than those shown here, and of

the IM metadata (cf. Fig. 12) give us, however, good confidence on an overall good quality of the dataset.

The INSTANCE data collection assembles for the first time a very large amount of earthquake and noise data throughout

Italy. If on one side this might seem a limitation when compared to other recent data collections like STEAD and LEN-DB30

that have gathered data globally, on the other hand, the dataset can be considered a representative subset of the seismicity in

Italy and neighbouring areas. The dataset equals to more than 43,000 hours of continuous event and noise data and associated

metadata . An
::::
with

::
an

:
average of 21 3C traces are provided per earthquake.

::
To

:::
the

:::::::
purpose

:::
of

::::::::::
comparison,

::
in
::::::

Table
::
6,

:::
we

:::::::::
summarize

:::
the

::::
main

:::::::
features

::
of

:::
the

::::::::
currently

:::::::
available

::::::::::::
seismological

:::::::
datasets

:::::::::
assembled

::
for

::::
ML

:::::::
analysis.

:::
As

:::::
noted

::::::
above,

:::
the

::::
main

:::::::
features

:::
that

::::::::::
distinguish

::::::::::
INSTANCE

::::
from

:::
the

:::::
other

:::::::
datasets

:::
are

:::
the

:::::::
number

::
of

:::::::
metadata

:::
for

::::
both

:::::::::::
earthquakes

:::
and

:::::
noise35
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:::::
traces

:::
and

:::
the

:::::::
average

::::::
number

::
of

::::::
traces

:::
per

:::::
event.

::
In

::::::::
addition,

:::
the

::::::
dataset

:::::::
provides

:
a
::::::::
generally

:::::
large

::::::
number

:::
of

:::::
traces

:::
for

::::
each

::::::::
recording

:::
site

::::::
making

:::
the

::::::
dataset

:::::::
suitable

:::
for

:::::
quite

::::::::
diversified

:::::
target

:::::::
studies.

::::
The

::::::
dataset

::
is

:::
also

::::::
unique

:::::
since

:
it
::
is
:::
the

::::
only

::::
one

::::
(yet)

::
to

::::::
provide

:::
the

:::::::::
waveform

:::::
traces

::
in

::::
both

:::::
digital

::::::
counts

:::
and

::::::::
physical

::::
units.

:::
In

:::
this

:::::::
context,

:::
the

::
set

::
of
::::::::::
parameters

:::::::
provided

:::
by

::::::::::
INSTANCE

:::::
spans

::::
both

::::::
specific

::::::::::::
seismological

:::::::::
parameters

::::
like

:
P
::::
and

:
S
::::::

arrival
:::::
times,

:::::
fault

:::::
plane

:::
and

:::::::
moment

:::::
tensor

:::::::::
solutions,

:::
and

::::
also

::::
peak

:::::::
ground

::::::
motion

::::::::::
parameters

::
in

:::::::
physical

:::::
units

:::::
(e.g.,

:::::
PGA,

:::::
PGV)

::::::
which

:::
can

:::
be

::::
used

:::
for

:::::::
studies

:::
that

::::::
target

:::
the5

::::::::
estimation

::
of
:::

the
:::::::
ground

::::::
shaking

:::::
(e.g.,

::::::::::
shakemaps).

:

Table (6).
::::::::
Comparison

:::::::
between

::::::::::
INSTANCE

::::
and

::::
other

::::::::
published

::::::
seismic

:::::::::
waveform

:::::::
datasets.

::
It

:::
was

::::
not

::::::
possible

:::
to

::::::
retrieve

:::::
some

:::::::
attributes

::
of

:::
the

:::::::
original

::::::
SCEDC

::::::
dataset

:::::
since

:
it
::

is
::::::::

available
::
as

:::::::
different

::::::
subsets

::::::::
extracted

::
for

:::::::
specific

:::::::::
application

:::
(list

::::::::
available

::
at

https://scedc.caltech.edu/data/deeplearing.html
:
).

:

1
::::::::::

INSTANCE,
:::::::::::::::::
doi:10.13127/instance.

::

2
::::::
STEAD,

::::::::::::::::::::::::::::
doi:10.1109/ACCESS.2019.2947848.

::

3

::::::
SCEDC,

:
https://scedc.caltech.edu/data/deeplearning.html

:
.
:

4
::::::
LenDB,

::::::::::::::::::::::
doi:10.5281/zenodo.3648232.

:

5
:::::::::::::::::

ConvNetQuake_INGV
::::::::::::
(CNQ_INGV),

::::::::::::::::::::::
doi:10.5281/zenodo.5040865.

:

6
::::::

NEIC,
:::::::::::::::::::
doi:10.5066/P9OHF4WL.

::

7
:::
D:

::::::
digital;

::
P:

:::::::
physical.

::

8
::
L:

:::::
local;

:::
R:

:::::::
regional;

:::
G:

:::::
global.

::

9
::::
BB:

::::::::
broadband;

::::
SM:

:::::
strong

::::::
motion;

:::
SP:

::::
short

:::::
period.

::::::::::
INSTANCE1

:::::::
STEAD2

::::::
SCEDC3

: ::::::::
LEN-DB4

::::::::::
CNQ_INGV5

: :::::
NEIC6

:::::::
Metadata

::::::
(events)

: ::
115

: ::
35

:
–

::
14

:
6

:
8

:::::::
Metadata

:::::
(noise)

: ::
46

:
8
: :

–
:
7
: :

2
:
–

::::
Trace

:::::
length

:::
(s)

::
120

: ::
60

::
4,6

: ::
27

::
50

: ::
60

:::::
Units7

::
D,

::
P

:
D
: ::

D
:
P
: :

P
:
D

:::::
Events

: ::::
54,008

: :
∼

::::::
450,000

: ::::::
273,882

::::::
304,874

::::
6,213

::::::
136,716

:::::
Traces

::::::
(events)

: ::::::::
1,159,249

:::::::
1,050,000

: :
–

::::::
629,095

:::::
22,046

:
–

:::::
Traces

:::::
(noise)

: ::::::
132,288

:
∼

::::::
100,000

: :
–

::::::
615,847

:::::
12,543

:
–

:::::::
Receivers

: ::
620

: ::::
2,613

:
–

::::
1,487

::
26

: :::
2361

:

::::::
Average

:::::::
receivers

:::
per

::::
event

::
21

:
2
: :

–
:
2
: :

4
:
–

:::::::
Duration

:
in
:::::
hours

::::::
(events)

: ::::
38,641

: ::
∼

:::::
17,500

:
–

::::
4,718

:::
306

:
–

:::::::
Duration

:
in
:::::
hours

:::::
(noise)

: ::::
4,409

:
∼

:::::
1,700

:
–

::::
4,618

:::
174

:
–

::::::::
Epicentral

::::::
distance

::::
range

::::
(km)

: :
<

:::
620

: ::
<

:::
350

:
<
:::
360

: :
<

:::
189

: :
<

::::::
19,310

:
<
::::::
10,000

::::::::
Magnitude

::::
range

:
0
::
–
::
6.5

: :
0
:
–
:::
7.9

: ::::
-0.81

:
–
:::
7.3

::
0.4

:
–
:::
7.1

: :
3

:
–
:::
9.1

:
1
:
–
:::
8.3

:::::::
Sampling

:::
rate

::::
(Hz)

::
100

: :::
100

::
100

: ::
20

::
20

: ::
40

::::::
Storage

:::
size

::::
(GB)

: ::::
331.2

:::
91.4

: :
–

:::
18.4

: ::
0.9

: :
∼

::
51

::::
Focal

:::::::::
mechanism

::
527

: ::::
6,200

:
–

:
–
: :

–
:
–

::::
Event

:::::
type8

::
L,

::
R

:
L
: ::

L,
::
G

:
L
: :

L,
::
R,

::
G

:
L,

::
R,

::
G
:

::::
Data

::::
type9

::
BB,

::::
SM,

::
SP

: :::
BB,

::::
SM,

::
SP

:::
BB,

:::
SM

: :
–
: ::

BB
: :::

BB,
:::
SP?

:

In summary, the dataset features strengths such as the prompt availability of a large number of records assembled within

a ready-to-use data volume that can be certainly considered representative of the whole waveform data archive of the INGV

ORFEUS-EIDA node and that can be used for many diverse studies. In our opinion, the strengths of providing a diversified
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set of data outnumber the weaknesses and the latter ones can be isolated, and their negative contribution reduced through the

exploitation of the very rich set of metadata.

5 Applications

To the purpose of describing the range of possible applications of INSTANCE we follow the basic exposition schema adopted

by Mousavi et al. (2019) for the STEAD benchmark dataset. These authors addressed four main areas in which benchmark5

datasets can reveal
::::
prove

:
very effective for improving seismological knowledge and seismic monitoring operational activi-

ties: earthquake trace denoising, earthquake detection and onset picking, classification/discrimination and direct earthquake

characterization.

The seismic noise level at a station is frequency dependent and derives from many factors such as types of equipment,

installation, meteorological conditions, anthropic generated noise, geography, season, and time of day (McNamara and Buland,10

2004). Seismic trace denoising enhances the SNR that is crucial to lowering the magnitude detection level of earthquake

catalogs and, by so doing, increase the number events detected. Analogously, denoising can be relevant to pre-process seismic

traces when performing ambient noise cross-correlation analysis (e.g. Baig et al., 2009), or for detecting speed-of-light changes

of the gravitational field (Vallée et al., 2017), or for the analysis of seismic data acquired in urban areas (e.g. Parolai, 2009)

just to mention a few among many applications. ML techniques seem very promising to address the reduction of noise in15

seismic data. For example, Zhu et al. (2019b) (and references therein for a list of applications in applied geophysics and

seismology) have proposed a denoising/decomposition method, DeepDenoiser, based on a deep neural network which is based

on the adoption of signal and noise masks which are then used to effectively decompose the input data into a signal of interest

and noise. The technique has been tested against a dataset composed of broadband recordings of the North California Seismic

Network which is similar to the data of INSTANCE. The adoption of unsupervised machine-learning method has been instead20

advocated by Chen et al. (2019) who have proposed it in combination with an autoencoder algorithm that adaptively learns the

features from the raw noisy seismological datasets and use the sparse constraint to suppress the learned trivial features that may

be associated with partial noise component. They apply the technique to the waveform stacked data used in Shearer (1991)

and similar stacks can be promptly prepared using INSTANCE at the local/regional scale and apply the denoising technique

accordingly.25

Earthquake detection (including phase picking), discrimination and rapid characterization represent main pillars of seismic

monitoring and surveillance. During their lifetime, operational seismic centers alternate calm periods characterized by low

levels of seismicity, in which it can become of relevance the detection of even the smallest possible events to delineate the

activation of often hidden tectonic structures, to paroxysmal periods starting with significant earthquakes and followed by

hundreds or thousands of aftershocks felt by people. To ameliorate the response of the centers in both these extreme cases, we30

find that the INSTANCE dataset can be of importance to calibrate and benchmark methodologies for i.) phase onset picking and

earthquake detection methods to lower the magnitude detection level (e.g., Ross et al., 2018a; Zhu et al., 2019a; Walter et al.,

2020; Mousavi et al., 2020, amongst others); ii.) discriminate between volcanic and tectonic earthquakes (e.g., Esposito et al.,
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2006) and, in the future, after updating INSTANCE with new dataand metadata, discriminate earthquakes and other sources

of seismic energy (e.g., sonic booms, quarry blasts, underwater explosions) often felt by the population (e.g., Del Pezzo et al.,

2003; Linville et al., 2019); iii.) the rapid and accurate characterization of the earthquake source, distance, depth (e.g., Perol

et al., 2018; Trugman and Shearer, 2018; Kriegerowski et al., 2018; Zhang et al., 2020; Lomax et al., 2019; Mousavi and

Beroza, 2020; Münchmeyer et al., 2021) and of the ground shaking (e.g., Alavi, 2011; Derras et al., 2012; Derras, 2014;5

Jozinovic et al., 2020; Münchmeyer et al., 2020).

Indeed, the field of application of the dataset is quite extensive and it can be used to address many diverse topics depending

on how the data are grouped and it can also be useful for applications not relying on ML techniques. For example, the dataset

features some stations with several thousand of traces recording earthquakes from different azimuths and distances that can be

used to construct common-station gathers of seismograms for swaths of sources in almost any desired geometry (e.g., Korneev10

et al., 2003), or to study in detail the local site response. Analogously, the metadata alone provide a rich set of arrival times

(cf. Fig. 7) that could be used as is for traveltime tomography at regional scale in Italy and, in addition, the availability of the

associated waveforms makes it possible the application of methodologies that resolve the velocity structure jointly using arrival

times and waveform data (e.g., Zhang* and Chen, 2014). For what concerns the ground motion amplitude data, the availability

of these metadata can be of relevance in combination with the shakemaps (http://shakemap.ingv.it) to develop new tools for15

rapid earthquake ground motion estimation. Other applications of the data collection include the adoption of unsupervised

ML algorithms to group the waveforms independently of the earthquake location and just on the waveform themselves (e.g.,

Seydoux et al., 2020). INSTANCE can also be used, as a dataset with a large number of data, for creating pre-trained models

when using transfer learning techniques either for seismological or other applications which use time-series data (Otović et al.,

2021).20

Overall, we believe that the dataset will be useful for stepping up towards a new generation of earthquake monitoring tools

that will profit of the ongoing very fast developments in machine learning. What is certain is that seismology is in great need

of benchmark datasets (Mousavi et al., 2019) upon which test new and existing techniques. To this end, standardization of the

input data and metadata formats is of great relevance and in constructing this dataset we have adopted the schema proposed by

the Sesbench
:::::::::::
SeisBench initiative (Wollam et al., 2021). Widespread

:::::::
Needless

::
to
:::::::::
emphasize

::::
that

:::::::::
widespread

:
adoption of the25

same metadata schema and data volume formats can foster the compilation of similar datasets also for other regions with the

possibility to merge them all together
:::::
giving

:::
the

::::::::::
opportunity

::
to

:::::::
perform

:::
ML

:::::::
analysis

:::::::::
exploiting

:::
the

::::::::
potentials

::
of

:::
the

::::::::
resulting

::::
huge

::::
large

:::::::
datasets. Perhaps more importantly, standardization of data and metadata formats will make it easier to test different

datasets using the same ML model or, alternatively, benchmarking different models on the same dataset and in both cases the

benefits appear clear.30

6 Data availability

The dataset can be downloaded ...
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7 Code and data availability

Routines and notebooks for analysis ...

6 Code and data availability

:::::::
Routines

:::
and

:::::::::
notebooks

:::
for

:::::::
analysis

:::
and

::::::
display

::
of

:::
the

::::::
dataset

::::
(and

:::
the

::::::
sample

::::::
dataset)

:::
are

:::::::
available

:::
on

::::::::::::::::::::::::::
https://github.com/ingv/instance.

:::
The

:::::::::
processing

::::
was

::::::::
performed

:::::
using

::::::
ObsPy (Beyreuther et al., 2010; Megies et al., 2011; Krischer et al., 2015),

::::::
NumPy (Harris5

et al., 2020), SciPy (Virtanen et al., 2020)
::
and

:::::::
Pandas (McKinney, 2010; team, 2020)

::::::
python

:::::::
modules

::::
and

:::
the

:::::::
graphics

::::
was

:::::::
prepared

:::::
using

:::
the

:::::::::
Matplotlib

::::::
library (Hunter, 2007)

:::
and

:::::::
seaborn (Waskom, 2021).

:::
The

::::::
dataset

:::
can

:::
be

::::::::::
downloaded

::::
from

::::::::::::::::::::::::::
http://doi.org/10.13127/instance (Michelini et al., 2021).

:
A

:::::::::
versioning

::::::
schema

::::
has

::::
been

:::
also

::::::::
included

::::
since

:::
the

::::::
dataset

::
is

:::::::
expected

:::
to

:::::::
undergo

:::::::::::
modifications

::
or

:::::::::
expansions

::
in
:::
the

::::::
future.

:::
For

::::::::
instance,

:
it
::
is
:::::::
possible

::::
that

::::
some

::::::::::
earthquakes

:::
or

::::
noise

::::::
traces

::::
have

::::
been

::::::::::::
misclassified,

::
or

::::::
future

::::::::
significant

:::::::
seismic

::::::
events

::
be

::::::::
included.

::
A
:::::::
sample

::::::
dataset10

:
is
::::

also
::::::::

provided
:::
on

:::
the

:::::
same

:::::::
landing

:::::
page.

::::
The

::::
data

::::
used

::
in
::::

this
:::::
work

:::::
were

::::::::::
downloaded

:::::
using

:::
the

:::::::::::
webservices

::::::::
provided

::
by

::::::
INGV

:::::::::::::::::::::::::::::::::::::::::::::
(http://terremoti.ingv.it/en/webservices_and_software).

:::
The

:::::::::
following

::::::::
networks

:::::
were

:::::
used:

::::
OX:

:::::::::
North-East

:::::
Italy

::::::
Seismic

::::::::
Network,

::::::::::::::::::::::::::
https://doi.org/10.7914/SN/OX.

:::
ST:

:::::::
Trentino

:::::::
Seismic

::::::::
Network,

:::::::::::::::::::::::::
https://doi.org/10.7914/SN/ST.

:::
SI:

::::::::
Province

:::::::
Sudtirol,

:::
No

::::
DOI

:
is
:::::::::
registered

::
for

::::
this

:::::::
network.

::::
XO:

::::::::::
EMERSITO

::::::::
Working

::::::
Group.

::::::
(2018).

:::::::::::::::::::::::::::::::::::
https://doi.org/10.13127/SD/7TXeGdo5X8.

:::
NI:

:::::::::
North-East

::::
Italy

:::::::::
Broadband

:::::::
Network

:::::::::::::::::::::::::
https://doi.org/10.7914/SN/NI.

:::
IX:

::::::
Irpinia

:::::::
Seismic

::::::::
Network,

:::::::::::::::::::::
http://isnet.fisica.unina.it/,15

::
No

::::
DOI

::
is

::::::::
registered

:::
for

:::
this

::::::::
network.

:::
OT:

::::::::::
OTRIONS,

:::::::::::::::::::::::::
https://doi.org/10.7914/SN/OT.

:::
RF:

:::::
Friuli

:::::::
Venezia

:::::
Giulia

:::::::::::::
Accelerometric

:::::::
Network,

::::::::::::::::::::::::::
https://doi.org/10.7914/SN/RF.

::::
YD

:::::::::::
(2018-2018):

::::::
INGV

::::::::
SISMIKO

::::::::::
Emergency

:::::::
Seismic

::::::::
Network

:::
for

:::::::::::
Molise-Italy.

:::
TV:

:::::
INGV

:::::::::::
experiments

:::::::
network,

:::
No

::::
DOI

:
is
:::::::::
registered

::
for

::::
this

:::::::
network.

::::
AC:

:::::::
Albanian

::::::::::::
Seismological

::::::::
Network,

::::::::::::::::::::::::::
https://doi.org/10.7914/SN/AC.

:::
HL:

::::::::
National

::::::::::
Observatory

::
of

::::::
Athens

:::::::
Seismic

::::::::
Network,

::::::::::::::::::::::::::
https://doi.org/10.7914/SN/HL.

:::
ZM

:::::::::::
(2017-2021):

:::::::
Seismic

::::::::::
Emergency

::
for

::::::
Ischia

::
by

::::::::
Sismiko,

:::
No

::::
DOI

::
is

::::::::
registered

:::
for

:::
this

::::::::
network.

:::
3A

:::::::::::
(2016-2016):

:::::::
Seismic

::::::::::::
Microzonation

::::::::
Network,

::::
2016

:::::::
Central20

::::
Italy,

:::::::::::::::::::::::::::::::::::
https://doi.org/10.13127/SD/ku7Xm12Yy9.

7 Conclusions

INSTANCE is the first dataset designed for the application of ML methodologies compiled using the seismic data archived

on the ORFEUS-EIDA node of INGV for Italy (Danecek et al., 2021). One of the main scopes of the dataset is to provide

a benchmark for developing improved techniques for earthquake and ground motion characterization. The dataset consists of25

about 1.3 M, 120 s long each, 100 Hz sampling, 3C traces subdivided into about 1.2 M containing seismic events and more

than 100,000 that include noise. The traces are assembled within HDF5 formatted volumes to facilitate access and analysis.

More than 100 metadata grouped according to source, station, trace (and derived quantities) are associated to each trace to

give the user much flexibility and control for the selection of the most appropriate data for her/his scientific targets.

The event data include recordings of earthquakes in the magnitude range 0≤M ≤ 6.5 and in the distance range between30

0 and more than 600 km although the great majority of the traces belong to earthquakes in the magnitude range 2≤M ≤ 3

38
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and within 250 km. The depth of the earthquakes varies between very shallow crustal earthquakes and about 600 km depth

in the Calabrian subduction slab. The data have been recorded by more than 600 stations operating in Italy in the time span

January 2005 — January 2020. The dataset equals to more than 43,000 hours of continuous event and noise data and associated

metadata. An average of 21 3C traces are provided per earthquake.

Appendix A: Preparation of the HDF5 data containers5

The waveform trace data are provided in binary HDF5 files volumes. The volumes have been prepared for event data in counts

and ground motion units, and for noise data in counts. The HDF5 format allows for rapid and easy access to the individual

traces without the need of loading the whole dataset into memory. The waveform trace datasets have been created using the

HDF5-Group "data" structure https://portal.hdfgroup.org/display/HDF5/HDF5 which contains as many HDF5-Datasets as 3C

waveforms. Every 3-component waveform is a separate HDF5-Dataset and is accessed by its trace name (trace_name)10

found in the metadata file.

Appendix B:
:::::::
Velocity

:::::
model

:::::
used

::
by

:::
the

:::::::
Italian

:::::::
Seismic

:::::::
Bulletin

:::
for

:::
the

::::::::::
earthquake

::::::::
locations

:::
The

:::::::::
earthquake

::::::::
locations

::::::::
provided

::
in

:::
the

::::::
Italian

:::::::
Seismic

:::::::
Bulletin

:
(http://terremoti.ingv.it/en/help#BSI

:
)
:::
are

::::
fully

::::::::
described

:::
by

::::::::::::::
Mele et al. (2010)

:
.
:::
The

::::::
model

:::::::
consists

::
of

:::
two

::::::
layers

::::
over

:
a
::::
half

:::::
space

::::::::
assuming

:
a
::::
ratio

::::::::::::::
VP /VS = 1.732.

:

Table (B1).
:
P
:::
and

::
S

::::::
velocity

:::::
model

::::
used

:
in
:::
the

::::::
location

:::::::::
procedures

::
for

:::
the

:::::
Italian

::::::
Seismic

:::::::
Bulletin.

::::
Two

:::::
crustal

:::::
layers

::
are

:::::::::::
superimposed

::
to

:::
and

::::::::
half-space.

::::::::
Thickness

:::::
(km)

:::
VP :::::

(km/s)
: :::

VS :::::
(km/s)

:::::
Upper

:::::
Crust

: :::
11.1

: :::
5.0

::::
2.89

:::::
Lower

:::::
Crust

: :::
26.9

: :::
6.5

::::
3.75

::::::
Mantle

:::::::::
half-space

:::
8.05

: ::::
4.65

:::
The

:::::::
software

:::::
IPOP

:::::::::
developed

::
by

:::::::
Alberto

:::::
Basili

::
is

::::
used

:::
for

:::
the

:::::::::
earthquake

::::::::
locations

:::::::::::
(Bono, 2008)

:
.15

Appendix C:
::::::
Positive

::::
and

::::::::
negative

::::::::
polarities

::
In

:::
this

:::::::::
appendix,

:::
we

:::::::
examine

:::
the

::::::
origin

:::
for

:::
the

::::::::
observed

::::::::::
asymmetry

::::::
(almost

::::
2:1

:::::
ratio)

::
in

:::
the

:::::::
number

::
of

::::::::
reported

:::::::
positive

:::
(up)

::::
and

:::::::
negative

::::::
(down)

::::::::
polarities

::
of

:::
the

:::::::::::
INSTANCE

::::::
dataset.

:::
We

:::::::
evaluate

:::::::
whether

::
i)

::
the

::::::::
inclusion

::
of

:::::::::
anthropic,

::::::::::
unidentified

::::::
sources

::::
like

:::::
quarry

::::::
blasts

:::::::
mistaken

:::
for

::::::::::
earthquakes

::::
can

:::::
affect

:::
the

:::::::
reported

::::::::::
asymmetry

:::
and

:::
ii)

:::
the

:::::::
tectonics

:::
of

:::
the

:::::
region

::::
can

::::::::
condition

::
the

:::::::
number

::
of

:::::::
positive

:::
and

::::::::
negative

::::::::
polarities

::
in

::::::::::
INSTANCE.

:
20
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:::
For

:::
the

:::
first

:::::::::::
investigation,

:::
we

::::
have

::::::::
followed

:::::::::::::::
Mele et al. (2010)

:::::::::::::::::::::::::::::::::::::::::::::
(see also the recent work by Gulia and Gasperini, 2021)

::::
who

:::::
found

:::
that

:::
in

:::
the

::::
2008

:::::::
bulletin

:::
the

:::::
99.6

::
%

::
of

::::
the

:::::
blasts

::::
have

:::::
local

:::::::::
magnitude

:::::::::
ML ≤ 2.2

::::
(Fig.

:::
23

::
of

:::::
their

::::::
study).

:::
We

:::::
have

:::::::::::
progressively

::::::::
increased

:::
the

:::::
lower

:::::::::
magnitude

::::::::
threshold

:::
to

:::::
verify

:::::::
whether

:::
the

::::::
nearly

:::
2:1

:::::
ratio

:::::::
between

:::::::
positive

:::
and

::::::::
negative

:::::::
polarities

:::::::
persists

::
as

:::
the

::::::::::
magnitude

::
is

::::::::
increased.

::::
The

::::::::::
expectation

::
is

::::
that,

::
as

:::
the

:::::::::
magnitude

:::::::::
increases,

:::
the

::::
ratio

::::::::::::
progressively

:::::
levels

:::
out

::::
since

:::
the

:::::
blasts

::
(or

:::::
other

:::::::
artificial

:::::::
sources)

::
do

:::
not

:::::::
produce

::::::::::
magnitudes

::::::
greater

::::
than

::::
M=3

::
in

::::::
Europe

:::::::::::::::::::::
(cf. Giardini et al., 2004)5

:
.
::
To

::::::
address

:::
the

::::::::
variation

::
of

:::
the

:::::::::
proportion

:::::::
between

:::::::
positive

:::
and

:::::::
negative

::::::::
polarities

::::
with

::::::::::
magnitude,

::
we

:::::
have

::::::
selected

:::::
from

:::
the

::::::::::
INSTANCE

::::::
dataset

::::::::::
earthquakes

::::
with

:::::::::::
progressively

:::::
larger

::::::::
minimum

::::::::
threshold

::::::::::
magnitudes

:::
and

::::::
found

:::
that

:::
the

:::::::
fraction

:::::::
(percent

::::::
values)

::
of

:::::::
negative

:::::::::
polarities

::::::::
increases

:::::::::::
progressively

:::::
from

::
36

:::
%

::
to

:::
41

:::
%

:::::
when

::::::::
including

::::::::::
earthquakes

::::
with

:::::::::
M > 0.25

::::
and

::::::
M > 3,

:::::::::::
respectively.

:::
For

:::::
larger

::::::::
minimum

:::::::::::
magnitudes,

:::
the

:::::::::
percentage

::::::::
stabilizes

::::::
around

:::::
42-43

:::
%.

::::
This

:::::::
indicates

::::
that

::::::::
inclusion

::
of

:::
the

::::::::
polarities

::
of

::::
e.g.,

::::::::::::
unrecognized

:::::
blasts

::::
(i.e.,

:::::
with

:::::::
M < 3)

:::
has

::
a
::::::::
moderate

:::
but

::::
still

:::::::::
significant

::::::
impact

:::
on

:::
the

::::::::
observed10

:::::::::
asymmetry

:::::::
between

:::
the

::::::::
reported

:::::::
positive

:::
and

::::::::
negative

::::::::
polarities.

::::
This

::::::::::
asymmetry,

::::::::
although

:::::::::
somewhat

:::::::::
surprising,

:::::
seems

:::
to

::::
occur

::::
also

:::::::::
elsewhere.

::::
For

::::::::
example,

::::::::::::::::
Ross et al. (2018b)

:::::
report,

::
in

:::::
their

:::::::
analysis

::
of

:::
the

:::::::
southern

:::::::::
California

::::::::::
earthquake

::::::
dataset

::::::
(before

::::
data

::::::::::::
augmentation),

:
a
:::::::
content

::
of

::
67

::
%
::::
and

::
33

::
%

:::
for

:::
up

:::
and

:::::
down

::::::::
polarities,

:::::::::::
respectively.

:::
We

:::
also

::::
note

::::
that

:::
the

:::::::
regional

::::::
tectonic

::::::
setting

::
in

::::::::
Southern

:::::::::
California

:
is
:::::
quite

:::::::
different

:::::
from

:::
that

::
in

:::::
Italy.

::::::::
Secondly,

:::
we

::::
have

:::::::::
subdivided

:::
the

::::::
Italian

::::
area

::::
into

:::
two

::::::
zones

:::::::
selecting

::::::::::
earthquakes

:::::
with

:::::::::
magnitude

:::::::
M > 2.5

:::::::::
occurring

::
in15

::
the

::::::::::
Apennines

:::::::
(defined

::
as

:
a
::::::::::

rectangular
::::
area

::::
from

:::::
41◦N

::
to
:::::

44◦N
:::::::

latitude
:::
and

::::
9◦E

::
to

:::::
15◦E

:::::::::
longitude),

::::
and

::::::::
elsewhere

:::::::
outside

:::
this

::::
area.

::::
This

::::
data

::::::::
selection

::
is

:::::
aimed

:::
to

:::::
verify

::
if

:::
the

::::::::
observed

:::::::::
asymmetry

::
of

:::::::
positive

::::
and

:::::::
negative

::::::::
polarities

:::
can

:::::
result

:::::
from

::
the

::::::::
dominant

::::::::::
extensional

:::::
stress

::::
field

::::::::::::
characterizing

:::
the

:::::::::
Apennines

:::::
when

::::::::
compared

::
to

:::
the

::::
other

:::::
areas

::
in

:::::
Italy.

::
In

:::
the

:::::::::
Apennines

:::::
target

::::
area,

:::
the

::::::
largest

:::::::
majority

::
of

:::
the

::::::::::
earthquakes

:::
are

::::::::::::
characterized

::
by

::::::
normal

:::::::
faulting

:::::::::::
mechanisms:

::
in

::::
this

::::
case

:::
the

:::::
lobes

::
of

::
the

:::::::
seismic

::::::::
radiation

::::::
pattern

::::
show

:::::::
negative

::::::::
polarities

::
at
:::::
short

::::::::
epicentral

:::::::::
distances.20

Figure (C1).
:::::::::
Distribution

::
of

:::
the

::::::
positive

:::
and

:::::::
negative

::::::
P-wave

:::::::
polarities

:::
for

:::::::::
earthquakes

::::
with

:::::::
M > 2.5

::
in

:::
the

::::::::
Apennines

:::::
region

:::::
(41◦N

::
–

::::
44◦N

:::
and

:::
9◦E

::
–

::::
15◦E)

:::
(a);

:::
(b)

::
as

::
in

::
(a)

:::
but

::
for

:::::::::
earthquakes

::::::
outside

::
the

:::::::::
Apennines;

::
(c)

::
as
::
in

:::
(a)

::
but

::::::
filtered

::
by

::::::::::
backazimuth

::::
along

:::
the

::::::
NE-SW

::::::::
directions,

::::::::::
corresponding

::
to

:::
the

::::::
intervals

::::
15◦

:
–
::::
105◦

:::
and

::::
195◦

:
–
:::::
285◦.

:::::
Given

:::::
these

:::::::::
conditions,

::::
the

::::::::
observed

:::::::::
asymmetry

::::::
could

:::::
result

:::::
from

:::
the

::::::::
complex

::::::::
interplay

:::::::
between

:::
the

:::::::
source

:::::::
receiver

::::::::
geometry,

:::
the

:::::::
200-300

:::
km

:::::
width

::
of

:::::::::
peninsular

:::::
Italy

:::
and

:::
the

::::::::
dominant

:::::::
NW-SE

:::::::::
extensional

:::::::
faulting

::::::::::::
characterizing

:::
the

:::::::
tectonic

::::::
regime

::
in

::
the

::::::::::
Apennines.

::
In

:::
this

:::::::
setting,

:::
the

:::::::
radiation

::::::
pattern

:::::::
predicts

:::::::
negative

::::::::
polarities

::
in

:::
the

::::
near

::::
field

:::
and

:::::::
positive

::::::::
polarities
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:::::
farther

:::::
away

::::
from

:::
the

::::::
source.

::::
Also

:::
the

:::::::
negative

:::::
lobes

:::
are

:::::::::::
characterized

::
by

::
a

::::::
smaller

::::::::
extension

::::
with

::::::
respect

::
to

:::
the

:::::::
positive

:::::
lobes.

::::
Since

:::
the

:::::::
seismic

::::::::
receivers

:::
are

::::
more

::
or

::::
less

::::::
evenly

:::::::::
distributed,

:::
the

::::::
chance

::
to

::::::
record

:
a
:::::::
negative

:::::
pulse

::
is

::::::
smaller

::::
with

:::::::
respect

::
to

::
the

:::::::
positive

::::
one.

:

:::
The

::::
Fig.

:::
C1

:::::
shows

::::
the

:::::::::
histograms

::
of

:::
the

::::::::::
distribution

::
of

:::
the

:::::::
positive

::::
and

:::::::
negative

::::::::
polarities

::::
with

::::::::
distance.

::::
The

::::
Fig.

:::::
C1(a)

:::::
shows

:::
the

::::::::::
distribution

::
of

:::
the

::::::::
polarities

:::
for

:::
the

::::::
chosen

:::::
target

::::
area

::
in

:::
the

::::::::::
Apennines,

:::::
while

::::
Fig.

:::::
C1(c)

:::::::
exhibits

:::
the

::::::::
polarities

::
in5

::
the

:::::
same

::::
area

:::
but

::::
only

:::::
along

:::::::::::
backazimuth

::::::::::::
approximately

:::::::
NE-SW

::::
(i.e.,

:::
the

:::::
ranges

:::::::::
15◦–105◦

:::
and

:::::::::
195◦–285◦

::::::::
degrees).

:::::::
Finally,

:::
Fig.

::::::
C1(b),

:::::::
displays

:::
the

::::::::
polarities

:::::
from

::::::::::
earthquakes

:::::::
outside

:::
the

:::::
target

::::
area.

::::
We

::::
note

:::
that

::::::
within

:::
the

:::::
target

::::
area

:::::
(Fig.

::::::
C1(a))

::
the

::::::::
polarities

::::
are

:::::::::::::
overwhelmingly

:::::::
positive

::
in

:::::
gross

:::::::::
agreement

::::
with

:::
the

::::::::::
explanation

::::::
above.

:::
For

::::::
further

::::::::::::
confirmation,

:::
we

::::
note

::
in

:::
Fig.

:::::
C1(c)

::::
that,

::
if
:::
we

::::::
restrict

::
to
:::
the

:::::::
NE-SW

::::::::::
propagation

::::::::
direction

::::::::::::
perpendicular

::
to

:::
the

::::::
Italian

::::::::
peninsula,

:::
the

::::
ratio

::::::::
between

::::::
positive

::::
and

:::::::
negative

::::::::
polarities

::::
(pos

::
%,

::::
neg

::
%)

::::::::
increases

::::::
further

:::::
from

:::
(68

::
%,

:::
32

:::
%)

::
to

:::
(81

:::
%,

::
19

:::
%),

:::::::::::
respectively.

::::::::::
Conversely,10

::
the

:::::::
number

::
of

::::::::
polarities

:::
for

:::
the

:::::::::::
earthquakes

::::::
outside

:::
the

:::::
target

::::
area

:::
are

:::::
pretty

:::::
much

::::
well

::::::::
balanced

:::
(49

:::
%,

:::
51

:::
%)

::
as

::::::
shown

::
in

:::
Fig.

:::::
C1(b)

:
.
:

::
In

::::::::::
conclusion,

::
i)

::
the

:::::::::::
INSTANCE

::::::
dataset

:::::
does

::::::
contain

:::::::
positive

:::::::::
polarities

::::::::
resulting

::::
from

::::
the

::::::::
inclusion

::
of

::::::
quarry

::::::
blasts

::::::::::
misidentified

::
as
::::::::::
earthquakes

:::
for

::::::::::
magnitudes

:::::::::::::
M . 2.5− 3.0.

:::
This

:::::::
follows

::::
from

::::
what

:::::::
reported

:::
by

:::::::::::::::
Mele et al. (2010)

:::::::::::::::::::::::::::::::::::::::::::::
(see also the recent work by Gulia and Gasperini, 2021)

:::
and

:::
the

::::::
change

::
in

::::::
positive

::::
and

:::::::
negative

::::::::
polarities

:::::::::
proportions

::
in

::::::::::
INSTANCE

::
at

:::::::
varying

::::::::
minimum

:::::::::
magnitude

::::::::
thresholds

:::::::
appears15

::
to

::::::
confirm

:::
it;

::
ii)

:::
the

::::::
current

:::::::::
modalities

::
of

::::::::::
earthquake

:::::::
revision

::
at

:::::
INGV

:::
do

:::
not

:::::
allow

:::
for

:::
the

:::::::::::
identification

::
of

:::
all

:::
the

::::::::
anthropic

::::::
sources

::
so

::::
that

::
the

::
(
:::::::::::::
source_type)

:::::::::
parameter

::
of

:::
the

:::::::
metadata

::::
can

::
be

::::::::::
misleading;

::
iii)

::
the

:::::
target

::::
area

::
in

:::
the

:::::::
selected

:::::::::
Apennines

:::::
region

:::::::
includes

:::
76

::
%

::
of
:::
the

::::
total

:::::::
number

::
of

::::::::
polarities

::
of

:::
the

::::::
dataset

::::
and

::::::
features

::
a
:::::::::
dominance

::
of

:::::::
positive

::::::::
polarities:

::
a
:::::::
possible

:::::::::
explanation

::
is
:::
the

::::::::
dominant

::::::
normal

::::
type

:::
of

:::::::::
earthquake

:::::::
faulting

::
in

:::
the

:::::::
selected

:::::::::
Apennines

::::::
region;

:::
iv)

:::
the

:::::::::
asymmetry

::::::::
observed

::
in

:::
the

::::::
target

:::::::::
Apennines

:::::
region

:::::::::
disappears

:::
for

::::::::
M > 2.5

::::::::
elsewhere

::
in

:::::
Italy.20

Appendix D: Additional Quality Control figures
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Figure (D1). Distribution of P- (left) and S-arrival (right) samples of the extracted waveform traces
:::::::
belonging

::
to

:::
the

::::::::
earthquake

:::::
dataset.

Figure (D2). Histogram of the distribution of the quality control metadata of the events
::
full

:::::::::
earthquake

:::::
dataset

::::
with

:::
the

::::::::
horizontal

::::
axis

::::::
inclusive

::
of
:::

the
:::::::
complete

:::::
range

::
of

:::::
values: median (a-c) and mean (d-f). The width of the bins is 2× 103;

::::
axes

::
are

:::::::
labelled

:::::::
according

::
to

:::
the

::::::
metadata

:::::
listed

::
in

::::
Table

:
2.
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Figure (D3). Histogram of the full distribution of quality control metadata of the event waveforms
::

full
::::::::
earthquake

::::::
dataset

:::
with

:::
the

::::::::
horizontal

:::
axis

:::::::
inclusive

::
of

:::
the

:::::::
complete

:::::
range

::
of

:::::
values: rms, min, max, first and third quartile. The width of the bins is 2× 105

:
;
::::
axes

::
are

:::::::
labelled

:::::::
according

::
to

:::
the

:::::::
metadata

::::
listed

::
in

::::
Table

::
2.
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Figure (D4). Histograms of the distribution of the intensity measures (IMs) of the event waveforms
:::::::
earthquake

::::::
dataset for M ≥ 2 earthquakes

:::
with

:::
the

::::::::
horizontal

:::
axis

:::::::
inclusive

::
of

::
the

:::::::
complete

:::::
range

::
of

:::::
values.

:::
Axes

:::
are

::::::
labelled

::::::::
according

::
to

::
the

:::::::
metadata

:::::
listed

:
in
:::::
Table

::
2.
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Figure (D5). Histogram of the distribution of the noise quality control metadata
:::::::
including

:::
the

:::
full

::::
range

::
of
::::::

values
::::::
attained

::
by

:::
the

::::::
median

:::::
values: median (a-c) and mean (d-f). The width of the bins is 2× 103;

::::
axes

:::
are

::::::
labelled

:::::::
according

::
to

:::
the

:::::::
metadata

::::
listed

::
in

::::
Table

::
2.
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Figure (D6). Histogram of the distribution of noise quality control metadata: rms, min, max, first and third quartile. The width of the bins is

2× 105;
::::
axes

::
are

:::::::
labelled

:::::::
according

::
to

:::
the

:::::::
metadata

::::
listed

::
in

::::
Table

::
2.
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