
1 

 

DINOSTRAT: A global database of the stratigraphic and 

paleolatitudinal distribution of Mesozoic-Cenozoic organic-walled 

dinoflagellate cysts 
 

Peter K. Bijl 5 
 

Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, the Netherlands 

 

Correspondence to: Peter K. Bijl (p.k.bijl@uu.nl) 

Abstract. Mesozoic–Cenozoic organic-walled dinoflagellate cyst (dinocyst) biostratigraphy is a crucial tool for relative and 10 

absolute age control in complex ancient sedimentary systems. However, stratigraphic ranges of dinocysts are found to be 

strongly diachronous geographically. A global compilation of state-of-the-art calibrated regional stratigraphic ranges could 

assist in quantifying regional differences and evaluate underlying causes. For this reason, DINOSTRAT is here initiated – an 

open source, iterative, community-fed database intended to house all regional chronostratigraphic calibrations of dinocyst 

events (https://github.com/bijlpeter83/DINOSTRAT.git). DINOSTRAT version 1.0 includes >8500 entries of first and last 15 

occurrences (collectively called “events”) of >1900 dinocyst taxa, and their absolute ties to the chronostratigraphic time scale 

of Gradstein et al., 2012. Entries are derived from 199 publications and 189 sedimentary sections. DINOSTRAT interpolates 

paleolatitudes of regional dinocyst events, allowing evaluation of the paleolatitudinal variability of dinocyst event ages. 

DINOSTRAT allows for open accessibility and searchability, on region, age, and taxon. This paper presents a selection of the 

data in DINOSTRAT: (1) the (paleo)latitudinal spread and evolutionary history of modern dinocyst species; (2) the 20 

evolutionary patterns and paleolatitudinal spread of dinoflagellate cyst (sub)families; (3) a selection of key dinocyst events 

which are particularly synchronous. Although several dinocysts show – at the resolution of their calibration – quasi-

synchronous event ages, indeed many species have remarkable diachroneity. DINOSTRAT provides the data storage approach 

by which the community can now start to relate diachroneity to (1) inadequate tie to chronostratigraphic time scales; (2) 

complications in taxonomic concepts and (3) ocean connectivity and/or the affinities of taxa to environmental conditions.  25 

1 Introduction 

Over 50 years of research efforts have established a framework to use organic-walled dinoflagellate cysts (dinocysts) as 

biostratigraphic and chronostratigraphic tool. Dinocyst biostratigraphy is particularly applied to sediments which are difficult 

to date otherwise, such as restricted/nearshore marine settings (e.g., Poulsen et al., 1994; Brinkhuis et al., 1998; Iakovleva et 

al., 2001; Śliwińska et al., 2012; Clyde et al., 2014), and polar regions (e.g., Sluijs et al., 2006; Bijl et al., 2013a; Houben et 30 

al., 2013; Radmacher et al., 2015; Śliwińska et al., 2020). As with all biostratigraphy, the reliability of dinocyst biostratigraphy 
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heavily depends on the accuracy, precision, and regional consistency of the absolute ages of first and last stratigraphic 

occurrences (hereafter jointly referred to as “events”) of easily recognized taxa. Through the past decades, absolute ages of 

dinocyst events were increasingly better chronostratigraphically constrained, using independent age control from 

magnetostratigraphy (e.g., Brinkhuis et al., 1992; Powell et al., 1996), other biostratigraphic tools (e.g., Davey, 1979; 35 

Leereveld, 1997; Oosting et al., 2006; Awad and Oboh-Ikenobe, 2019), and astrochronology (Versteegh, 1997). However, 

efforts to globally compile the chronostratigraphic calibration of dinocyst events revealed strong diachroneity for many species, 

between broad latitudinal bands, and endemism of many species within latitudinal bands (e.g., Williams et al., 2004). Because 

this impacts the development of quasi-global dinocyst zonation schemes, as has been proposed for other microfossil groups 

(e.g., Martini, 1971; Gradstein et al., 2020), the question is how the research field of dinocyst biostratigraphy should progress.  40 

Two questions arise from the notion of geographic diachroneity of dinocyst events:  

• What kind of error or uncertainty should be applied to the absolute ages of events? Now that diachroneity has been 

demonstrated, the next step is to quantify the uncertainty in absolute ages of dinocyst events for each species, and to 

assess regional consistency. This is particularly important when calibrated species ranges are geographically 

extrapolated over large distances. And a related question: What is the impact of regional variability in absolute ages 45 

of events on the regional consistency of the stratigraphic order of events?  

• What are the underlying causes for the observed diachroniety? Broadly, 3 reasons could apply: (1) inaccurate or 

inadequate tie of dinocyst events to the chronostratigraphic time scale, which leads to apparent (but perhaps false) 

diachroniety of species events between sites; (2) complexities in taxonomic concepts could obscure comparison of 

species ranges between sites. This aspect relates to the ease by which subtle morphological differences between 50 

species can be recognized (e.g., Hoyle et al., 2019). It also relates to the question whether the last occurrence of a 

fossil dinocyst taxon reflects extinction of its producer, adjustment of cyst morphology by its producer (e.g., Rochon 

et a., 2009), or a change in its life cycle strategy (e.g., towards less-preservable pellicle cysts; Bravo and Figueroa, 

2014); (3) finally, paleoenvironmental/paleoceanographic conditions can impact species occurrence: ocean 

connectivity (Van Simaeys et al., 2005; Bijl et al., 2013b; Van Helmond et al., 2016), leads and lags in the biotic 55 

response to climate change (e.g., Sluijs et al., 2007) or the temperature affinity of dinocyst taxa (Van Simaeys et al., 

2005; Van Helmond et al., 2016). For instance, in geologic time intervals of global climate cooling, warm-loving 

plankton species have diachronous last occurrences (LOs) which are progressively later at lower latitudes. A good 

example is the modern occurrence in the western Pacific warm pool of Dapsilidinium pastielsii, a species that was 

long thought to be extinct in the Pliocene (Head et al., 1989). This is exemplary for how important it is to assume 60 

asynchronous biostratigraphic events as potential paleoceanographic signal, or a signal of paleoecologic affinity, 

rather than biostratigraphic error.  

 

A process towards answering these, and improving the accuracy of dinocyst biostratigraphy, requires a data compilation 

approach that houses data from as many sites as possible, with detailed metadata on paleogeographic evolution of sites, and 65 
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the means of chronostratigraphic calibration. It further requires that such data compilations are constantly updated to new 

insights: updated geologic time scales and bio- magnetostratigraphic zonation schemes, altered taxonomic concepts, new age 

models of sections, new stratigraphic sections. A complication on a logistical front, is that dinocyst ranges are typically 

published in the closed-access peer-review literature, which are not easily accessible to all, are inconsistent in their approach, 

and not easily updated to new insights.  70 

This paper initiates DINOSTRAT, an open-source, online platform intended to house, disseminate, and iteratively update all 

published chronostratigraphic calibrations of dinoflagellate cyst ranges: the way in which they are tied to the 

chronostratigraphic time scale and the (paleo-) geographic position of the site from which they were calibrated. DINOSTRAT 

version 1.0 currently contains over 8500 entries of first and last occurrences of over 1900 dinoflagellate cyst taxa to the 

international time scale. These entries originate from 199 peer-reviewed papers presenting data from 189 sites. Including as 75 

many reports/sites as possible, with verifiable independent age control, and their latitudinal evolution through time, allows for 

proper evaluation of error and uncertainty. DINOSTRAT will allow to assess and quantify regional variability/consistency in 

event ages and provides the basic information to evaluate the paleoceanographic signal that diachroniety may hold. Open 

accessibility of the basic dinocyst stratigraphic data would further allow a proper evaluation and update of evolutionary patterns 

in dinocyst families (McRae et al., 1996) with full disclosure of the underlying data. The approach on paper selection, data 80 

entry and calculations of ages and paleolatitudes is explained in Section 2. Section 3 presents examples of calibrated 

dinoflagellate cyst events: the stratigraphic and paleolatitudinal distribution of selected modern dinoflagellate cysts, and that 

of extant and extinct dinocyst families, with selected taxa highlighted. Section 4 discusses the implications of the DINOSTRAT 

approach and further directions. This paper represents the start of a community-fed data assembly approach to iteratively 

improve regional constraints on dinoflagellate cyst biostratigraphy. 85 

2 Approach 

DINOSTRAT version 1.0 represents a compilation of dinocyst events from peer-reviewed literature, with a publication date 

predating January 1st, 2021 (see Table 1). The taxonomic nomenclature, supra-generic classification and synonymy cited in 

Williams et al. (2017) is followed. One inherent assumption in the initial setup of DINOSTRAT is that the authors of the 

reviewed literature have applied a consistent taxonomic framework. DINOSTRAT reports events of dinocyst species as they 90 

were presented in the papers, but applying the synonymy index of Williams et al., 2017. Most dinoflagellate cyst species are 

easily recognized, have a stable morphology (both regionally and through time) and clearly defined species concepts. However, 

some species (and subspecies) diagnoses are more subtle or represent endmembers in a continuum (e.g., Hoyle et al., 2019), 

in part imposed by the environmental conditions (e.g., Ellegaard, 2000). Some authors tend to lump species in complexes, 

while others split into subspecies. The international recognition of these lumps and splits may have evolved through time, and 95 

may have restricted, regional significance only. Therefore, subtle differences in species concept interpretation may exist 
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between authors and regions, which the current approach was unable to account for, and is considered a next step, when 

individual studies or sites are revisited. 

For the subfamily Wetzelielloideae, DINOSTRAT deviates from the taxonomic index of Williams et al. (2017). The 

fundamental redefinition of species concepts in the taxonomic revisions for the Wetzelielloideae (Williams et al., 2015) 100 

eliminates many stratigraphically useful Eocene dinocyst taxa (Bijl et al., 2016). Therefore, for this subfamily, the calibration 

of dinocyst species is presented in the taxonomic classification of Wetzelielloideae prior to (Williams et al., 2015). 

 

Table 1: Papers used in this review. Reference, Geography, Age base and Age top (in Ma), Tier (see Figure 1) and 

means of calibration to the Geologic Time Scale (GTS). 105 

Reference Geography 

(location) 

Age 

base 

Age 

top 

Tier Calibrated to 

Açikalin et al., 2015 NW Turkey 67 65 3 planktonic foraminifera stratigraphy on the same 

section 

Århus et al., 1989 Norway 166 155 3 Russian Platform zones, converted to Boreal 

ammonite zones (see Supplement 1) 

Aubry et al., 2020 Labrador Sea, 

Greenland  

3.2 2.25 1 Magnetostratigraphy on the same samples. Magnetic 

reversals were calibrated usingplanktonic 

foraminifera and nannofossils 

Awad and Oboh-

Ikenobe, 2016 

Ivory Coast 

Margin  

57 54 3 CP nannoplankton stratigraphy on the same section 

Awad and Oboh-

Ikenobe, 2019 

Ivory Coast 

Margin  

28 16 3 CP/CN nannofossil stratigraphy on the same samples 

Bailey et al., 1997 UK 157 152 3 Boreal ammonite stratigraphy from the same core 

samples. 

Baruffini et al., 2002 S Italy 35 32 3 CP nannoplankton stratigraphy from the same study 

Besems, 1992 Borneo 65 0 5 chronostratigraphy, no independent age controll 

shown (Industry data) 

Biffi and Manum, 1988 Central Italy 36 22 3 NP/NN nannoplankton and N/P planktonic 

foraminifer stratigraphies from the same sections 

Bijl and Brinkhuis, 

2015 

East Antarctica  54 47 2 Magnetostratigraphy on the same section. 

Magnetochrons are dated using dinocyst 

biostratigraphy 
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Bijl et al 2013, 2014 SW Pacific  57 35 2 Complicated paleomagnetic signal and isotope 

stratigraphic constraints at Site 1171 and 1172. U1356 

was calibrated to magnetostratigraphy, using dinocyst 

biostratigrapy 

Bijl et al., 2018 East Antarctica 34 10 1 Magnetostratigraphy with nannoplankton stratigraphy 

Bowman et al., 2012 Seymour Island, 

Antarctica 

68 65 4 Inferred position of the K/Pg Boundary 

Bowman et al., 2016 Seymour Island, 

Antarctica 

66 57 4 Inferred position of the K/Pg Boundary 

Brinkhuis, 1994 Italy 35 33 1 Magnetostratigraphy with NP/CP nannoplankton and 

foraminifer stratigraphy in the same sections 

Brinkhuis and Biffi, 

1993 

Central Italy 37 32 1 Magnetostratigraphy, based on nannoplankton 

stratigraphy and foraminifer stratigraphy 

Brinkhuis et al., 1992 NW Italy 26 22 1 Magnetostratigraphy, interpreted based on 

nannoplankton stratigraphy and foraminifer 

stratigraphy 

Brinkhuis et al., 1998 Tunesia, 

Denmark 

67 65 3 Planktonic foraminifer stratigraphy at the same 

sections 

Brinkhuis et al., 2003a Western 

Tasmania  

36 1 2 Magnetostratigraphy with sparse nannoplankton in the 

Eocene. Oligocene and Neogene calibrated to 

nannoplankton-, foraminifer- and 

magnetostratigraphy 

Brinkhuis et al., 2003b Eastern 

Tasmania 

70 30 2 A complicated paleomagnetic signal with isotope 

stratigraphic constraints (see Dallanave et al., 2016).  

Brown and Downie, 

1984 

Rockall Plateau, 

Ireland  

58 33 3 CNP nannoplankton stratigraphy on the same cores 

Brown and Downie, 

1985 

Northern Bay of 

Biscay, France 

60 10 3 NP/NN nannoplankton stratigraphy on the same cores 

Bucefalo Palliani and 

Riding, 1997a 

Italy 183 179 4 Tethyan ammonite stratigraphy, but no ammonite data 

was shown 

Bucefalo Palliani and 

Riding, 1997b 

France 199 170 4 Boreal ammonite stratigraphy, but no ammonite data 

was shown (see conversions in Supplement 1) 
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Bucefalo Palliani and 

Riding, 2000 

UK 200 179 4 Tethyan ammonite stratigraphy, but no ammonite data 

was shown  (see conversions in Supplement 1) 

Bucefalo Palliani and 

Riding, 2003 

Boreal/Tethys 191 180 4 Boreal ammonite stratigraphy, but no ammonite data 

was shown. 

Bujak and Matsuoka, 

1986 

North Pacific, 

Japan 

23 0 5 Independent age constraints from planktonic 

foraminifera, radiolaria, diatoms and nannoplankton 

are not shown in the paper. 

Bujak and Mudge, 1994 North Sea, UK 57 53 4 Synthesis. Plots dinocyst events against NP 

nannoplankton and P planktonic foraminifer 

stratigraphy not presenting independent stratigraphic 

data. 

Correia et al., 2019 Portugal 183 168 3 Tethyan ammonite stratigraphy on the same sections. 

Costa and Davey, 1992 North Sea, UK 145 66 4 Ammonite zones are plotted but no ammonite data 

was presented. Campanian-Maastrichtian events were 

calibrated to stages (see conversions in Supplement 1) 

Costa and Downie, 

1979 

N Atlantic 58 5 3 Nannoplankton stratigraphy on the same section 

Crouch et al., 2014 New Zealand  66 54 1 Magnetostratigraphy and NP nannoplankton 

stratigraphy on the same samples 

Dallanave et al., 2016; 

Crouch et al., 2020 

New Zealand  54 46 1 Magnetostratigraphy and NP nannoplankton zones on 

the same section 

Davey, 1979 N atlantic 124 100 3 Nannoplankton stratigraphy on the same section 

Davey, 1982 Denmark 152 125 3 Original stratigraphic account was based on 

Ammonites, pelycepods and benthic foraminifera  

(see conversions in Supplement 1) 

Davey, 2001 UK 134 131 3 Boreal Ammonite stratigraphy on the section 

Davey and Verdier, 

1971 

France 113 103 4 Boreal ammonite stratigraphy, not shown  (see 

conversions in Supplement 1) 

De Lira Mota et al., 

2020 

Gulf Coast, 

USA 

37 32 3 NP nannofossil stratigraphy on the same samples 

De Schepper and Head 

2008, 2009 

North Atlantic  6 0 1 Magnetostratigraphy, NN nannofossil stratigraphy 

and N planktonic foraminifer stratigraphy 
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De Schepper et al., 

2017 

North Atlantic  7 1 1 Magnetostratigraphy on the same section 

De Vernal and Mudie, 

1989 

Labrador Sea, 

Greenland  

5.5 0 3 Shipboard NN nannofossil stratigraphy 

De Vernal et al., 1992 North Atlantic 1.5 0 1 Magnetostratigraphy and NN nannofossil stratigraphy 

De Verteuil and Norris, 

1996 

Chesapeake 

Bay, USA 

25 4 4 Synthesized stratigraphic data, no independent age 

control presented 

Dimter and Smelror, 

1990 

sw Germany 166 163 3 Boreal ammonite zonation on the same material 

Dodsworth, 2000 USA and UK 96 93 3 Planktonic foraminifer and ammonite stratigraphy on 

the same section 

Duffield and Stein, 

1986 

Gulf Coast, 

USA 

35 5 3 N Planktonic foraminiferal zonation 

Duque-Herrera et al., 

2018 

Colombia 18 5 3 NN nannofossil events in the same core 

Duxbury, 1983 North Sea 126 110 3 Boreal ammonite zonation  (see conversions in 

Supplement 1) 

Duxbury, 2001 Scotland 139 100 4 Boreal ammonite zonation, not directly from the well 

cutting material  (see conversions in Supplement 1) 

Dybkjær and Piasecki, 

2008, 2010 

Denmark 23 0 3 NP/NN nannoplankton stratigraphy 

Egger et al., 2016 Newfoundland, 

USA  

35 21 1 Magnetostratigraphy with NN nannoplankton 

stratigraphy 

Eldrett and Harding, 

2009 

Voring Plateau, 

Norwegian Sea  

52 33 2 Magnetostratigraphy on the same section, see Eldrett 

et al., 2004 

Eldrett et al., 2004 Norwegian Sea  50 30 2 Magnetostratigraphy, but chrons were not 

independently interpreted 

Eldrett et al., 2019 North Atlantic  34 24 2 Magnetostratigraphy on the same section, see Eldrett 

et al., 2004 

Eshet et al., 1992 Israel 67 65 3 NP nannoplankton strat at the same site 

Feist-Burkhardt and 

Monteil, 1997 

France 171 167 3 Calibrated to Boreal ammonite stratigraphy  (see 

conversions in Supplement 1) 

Feist-Burkhardt, 1990 sw Germany 174 168 3 Boreal ammonite stratigraphy 



8 

 

Fensome et al., 2008 Scotian Margin, 

E Canada 

100 0 3 NN and NC nannoplankton stratigraphy, but because 

based on cuttings, only LADs are given 

Firth et al., 2013 North Atlantic  51 32 1 Magnetostratigraphy with independent age control 

from nannoplankton and planktonic foraminifer 

stratigraphy 

Firth, 1996 N Atlantic  45 30 1 Calibrated using magnetostratigraphy from Eldrett et 

al., 2009 

Frieling et al., 2014 West Siberian 

Sea 

60 45 2 Magnetostratigraphy and stable carbon isotope 

stratigraphy 

Gradstein et al., 1992 North Sea, NL 66 23 3 N/P foraminifer stratigraphy, but entered against NP 

nannoplankton stratigraphy 

Grothe et al., 2017 Black Sea  6 5.5 1 Magnetostratigraphy on the same section 

Guasti et al., 2005 Tunisia 66 57 3 NP nannoplankton and P foraminifer stratigraphy on 

the same section 

Habib and Drugg, 1983 East Coast USA  157 138 1 Magnetostratigraphy on the same section 

Habib and Drugg, 1987 East Coast USA  145 66 2 Magnetostratigraphy on the same section 

Harding et al., 2011 S Russia 152 134 3 Russian ammonite zonation on the same sections, 

correlated to Boreal ammonite zones  (see conversions 

in Supplement 1) 

Harland, 1979 N atlantic 12 0 3 Nannoplankton stratigraphy on the same section 

Harland, 1992 North Sea 23 0 4 NN nannoplankton and N planktonic foraminifer 

stratigraphy, but independent age constraints not 

explicitly shown 

Head, 1998 North Sea 4 1.6 4 Stages, using known ages of sampled formations 

Head and Norris, 1989 Western North 

Atlantic 

57 23 3 NN nannoplankton stratigraphy 

Head and Norris, 2003 North Atlantic  7 1 1 Magnetostrat and NC nannoplankton stratigraphy 

from the same section 

Head et al., 1989 Labrador Sea  9 5 3 NN and CN nannoplankton stratigraphy at the same 

site 
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Heilmann-Clausen, 

1985 

North Sea 62 54 3 NP nannofossil zones on the same section 

Heilmann-Clausen, 

1987 

Danish basin 152 100 4 Synthesis of records from the North Sea area. 

Correlation to Boreal ammonite zones  (see 

conversions in Supplement 1) 

Heilmann-Clausen and 

Van Simaeys, 2005 

Danish North 

Sea 

48 30 3 NP nannofossil zonation 

Helby and McMinn, 

1992 

NW Australia  139 104 3 CC nannofossil zonation on the same section 

Helby et al., 1987 Australia 241 66 4 Synthesis, calibrated to stages using industry 

information. Albian-Danian has independent age 

controll from foraminiferal and nannoplankton zones 

Hoek et al., 1996 Israel 73 69 3 CC and UC nannofossil events 

Hollis et al., 2009 New Zealand 51 46 3 NP nannofossil stratigraphy on the same section 

Houben et al., 2011 Falkland 

Islands, S 

Atlantic  

35 32 1 Oi-1 isotope event, the age of which is then transferred 

to the GPTS 

Houben et al., 2019 Alabama, USA 37 30 1 Magnetostratigraphy and NP nannoplankton 

stratigraphy on the same section 

Iakovleva and 

Heilmann-Clausen, 

2010 

Siberia 52 35 2 Magnetostratigraphy on the same section 

Ioannides et al., 1988 France 157 152 3 Boreal ammonite stratigraphy  (see conversions in 

Supplement 1) 

King et al., 2018 Crimea 59 48 3 NP nannofossil stratigraphy on the same samples 

Kirsch, 1991 Bad Tolz, 

Southern 

Germany 

94 66 3 Planktonic foraminifer stratigraphy, data not shown 

Köthe, 2012 NW Germany 65 0 3 NP nannoplankton stratigraphy in the same sections. 

(for conversions see Supplement 1) 

Köthe et al., 1988 Pakistan 58 50 3 Nannoplankton stratigraphy on the same sections 

Krijgsman et al., 1995 Mediterranean 

(Gibliscemi) 

10 7 1 Magnetostratigraphy with planktonic foraminifer 

stratigraphy on the same section 

hnh
Fremhæv

hnh
Gul seddel
not in ref list

bijl0109
Sticky Note
Now added



10 

 

Kuhlman et al., 2006 Central North 

Sea 

4 0 1 Magnetostratigraphy with foraminifer stratigraphy on 

the same section 

Lebedeva et al., 2013 Omsk, sw 

siberia 

83 68 1 Magnetostratigraphy and CC nannoplankton 

stratigraphy on the same section 

Leereveld, 1995 Caravaca, 

Southern Spain 

145 105 3 Tethyan ammonite stratigraphy on the same section 

(for conversions see Supplement 1) 

Leereveld, 1997a Caravaca, 

Southern Spain 

134 125 3 Tethyan ammonite stratigraphy on the same section 

(for conversions see Supplement 1) 

Leereveld, 1997b Caravaca, 

Southern Spain 

146 134 3 Tethyan ammonite stratigraphy on the same section 

Londeix and Jan Du 

Chene, 1998 

Bordeaux, 

France 

21 16 3 NN nannoplankton stratigraphy 

Louwye et al., 2004 Belgium 6 0 3 NN nannoplankton stratigraphy on the same section 

Louwye et al., 2008 Porcupine basin, 

Ireland 

17 11 1 Magnetostratigraphy on the same section 

Mao and Mohr, 1992 Kerguelen 

Plateau, 

Antarctica  

75 70 3 CC nannofossil stratigraphy on the same section 

Marret et al., 2020 global 0 0 
 

Surface sediment data 

Masure, 1988 Ivory Coast 

Margin 

140 112 3 CC nannofossil stratigraphy on the same section 

Masure et al., 1998 Ivory Coast 

Margin 

90 57 3 CP and CC nannoplaknton stratigraphy on the same 

section 

Matsuoka et al., 1987 Japan 20 0 3 N foraminifer events on the same section 

Matthiessen and 

Brenner, 1996 

Spitsbergen 3 0 1 Magnetostratigraphy on the same section 

McLachlan et al., 2018 western Canada 77 71 1 Magnetostratigraphy on the same site 

McMinn, 1992 NW Australia  16 3 3 CP nannofossil stratigraphy and N planktonic 

foraminifer stratigraphy 

McMinn, 1993 NW Australia  9 0 3 CN nannoplankton stratigraphy on the same section 

Mohr and Mao, 1997 Kerguelen and 

Maud Rise, 

Antarctica 

73 70 1 Magnetostratigraphy, CC nannoplankton stratigraphy 
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Montanari et al., 1997 Contessa, 

Gubbio, Italy 

26 16 1 Magnetostratigraphy, foraminifer and nannoplankton 

stratigraphy 

Monteil, 1992 France 152 134 3 Tethyan Ammonite stratigraphy. Partly overwritten by 

Monteil, 1993 (for conversions see Supplement 1) 

Monteil, 1993 France 152 140 3 Some sections were calibrated to Tehyan ammonite 

stratigraphy, some only indicated stages (for 

conversions see Supplement 1) 

Mudge and Bujak, 1996 North Sea 66 33 3 Synthesis, using P planktonic foraminifer and NP 

nannoplankton events in the same section, but no data 

shown 

Mudge and Bujak, 2001 Faroe-Shetland 66 54 3 NP nannoplankton zones and P planktonic foraminifer 

zones in the same sections, but no data shown 

Mudie, 1987 North Atlantic  8 0 1 Magnetostratigraphy, N foraminifer strat and NN 

nannoplankton stratigraphy 

Nikitenko et al., 2008 Siberia 150 134 3 Siberian ammonite stratigraphy, in the paper 

correlated to Tethyan ammonite zones (for 

conversions see Supplement 1) 

Nøhr-Hansen et al., 

2002 

West Greenland 66 62 3 NP nannofossil stratigraphy on the same section 

Nøhr-Hansen et al., 

2020 

Greenland 150 66 4 Ammonite zonation on the same sections, but 

ammonite data shown separately. Calibrated to stages 

herein 

Olde et al, 2015 North Sea 94 88 3 Boreal ammonite stratigraphy on the same section 

Oosting et al., 2006 Australia 131 120 4 Tethyan ammonite stratigraphy on Angles, then 

inferred for Site 263 (for conversions see Supplement 

1) 

Pearce, 2010 UK 95 70 4 UK ammonite zonations in nearby outcrops. Some 

intervals could not be correlated to the GTS2012 

Piasecki et al., 1992 Greenland 65 57 3 NP Nannofossil stratigraphy on the same section 

Poulsen and Riding, 

2003 

North Sea, UK 210 137 4 Synthesis of Danish and British dinocyst events. 

Calibrated to Boreal ammonite stratigraphy, but 

presented, and herein plotted against stages 

Poulsen, 1992 Denmark 163 145 4 Boreal ammonite stratigraphy. Synthesis 
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Poulsen, 1998 Poland 169 164 3 Boreal and Tethyan ammonite zones 

Powell et al., 1996 North Sea, UK 59 55 1 Magnetostratigraphy on the same sections 

Powell, 1986 NW Italy 25 21 3 NP nannofossil stratigraphy on the same section 

Powell, 1988 Central North 

Sea 

63 54 3 NP nannofossil stratigraphy on the same sediments, no 

nannoplankton data directly shown 

Powell in Powell, 1992 North Sea, UK 66 23 4 P planktonic foraminifer and NP nannofossil 

stratigraphy, no direct calibration data shown 

Prince et al., 2008 UK 89 83 3 UK ammonite stratigraphy on the same sections, 

herein correlated to GTS2012 

Pross et al., 2010 Italy 35 22 1 Magnetostratigraphy and independent age control 

from NP nannoplankton stratigraphy 

Quaijtaal and 

Brinkhuis, 2012 

Alabama, USA 37 30 1 Magnetostratigraphy from the same section, 

independently established using nannoplankton and 

foraminifer stratigraphy 

Quaijtaal et al., 2014 Porcupine basin, 

Ireland 

17 11 1 Magnetostratigraphy from the same section, 

independently established using nannoplankton 

stratigraphy 

Radmacher et al., 2014a Barentz Sea 101 71 4 Ages of the lithostratigraphic framework 

Radmacher et al., 

2014b 

Zumaia, Spain 74 70 1 Magnetostratigraphy and UC nannoplankton 

stratigraphy on the same section 

Radmacher et al., 2015 Norwegian Sea 113 66 4 Regional lithostratigraphy dated using foraminifers 

and nannoplankton, but no direct independent age 

constraints shown 

Riding and Helby, 

2001a-g 

NW Australia 182 100 4 Nannofossil and ammonite stratigraphy, but with 

some correlation to European and Tethyan sections 

(for conversions see Supplement 1) 

Riding and Thomas, 

1988 

UK 160 150 3 Boreal ammonite zonation on the same section (for 

conversions see Supplement 1) 

Riding and Thomas in 

Powell, 1992 

North Sea 202 145 4 Boreal ammonite zonations, but not directly shown in 

paper (for conversions see Supplement 1) 

Riding and Thomas, 

1997 

N Scotland, isle 

of Skye 

166 155 3 Boreal ammonite stratigraphy on the same section (for 

conversions see Supplement 1) 
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Riding et al, 2010 Australia 237 145 4 Ammonites, conodonts, Belemnite/bivalve, NJ 

nannoplankton stratigraphy and strontium isotopes, 

but these data are not shown in the paper 

Riley and Fenton, 1982 UK/France 166 160 3 Boreal ammonite stratigraphy on the same sections 

Schiøler, 1993 Denmark 72 66 4 Stages, independent age constraints come from 

calcareous microplankton, not shown 

Schreck and 

Matthiessen, 2014 

Northern 

Iceland 

14 5 1 Magnetostratigraphy with NN nannoplankton and 

diatom stratigraphy 

Schreck et al., 2012 Northern 

Iceland 

15 2 1 Magnetostratigraphy with NN nannoplankton and 

diatom stratigraphy 

Schreck et al., 2013 Northern 

Iceland 

15 2 1 Magnetostratigraphy with NN nannoplankton and 

diatom stratigraphy 

Schreck et al., 2017 Northern 

Iceland 

15 2 1 Magnetostratigraphy with NN nannoplankton and 

diatom stratigraphy 

Shulgina et al., 1994 Siberia 145 132 3 Boreal ammonite stratigraphy on the same sections 

(for conversions see Supplement 1) 

Skupien, 2004 Slovakia 123 99 3 Boreal ammonite stratigraphy (for conversions see 

Supplement 1) 

Skupien and Vašíček, 

2002 

Czech republic 131 113 3 Tethyan ammonite stratigraphy on the same section 

(for conversions see Supplement 1) 

Slimani and Louwye, 

2011 

Belgium 75 62 4 Regional lithostratigraphy calibrated to belemnite 

stratigraphy, tied to type Maastrichtian 

Śliwińska et al., 2012 Danish North 

Sea 

34 25 1 Magnetostratigraphy and NP nannoplankton on the 

same section 

Sluijs et al., 2003 Tasmania 37 30 2 Magnetostratigraphy on the same section, but no 

independent chron assignment 

Smelror et al., 1991 Spain 168 158 3 Tethyan ammonite stratigraphy on the same section 

(for conversions see Supplement 1) 

Smelror, 1988a Greenland 167 160 3 Boreal ammonite stratigraphy on the same section (for 

conversions see Supplement 1) 

Smelror, 1988b Svalbard, 

Norway 

168 160 3 NW European ammonite stratigraphy, herein 

calibrated to the Boreal zonation (for conversions see 

Supplement 1) 
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Smelror, 1994 Swabia 167 165 4 Ammonite and foraminifer stratigraphy, but herein 

calibrated against stages 

Smelror and Dietl, 1994 s Germany 167 165 3 Boreal ammonite stratigraphy on the same section 

Smelror and 

Lominadze, 1989 

Caucasus 166 163 3 Boreal ammonite stratigraphy from the same section 

(for conversions see Supplement 1) 

Soliman et al., 2012 Golf of Suez, 

Egypt 

54 14 3 NP/NN nannoplankton stratigraphy on the same 

section 

Steeman et al., 2020 Angola 60 35 3 P/E foraminifer stratigraphy on the same section 

Stover and Hardenbol, 

1994 

Belgium 34 28 3 NP nannoplankton stratigraphy on the same sections 

Strauss and Lund, 1992 Germany 18 6 3 Nannoplankton stratigraphy on the same sections 

Thorn et al, 2009 Seymour Island, 

Antarctica 

68 65 4 The position of the K-Pg boundary 

Tocher, 1987 New Jersey 

Shelf, USA 

73 66 3 Planktonic foraminifer stratigraphy on the same 

samples 

Tocher and Jarvis, 1994 Fumichon, 

France 

100 95 3 Boreal ammonite stratigraphy on the same section 

Tocher and Jarvis, 1995 NW France 101 92 3 Boreal ammonite stratigraphy on the same section 

Tocher and Jarvis, 1996 NW France and 

SW UK 

110 95 3 Boreal ammonite stratigraphy on the same section (for 

conversions see Supplement 1) 

Torricelli, 2000 southern Italy 131 100 1 Integrated bio-magneto-cyclostratigraphic 

framework, but only stages shown in the paper 

Torricelli, 2006 Piobbico, Italy 113 100 3 NC nannoplankton stratigraphy on the same section 

Torricelli and Amore, 

2003 

Southern Italy 101 72 3 CC nannoplankton stratigraphy on the same section 

Torricelli et al., 2006 Tremp Basin, 

Northern Spain 

53 51 3 (P) planktonic foraminifer and NP nannoplankton 

stratigraphy on the same section 

Türkecan et al., 2018 Turkey 18 14 3 NN nannofossil and M foraminifer stratigraphy from 

the same section 

Van de Schootbrugge et 

al., 2019a 

UK, Arctic 189 174 3 Boreal ammonite stratigraphy on the same section 



15 

 

Van de Schootbrugge et 

al., 2019b 

northern 

Germany 

202 178 3 Boreal ammonite stratigraphy 

Van Mourik and 

Brinkhuis, 2005 

Italy 37 33 1 Magnetostratigraphy on the same section 

Van Mourik et al., 2001 Offshore Florida  39 35 1 Magnetostratigraphy and CP nannoplankton 

stratigraphy on the same section 

Van Simaeys et al., 

2004 

Belgium 33 22 3 NP nannoplankton stratigraphy on the same sections 

Van Simaeys et al., 

2005 

Rhine Graben 33 22 1 Magnetostratigraphy on the same section 

Vellekoop et al., 2015 Tunisia 67 65 3 P foraminiferal zones on the same section 

Versteegh, 1997 North Atlantic 

Ocean, Italy 

3 2 1 Isotope stages, herein recalibrated to NN and CN 

nannoplankton zones 

Versteegh and 

Zevenboom, 1995 

South Italy 28 0 1 Magnetostratigraphy on the same section 

Vieira et al., 2020 North Sea 59 56 3 NP nannofossil and P foraminifer stratigraphy 

Williams and Bujak, 

1977 

Topical and 

North Atlantic 

Ocean 

25 0 5 Stages, no independent age control given 

Williams et al., 1993 Northern 

Hemisphere 

210 0 5 Stages, no independent age control given 

Willumsen, 2012 New Zealand 70 64 3 P foraminifer stratigraphy 

Wilpshaar et al., 1996 Central Italy 35 22 3 CP an NP nannoplankton and N planktonic 

foraminifer stratigraphy 

Woollam and Riding, 

1983 

UK 209 140 3 Boreal ammonite stratigraphy (for conversions see 

Supplement 1) 

Wrenn and Kokinos, 

1986 

Gulf Coast 10 0 1 Magnetostratigraphy on the same section 

Zegarra and Helenes, 

2011 

Equatorial 

Eastern Pacific 

18 0 1 Independent age model from magnetostratigraphy, 

nannoplankton and foram stratigraphy 

Zevenboom, 1995 Italy 26 16 3 NP/NN nannoplankton stratigraphy on the same 

sections 
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A decision tree is used to determine which papers to include into DINOSTRAT (Fig. 1). This tree first discards studies in 

which dinoflagellate cysts were the only stratigraphic tool to date the sequence. Although these papers do provide valuable 

information on stratigraphic order of events, discarding them from this review eliminates the risk of circular reasoning and 

inherited chronostratigraphic tie. Only those dinocyst events are included that could be calibrated against a stratigraphic tool 110 

that can be traced back to the bio-, magneto- or chronozones in the Geologic Time Scale 2012 (GTS2012; Gradstein et al., 

2012). The decision tree distinguishes five tiers in these papers (Fig. 1): 

• Tier 1 studies present dinocyst events along with magnetostratigraphic constraints obtained from the same sedimentary 

section. The interpretation of magnetochrons from the paleomagnetic signal was done without the use of dinoflagellate 

cyst biostratigraphy. Since magnetic reversals are globally synchronous, evaluating the synchroneity of dinocyst events 115 

with use of paleomagnetostratigraphy is most robust. 

• Tier 2 studies present dinocyst events calibrated along with compromised or problematic magnetostratigraphic constraints 

on the same sedimentary section, for instance when the inclination signal suffers from a strong overprint, or when the 

magnetochron assignment is not clear. Studies in which dinocyst events served as biostratigraphic tool for magnetochron 

assignment are included in this tier as well. 120 

• Tier 3 studies report dinocyst events together with biostratigraphic zones (from nannoplankton, foraminifer or ammonite 

zones), identified on the same sequence. These studies provide clear report on the identification of these zones in the 

sequence.  

• Tier 4 studies report dinocyst events with biostratigraphy, of which either the derivation is unclear, or the tie to the GTS 

(e.g., for outdated ammonite zonations), or when biostratigraphic data does not come from the same sequence, but e.g., is 125 

interpreted from nearby outcrops. 

• Tier 5 studies report dinocyst events with independent chronostratigraphy, of which the derivation is unverifiable, or 

represents a regional synthesis.  
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Figure 1: Decision tree for including studies in this review, and categorization criteria for the 5 tiers. 130 

 

The absolute age of each dinocyst event is not explicitly entered into DINOSTRAT. Rather, its position within the zone it was 

calibrated to is entered. Ages are subsequently calculated via linear interpolation between these tie points, as follows:  

 

[FO/LO] of [Genus, Species] = [##]% in ([stratigraphic tool]$[zone])     (1) 135 

 

in which [##]% is linearly interpolated between base (0%) and top (100%) of tie points, [stratigraphic tool] is the bio-, magneto 

or chronozonation in the GTS2012, and [zone] is the name of the zone, chron or stage in which the dinocyst event falls. The 

rationale behind this approach instead of simple entry of the age is that while the absolute ages of dinocyst events are dependent 

on the evolving knowledge of the chronostratigraphic time scale, the stratigraphic position of the event relative to the tie points 140 

in the record is fixed. This approach makes it easier to update the ages of the dinocyst events when the ages of the chrono-, 

magneto- and biozones are updated in the future. If dinocyst events fall between two different stratigraphic ties, the event is 

noted as follows:  

 

[FO/LO] of [Genus, Species] = [##]% between [##]% in [stratigraphic tool]$[zone] and [##]% in [stratigraphic 145 

tool]$[zone]             (2) 

 

Outdated Jurassic and Cretaceous ammonite zonation schemes are converted to those presented in the GTS2012 (see 

Supplement 1; following Ogg and Hinnov, 2012a, b and citations therein). FOs in the bottom of sections, and LOs at the top 

Dinoflagellate cysts

used to date the

sequence?

Magnetochrons

used to date the

sequence?

Other biostratigraphic

tools used to date

the sequence?

Clear paleomagnetic signal

or

dinoflagellate cysts used 

to assign chrons?

Biozones recognized on 

the same sequence?

Tier 5

Tier 4Tier 3Tier 2Tier 1

Discard

YES YES YES

YESYES

NO NO NO

NO NO

hnh
Fremhæv

hnh
Fremhæv

hnh
Fremhæv

hnh
Gul seddel
not defined

hnh
Fremhæv

hnh
Gul seddel
defined at line 58

bijl0109
Sticky Note
Now both FO and LO are first defined at line 33

bijl0109
Sticky Note
See above



18 

 

of sections are systematically omitted, unless they were specifically indicated to represent an FO or LO. Younger publications 150 

presenting calibrations of dinocyst species from the same section overwrite older publications. Modern dinoflagellate cyst 

species and their latitudes (from Marret et al., 2020, and Mertens et al., 2014 for Dapsilidinium pastielsii) are entered with an 

LO of 0 Ma (modernst.csv in Bijl, 2021 for surface sediment station locations, modernsp.csv in Bijl, 2021 for dinoflagellate 

cyst species at those stations). 

 155 

Each event entry in DINOSTRAT (Dinoevents_Jan2021.csv in Bijl, 2021) includes the (paleo-) latitude of that event. This is 

interpolated using the age of the event and its location, which has a paleolatitude evolution through time (Paleolatitude.csv in 

Bijl, 2021; with use of Paleolatitude.org; Van Hinsbergen et al., 2015). Paleolatitudes of sites in mobile orogenic belts are 

interpolated using regional tectonic reconstructions, and as such are prone to additional latitudinal uncertainty.  

 160 

 

Figure 2: Present-day geographic distribution of sedimentary sequences used in this study (colors of the dots 

correspond to the tier these sites belong in), and surface sediment stations (in grey dots; Marret et al., 2020 and Mertens 

et al., 2014). A. Global. B. Detailed map of sites in Europe.  

3 The database 165 

3.1 Sites 

DINOSTRAT currently contains dinocyst events from 199 publications and 189 sites. The wider North Atlantic/European area 

is strongly overrepresented (Fig. 2). Few sites are from the Pacific Ocean, southern Atlantic and Indian Ocean, and the 

equatorial region. Probably this reflects a genuine bias in the available information, because of focus of the community towards 
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economically interesting regions (e.g., for hydrocarbon industry). It may also in part reflect a bias towards ‘western society’ 170 

research, and poor accessibility of publications from non-western societies.  

The paleolatitudinal position of the sites through time confirms the strong overrepresentation of Northern Hemisphere mid-

latitude sections (Fig. 3), and underrepresentation of the tropical regions, Pacific Ocean and southern mid-latitudes. The 

Paleogene has the largest latitudinal spread of records, better yet than the Neogene. Particularly the Mesozoic has few entries 

from the Southern Hemisphere and equatorial regions. The Mesozoic records are predominantly calibrated to ammonite 175 

stratigraphy (Tier 3 and 4), and in some occasions to magnetostratigraphy (Tier 1 and 2; Fig. 3). Ammonite zones presented 

in the papers often had to be converted to those in the GTS2012, which is not always straightforward, as the zone definitions 

have changed through time (Ogg and Hinnov, 2012a, b). The ammonite zonations are prone to regional diachroniety 

themselves, which was demonstrated particularly for the late Jurassic (Ogg and Hinnov, 2012b). This may create a level of 

circular reasoning when dinocyst events are calibrated against these zones, because diachronous dinocyst events in 180 

DINOSTRAT may be the result of diachronous ammonite zones rather than diachronous dinocyst events. 

3.2 Calibrated dinocyst events 

DINOSTRAT version 1.0 includes over 8500 entries of calibrated dinoflagellate cyst events (excluding the modern dinocyst 

database). On a species level, originations in DINOSTRAT peak in the Middle Jurassic (Bajocian–Callovian) the lower 

Cretaceous (upper Valanginian–Barremian) and the Eocene (Ypresian; Fig. 3b). Extinctions peak in the lower Cretaceous 185 

(Berriasian–Barremian), upper Cretaceous (Maastrichtian), Oligocene (Rupelian) and Miocene (Serravalian; Fig. 3b). This 

pattern is generally followed on a genus level, which likely has a stronger relation to the biologic diversity than dinocyst 

species diversity (Fensome et al., 1993).  

The interpolated paleolatitudes for dinoflagellate cyst events in DINOSTRAT allows detailed evaluation of the latitudinal 

synchroneity of dinocyst events. This paper presents a selection of the data in DINOSTRAT, focusing on the stratigraphic and 190 

geographic range of modern dinocyst species, of dinocyst families/subfamilies and of a selection of quasi-synchronous 

dinocyst events. Users can filter DINOSTRAT per locality (to present the stratigraphic order of events per site) and/or per 

taxon (to see the geographic variability of the range of any taxon), to serve their purposes. 
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 195 

Figure 3: Data in DINOSTRAT. a. Paleolatitude and age span of sites used in DINOSTRAT. Colors corresponds to 

tier, line thickness separates sites on stable oceanic or continental plates from those in mobile orogenic belts. Grey 
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envelopes represent the error of the paleolatitude reconstruction inherited from the paleomagnetic reference frame 

(see Van Hinsbergen et al., 2015). b. Dinocyst events in DINOSTRAT, filtered for oldest FOs (blue) and youngest LOs 

(red) of dinocyst species (lighter shade) and genera (darker shade), in 2 Myr bins. Several phases of climate-200 

environmental change are highlighted in black: Barremain Aptian boundary (B-A), Cretaceous-Paleogene boundary 

(K-Pg), Paleocene-Eocene Boundary (PETM), Early Eocene Climatic Optimum (EECO), Eocene-Oligocene transition 

(EOT), mid-Miocene Climatic Optimum (MMCO), Miocene climatic transition (MCT). Extinction and radiation 

phases in dinocysts are highlighted in red and blue text, respectively. 

3.2.1 The stratigraphic range of modern dinoflagellate cyst species 205 

Modern dinoflagellate cysts from surface sediment samples (Marret et al., 2020, n=3600 and Mertens et al., 2014, n=5) have 

a species-specific latitudinal spread. Sea surface temperature and nutrient conditions are the main controlling factors on modern 

assemblage compositions (Zonneveld et al., 2013). The database presented here allows comparison of modern latitudinal 

spread of these species to that of the past, and their age and latitude of oldest first occurrence (Supplement 2, and a selection 

in Fig. 4). Most modern species that have entries in DINOSTRAT have originations in the mid-Cenozoic: Impagidinium 210 

species, Operculodinium centrocarpum, Tectatodinium pellitum, Tuberculodinium vancampoae (Fig. 4). Lingulodinium 

machaerophorum has a first occurrence around 60 Ma. The exception is Spiniferites ramosus, a generalist species with a robust 

morphology through time, that has a remarkably consistent FO in the Berriasian (~145 Ma; Fig. 4). The dinocyst species that 

have geographic distributions restricted to one hemisphere today were also latitudinally restricted in the geologic past (e.g., 

Spiniferites elongatus, Trinovantedinium variabile; Fig. 4). Achomosphaera andalousiensis, Dapsilidinium pastielsii, 215 

Impagidinium velorum, Melitasphaeridium choanophorum, Tectatodinium pellitum, Tuberculodinium vancampoae had wider 

latitudinal distributions until the recent past, on both hemispheres. Melitasphaeridium choanophorum had progressively older 

LOs north and south of its restricted modern latitudinal distribution in northern mid-latitudes. Lingulodinium machaerophorum 

and Polysphaeridium zoharyi had a higher paleolatitudinal occurrence on only one hemisphere. Several modern taxa (e.g., 

Bitectatodinium spongium, Polykrikos spp., Protoperidinium spp., Echinidinium spp., most Islandinium species, most 220 

Stelladinium species, Polarella glacialis) have no entry yet in DINOSTRAT. This could be because some species concepts are 

relatively novel, or have poor preservation potential in the fossil record (e.g., because of selective degradation; Zonneveld et 

al., 2010).  
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Figure 4: Age and paleolatitude of first (in blue) and last (in red) occurrences of selected modern dinoflagellate cyst 

species. Last occurrences come from both the surface sediment database (Marret et al., 2020, with Mertens et al., 2014) 

and entries in DINOSTRAT. 

3.2.2 Dinocyst (sub-) families 

Range charts of the Sites in DINOSTRAT are provided in the Supplements (see “Sites” folder in Supplement 2). The age over 230 

paleolatitude entry in DINOSTRAT allows evaluation of the latitudinal difference in event ages for each individual species in 

DINOSTRAT (n=1914), as well as for groupings per genus (n=460) and family (n=28) (Supplement 2). Users can 

produce/adapt these plots themselves with help of the R markdown script “plot creator.Rmd” in Bijl, 2021). The most robust 

dinocyst events will have synchronous ages of FOs and LOs per paleolatitude (i.e., vertical blue and red lines in the plots of 

Supplement 2). The FOs and LOs connected per species and grouped in (sub)families are plotted and described below, with 235 

particularly synchronous taxa highlighted. The purpose of these plots is threefold: First, they show the total stratigraphic range 

and latitudinal spread of these dinoflagellate (sub)families, and time intervals when and where phases of strong diversification 

and extinction occur in that (sub)family. Second, as with the plots of modern species, they show in which paleolatitudes these 

supra-generic groups first appear, but also where they last go extinct. Although earlier compilations of the evolution of dinocyst 

families do exist (e.g., McRae et al., 1996), DINOSTRAT presents the fundamental spatio-temporal observations that underpin 240 

these compilations. Thirdly, the plots allow presentation of the database in a way that the validity of extrapolating dinoflagellate 

cyst events on a supra-regional scale can be critically evaluated in the discussion.  

 

Order Gonyaulacales 

Family Areoligeraceae (Fig. 5) 245 

Range: The Areoligeraceae range from the Bathonian (~168 Ma, FOs of Adnatosphaeridium spp. and Senoniasphaera spp.) 

to the mid-Miocene (~18 Ma, LO of Chiropteridium galea). Areoligeraceae seem to range longer in Northern Hemisphere 

mid-latitudes (FO ~169 Ma; LO ~18 Ma) than in the rest of the world (FO ~145 Ma; LO ~36Ma), although this can be in part 

related to a sampling bias. The oldest FOs in NH mid-latitudes are species with a stratigraphic occurrence restricted to that 

area. 250 

Quasi-synchronous events: Events of species of Areoligera, Chiropteridium, Glaphyrocysta, Palynodinium, Schematophora 

and Senoniasphaera, particularly in the late Cretaceous and Paleogene (Fig. 5). Many taxa in this subfamily however show 

strongly diachronous events between hemispheres. 
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 255 

Figure 5: Ages and paleolatitudes of first (solid line and triangles) and last (dashed line and circles) occurrences of 

dinocyst species of the Family Areoligeraceae. Solid and dashed lines connect first and last occurrences, respectively, 

for each species, between sites. Colored lines represent quasi-synchronous species events. 

 

Family Ceratiaceae (Fig. 6) 260 

Range: The Ceratiaceae first appear in the Tithonian (~152Ma, FO of Muderongia simplex) in NH mid-latitudes, represents a 

diverse group in the early Cretaceous and has an LO in the latest Cretaceous (~66 Ma, LO of Odontochitina operculata).  

Quasi-synchronous events: LO Odontochitina costata, LO Phoberocysta neocomica, range of Pseudoceratium pelliferum (Fig. 

6).  

 265 
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Figure 6: As Figure 5, but for the Family Ceratiaceae. 

 

Family Cladopyxiaceae (Fig. 7) 

Range: This family first appears in the Pliensbachian (~188Ma, FO of Freboldinium spp.), and ranges until the late Oligocene 270 

(~25 Ma; Licracysta semicirculata).  

Quasi-synchronous events: Several species of Enneadocysta. LO of Fibradinium annetorpense around 60 Ma and the LO of 

Licracysta semicirculata around 26 Ma Most entries in the late Cretaceous and Paleogene are highly diachronous.  
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 275 

Figure 7: As Figure 5, but for the Family Cladopyxiaceae. 

 

Family Goniodomaceae (Fig. 8) 

Range: Goniodomaceae first appear in the mid-Tithonian (~150 Ma, FO of Hystrichosphaeridium petilum) in the NH mid-

latitudes, most entries are from the Paleogene, and continue with modern species Polysphaeridium zoharyi and 280 

Tuberculodinium vancampoae. Quasi-synchronous events: Species of Alisocysta, Eisenackia, Heteraulacacysta and 

Homotryblium. Many species ranges in this family are notably diachronous. Although some species do seem to show similar 

event ages between southern high latitudes and northern mid-latitudes (Fig. 8), those with multiple entries in the northern mid-

latitudes, where site density is highest, show strong diachroneity over short latitudinal distances. Modern species have a 

restricted latitudinal spread to subtropical and tropical regions, but not too long into the geologic past, species of this family 285 

exhibited much wider latitudinal ranges (65°S – 70°N). 
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Figure 8: As Figure 5, but for the Family Goniodomaceae. 

 290 

Family Gonyaulacaceae  

Subfamily Cribroperidinioideae (Fig. 9) 

Range: This subfamily includes the extant species Operculodinium centrocarpum and Lingulodinium machaerophorum. The 

subfamily first appears in NH mid-latitudes in the Aalenian (~172 Ma) with Kallosphaeridium spp. and in the Bajocian 

(~169Ma) with Cribroperidinium spp., and shortly thereafter Aldorfia and Korystocysta. Cribroperidinium is a long-ranging 295 

genus. Many entries are from the early Cretaceous (~125 Ma) and early Paleogene (66–34 Ma) 

Quasi-synchronous events: Several species of Cordosphaeridium and Danea, and species of Aldorfia, Apteodinium, 

Carpatella, Cooksonidinium, Diphyes, Hystrichokolpoma and Operculodinium. The subfamily has many entries in the 

Paleogene, but many of these events are not synchronous latitudinally.  

 300 
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Figure 9: As Figure 5, but for the Family Gonyaulacoideae, subfamily Cribroperidinioideae. 

 

Subfamily Gonyaulacoideae (Fig. 10) 

Range: The subfamily of Gonyaulacoideae includes common modern cyst genera such as Spiniferites spp., Achomosphaera 305 

spp., Impagidinium spp., Nematosphaeropsis spp. and Tectatodinium spp. The subfamily first occurs in the Bajocian (~170 

Ma), with the FO of Gonyaulacysta spp. and Tubotuberella spp.  

Quasi-synchronous events: species of Achomosphaera, Ataxiodinium, Callaiosphaeridium, Corrudinium, Ectosphaeropsis 

Hystrichodinium, Impagidinium, Spiniferites and Unipontidinium (Fig. 10). Events of species of Escharisphaeridia spp., 

Gonyaulacysta spp., and Tubotuberella spp., range slightly longer in Northern Hemisphere high latitudes than in mid-latitudes. 310 

Many species in this subfamily are strongly diachronous. 
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Figure 10: As Figure 5, but for the Family Gonyaulacaceae, subfamily Gonyaulacoideae. 

 315 

Subfamily Leptodinioideae (Fig. 11) 

Range: The Leptodinioideae first appear in the Aalenian (~172 Ma, FO of Meiourogonyaulax valensii), and includes many 

species events in the Bajocian and Bathonian. Although most entries are in the Jurassic and lower Cretaceous, the subfamily 

ranges into the late Miocene (~8 Ma, LO of Acanthaulax miocenica).  

Quasi-synchronous events: Events in species of Ambonosphaera, Areosphaeridium (NH), Cooksonidium, Ctenidodinium, 320 

Dichadogonyaulax, Endoscrinium, Herendeenia, Kleithriasphaeridium, Leptodinium, Limbodinium, Litosphaeridium, 

Rigaudella aemula, Sirmiodiniopsis, Stiphrosphaeridium and Wanaea. 
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Figure 11: As Figure 5, but for the Family Gonyaulacoideae, subfamily Leptodinioideae. 325 

 

Other (Fig. 12) 

Remarks: Other species in the Family Gonyaulacaceae could not be assigned to a subfamily. Species of Barbatacysta, 

Chytroeisphaeridia, Glossodinium, Hemiplacophora, Nelchinopsis, Saturnodinium, Scriniodinium, Sepispinula, 

Stephodinium, Trichodinium spp. have remarkably consistent events.  330 
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Figure 12: As Figure 5, but for other genera in the Family Gonyaulacoideae. 

 

Family Mancodiniaceae (Fig. 13) 335 

Range: Species of Mancodiniaceae occur in sediments from the late Sinemurian (~190 Ma) to the mid-Bathonian (~167 Ma) 

and seem quasi-synchronous latitudinally. 
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Figure 13: As Figure 5, but for the Family Mancodiniaceae. 340 

 

Family Pareodiniaceae (Fig. 14) 

Range: Pareodiniaceae first appear in the late Toarcian (~176 Ma, FO of Pareodinia halosa) and range in northern hemisphere 

mid-latitudes into the Cenomanian (~95 Ma, LO of Batioladinium jaegeri). Events of species in Carpathodinium, Pareodinia 

(both NH only), Aprobolocysta and Batioladinium appear quasi-synchronous.  345 
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Figure 14: As Figure 5, but for the Family Pareodiniaceae. 

 

Family Scriniocassiaceae (Fig. 15) 350 

Range: Scriniocassiaceae range from the Pliensbachian (~187 Ma, FO of Scriniocassis weberi) to the Bajocian (~169Ma, LO 

of Scriniocassis weberi) and comprise of only 3 species. Events from this family are only reported from the Northern 

Hemisphere.  

 



34 

 

 355 

Figure 15: As Figure 5, but for the Family Scriniocassiaceae. 

 

Family Shublikodiniaceae (Fig. 16) 

Range: Cysts from the Family Shublikodiniaceae occur in the late Triassic (FO of Rhaetogonyaulax wigginsii in the Carnian, 

~230 Ma) to early Jurassic (LOs of Dapcodinium sacculus and Dapcodinium ovale in the mid-Pliensbachian, 187 Ma).  360 

Quasi-synchronous events: LO of Rhaetogonyaulax rhaetica close to the Triassic-Jurassic Boundary, LO of Dapcodinium 

priscum. 
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Figure 16: As Figure 5, but for the Family Shublikodiniaceae. 365 

 

Family uncertain (Fig. 17) 

Remarks: This group of which the family is uncertain does contain several stratigraphically synchronous species (Fig. 17). 

Ranges of species of Amiculosphaeridia, Atopodinium, Batiacasphaera, Cleistosphaeridium, Dingodinium, Distatodinium, 

Heslertonia, Labyrinthodinium, Membranilarnacia, Mendicodinium, Oligokolpoma and Valensiella are quasi-synchronous.  370 
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Figure 17: As Figure 5, but for the Order Gonyaulacales, Family uncertain. 

 

Order uncertain 375 

Family Comparodiniaceae (Fig. 18) 

Range: Cysts from this Family range from the late Sinemurian (191 Ma, FO of Valvaeodinium spp.) to the mid-Valanginian 

(134 Ma, LO of Biorbifera johnwingii). All species except Valvaeodinium spinosum and Biorbia ferox have ranges restricted 

to the Northern Hemisphere.   

Quasi-synchronous events: Range of Biorbifera johnwingii, FO of Valvaeodinium spinosum, LO of Valvaeodinium 380 

koessenium. 
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Figure 18: As Figure 5, but for the Family Comparodiniaceae. 

 385 

Family Stephanelytraceae (Fig. 19) 

Range: Stephanelytraceae cysts comprine of one genus, which ranges from the Callovian (~166 Ma) to the late Aptian (~117 

Ma), and seems quasi-synchronous. 
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 390 

Figure 19: As Figure 5, but for the Family Stephanelytraceae. 

 

Order Peridiniales 

Family Heterocapsaceae (Fig. 20) 

Range: Heterocapsaceae range from the mid-Sinemurian (195 Ma, FO of Liasidium variabile) to the mid-Albian (105 Ma, LO 395 

of Angustidinium acribes).  

Quasi-synchronous events: Range of Liasidium variabile and Parvocysta bullala, restricted to Northern Hemisphere mid-

latitudes. 
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 400 

Figure 20: As Figure 5, but for the Family Heterocapsaceae. 

 

Family Peridiniaceae 

Subfamily Deflandreoideae (Fig. 21) 

Range: Deflandroideae first occur on the Southern Hemisphere in the Oxfordian (~ 161 Ma) with Pyxidiella spp. Isabelidinium 405 

and Eurydinium first appear in the Albian (~109 Ma), and many species first appear in the late Cretaceous (~95–66 Ma). The 

subfamily goes extinct with the LO of Sumatradinium spp. around 5 Ma and appears to range longest in low and mid-latitudes. 

Deflandeoideae have many FO and LO entries on both hemispheres, particularly in the Late Cretaceous and early Paleogene.  

Quasi-synchronous events: Several species of Cerodinium, Manumiella, Trithyrodinium, and Isabelidinium have synchronous 

events in the Maastrichtian-Paleocene (70–60 Ma).  410 
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Figure 21: As Figure 5, but for the Family Peridiniaceae, subfamily Deflandreoideae. 

 

Subfamily Palaeoperidinioideae (Fig. 22) 415 

Range: The Palaeoperidinioideae range from the mid-Valanginian (~135 Ma, FO of Subtilisphaera perlucida) to the late 

Oligocene (~26 Ma, LO of Phthanoperidinium comatum).  

Quasi-synchronous events: Range of Palaeoperidinium pyrophorum and the LO of Phthanoperidinium comatum. 
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Figure 22: As Figure 5, but for the Family Peridiniaceae, subfamily Palaeoperidinioideae. 420 

 

Subfamily Wetzelielloideae (Fig. 23) 

Range: Wetzelielloideae range from the mid-Paleocene (~62 Ma, FO of Apectodinium homomorphum) to the late Oligocene 

(~23 Ma, LO of Wetzeliella symmetrica). Diversification particularly in the Ypresian leads to many species with short 

stratigraphic ranges, many of which are relatively synchronous latitudinally. Several species appear to range longer in the 425 

Northern Hemisphere than on equal paleolatitudes on the Southern Hemisphere. Many species lack chronostratigraphic tie in 

equatorial records. 
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 430 

Figure 23. As Figure 5, but for the Family Peridiniaceae, subfamily Wetzelielloideae. 

 

Other (Fig. 24) 

Remarks: There is one quasi-synchronous event in this rest group: the FO of Ovoidinium cinctum around 129 Ma. 
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 435 

Figure 24: As Figure 5, but for other subfamilies in the Family Peridiniaceae. 

 

Family Protoperidiniaceae (Fig. 25) 

Range: Protoperidiniaceae first appear in the Santonian (FO of Phelodinium magnificum) and range into the modern with 30 

species in 13 genera, which is exceptionally diverse for modern cyst families. Species have oldest first occurrences in low 440 

latitudes than in high latitudes. Events are extremely diachronous. 
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Figure 25: As Figure 5, but for the Family Protoperidiniaceae. 

 

Order Nannoceratopsiales  445 

Family Nannoceratopsiaceae (Fig. 26) 

Range: Cysts from the Family Nannoceratopsiaceae occur from late Sinemurian (191 Ma, FO of Nannoceratopsis deflandrei 

senex) to the mid-Kimmeridgian (~155 Ma, LO of Nannoceratopsis pellucida).  
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 450 

Figure 26: As Figure 5, but for the Family Nannoceratopsiaceae. 

 

Order Ptychodiscales 

Family Ptychodiscaceae (Fig. 27) 

Range: This family only has entries in the late Cretaceous (91–66 Ma), where species represent fairly synchronous stratigraphic 455 

markers. Although cysts are only found in a relatively short geologic time interval, motile cells of Ptychodiscaceae are known 

from modern plankton. 

hnh
Fremhæv

bijl0109
Sticky Note
Changed to capital L



46 

 

 

Figure 27: As Figure 5, but for the Family Ptychodiscaceae, subfamily Dinogymnioideae. 

 460 

Order Suessiales 

Family Suessiaceae (Fig. 28) 

Range: Suessiaceae occur in the Triassic–early Jurassic (229–182 Ma).  

Quasi-synchronous events:  LO of Suessia swabiana. Other events are highly diachronous. 
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 465 

Figure 28: As Figure 5, but for the Family Suessiaceae. 

4 Discussion 

4.1 Geographic extrapolation of dinocyst events 

A suite of dinocyst events throughout the entire stratigraphic record have quasi-synchronous ages across all latitudes (Fig. 5–

28). Uneven geographic spread of data, with voids in the equatorial region and the Pacific Ocean, makes global synchroneity 470 

of these events highly uncertain. Still, the synchronous events confirm the potential and value of dinocyst biostratigraphy to 

date complex sedimentary systems. It also implies that ocean connectivity did allow dinocyst species to migrate globally, as 

far as their environmental tolerances permit.  

Yet, the majority of dinocyst species have very diachronous ranges in DINOSTRAT, as well as latitudinally restricted 

geographic spread, which confirms previous interpretations (Williams et al., 2004). With DINOSTRAT the underlying causes 475 

of this diachroniety can now be further explored. The shortness of some of the records used in this review may lead to ‘false’ 

events, i.e., those that represent re-appearance or temporal disappearance rather than ‘true’ first or last occurrences (FO and 

LO, respectively). The obvious false FOs and LOs have been removed from DINOSTRAT by omitting events that occur at the 
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base or the top of the sections. Particularly rare species, or those occurring at the end of their preferred environmental niche, 

come and go in stratigraphic sections, and these lead to ‘false’ events in DINOSTRAT. Although such ‘false’ FOs and LOs 480 

may obscure a uniform age of events over latitudes, they may still have important regional stratigraphic significance, which is 

why their entries are retained in DINOSTRAT. As a result, age and region of the oldest FOs and youngest LOs have the most 

significance for reconstruction of evolutionary patterns. Although caving of material typically falsely increases the age of 

oldest FOs, this is unlikely a large influence on the entries in DINOSTRAT, as most studies come from core or outcrop 

material, and not from ditch cuttings, for which caving is much more likely. Reworking could falsely extend the age of youngest 485 

LOs of species. Although species that were reported as reworked in the papers have been omitted from DINOSTRAT, some 

reworked dinocysts could have been falsely identified as in situ in the original papers. It cannot be excluded that this causes 

some level of diachroniety in LOs, although this is unlikely a large factor. 

The complexity of taxonomic concepts in some dinocyst genera (species definitions, or morphological continua) hinders proper 

evaluation of latitudinal synchroneity of events. The reviewed literature covers 50 years, during which taxonomic concepts of 490 

dinocysts species have iteratively evolved. The extensive synonymy database of Williams et al. (2017) does deliver crucial 

organization of the taxonomic framework. Still, some of the subtle morphological differences in species are limited to the 

expert eye of individual researchers, and these may not have been recognized by others (which occasionally led to the 

presentation of taxa on a genus level, instead of further specification to species level). Making the taxonomic framework 

consistent for all studies now included in DINOSTRAT would be a cardinal effort and will be part of the iterative setup of 495 

DINOSTRAT. For example, reviews of dinocyst taxonomic frameworks on a per-family basis, such as has been initiated for 

the Spiniferites complex (e.g., Mertens and Carbonell-Moore, 2018) could help adjusting inconsistencies in species concepts, 

and their stratigraphic occurrence. In any case, it must be stressed that the quality of any biostratigraphic marker is defined not 

only by the accuracy of the tie to the chronostratigraphic time scale, or global consistency of the age of FO or LOs, but also 

by their morphological distinctiveness.  500 

Events may also appear diachronous in DINOSTRAT because of inadequate or inaccurate tie to the chronostratigraphic time 

scale. In such cases, small diachroniety (~104-5 yr) may be related to the inherent assumption of linear sedimentation rates 

between age tie points. Larger diachroniety (~105-6 yr) may be because the zonation through which dinocyst events were 

calibrated to the chronostratigraphic time scale is diachronous. For calibrations against magnetostratigraphy (Tier 1, 2) this is 

unlikely, and could occur only when magnetochrons were wrongly interpreted in the sites used. For events calibrated against 505 

Cenozoic nannoplankton and foraminifer zonations (in Tier 3, 4) this is also unlikely, as these events are relatively robustly 

calibrated to chronostratigraphy (Watkins and Raffi, 2020; Petrizzo et al., 2020). Less robust are the Mesozoic ammonite 

zonation schemes, which have shown to be quite diachronous themselves latitudinally (e.g., Ogg and Hinnov, 2012a, b and 

references therein). The geographic variability in ages of zone boundaries, but also numerous adjustments of zone definitions 

throughout the past 50 years, further complicates accurate tie of dinocyst events with ammonite data to the GTS2012. So far, 510 

the majority of Mesozoic dinocyst events were calibrated against these ammonite zonations, which makes their absolute tie to 
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the chronostratigraphic time scale most uncertain. A major challenge for future versions of DINOSTRAT is to improve the 

independent age control of Mesozoic calibrated dinocyst events. 

Also, ecological reasons could cause geographically diachronous events. When local environmental or depositional conditions 

change, assemblages adjust, which leads to local and temporal (dis)appearances of species that may be falsely interpreted as 515 

extinction or origination events. If so, dinocyst taxa associated to the most dynamic environmental niches on the continental 

shelf are expected to have the most diachronous events. Indeed, there are particularly diachronous events in Goniodomaceae 

and Protoperidinioideae – both Families are associated to near-shore depositional settings (Zonneveld et al., 2013; Sluijs et al., 

2005; Frieling and Sluijs, 2018), that are most environmentally dynamic. Settings in which these species occur offshore, such 

as upwelling regions (Sangiorgi et al., 2018), or hyperstratified waters (Reichart et al., 2004; Cramwinckel et al., 2019), are 520 

environmentally equally dynamic. In contrast, families typically associated to offshore conditions, such as the 

Wetzeliellioideae (Frieling and Sluijs, 2018) reveal much more synchronous events. For regional stratigraphy, the diachroniety 

is of less concern because these events can still be used for regional stratigraphic correlation (e.g., as in Vieira and Jolley, 

2020). It does mean that for such species, dinocyst biostratigraphy applies regionally, and caution should be taken to extrapolate 

event ages far outside of these regions. There are also species that clearly show regional inconsistency of origination or 525 

extinction ages as a result of climate change – e.g., Melitasphaeridium choanophorum had a much wider geographic 

distribution during warmer past climates and a progressively younger LO in lower latitudes as climate cooled (Fig. 4).  

Diachroniety is usually larger between latitudinal bands than within latitudinal bands. The sparsity of records from the Southern 

high latitudes complicates robust assessment of interhemispheric differences in dinocyst event ages. In the Mesozoic, the 

diachroneity is likely related to the inadequate tie of events to the international time scale. DINOSTRAT is short of Mesozoic 530 

records that are tied to other stratigraphic tools than ammonites. For the Cenozoic, the diachroneity between hemispheres 

cannot be explained by inadequate calibration, since many events are calibrated against magnetostratigraphy. For those, 

environmental reasons must be at play. While in the early Paleogene many dinocyst events are quasi-synchronous (events 

within the Wetzeliellioideae, of Cerodinium and Palaeoperidinium), in the late Paleogene and Neogene diachroneity seems to 

become stronger. This may be in part because of stronger latitudinal temperature gradients as global average climate cools 535 

(Cramwinckel et al., 2018; Westerhold et al., 2020), which creates more diverse ecological niches and complicates latitudinal 

migration.  

Many dinoflagellate cyst species and higher generic ranks have their oldest first occurrence and youngest last occurrence in 

Northern Hemisphere mid-latitudes (see, e.g., Areoligeraceae, Cladopyxiaceae, Comparodiniaceae, Goniodomaceae, 

Nannoceratopsiaceae, Palaeoperidinioideae, Wetzeliellioideae; Figs. 5, 7, 18, 8, 26, 22, 23). This may be because of a much 540 

higher density of records at those latitudes. However, the vast continental shelf area in Europe throughout the Mesozoic and 

much of the Cenozoic did likely serve as the perfect habitat for taxa to find a new niche and to linger on. A higher record 

density in Southern Hemisphere and equatorial regions should shed light on this idea.  
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4.2 Evolutionary patterns in dinocyst (sub-) families 

DINOSTRAT presents for the first time a quantitative overview of stratigraphic and paleolatitudinal distribution of fossil and 545 

modern dinoflagellate cyst taxa. Through that, it refines with coherent, independent, open-access data the evolutionary patterns 

presented previously (e.g., Fensome et al., 1993; McRae et al., 1996), and adds their latitudinal distribution through time. 

Following up on 60 million years of experimentation in cyst-formation among a wide group of dinoflagellates (Figs. 13, 15, 

16, 18–20, 26, 28), Gonyaulacoid dinocysts developed their most fundamental taxonomic features in a rapid diversity phase 

in the Bajocian (~169 Ma) likely on vast continental shelf areas on the European continent (Figs. 5, 9–12, 17). The extremely 550 

high diversity in Gonyaulacoid dinocysts in the late Jurassic and Cretaceous is reflected in the density of the events in 

DINOSTRAT. Peridinioid dinocyst taxa strongly diversify in the late Cretaceous and Paleogene (Figs. 21–25). The decline in 

dinocyst diversity in the Neogene is visible in the scarcity of FOs from 25 Myrs onwards (except in Protoperidinioideae). 

DINOSTRAT allows to further explore spatial patterns in dinoflagellate cyst evolution in the future. 

4.3 Functionality of DINOSTRAT 555 

Once downloaded, DINOSTRAT can be filtered by location, allowing users to compare newly generated dinocyst chronologies 

to nearby calibrated regional dinocyst events. DINOSTRAT can also be filtered by species, genus or higher taxonomic rank, 

for further evaluation of the latitudinal spread of any species of interest. The data in DINOSTRAT is readily visualized in 

Supplement 2, and these plots can be adjusted and reproduced using the R markdown file “plot creator” in Bijl, 2021. The 

community is invited to contact the first author either via email or through GitHub, with suggestions, error reports, and/or 560 

additional papers or data to be entered, so that the data content of DINOSTRAT is iteratively improved.  

4.4 Future directions 

DINOSTRAT will be regularly updated. Annual minor updates include addition of sites, adjustments in the current entries 

(e.g., through the feedback process), or minor revisions in taxonomy/stratigraphy. Major updates will occur in a 3-year cycle 

and are the result of new Geologic Time Scales, or profound revisions in dinocyst taxonomic concepts. Major updates will be 565 

accompanied by a short communication in this journal, minor updates will be communicated through the GitHub repository. 

Updates of the Geologic Time Scale (e.g., to GTS2020 (Gradstein et al., 2020)) will be implemented once the metadata of that 

Geologic Time scale have become available. All versions of DINOSTRAT will remain archived on GitHub.  

5 Data availability 

The database is available under a CC-BY 4.0 license on GitHub (Bijl, 2021). The database consists of 4 csv files: (1) 570 

“Paleolatitude.csv”; paleolatitude and present-day position of sites in DINOSTRAT, (2) “modernsp.csv”; the site locations of 

core top sediments, (3) “modernsp.csv”; a modified modern dinocyst dataset, and (4) “Dinoevents_Jan2021.csv”; the calibrated 

dinocyst events. “Plot creator.Rmd” is an R markdown file to reproduce the figures presented in this paper. 
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6 Conclusions 

This paper presents the database DINOSTRAT version 1.0 (Bijl, 2021), a database containing >8500 entries of regional 575 

dinoflagellate cyst first and last occurrences (events) from 1914 species, in 189 sites. Geographic distribution of sites used in 

DINOSTRAT is strongly concentrated in the northern hemisphere mid-latitude, notably in Europe and the North Atlantic, and 

few sites are in the Pacific or Southern Hemisphere. Ages of events were calibrated using their tie to the Geologic Time Scale. 

The paper presents the location and age of origin of modern dinoflagellate cyst species, reviews the age range and geographic 

spread modern and extinct dinoflagellate cyst taxa and highlights the most latitudinally synchronous dinoflagellate cyst events. 580 

Many dinocyst taxa show quasi-synchronous events latitudinally, which can be widely used to stratigraphically date complex 

sedimentary sequences. Latitudinal diachroneity in events can be the result of either inadequate tie to the chronostratigraphic 

time scale, false interpretations of ‘true’ events, complicated species concepts or paleoceanographic reasons. In any case, it 

dictates caution to extrapolate ages of dinocyst events to far distances, and demonstrates the need for regionally calibrated 

dinocyst zonations, which DINOSTRAT here provides. It further provides solid foundation to review spatio-temporal patterns 585 

in dinoflagellate cyst evolution, dispersal, and extinction. DINOSTRAT is freely available under CC-BY 4.0 license. It allows 

the user to filter by region, or by species, genus, or higher taxonomic rank.  

7 Supplements 

• Supplement 1: Table of conversions of published zones to those in GTS2012 

• Supplement 2: Zip file containing ages and latitudes of events in individual dinoflagellate cyst species (1914 plots), 590 

grouped per genus (460 plots), per Family (28 plots), of modern cyst species (92 plots), and the range charts for all 

Sites (189 plots). 
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