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Abstract

The Western MEDiterranean Sea BioGeochemical Climatology (BGC-WMED) presented here is a
product derived from quality controlled in situ observations. Annual mean gridded nutrient fields for the
period 1981-2017, and its sub-periods 1981-2004 and 2005-2017, on a horizontal 1/4° x 1/4° grid have
been produced. The biogeochemical climatology is built on 19 depth levels and for the dissolved
inorganic nutrients nitrate, phosphate and orthosilicate. To generate smooth and homogeneous
interpolated fields, the method of the Variational Inverse Model (VIM) was applied. A sensitivity
analysis was carried out to assess the comparability of the data product with the observational data. The
BGC-WMED has then been compared to other available data products, i.e. the medBFM
biogeochemical reanalysis of the Mediterranean Sea and the World Ocean Atlas 2018 (WOAL18) (its
biogeochemical part). The new product reproduces common features with more detailed patterns and
agrees with previous records. This suggests a good reference to the region and to the scientific
community for the understanding of inorganic nutrient variability in the western Mediterranean Sea, in
space and in time, but our new climatology can also be used to validate numerical simulations making

it a reference data product.

Keywords: Western Mediterranean Sea, climatology, inorganic nutrients, in situ observations.
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1 Introduction

Ocean life relies on the loads of marine macro-nutrients (nitrate, phosphate and orthosilicate) and other
micro-nutrients within the euphotic layer. They fuel phytoplankton growth, maintaining thus the
equilibrium of the food web. These nutrients may reach deeper levels through vertical mixing and
remineralization of sinking organic matter. Ocean circulation and physical processes continually drive
the large-scale distribution of chemicals (Williams and Follows, 2003) toward a homogeneous
distribution. Therefore, nutrient dynamics is important to understand the overall ecosystem productivity
and carbon cycles. In general, the surface layer is depleted in nutrients in low latitude regions (Sarmiento
and Toggweiler, 1984), but in some ocean regions, called high nutrient low chlorophyll (HNLC) regions,
nutrient concentrations tend to be anomalously high, particularly in areas of the North Atlantic and
Southern Ocean, as well as in the eastern equatorial Pacific, and in the North Pacific; see e.g. Pondaven
etal. (1999). In the Mediterranean, the surface layer is usually nutrient-depleted. Most studies show that
nitrate is the most common limiting factor for primary production in the global ocean (Moore et al.,
2013), while others evidence that phosphate may be a limiting factor in some specific areas, as is the
case of the Mediterranean Sea (Diaz et al., 2001; Krom et al., 2004).

Being an enclosed marginal sea, the Mediterranean Sea exhibits an anti-estuarine circulation,
responsible for its oligotrophic character (Bethoux et al., 1992; Krom et al., 2010) and acting like a
subtropical anticyclonic gyre. The Atlantic Water (AW), characterized by low-salinity and low-nutrient
content, enters the Western Mediterranean Sea (WMED) at the surface, through the Strait of Gibraltar,
and moves toward the Eastern Mediterranean Sea (EMED), crossing the Sicily Channel (Fig. 1). In the
Levantine and in the Cretan Sea, the AW becomes saltier, warmer and denser, and it sinks to
intermediate levels (200-500 m) to form the Intermediate Water (IW, Schroeder et al., 2017). The IW
(which may be further called Levantine or Cretan Intermediate Water, LIW or CIW) flows westward
across the entire Mediterranean Sea to the Atlantic Ocean (Fig. 1). As for the deep layer, the Western
Mediterranean Deep Water (WMDW or DW) is formed in the Gulf of Lion through deep convection
(Testor et al., 2018; MEDOC Group, 1970; Durrieu de Madron et al, 2013) while the Eastern
Mediterranean Deep Water (EM DW) is formed in the Adriatic Sea and occasionally in the Aegean Sea
(Lascaratos et al., 1999; Roether et al., 1996, 2007).
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Figure 1. Map of the western Mediterranean Sea showing the main regions with a sketch of the AW,
IW and DW major paths.

The Mediterranean Sea is known to be a hotspot for climate change (Giorgi, 2006; Cheng et al., 2021).
During the early 1990s, the Deep Water (DW) formation area of the EMED shifted from the Adriatic
Sea to the Aegean Sea. This event is known as the Eastern Mediterranean Transient (EMT; Roether et
al., 1996, 2007, 2014; Roether and Schlitzer, 1991; Theocharis et al., 2002). As a consequence, the
intermediate and deep waters of the EMED became saltier and warmer (Lascaratos et al., 1999;
Malanotte-Rizzoli et al., 1999). The EMT affected the WMED as well, not only changing the
thermohaline characteristics of the IW and concurring to the preconditioning of the Western
Mediterranean Transition (WMT; Schroeder et al., 2016), which set the beginning of a rapid warming
and salting of the deep layers in the WMED since 2005 (Schroeder et al., 2006; Schroeder et al., 2010,
2016; Pifieiro at al., 2019). Over the last decade, it has been evidenced that heat and salt content have

been increasing all over the deep western basin (Schroeder et al., 2016).

Changes in circulation due to an increased stratification limit the exchange of materials between the
nutrient-rich deep layers and the surface layers. Understanding the peculiar oligotrophy of the
Mediterranean Sea is still a challenge, since there is not an exact quantification of nutrient sinks and
sources. Studies like Crispi et al. (2001), Ribera d’Alcala (2003), Krom et al. (2010) and Lazzari et al.
(2012) related the horizontal spatial patterns in nutrient concentrations mainly to the anti-estuarine
circulation which exports nutrients to the Atlantic Ocean, showing a decreasing tendency of nutrient
concentrations toward east, as opposed to the salinity horizontal gradient. Others related it to the
influence of the atmospheric deposition (Bartoli et al., 2005; Béthoux et al., 2002; Huertas et al., 2012;
Krom et al., 2010) and rivers discharges that are rich in nitrate and poor deficient in phosphate (Ludwig
et al., 2009), which might explain the peculiarity in both EMED and WMED.
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Lazzari et al. (2016) also argued that the variations in phosphate are regulated by atmospheric and river
inputs like Ebro and Rhone (Ludwig et al., 2009).
These variations, together with the anthropogenic perturbations affect the spatial distribution of nutrients

(Moon et al., 2016) while temporal variability is still unresolved.

De Fommervault et al. (2015) reported a decreasing phosphate and an increasing nitrate concentrations
trend between 1990 and 2010, based on a time series (DYFAMED) in the Ligurian Sea, while Moon et
al. (2016) evidenced an increase between 1990 and 2005 and a gradual decline after 2005 in both nitrate
and phosphate in the WMED and EMED.

At the global scale, most of the biogeochemical descriptions are based on model simulations and satellite
observations (using sea surface chlorophyll concentrations (Salgado-Hernanz et al., 2019)) but also on
the increasing use of Biogeochemical Argo floats (D’Ortenzio et al., 2020; Lavigne, 2015; Testor et al.,
2018), since in situ observations of nutrients are generally infrequent and scattered in space and time.
For this reason, climatological mapping is often applied to sparse in situ data in order to understand the

biogeochemical state of the ocean representing monthly, seasonally, or annually averaged fields.

Levitus (1982) was the first to generate objectively analyzed fields of potential temperature, salinity,
and dissolved oxygen, and to produce a climatological atlas of the world ocean.

Later on, the World Ocean Atlas (WOA), the North Sea climatologies and the Global ocean Carbon
Climatology resulting from GLODAP data product (Key et al., 2004, Olsen et al., 2020, Lauvset et al.
2021) used the Cressman analysis (1956) with modified Barnes scheme (Barnes 1964, 1994). In 1994,
the first World Ocean Atlas (WOA94; Conkright et al., 1994) was released integrating temperature,
salinity, oxygen, phosphate, nitrate, and silicate observations. Every four years there is a renewed release
of the WOA with an updated World Ocean database (WOD).

On the regional scale, the first salinity and temperature climatology of the Mediterranean Sea was
produced by Hecht et al. (1988) for the Levantine Basin. Picco (1990) was also among the first to
describe the WMED between 1909 and 1987. In 2002, the Medar/Medatlas group (Fichaut et al., 2003)
archived a large amount of biogeochemical and hydrographic in situ observations for the entire region
and used the Variational Inverse Model (VIM; Brasseur, 1991) to build seasonal and interannual gridded
fields. In 2006, the SeadataNet EU project integrated all existing data, to provide temperature and
salinity regional climatology products for the Mediterranean Sea using VIM as well (Simoncelli et al.,
2016), and dissolved inorganic nutrients (nitrate, phosphate and silicate) 6-years centered average from

1965 to 2017 are available on the EMODnet chemistry portal (https://www.emodnet-chemistry.eu/).

Within this context, in this study, regional climatological fields of in situ nitrate, phosphate and silicate,
using the Data Interpolation Variational Analysis (DIVAnd; Barth et al., 2014) are presented here,

providing a high-resolution field contributing to the existing products (Table 1).
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The aim of this study is to give a synthetic view of the biogeochemical state of the WMED, to evaluate

the mean state of inorganic nutrients over 36 years of in situ observations and to investigate upon a

biogeochemical signature of the effect of the WMT .

The paper is organized as follows, section 2 describes the data sources used and the quality check;

section 3 is devoted to the methodology, section 4 presents the main results including a comparison of

the new climatology with other products. At the end, we address the change in biogeochemical

characteristics before and after WMT.

Table 1. Overview of the existing inorganic nutrient climatologies in the Western Mediterranean Sea.

Climatology WOA EMODnet BGC-WMED (Present study)
Reference (Garcia et al., 2019) (Miguez et al., 2019) (Belgacem et al., 2021)
Year of release 2018 2018 2021
Parameter Nitrate/ Phosphate/ Nitrate/ Phosphate/ Silicate Nitrate/ Phosphate/ Silicate
Silicate
Unit pmol kg? umol Lt umol kg
Data type CTD Bottle CTD Bottle CTD Baottle
Vertical resolution Seasonal: 43 levels 21 standard depths 19 levels
0-800m 0-1100m (nitrate) 0-1500m
Annual: 102 levels 0-1500m (phosphate)
0-5500m 0-1500m (silicate)
Horizontal 1° latitude longitude  1/8° 1/4°
resolution grid
Observation time 1955-2017 1970 to 2016 (nitrate) 1981-2017
span 1960 to 2016 (phosphate)
1965 to 2016 (silicate)
Area Global Mediterranean Sea Western Mediterranean Sea
Temporal resolution  Season Season whole observational period, and two
Decadal 6 year running averages sub-intervals (1981-2004, 2005-2017)

Climatology
analysis method/
parameter

Objective analysis

DIVA (Data-Interpolating
Variational Analysis) tool

DIVANd (Data-Interpolating
Variational Analysis N-dimension)

Correlation length

optimized and filtered
vertically and a seasonally
averaged profile was used.

optimized and filtered vertically and
horizontally

Signal to noise ratio

A constant value = 1

A constant value = 0.5

Background field

the data mean value is
subtracted from the data.

the data mean value is subtracted from
the data

Detrending

No

No

Advection
constraint applied

No

No

2 Data

The climatological analysis depends on the temporal and spatial distribution of the available in situ data,

and the reliability of these observations. Due to the scarcity of biogeochemical observations in the

WMED, merging and compiling data from different sources was necessary.



132 2.1 Data Sources
133 In total, 2253 in situ inorganic nutrient profiles are the base of the biogeochemical climatology of the
134  WMED (Table 2) that is described here. These profiles cover the period 1981-2017 and come from the
135  major data providers existing in the Mediterranean Sea, i.e. the Medar/MEDATLAS (1981-1996,
136  Fichaut et al., 2003), the recently published CNR_DIN_WMED 20042017 biogeochemical dataset
137  (2004-2017) (Belgacem et al., 2020), the MOOSE-GE cruises (Mediterranean Ocean Observing System
138  for the Environment- Grande Echelle programme) (2011-2016, Testor et al., 2011, 2012, 2013, 2014,
139 2015, 2016) stored in SeaDataNet data product (2001-2016) and EMODnet (the European Marine
140  Observation and Data Network), GLODAPv2 (https://www.glodap.info/) and CARIMED
141 (http://hdl.handle.net/10508/11313) data products and other data collected during MedSHIP programs
142 (Schroeder et al., 2015) . All datasets are a selection of oceanographic cruises carried out within the
143 framework of European projects such as the HYdrological cycle in the Mediterranean Experiment
144  (HyMeX) Special Observing Period 2 (Estournel et al., 2016), the DEnse Water Experiment (DEWEX)
145  project or by regional institutions having as objectives the investigation of the deep water convection
146  and the biogeochemical properties of the of the WMED. Data were chosen to ensure high spatial
147  coverage (Fig. 3).
148  Table 2. Number of inorganic nutrient profiles and data sources.
Source N. of N. of Link/ metadata
profiles observations
MEDATLAS 940 8839 http://www.ifremer.fr/medar/
SEADATANET including 523 15388 http://seadatanet.maris2.nl/v_rsm/content.asp?screen=0&his
MOOSE-GE tory=yes
https://doi.org/10.17600/11450160
https://doi.org/10.17600/12020030
https://doi.org/10.17600/13450110
https://doi.org/10.17600/14002300
https://doi.org/10.17600/15002500
https://doi.org/10.17600/16000700
CNR_DIN_WMED_20042017 737 8324 https://doi.org/10.1594/PANGAEA.904172
Other cruises 53 515 Medship programs; GLODAPv2; CARIMED (not yet
available online, personal communication by Marta Alvarez)
https://doi.org/10.1594/PANGAEA.902293
D 2253 33066 -
149
150 2.2 Data distribution
151  The data distribution per year is shown in Figure 2a. Most observations were collected between 1981
152 and 1995, and between 2004 and 2017, with a marked gap between 1997 and 2003. Measurement
153  distribution differs from month to month (Fig.2b) and tends to be biased towards the warm season. Very
154  few measurements have been made during December-January-February, while June and July are the
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http://seadatanet.maris2.nl/v_rsm/content.asp?screen=0&history=yes
http://seadatanet.maris2.nl/v_rsm/content.asp?screen=0&history=yes
https://doi.org/10.17600/11450160
https://doi.org/10.17600/12020030
https://doi.org/10.17600/13450110
https://doi.org/10.17600/14002300
https://doi.org/10.17600/15002500
https://doi.org/10.17600/16000700
https://doi.org/10.1594/PANGAEA.904172
https://doi.org/10.1594/PANGAEA.902293
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months with the highest number of available observations (>7000). Consequently, the climatological

product may be considered as being more representative of spring and summer conditions.
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Figure 2. Temporal distribution of nutrient observations used for producing the BGC-WMED fields
(1981-2017), (a) yearly distribution and (b) monthly distribution.

Fig. 3a shows the regional distribution of nutrient measurements, while Fig. 3b indicates the number of
observations found in each depth range around the standard levels chosen for the vertical resolution of
the climatology.

Hydrological and biogeochemical measurements have always been repeatedly collected along several
repeated transects, known as key regions as the Sicily Channel and the Algéro-Provencal subbasin;
likewise, the northern WMED is a well sampled area, as it is an area of DW formation. Observation

density is still scarce (less than 100 observations) in some areas like the northern Tyrrhenian Sea.

The total number of measurements at each depth range underlines similar remarks, an uneven
distribution that needs to be considered in the selection of the vertical resolution to estimate the
climatological fields. Though, the use of 36 years of nutrient measurements to generate the
climatological fields significantly reduces the error field. In our case and taking into account the irregular
distribution in seasons and different years. A climatological gridded field was computed by analyzing
observations of three time periods regardless of the month: 1981-2017 and the subsets 1981-2004 and
2005-2017. We chose these subsets to investigate the effect of the WMT on nutrient distribution.
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Figure 3. (a) Nutrient data density used for climatology analysis. Observations are binned in a regular
1/2° x 1/2° latitude, longitude grid for each year over the period 1981-2017. Location of the stations
included in the analysis are shown as black dots; (b) data distribution per depth range (i.e. at 800 m,
observations between 800-1000 m are included).

2.3 Data quality check

Data were gathered from different data sources, different analytical methods (Table Al.), thus before
merging them, observations were first checked for duplicate (the number of profiles listed in Table 2
refers to all data after removing duplicate measurements). The criteria to detect and remove duplicates
is simple: observations collected during the same cruises extracted from the different sources were
removed. Since profiles were measured during specific cruise (identified with a unique identification

code) at specific time, data from duplicate cruises are removed.

Then, data was converted to a common format (similar to the csv CNR_DIN_WMED_20042017 data
product, Belgacem et al., 2019). This recently released product contains measurements covering the
WMED from 2004 to 2017. The data of the CNR_DIN_WMED_20042017 product have undergone a
rigorous quality control process that was focused on a primary quality check of the precision of the data
and a secondary quality control targeting the accuracy of the data, details about the adjustments and the

applied corrections are found in Belgacem et al.(2020).

As detailed in Table 2, we combined observations from reliable sources (covering the time period 1981-
2017), that were quality controlled according to international recommendations before being published
(Maillard et al., 2007; SeaDataNet Group, 2010). Though, these historical data collections coming from
sources different from the CNR_DIN_WMED_20042017 have been subjected to a quality check before
merging them, to eliminate the effect of any aberrant observation. The check was carried out by

computing median absolute deviations in 19 pressure classes (referring to the selected vertical resolution
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of section 2.1, Fig.3b) (0-10, 10-30, 30-60, 60-80, 80-160, 160-260, 260-360, 360-460, 460-560, 560-
900, 900-1200, 1200-1400, 1400-1600, 1600-1800, 1800-2000, 2000-2200, 2200-2400, 2400-2600,
>2600 dbar). Any value that is more than three median absolute deviations from the median value is

considered a suspected measurement.

In total, 2.35% of nitrate observations, 2.44% of phosphate observations and 2.14% of silicate

observations were removed.

acquire data from databases

generate gridded fields
check for duplicate cruises

detect suspicious points

conversion to common format

scan for aberrant data in 19 depth range
calculate mean residual and RMS

submit data products to PANGAEA store data product

Data quality check

remove suspicious points

re-run the analysis

Analysis field Assessment

Figure 4. Flowchart describing the steps during the quality control; see text in section 2.3 and 3.3 for

more details.

3 Methods

3.1 Variational analysis mapping tool

Here, the Data-Interpolating Variational Analysis- n dimension (DIVANd) method (Beckers etal., 2014;
Troupin et al., 2010, 2012) was used to generate the gridded fields. DIVA has been widely applied to
oceanographic climatologies, such as the SeaDataNet climatological products (Simoncelli et al., 2014,
2016, 2019, 2020a, 2020b, 2020c, 2021; lona et al., 2018), EMODnet chemistry regional climatologies
(Miguez et al., 2019), the Adriatic Sea climatologies by Lipizer et al. (2014) or the black Sea (Capet et
al., 2014) and it was also applied to generate the global interior climatology GLODAPv2. 2016b
(Lauvset et al., 2016). It is an efficient mapping tool used to build a continuous spatial field from

discrete, scattered, irregular in situ data points with an error estimate at each level.

The BGC-WMED gridded fields have been computed with the more advanced N-dimensional version
of DIVA, DIVAnd v2.5.1 (Barth et al., 2014) (https://doi.org/10.5281/zenodo.3627113) using Julia as

9
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a programming language (https://julialang.org/) under the Jupyter environment (https://jupyter.org/).

The code is freely available at https://github.com/gher-ulg/DIVANd.jI (last access: January, 2020).

DIVA is based on the variational inverse method (VIM) (Brasseur et al., 1996). It takes into account the
errors associated with the measurements and takes account of the topography/bathymetry of the study
area. The method is designed to estimate an approximated field ¢ close to the observations and find the

field that minimizes the cost function J[¢].

The cost function is defined as the misfit between the original data d;, an array of N, observations, the
analysis (observation constraint term) and a smoothness term. (Troupin et al., 2010):

Nd
Jle] = z wiLc?(d; — (,o(xi,yl-))2 (1) Observation constraint term
i=1
+ f (0{2\77@ : VW, + a;Lc?V, .V, + aoLct*@?)dD (2) Smoothness term
D

Eq. (1)

where Lc is the correlation length, ¥ is the gradient operator, V'V,,: V'V, is the squared Laplacian of ¢,
the first term (observation constraint) considers the distance between the observations and the analysis
reconstructed field ¢ (x;, y;), so that u; penalizes the analysis misfits relative to the observations. if the
observation constraint is only composed of d; — ¢ (x;,y;), the constructed field would be a simple
interpolation of the observations and the minimum is reached when d; = ¢ (x;, y;). The field ¢ (x;, y;)
need to be close to the observation and not have large variation. The second term (smoothness term)
measures the regularity of the domain of interest D. This expression within the integral remains
invariant (Brasseur and Haus, 1991). a, minimize the anomalies of the field itself, @; minimize the
spatial gradients, a, penalizes the field variability (regularization). The reconstructed fields are

determined at the elements of a grid on each isobath using the cost function Eq. (1).

The grid is dependent on the correlation length and the topographic contours of the specified grid in the

considered region, so there is no need to divide the region before interpolating.

The method computes two-, three- to four-multi-dimensional analyses (longitude, latitude, depth, time).
For climatological studies, the four-dimensional extension was used on successive horizontal layers at

different depths for the whole time period.

Along with the gridded fields, DIVA yields error fields dependent on the data coverage and the noise in

the measurements (Brankart and Brasseur, 1998; Rixen et al., 2000). Full details about the approach are

10
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provided extensively by Barth et al. (2014) and Troupin et al. (2018) in the Diva User Guide
(https://doi.org/10.5281/zen0d0.836723).

3.2 Interpolation parameters

DIVANd is conditioned by topography, by the spatial correlation length (Lc) and by the signal-to-noise
ratio (SNR, ) of the measurements, which are essential parameters to obtain meaningful results. They

are considered more in detail in the following sections.

3.2.1 Land-sea mask

A 3D dimension land-sea mask is created using the coastline and bathymetry of the General Bathymetric
Chart of the Oceans (GEBCO) 30-sec topography (Weatherall et al., 2015). The WMED is a relatively
small area which necessitates a high-resolution bathymetry to generate a mask at different depth layers.
The vertical resolution is set to 19 standard depth levels from the surface to 1500 m: 0, 5, 10, 20, 30, 50,
75, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 1000, 1500 m, corresponding to the most
commonly used predefined levels for the sampling of seawater for nutrient analyses. The resulting fields
at each depth level are the interpolation on the specified grid. These depth surfaces are the domain on
which the interpolation is performed.

3.2.2 The spatial correlation length scale (Lc)

Lc indicates the distance over which an observation affects its neighbors. The correlation length can be

set by the user or computed using the data distribution.

For the BGC-WMED biogeochemical climatology, this parameter was optimized for the whole-time
span, and at each depth layer. The correlation length has been evaluated by fitting the empirical kernel
function to the correlation between data isotropy and homogeneity in correlations. The quality of the fit
is dependent on the number of observations (Troupin et al., 2018). The analytical covariance model used
in the fit is derived for an infinite domain (Barth et al, 2014). To assess the quality of the fit, the data
covariance and the fitted covariance are plotted against the distance between data points (Fig. 5). At 10
m, the correlation length was obtained with a high number of data points, indicating that the empirical

covariance used to estimate the covariance and the fitted covariance are in good agreement.

At some depth layers there are irregularities due to an insufficient amount of data points, making it
necessary to apply a smoothing filter/fit to minimize the effect of these irregularities. It has been tested
whether a randomly selected field analysis (nitrate data from 2006 and 2015) obtained with the fitted-
vertical correlation profile is better than the analysis with zero-vertical correlation. A skill score relative
to analysis non-fitted-vertical correlation has been computed following Murphy (1988) and Barth et al.
(2014):

11
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skill score =1 — %;’zﬂt Eq. (2)

A large difference in the global RMS between the analysis with the fitted-vertical correlation and the

analysis with non-fitted-vertical correlation used for validation was found. The test shows whether the
use of the fit in the correlation profile is improving the overall analysis or not. We found that the RMS
error (nitrate analysis of 1981-2017) was reduced from 0.696 umol kg* (analysis without fit) to 0.571
umol kgt (analysis with fit) at 10 m depth, which means using the fitted vertical correlation profile in

the analysis improves the skill by 32 %, and the fit is improving the analysis fields.

(a)

0.3

(b)

0.201

—— empirical covariance
—— empirical covariance used for fitting

® data used for fitting
—— empirical covariance used for fitting
—— fitted covariance (rqual = 0.952)

0.2 0.159

&1 0.10

covariance [umol/kg]
covariance [umol/kg]

- 0.05 1

0.00 4

0 200000 400000 600000 800000 1000000 0 100000 200000 300000 400000
distance [m] distance [m]

—0.14

Figure 5. Example of the Nitrate covariance. (a) The empirical data covariance function is given in red,
the curve comes from the analysis of observations within depth = 10 m, while (b) the fitted covariance

curve (theoretical kernel) is given in green.

Based on the data, DIVA performs a least-square fit of the data covariance function with a theoretical
function. Then, a vertical filter is applied and an average profile over the whole period is used (Fig. 6).
This procedure is analogous to what has been used for the EMODnet climatology and the North Atlantic
climatology, except that in EMODnet climatology, seasonally averaged profiles were used (Buga et al.,
2019) and a monthly averaged profiles were used in North Atlantic climatology (Troupin et al., 2010).
The filter is applied to discard aberration caused by outliers or scarce observations in some layers, as

described above.

Because of the horizontal and vertical inhomogeneity of the data coverage, the analysis was based on a

correlation length that varies both horizontally (Fig. 6a) and vertically (Fig. 6b).

As expected, Lc increases with depth (Fig. 6), extending the influence area of the observation, a
consequence of the fact that variability at depth is lower and that observations in the deep layer are

scarcer (which on the other hand makes the Lc estimate more uncertain).

From the surface to 150-200 m, Lc is rather constant (Fig. 6), while from 200 to 600 m, the horizontal
Lc (Fig. 6a) increases for all nutrients. Below 600 m, the horizontal Lc for silicate decreases down to
1000 m, and then increases again at 1500 m. For nitrate and phosphate, a similar, but less marked,

behavior is observed.
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The vertical Lc (Fig. 6b) behaves similarly toward the increase, for nitrate and phosphate, due to the
homogeneity of the intermediate water mass, as explained also by Troupin et al. (2010). For silicate, the
vertical Lc decreases in the intermediate depth, reaching a minimum at 500 m depth. The different
behavior of silicate could be explained by the progressive increase in concentrations from the surface to
the deep layer, compared to nitrate and phosphate vertical distribution (strong gradient between surface
depleted layer and intermediate layer). Lc for silicate has lower values compared to nitrate and
phosphate, because, horizontally and vertically, it behaves in a different way. Unlike nitrate and
phosphate, silicate does not show a strong east-west increased gradient. This gradient might induce this

difference in the horizontal distance over which the sample influences its neighborhood.

Besides, silicate is less utilized by primary producers, and the dissolution of the biogenic silica is slower
than that of the other nutrients (DeMaster, 2002) which explain its progressive increase towards deeper
layers (Krom et al., 2014). The vertical Lc for all nutrients increases progressively from 400 m to 1500

m.

Troupin et al. (2010) and lona et al. (2018) attributed similar changes observed in Lc for temperature
and salinity to the variability of the water masses in each layer. This might also explain the changes
found in Lc for nutrients. Indeed, the concentration of nutrients in the WMED increases with depth and

is very low at the surface, which explains the constant low values of Lc in this layer.

0 0
(a) —e— Nitrate (b) —e— Nitrate
—8— Phosphate —8— Phosphate
—200 - —o— Silicate —200 A —8— Silicate
—400 —400
—600 —600
E
S
2 —800 —800 A b
a
—1000 - —1000 - ®
—1200 A —1200 A
—1400 - —1400 4
T T T T T T T T T T T T e T
50 75 100 125 150 175 200 225 250 50 75 100 125 150 175 200 225 250
Horizontal correlation length [km] Vertical correlation length [m]

Figure 6. (a) Horizontal and (b) vertical optimized correlation lengths, for each nutrient (1981-2017),

as a function of depth.

3.2.3 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is related to the confidence in the measurements. It is the ratio between

the variance of the signal and the variance of the measurement noise/error. The SNR defines the
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representativeness of the measurements relative to the climatological fields, in other words, it is the

confidence in the data.

It not only depends on the instrumental error but also on the fact that observations are instantaneous
measurements, and since a climatology is a long-term mean, such observations do not represent exactly

the same.

Generally, small SNR values favor large deviations from the real measurements to give a smoother
climatological field. On the other hand, with a high SNR, DIVANd keeps the existing observations and
interpolates between data points. The need is to find an approximation that does not deviate much from

the real observations (further details in Lauvset et al., 2016, and Troupin et al., 2010).

Following the same approach that many climatologies that used the DIVAnd method adopted, i.e.
EMODnet climatologies (available on the EMODnet chemistry portal), the Atlantic regional
climatologies (Troupin et al., 2010), the Adriatic Sea climatology (Lipizer et al., 2014) and the
SeadataNet regional climatology (Simoncelli et al., 2015), the SNR is set to a constant value (Table 1).

The analysis is performed with a predefined uniform default error variance of 0.5 for all parameters at
all depths, we presume that the data sources used to generate BGC-WMED climatology are consistent
products. Three iterations are done inside DIVANd to estimate the optimal scale factor of error variance
of the observation (following Desroziers et al., 2005). More details can be found in https://gher-
ulg.github.io/DIVANd.jl/latest/#DIVAnd.diva3d.

Values of SNR provided by means of a generalized cross-validation (GCV) technique (Brankart and
Brasseur, 1998) gave a large estimate of the SNR (of the order of 22) showing a discontinuous analysis

field and patterns around the cruise transects that do not represent properly the climatological fields.

3.3 Detection of suspicious data

Assessment of the analysis is performed by detecting outliers and suspicious data , in order to remove
observations that generate irregular interpolated fields; and suspect observations that were not detected

in the data quality check of section 2.3.

The automatic check measures how consistent the gridded field is, with respect to the nearby
observations, by estimating the difference between a measurement and its analysis scaled by the
expected error; based on that, a score is assigned to each observation. Data points with the highest scores
were considered as suspect and were removed from the analysis (Fig. A1, A2, A3). Overall, 0.031%,
0.014%, 0.004% data points, for nitrate, phosphate, and silicate, respectively, were considered

inconsistent. Details about the quality check values and range are plotted in the appendix (Table Al).
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3.4 Quality check of the analysis fields

The quality of the climatology was checked against observations by estimating the mean residual and
the root mean squared (RMS) of the difference between the climatology and the observations. Averages
over the entire basin were calculated between depth surfaces (see section 2.3). Residuals are the
difference between the observations within the specific depth surface and the analysis (interpolated
linearly to the location of the observations) and are estimated by depth range (Fig. 7). The analysis fields
at each depth range (i.e. depth surfaces or domain on which the interpolation is performed) are the
interpolation on the specified grid. In Fig. 7, we present the vertical profile of the mean residuals and

RMS at different depth ranges for the three nutrients.

Nitrate observations and the analysis field in Fig.7a have a high level of agreement in the surface layer
(from 0 to 30 m depth). Just below (between 30 and 200 m), boxplots are suggestive of larger differences.
From surface to the deep layer, the mean residual between nitrate observation and the gridded field
varied between -0.075 and 0.0765 pumol kg, while the corresponding RMS fluctuated between 0.47 and
1.1 umol kg™. This is justified by the inhomogeneity of the observations mainly in deep layers.

As for the average residual between phosphate observations and the gridded analysis (Fig.7b), it was
around zero and varied between -0.0027 and 0.0026 pmol kg™*. The RMS for phosphate was between
0.037 and 0.063 pumol kg™.

Silicate residuals (Fig. 7c), on the other hand, seemed more homogeneous at all depth levels. The highest
level of agreement was found below 20 m and at 600 m. Overall, residuals varied between -0.057 and
0.063 umol kg, while the RMS ranged between 0.567 and 0.963 pumol kg™.

Over the entire water column, the mean residual was around zero (0.004 pmol kg for nitrate, 0.0002
umol kgt for phosphate and 0.003 pmol kg™ for silicate) (Fig. 7). The RMS (in blue line) fell within the
mean residual +/- standard deviation in the upper 25" percentile at the different depth ranges and in all
parameters meaning that in general, the bias between the observations and the analysis is small and there

is a good agreement.
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Figure 7. Vertical mean residuals (in red), i.e. the differences between the observations and the analysis,
and the mean RMS (dashed blue) of (a) nitrate, (b) phosphate, (c) silicate.

4 Results

The final result consists of gridded fields of mapped climatological means of inorganic nutrients for the
periods 1981-2004, 2005-2017, and the whole period 1981-2017, produced with VIM described in
section 3, using data of section 2. Together with the gridded fields, error maps have been generated to
check the degree of reliability of the analysis.

The resulting climatologies (Table 3) are aggregated in a 4D netCDF for each nutrient and each time
period that contains the interpolated field of the variable and the related information: associated relative
error, variable fields masked using two relative error thresholds (L1 and L2). The mapped climatology
is available from PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.930447, Belgacem et al.,
2021) as one folder named BGC-WMED climatology. This folder contains nine files: three per

parameter and three per time period.

Here is an example of the analysis output found in the netCDF. Figure 8 shows the unmasked
climatological field of the mean spatial variation of nitrate, relative error field distribution, the masked
climatological field using relative error with two threshold values (0.3 and 0.5) to assess the quality of

the resulting fields.
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Table 3. Available analyzed fields and related information in the netCDF files.

Variable name Field name Description

Lon Longitude Longitude in degrees east, extent: -7 — 17.25 °E
Lat Latitude Latitude in degrees north, extent: 33.5—45.85°N
depth Depth Depth in meters, 19 levels, range: 0 — 1500 m

nitrate/phosphate/silicate

DIVANd analyzed climatology

Mapped climatological fields

nitrate_L1/phosphate L1/

silicate_L1

Nitrate/Phosphate/Silicate
masked field level 1

Mapped climatological fields masked using
relative error threshold 0.3.

nitrate_L2/ phosphate_L2/

silicate_L2

Nitrate/Phosphate/Silicate
masked field level 2

Mapped climatological fields masked using
relative error threshold 0.5.

nitrate_relerr/phosphate_re

lerr/silicate _relerr

Nitrate/Phosphate/Silicate
masked relative error

Mapped relative error fields associated to the
climatological field

(a)

45°N 7
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i
6°W

Nitrate 2005-2017 at Depth=30m |

(b)
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0° 6°E
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15 2 2.5 3 35 4

Nitrate [umol kg™']

(C) Nitrate |1 2005-2017 at Depth = 30 m
45°N 1
42°N
@
B
2
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36°N
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15 2
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Nitrate Relative error fields, 2005-2017 at Depth = 30 m
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3.5 4

Figure 8. Example of nitrate analysis for the period 2005-2017 (a) unmasked analysis field, (b) relative
error field distribution with the observation in black circles, (¢) masked analysis fields masked using
relative error threshold = 0.3, and (d) masked analysis fields masked using relative error threshold = 0.5.

4.1 Nutrient climatological distribution

A description of the spatial patterns of the dissolved inorganic nutrients across the domain and over the
entire period (1981-2017) is given. The gridded fields for nitrate, phosphate, and silicate are discussed
at three depth levels, representative of the surface (at 100 m), intermediate (at 300 m), and deep layer
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(at 1500 m). The horizontal maps at the selected depths are shown in Fig. 9, while the average vertical

profiles of nutrients over the whole area are shown in Fig. 10.

4.1.1 Surface layer

The nitrate, phosphate and silicate mean climatological fields over 1981-2017 are presented in Fig. 9 (a,
b, ¢) respectively. The mean surface nitrate at 100 m is about 3.58 + 1.16 pumol kg™. Highest surface
values of nitrate concentrations are found in regions where strong upwelling or vertical mixing occurs,
such as the Liguro-Provencal basin and the Alboran Sea (see Fig. 9a), and regions with extensive supply
by the Ebro, Rhone, Moulouya and Chelif rivers.

The convection region (Gulf of Lion and Ligurian Sea) is characterized by an eutrophic regime and a
spring bloom (Lavigne et al., 2015), unlike the rest of the basin that shows low nitrate concentrations in
the surface layer (< 4 umol kg™).

Nutrient patterns in the Alboran Sea have been associated with the distinct vertical mixing that supplies
the surface layer with nutrients (Lazzari et al., 2012; Reale et al., 2020).

Indeed, the northern Alboran Sea is known as an upwelling area, where permanent strong winds enhance
the regional biological productivity (Reul et al., 2005). Nitrate distribution at 100 m presents a clear
distinction between the enriched surface regions in the WMED, under the influence of deep convection
processes, and the easternmost depleted regions.

The distribution of phosphate concentration has striking similarities with that of nitrate (Fig. 9b). The
mean surface phosphate concentration at 100 m, is 0.16 + 0.06 pmol kg?. As for nitrate, the highest
surface values are found in the Alboran Sea, Balearic Sea, Gulf of Lion and Liguro-Provencal Basin
(0.2-0.3 umol kg*), while the Tyrrhenian Sea and the Algerian Sea revealed phosphate concentrations
that were <0.2 pmol kg™. Similar patterns were observed by Lazzari et al. (2016), who argued that the
variations in phosphate are regulated by atmospheric and terrestrial inputs. It should be noted that the
maximum in the surface is found near river discharges of freshwater, like Ebro and Rhone, i.e. the largest
rivers of the WMED (Ludwig et al., 2009).

Concerning the distribution of silicate concentration, the surface layer at 100 m (Fig. 9c) followed the
same pattern as nitrate and phosphate. Over this layer the mean silicate was about 2.7 = 0.7 umol kg™.
As for nitrate and phosphate, the highest values (3-4 umol kg™) were recorded in the Alboran Sea,
Balearic Sea, Gulf of Lion and Liguro-Provencal Basin and in the southern entrance of the Tyrrhenian
Sea. This surface distribution is in good agreement with the findings of Crombet et al. (2011), relating
this local silicate surface maximum to the continental input, river discharge and atmospheric deposition
(Frings et al., 2016; Sospedra et al., 2018). The spatial minima were reported in the Tyrrhenian Sea and
in the Algerian Sea (<3 umol kg?).
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4.1.2 Deep and Intermediate layer

At the basin scale, nitrate concentrations increase with depth (Fig. 10a), with the highest concentration
found at intermediate levels (250-500 m), ranging between 8.8 and 9.0 pmol kg™. In this 300 m layer
(Fig. 9d), nitrate concentration average is 7.2 + 1.06 pmol kg*. High values (> 6.5 umol kg*) are found
in the westernmost regions (Alboran Sea, Algerian Sea, Gulf of Lion, Balearic Sea and the Liguro-
Provencal Basin), while the easternmost regions (Tyrrhenian Sea, Sicily Channel), exhibit much lower
concentrations (between 4.5 and 6.5 umol kg?).

Similar features are observed in the deep layer, at 1500 m (Fig. 9a), with nitrate concentrations
increasing all over the basin, reaching on average 7.8 - 7.9 umol kg* between 1000 and 1500 m depth
(Fig. 10a).

In both layers (300 m and 1500 m), the difference between the eastern opening of the basin (Sicily
Channel) and the western side (Alboran Sea) is noticeable: the Sicily Channel and the Tyrrhenian Sea
are under the direct influence of the water masses coming from the oligotrophic EMED, which then
gradually become enriched with nutrients along its path, as found by Schroeder et al. (2020).
Phosphate concentrations at intermediate depth (see 300 m, Fig. 9e), varied between 0.12 and 0.44 yumol
kg?, and the horizontal map shows the same gradual decrease towards east, with the highest
concentrations in the westernmost regions and minimum values in the eastern regions (< 0.25 pmol kg
1.

The average vertical profile over the entire region (Fig. 10b), reveals a maximum in phosphate
concentrations between 300 and 800 m depth, related to an increased remineralization process.

In the deep layer (see 1500 m, Fig. 9h), phosphate concentration average is 0.36 + 0.02 umol kg™.
Generally, the deep layer is homogeneous (Fig. 10b). The difference observed between westernmost
regions and the Tyrrhenian Sea remains, though the latter demonstrate higher phosphate concentrations
(~0.3 umol kg?). This variation could be due to the difference in the water masses. The IW inflow from
the EMED brings relatively young waters that are depleted in nutrients, while the higher concentrations
in the deep layer are signatures of the older resident DW of the Tyrrhenian Sea. The change in the
biological uptake in the intermediate source water could explain the regional variability of nutrients.
The low productivity (D’Ortenzio and Ribera d’Alcala, 2009) and the pronounced oligotrophic regime
of EMED water (Lazzari et al., 2016) may justify the increase in nutrients in the IW.

Silicate concentration distribution at intermediate (300 m, Fig. 9f) and deep layers (1500 m, Fig. 9i),
were as expected, showing a notable increase, compared to the surface. Here, the silicate average
concentration is 5.83 + 0.66 umol kg*. The maximum values were observed below 800 m, > 8.034 umol
kg (Fig. 10c). At 1500 m, silicate distribution is homogeneous all over the basin (on average 8.35 *
0.39).

Generally, primary producers do not require silicate for their growth as much as they need nitrate and

phosphate which explain the disparity between nutrients patterns. Furthermore, at intermediate levels,
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the water is warmer than at deep levels, enhancing the dissolution rate and the progressive increase in
silicate (DeMaster, 2002). The biogenic silicate is exported to greater depths and continues to dissolve
generating inorganic silicate as it sinks to the bottom. The recycling of silicate within the deep-sea
sediments is later on redistributed by the deep currents which explain the homogenous horizontal
distribution over the entire basin.

Comparing the three nutrients at the same depth levels, at the surface (100 m), it appears that they all
show local surface maximum, depending on local events such as strong winds, local river discharge and
vertical mixing (Ludwig et al., 2010).

In the easternmost areas, the surface depletion in nutrients (Van Cappellen et al., 2014) is attributed to
the variation in the thermohaline properties that has impacted primary production (Ozer et al., 2017) and
the export of organic matter to intermediate and deep layers leading to the accumulation of nutrients in
these depth ranges.

The Tyrrhenian Sea is not directly connected to convection regions. Here, the EMED water inflow plays
a major role. Li and Tanhua (2020) found an increased ventilation of the intermediate and deep layers
during 2001 to 2018 in the Sicily channel and a constant AOU between 2001-2016, suggesting a constant
ventilation that explains the peculiar nutrient distribution in that area. In the western side of the WMED,
intermediate and deep layers exhibit an increase in nutrients. Schroeder et al. (2020) explained this
increase in nitrate and phosphate at the intermediate layer with the increase of the remineralization rate
at these depths along the path of IW.

The deficiency of inorganic nutrients is explained by the effect of the anti-estuarine circulation, with the
IW coming from the EMED, which is known to be poor in nutrients (Krom et al., 2014; Schroeder et
al., 2020), accumulates nutrients along its path. Thus, this relative nutrient-rich Mediterranean outflow
is lost to the Atlantic Ocean.

Overall, in surface layer, circulation, physical processes, and vertical mixing increase nutrient input
while the biological pump controls the decrease.

In the deep layer, the variability is lower (standard deviation is reduced toward the bottom for all three
nutrients, see Fig.10), the deep layer accumulates dissolved organic nutrients. In the WMED, the deep

layer constitutes a reservoir of inorganic nutrients.
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Figure 10. Climatological mean vertical profiles of (a) nitrate, (b) phosphate and (c) silicate
concentrations in the WMED (1981-2017). Dashed blue line indicates the minimum, dashed orange line

indicates the maximum, continuous yellow line indicates median profile, error bars and mean profile are

in grey.

4.2 Error fields

The determination of the error field is important to gain insight in the confidence in the climatological
results. Mostly, the error estimate depends on the spatial distribution of the observations and the
measurement noise. In DIVANd, there are different methods available to estimate the relative error

associated with the analysis fields.

A climatological field is computed at several depths (19 levels in this case), for different parameters
(nitrate, phosphate, and silicate in this case). Given these premises and following the approach of similar
climatologies (GLODAPv2.2016b, Lauvset et al., 2016; SeaDataNet aggregated data sets products,
Simoncelli et al., 2015), for the BCG-WMED the error fields were estimated using the default DIVAnd
method, i.e. the “clever poor man's error approach”, a less time consuming but efficient computational
approach. According to Beckers et al. (2014) who also provides details about the mathematical
background of the error fields computation, this method appropriately represents the true error and
provides a qualitative distribution of the error estimate. This estimate is used to generate a mask over
the analysis fields. Two error thresholds were applied (0.3 (L1) and 0.5 (L2)). Fig.8b., show the main
error that occurs in regions void from measurements. An example of the analysis masked with the error
thresholds output is shown in Fig.8c (L1) and Fig.8d (L2). The associated error fields with the analysis

fields are integrated in the data product.
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4.3 Comparison with other biogeochemical data products

In this section, a comparison of the BGC-WMED product with the most known global and/or regional
climatologies, that are frequently used as reference products for initializing numerical models, is made.

Specifically, the analyzed fields are compared to the reference data products WOA18 (Garcia et al.,
2019), a large scale illustration of nutrient distribution computed by objective analysis using the World
Ocean Database 2018 (Boyer et al., 2018). The new product is also compared to the reanalysis of the
Mediterranean Sea biogeochemistry, medBFM, a CMEMS product that assimilates satellite and Argo
data and includes terrestrial inputs of nitrate and phosphate from 39 rivers (Teruzzi et al., 2019).

Since the products used for inter-comparison were not originated from the same interpolation method,
not for the same time period and with different spatial resolution, here the comparison is mostly targeted

on the general patterns of nutrients in the region.

Comparisons are carried out between horizontal maps (Fig.11-12-13), as well as along a vertical
longitudinal transect (Fig.16-17-18). In addition, following Reale et al. (2020), the first 150 m have been
evaluated (Fig.14-15), since this is a depth level with a representative amount of in situ observations in
all three products. The evaluation is based on the estimation of horizontal average, on BGC-WMED
climatology, the medBFM biogeochemical reanalysis and the WOA18 climatology by subregion. i.e. a
spatial subdivision made according to Manca et al. (2004).

Products have a different grid resolution, thus to compare them and combine variables on a compatible
grid, the BGC-WMED new climatological data product (at 0.25° x 0.25°) for the periods 1981-2017,
2005- 2017 and the medBFM biogeochemical reanalysis (at 0.063° x 0.063°) (Teruzzi et al. 2019)
(https://doi.org/10.25423/MEDSEA REANALYSIS _BIO_006_008) for the period 2005- 2017, are
regridded on the WOA18 (1° x 1°) grid , changing the resolution, of the existing grid to facilitate the

comparison of the transect from each product.

The regridding is computed at all depth levels of the different products using nearest neighbor
interpolation. Prior to the interpolation, the medBFM reanalysis of nitrate and phosphate have been

averaged across the period 2005-2017.

We then calculated spatial maps of the mean difference at 150 m between the new climatology and the

reference products and then an average across subregions was performed.

4.3.1 Comparison with WOA18 at 150 m

Fig. 11-12-13 show the analysis at the 150 m depth surface for the three nutrients. The BGC-WMED
(1981-2017) product reveals detailed aspects of the general features of nitrate (Fig. 11.a), phosphate
(Fig. 12a) and silicate (Fig.13a).
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For the three nutrients, the new product reproduces patterns similar to the WOA18 all over the region.
It shows well-defined fields and higher values of nitrate and phosphate concentrations. In the new
product, nitrate concentrations varied between 2.31 -7.3 umol kg* the WOA18 values were 2.19 - 5.99
umol kg.Phosphate ranges were similar between the two products between (0.092- 0.35 pumol kg*
(BGC-WMED) and 0.095 - 0.35 pmol kg™ (WOA18)). Likewise, Silicate range values at 150 m were
not different (2.07 - 4.99 (BGC-WMED) and 1.57 - 5.75 umol kg(WOA18)).

The average RMS difference (RMSD) calculated from the difference between the WOA18 and BGC-
WMED all over the region at 150 m is about 1.14 pumol kg™ nitrate (Fig. 11c), 0.055 umol kg* for
phosphate (Fig. 12c) and 0.91 umol kg™ for silicate (Fig. 13c). Overall, the RMS error values were low
indicating limited disparity between the two products.

The difference field for every grid point reflects this discrepancy and shows areas with limited
agreement between the two products that can have a difference >2 pmol kg™ for nitrate (Fig. 11c), >0.1
umol kg*for phosphate (Fig. 12¢), >1.5 umol kg*for silicate (Fig. 13c). This dissimilarity is also noted
with the low r? (Fig. 14) (0.34, 0.20, 0.095 for nitrate, phosphate, and silicate respectively)

The distribution of the surface nitrate concentrations (at 150 m) (Fig. 11a) of the new product is similar
to that shown in WOA18 (Fig. 11b). The largest difference between the two products occurs in northwest
areas and in the Alboran Sea (Fig. 11c), areas of higher concentrations, a more nutrient rich surface
water as described in section 4.1. The difference is pronounced in these regions likely because of the
occurrence of upwellings along the African coast and seasonal vertical mixing in the northern WMED,
contributing to the upload of nutrients to the surface which could explain the high nitrate and phosphate
concentration in the BGC-WMED. The WOA18 maps show weaker values of nutrient concentrations
compared to the new product which does not mean that there are fewer physical drivers, but it might
indicate that the new product holds more in situ observations than the WOAL18 in the WMED.

Phosphate surface concentrations (Fig. 12) show similar differences as nitrate. The largest difference
with the surface phosphate of the WOA18 is found in the Alboran Sea, Northern WMED and Sicily
region (Fig. 12c).

As for silicate, the surface distribution shows large differences (Fig. 13c). The highest values are
observed in the northwest area of the new product, and in the Alboran Sea in the WOA18 climatology ,

this again accounts for the data coverage difference.
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4.3.2 Regional horizontal comparison above 150 m average nutrient concentrations

The inorganic nutrient mean concentrations resulting from the climatology of this work (period 2005-
2017), and from both the medBFM reanalysis product and the WOA18 are compared in the upper layer
of 12 subregions of the WMED (in Table 4 and Fig. 15).

Results show a general agreement between BGC-WMED and the other two products in some
subregions, nonetheless, there are some differences as shown in section 4.3.1.

Upper layer nitrate average concentrations (Fig. 15a) are decreasing eastward, from the Alboran Sea
(DS1) to the Algerian basin (DS3, DS4) and the Balearic Sea (DS2). The western part of the basin is an
area under the direct influence of the inflowing Atlantic surface waters, where nitrate is known to be
present in excess compared to phosphate probably due to atmospheric N input (Lucea et al., 2003). In
the DS1, BGC-WMED nitrate levels are lower than the WOAL18 nitrate levels while in DS3, DS2 and

DS4 the average nitrate concentrations are similar to the WOA18.

From the Algerian basin (DS4, DF1) to Liguro-Provengal (DF3) regions, there is an increase in the
average nitrate in all products, this is the south-north gradient. Some difference arises, where the new
product is lower than the WOA18.

In the eastern regions, the lowest average concentrations of the WMED are found. Here, the difference
between products is smaller, with medBFM reanalysis being lower than the new product and the
WOA18.

As for phosphate (Fig. 15b), known to be the limiting nutrient of the WMED, because it is rapidly
consumed by phytoplankton (Lucea et al., 2003), its average levels are low in DS1, DS3, DS2 and DS4,
in WOA18, medBFM reanalysis and BGC-WMED. The latter did not agree well with the other products
in DS2, where it was slightly higher. Phosphate average concentrations slightly increase in DF1, DF2
and DF3 in all three products. The increase is explained by the vertical mixing process occurring in the
northern WMED.

Upper surface phosphate concentrations average start to decrease progressively through the Ligurian
East (DF4), Tyrrhenian Sea (DT1, DT3), Sardinia Channel (DI1) and Sicily Channel (DI3).The BGC-
WMED was in agreement with medBFM reanalysis in those subregions aside from concentrations in

DI3, where the new product showed higher levels.

The BGC-WMED climatology shows reasonable agreement in the upper average concentrations of
nitrate and phosphate that are similar in order of magnitude to the other products (Fig. 15). The

difference with the WOA18 resides in the wider temporal window of the observation (starting from
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1955). The new climatology in some subregions has a better spatial coverage of in situ observation than
the WOAL8 (Garcia et al., 2019) and the medBFM reanalysis (Teruzzi et al., 2019).

On the other hand, the average silicate (Fig. 15¢) of the new product and the WOAL18 varied between
regions. Significant difference is found between the two products in DS2, DS4, DF1, DF2, DT1, DT3,
DIl and DI3, while in DS1, DS3 and DF4 mean silicate is consistent between the two products.

Overall, the three products show strongly similar features between regions (similar curve shape).
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Figure 15. Nutrient average concentrations and standard deviation comparison in the upper 150 m

(values in Table 4).
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Table 4. Nutrient average concentrations and standard deviation in the upper 150 m. All products were

interpolated on 1° grid resolution (see Figure S2 (Belgacem et al., 2020)).

Subregion/ Coverage Data product Nitrate Phosphate Silicate
DS1- Alboran Sea medBFM 1.27(x1.4) 0.09(x0.08) -
(35°N-37.3°N, -6°E--1°E)  BGC-WMED  2.06(+2.2) 0.14(=0.09) 1.56(+1.2)
WOA18 2.81(+1.4) 0.15(0.03) 1.74(+0.4)
DS3- Algerian West medBFM 1.07(x1.4) 0.08(+0.08) -
(35.36°N— 38.3°N, -1°E— BGC-WMED  1.72(2.05) 0.11(20.07) 1.57(0.9)
4.3°E) WOAI18 1.74(0.9) 0.12(+0.01) 1.52(+0.3)
DS2- Balearic Sea medBFM 1.02(x1.1) 0.08(+0.07) -
(38.3°N-42°N, -1°E-4.3°E) BGC-WMED  1.48(x1.7) 0.14(20.07) 1.63(0.9)
WOAI18 1.53(¢1.1) 0.11(0.01) 1.18(x0.2)
DS4- Algerian East medBFM 0.80(x1.08) 0.07(x0.07) -
(36.3°N—39.18°N, 4.3°E— BGC-WMED  1.11(+1.4) 0.06(=0.05) 1.48(+0.7)
8.24°E) WOAI18 1.23(+0.8) 0.11(+0.009)  2.27(0.3)
DF1- Algero-Provencal medBFM 0.96(x1.15) 0.08(x0.07) -
(39.18°N— 41°N, 4.3°E— BGC-WMED  1.18(x1.5) 0.05(+0.05) 1.42(+0.7)
9.18°E) WOA18 2.00(x1.1) 0.12(0.01) 1.73(x0.2)
. medBFM 1.39(1.19) 0.10(0.07) -
a;g,'\li:’?')'gogo';\fh_ﬁ_ jg°p) _BGC-WMED _ 192(:2.1) 0.08(x0.08)  2.21(x1.1)
WOA18 2.68(+1.3) 0.19(0.01) 1.48(+0.2)
DF3- Liguro-Provengcal medBFM 1.18(x1.2) 0.09(z0.07) -
(41°N- 45°N, 6.18°E— BGC-WMED  1.88(+2.1) 0.07(20.07) 2.10(0.9)
9.18°E) WOA18 2.52(x1.5) 0.20(0.03) 1.97(x0.4)
DF4- Ligurian East medBFM 0.37(x0.4) 0.04(%0.03) -
(42.48°N-45°N, 9.18°E— BGC-WMED  0.74(0.9) 0.05(0.03) 1.59(x0.5)
11°E) WOA18 1.42(+0.6) 0.19(+0.05) 1.73(+0.6)
DT1- Tyrrhenian North medBFM 0.71(x0.9) 0.06(£0.06) -
(39.18°N-42.48°N, 9.18°E-  BGC-WMED  1.09(x1.3) 0.07(x0.04) 1.69(+0.8)
16.16°E) WOAI18 0.98(+0.8) 0.13(x0.02) 2.13(+0.4)
DT3- Tyrrhenian South medBFM 0.68(=0.96) 0.06(+0.06) -
(38°N-39.18°N, 10°E— BGC-WMED  1.23(x1.5) 0.05(x0.05) 1.40(x0.9)
16.16°E) WOA18 0.84(0.8) 0.10(0.01) 1.90(0.2)
DI1- Sardinia Channel medBFM 0.62(x0.9) 0.05(0.06) -
(36°N—39.18°N, 8.24°E— BGC-WMED  0.78(x1.3) 0.09(=0.06) 1.74(+0.9)
10°E) WOA18 1.22(+0.8) 0.10(x0.007)  2.3(+0.30)
DI3- Sicily Channel medBFM 0.36(z0.5) 0.04(£0.03) -
(35°N- 38°N, 10°E-15°E) BGC-WMED  1.04(+1.2) 0.13(+0.08) 2.15(+1.1)
WOA18 0.72(+0.6) 0.08(+0.01) 1.79(+0.3)

4.3.3 Regional vertical comparison of nitrate and phosphate concentrations

As the last step in the comparison between the different products, it is investigated how the new

climatology represents the vertical distribution by comparing the new climatological values for the

period 2005-2017 with the medBFM reanalysis and the WOA18.
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We extracted data values along a longitudinal transect across the Algerian basin in the west-east
direction (Fig. 16). The transect was selected according to previous studies (D’Ortenzio and Ribera
d’Alcala, 2009; Lazzari et al., 2012; Reale et al., 2020) and since the Easternmost part of the domain is
showing markedly features, a transect across the Tyrrhenian Sea is extracted as well (Fig. 16). Silicate

is not included as it was not represented in the medBFM model.

Vertical sections of nitrate and phosphate in the Algerian Sea show a common agreement between
products about the main patterns found along the water column, i.e. the nutrient depleted surface layer
and the gradual increase toward intermediate depths, we note as well the west to east decreasing gradient

in the three products, yet, there are some inequalities.

Below 100 m, there is a significant difference between products and a poor qualitative agreement.
Nitrate distribution is dominated by the nutrient enriched IW, with high values (>7 umol kg) increasing
from east to west (Fig. 16). Phosphate shows similar patterns in the surface layer, exhibiting very low
concentration and a progressive increase down to 300 m (> 0.35 umol kg*) noted also in the WOA18.
The reanalysis showed a more smoothed field, below 100-300 m, with phosphate concentration between
0.20 and 0.30 umol kg*. The highest values for phosphate were found below 250 m from 0°E to 3°E in
the new product. The BCG-WMED transect defines very well the different depth layers, the upper
intermediate layer is rich with nutrient concentration with > 8 umol kg for nitrate (BGC-WMED) and
>0.35 pmol kg for phosphate (BGC-WMED and WOA18).

The vertical section along the Tyrrhenian Sea (Fig. 16) also shows a decrease from west to east in nitrate
concentrations. The same gradient is found also in phosphate in agreement with nutrient distribution
shown from the WOA18. From the section of the medBFM reanalysis, it is not easy to identify the west-
east gradient that we mentioned before. It could be suggested that the model under-estimate the vertical
features in the Eastern (Tyrrhenian Sea: 100-300 m, nitrate vary between 1.4 and 4.2 pmol kg?,
phosphate between 0.13 and 0.20 umol kg?) and western part (Algerian basin: 100-300 m, nitrate vary
between 2.1 and 5.4 umol kg, phosphate between 0.15 and 0.255 pmol kg?). These values are lower
than the ones found in the BGC-WMED (Tyrrhenian Sea: 100-300 m, nitrate range between 3 to 6 pmol
kg?, as for phosphate values oscillate between 0.10-0.27 pumol kg*;Algerian basin: 100-300 m, nitrate

range between 3.6 to 8 umol kg, as for phosphate values oscillate between 0.18-0.36 umol kg?).

While the WOA18 reproduces similar patterns as the new climatology (Tyrrhenian Sea: 100-300 m,
nitrate vary between 1.8 and 5.7 umol kg, phosphate between 0.33 and 0.20 umol kg*) and western
part (Algerian basin: 100-300 m, nitrate vary between 2.8 and 6.8 umol kg, phosphate between 0.16
and 0.34 umol kg).

The products illustrate the nutrient-poor water in the eastern side (Tyrrhenian Sea) and the relatively

nutrient-rich water found in the western transect (Algerian basin).
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The BGC-WMED product captures details in Fig. 16 about the longitudinal gradient in nitrate and
phosphate, along the water column where nutrient sink deeper from west to east as previously seen in
Pujo-Pay et al. (2011) and Krom et al. (2014), an increased oligotrophy from west to east with higher
concentrations in the two nutrients in the western side of the section and a more oligotrophic character

toward east.

The differences between products could be explained by the difference in the data coverage, time span
and the difference in methods used to construct the climatological fields.

The variability in nitrate and phosphate fields along the transect extracted from the BGC-WMED reflects
the high resolution of the product allowing the screening of vertical structure controlling nutrient
contents. Based on a visual comparison, the new product is able to reproduce similar patterns as to the
WOAI18 and to a lesser extent the medBFM reanalysis.

Fig. 17 examines the vertical difference of nitrate and phosphate concentration for the BGC-WMED
with the medBFM reanalysis along the Algerian basin (Fig.17a, nitrate; Fig.17b, phosphate) and
WOAI18 (Fig.17c, nitrate; Fig.17d, phosphate).

The vertical section shows a strong agreement at the surface for nitrate between the BGC-WMED and
the medBFM reanalysis (Fig. 17a), while the vertical difference with WOA18 demonstrates that nitrate
values in the new product are lower than the WOAL18 at 50- 75 m (Fig. 17c).

The difference increases with depth, below 100 m, the BGC-WMED nitrate climatology is higher than
the medBFM with a difference ranging between 0.6 and 2.4 pmol kg™, similar observation is noted in
the WOA18 (Fig. 17¢). In Fig.17a and Fig.17c, we identify patterns in the vertical structure of nitrate

in the eastern portion of the transect.

Regarding phosphate, differences between the new climatology and the medBFM reanalysis are noted
(Fig. 17b) where the BGC-WMED shows high concentrations in the first 100 m and between 150 m and
300 m (differences of 0.02 - 0.08 umol kg?), this difference decreases at 100-150 m. At the eastern

portion of the transect (6°E to 7.5°E), we find an agreement between the two products.

Conversely, the vertical sections of the differences between BGC-WMED and WOAL8 in phosphate
(Fig.17 d) show similarities, with the new product being lower than the WOA18 in the first 50 m. Large
difference is found on both sides of the transect below 100 m, while in the center of the transect, the

difference in phosphate is reduced to 0-0.02 pmol kg.

Fig.18 compares the vertical difference of nitrate and phosphate along the Tyrrhenian Sea transect. In
general, the difference transect in the Tyrrhenian Sea shows similar features with medBFM reanalysis
and the WOA18 as in Algerian basin. Fig.18d captures the west to east gradient in phosphate. The
WOAU18 overestimated phosphate in the surface layer.
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Figure 16. Vertical distribution of nitrate and phosphate from the Algerian basin and Tyrrhenian Sea.
Colors show the gridded values from the three different products: BGC-WMED, medBFM reanalysis

(Teruzzi et al., 2019) and the WOA18 (Garcia et al., 2019).

Based on the new climatology comparison with the WOA18 and the reanalysis, it is concluded that the
new product is consistent with the main features of previous products and show the large-scale patterns
and underline well the characteristics of the water mass layers.

The study also provides an examination of the nitrate and phosphate distributions along a longitudinal
transect across the Algerian Basin (Western WMED) and across the Tyrrhenian Sea (Eastern WMED).
We have shown that the western basin is relatively high in nutrients compared to the Eastern basin. The
increased oligotrophic gradient from west to east could be attributed to the difference in the
hydrodynamic patterns related to the water mass specific properties that are affected by the EMED and
the Atlantic ocean inflows, and to the local sources of nutrients (Ribera d’Alcala et al., 2003; Schroeder
et al., 2010). Study of Crispi et al. (2001) inferred the biological activity that is responsible for the
oligotrophic gradient.
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Figure 18. Same as Fig.17 but for the vertical section from the Tyrrhenian Sea.

4.4 Temporal comparison: 1981-2004 vs 2005-2017

In this section, we compare between two climatological periods (1981-2004 vs 2005-2017). The
distinction between the two periods was based on the occurrence of the Western Mediterranean
Transition (WMT) that started in 2004/05, during which there was a progressive increase in temperature
and salinity of the IW that led to important deep convection events, substantially increasing the rate of
DW formation between 2004 and 2005 (Schroeder et al., 2016).

The result of this climatological event was that a newly generated DW, denser, saltier, and warmer than
the old WMDW, filled up the WMED. The new WMDW propagated east toward the Tyrrhenian Sea
and west toward the Alboran Sea and Gibraltar (Schroeder et al., 2016).

A recent study of Li and Tanhua (2020) demonstrated an enhanced ventilation in the WMED deep layers

despite the continuous overall increase in temperature (Bindoff et al., 2007), salinity and density of
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intermediate and deep layers after the WMT (Schroeder et al., 2016; Vargas-Yafez, 2017). An increased
ventilation means a DW renewal (Schroeder et al., 2016; Tanhua et al., 2013) subsequently a well
oxygenated waters, implying an increase in the decomposition of the sinking organic matters into
inorganic nutrients, thus causing changes of biogeochemical cycles (Shepherd et al., 2017). What
happened in the WMED was not a permanent continuous event, since DW formation faded during the
years 2006 and 2007, to restart again in 2008 (Li and Tanhua, 2020). In this section, we investigate the
possible impact of WMT on biogeochemical characteristics at different depth levels (with a focus on

nitrate, phosphate and silicate regional distribution and patterns).

We considered depth levels that represent the usual three layers: the surface (100 m; Fig.19a,d-20a,d-
21a,d), intermediate (300 m; Fig.19b,e- 20b,e- 21b,e) and deep layers (1500 m; Fig.19c,f -20c,f- 21c,f).

The WMED surface layer is dominated by the AW coming through the Alboran Sea, a permanent area
of upwelling (Garcia-Martinez et al., 2019), where there is a continuous input of elements from the layer
below to the surface (Fig. 19a- 20a- 21a). Nitrate increased after WMT (Fig. 19d- 20d- 21d) by +0.4137
umol kgt (Fig. Ada). The largest difference between the two periods reached >+2 umol kg in Sardinia
Channel and the Alboran Sea that was explained by the favorable conditions for nitrogen fixation as
discussed in Rahav et al. (2013), revealing also that nitrogen fixation rate increased from east-to-west.
Phosphate and silicate on the other hand described a decrease at 100 m (Fig. A4a) with about -0.021 and
-0.1365 umol kg™ on average, respectively. Large changes are noticed in the southern Alboran Sea,
Sardinia channel and Balearic Sea.

The surface layer exhibits an irregular distribution since it is subjected to seasonal variability. We found
an increase in all nutrients at 300 and 1500 m with a maximum identified at intermediate depths in both
nitrate and phosphate which is explained by the remineralization of organic matter along the path of the
IW. The latter flows westward (from the Levantine to the Atlantic Ocean). Its content in nutrients
increases (relatively to the conditions in the EMED) with age (Schroeder et al., 2020). It arrives at the
Tyrrhenian Sea, where in Fig.19b-20b-21b (at 300 m depth, 1981-2004), we identify a nutrient-depleted
intermediate layer. At this depth level, we observe a gain in the three nutrients after WMT (Fig.19e-20e-
21e). On average, the difference between the two periods (pre/post-WMT) for nitrate, phosphate, and
silicate, is around +0.8648, +0.0068 and +0.2072 pmol kg™ (Fig. A4b), respectively.

A similar increase after WMT in the deep layer (1500 m), is also found for nutrient concentrations (Fig.
19f, 20f, 21f) in the magnitude of +0.753 for nitrate, +0.025 for phosphate, and +0.867 for silicate (Fig.
A4c), which highlights an increase in the downward flow of organic matter remineralization that is
supplying the existing pool.

This increase is also illustrated in the climatological mean vertical profile of Fig. 22 in the three
nutrients. Nitrate displays a notable vertical difference to the pre-WMT period below 200 m (Fig. 22a).
Phosphate difference between the two-time period is larger below 400 m (Fig. 22b). Silicate was

different from nitrate and phosphate. It increases progressively with depth (Fig.22c) and demonstrates
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an enrichment of the DW compared to the 1981-2004 period (Fig. 21c). The maximum values are found
in the deep layer, due to the low remineralization rate. With the warming climate, biogenic silica tends
to dissolve faster which explains the high concentrations all over the basin even the Tyrrhenian Sea after
the WMT.

According to Stdven and Tanhua (2014), the impressive volume of the newly formed DW during 2004
and 2006, ventilated the old DW decreasing its age, meaning that the WMT could have led to the
lowering of the WMED deep layer pool in nutrient as it was pointed out by Schroeder et al. (2010).
However, we did not observe this decrease in the climatological analysis after the WMT. It might be
due to the temporal variability of the deep convection intensity, since a decrease has been recorded in
the Gulf of Lion between 2007 and 2013 (Houpert et al., 2016).

A decrease in the deep convection intensity since the WMT (Houpert et al., 2016; Li and Tanhua, 2020),
could potentially lead to the reduction in the supply from the nutrient-rich DW (before WMT) to the
surface, i.e. the decrease in nutrient could have happened right after the WMT in spring 2005 where
Schroeder et al. (2010) reported peculiar divergence between the old WMDW and the new WMDW in
nitrate and phosphate; the new WMDW was low in nutrient; later on an intense DW formation event
marked the year 2012 with a strong ventilation that has been recorded in the Adriatic Sea that could
have affected the WMED. It was not possible to observe this change since we calculated the mean state

of the basin spanning a specific period.

The spatial distribution of nutrient concentrations after the WMT (2005-2017) was quite different from
the one before the WMT (1981-2004). This could also be related to the significant decline in river
discharge between 1960 and 2000, which was estimated to 20% (Ludwig et al., 2009). The decrease is
also observed in silicate fluxes since silicate loads through river discharge.

The change could be explained by the low denitrification rate for nitrate and an increase in the
remineralization of organic matter. Ludwig et al. (2009) reported an increase in nitrate and phosphate
fluxes that was enhanced by the anthropogenic inputs, loading the deep layer with inorganic nutrients,

also it could be associated with the slower ventilation of the WMED waters and a longer residence time.
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Figure 22. Climatological mean vertical profile and standard deviation of (a) nitrate, (b) phosphate and

(c) silicate over the WMED before (1981-2004, in violet) and after WMT (2005-2017, in green).
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5 Data availability

The climatologies of Nitrate, Phosphate and Silicate are available as netCDF files from the data
repository PANGAEA and can be accessed at https://doi.org/10.1594/PANGAEA.930447 (Belgacem
et al., 2021). Ancillary information is in the readme in PANGAEA with the list of variables that are
described in table 3 of section 4. The CNR_DIN_WMED_20042017 data are available from PANGAEA
(https://doi.org/10.1594/PANGAEA.904172). The MOOSE-GE data are available in the SISMER
database (global doi10.18142/235)

6 Conclusion

In this study, we investigated spatial variability of the inorganic nutrients in the WMED and presented
a climatological field reconstruction of nitrate, phosphate, and silicate, using an important collection
dataset spanning 1981 and 2017. The BGC-WMED new product is generated on 19 vertical levels on a
1/4° spatial resolution grid.

The new product represents very well the spatial patterns about nutrient distribution because of its higher
spatial and temporal data coverage compared to the existing climatological products (see Table 1), it is

contributing to the understanding of the spatial variability of nutrients in the WMED.

The novelty of the present work is the use of the variational analysis that takes into consideration
physical, geographical boundaries, topography, and the resulting estimate of the associated error field.

Comparison with previously reported studies gives that the BGC-WMED reproduces common features
and agrees with previous records. The reference products WOAL18 and medBFM biogeochemical

reanalysis tend to underestimate nutrient distribution in the region with respect to the new product.

The new product captures the strong east-west nutrient gradient and vertical features. The results
obtained do not include seasonal or annual analysis fields. However, the aggregated dataset here does
show improvements in describing the spatial distribution of inorganic nutrients in the WMED. We
acknowledge that computing a climatological mean over a time period is not enough to estimate and
detect the climate shift “WMT’ change driven trend. However, comparing climatologies based on the
two time periods: 1981-2004 (pre-WMT) and 2005 -2017 (post-WMT) has already produced important

results. Notable changes have been found in nutrient distribution after the WMT at various depths.

The results support the tendency to a relative increasing load of inorganic nutrients to the WMED and
possibly relate the change in general circulation patterns, changes in deep stratification and warming

trends, however, this remains to be evidenced.

The BGC-WMED is a regional climatology that has allowed the identification of a substantial

enrichment of the waters, except for the Tyrrhenian Sea where the water column is depleted in nutrients
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with respect to the western areas of the WMED. The climatology gave information about the spreading

of inorganic nutrients inside the WMED at surface, intermediate and deep layers.

A future work will suggest a better understanding of the change in nutrients related to water masses

associated with ventilation rate, a climatological field along isopycnal surfaces instead of depths and the

correlation between potential temperature and nutrients.

Appendix A: Additional information about cruise metadata

Table Al. Summary table of the analytical techniques and instruments used for nutrient analysis.

Data source

Analytical methods

Reference

MEDATLAS

-flow analysis system (autoanalyser)
equipped with Chemlab

-technicon colorimeters.

http://www.ifremer.fr/mater/dataset_i/c
hemitt.html

SEADATANET including
MOOSE-GE

-flow analysis system (autoanalyser)
equipped with Bran-Luebbe Seal

https://www.obs-
banyuls.fr/fr/observer/moose.html

https://mistrals.sedoo.fr/?editDatsld=1
351&datsld=1351&project name=MO
OSE

CNR_DIN_WMED_20042017

-continuous-flow system multichannel
(Auto Analyzer Bran+Luebbe I11
Generation

-Ol-Analytical (Flow Solution I11) flow-
segmented

-Systea discrete analyzer EasyChem Plus

Belgacem et al., (2020)
https://doi.org/10.5194/essd-12-1985-
2020

Other cruises:
Medship programs;
GLODAPvV2; CARIMED

nutrient analysis strictly followed the
recommendation of the World Ocean
Circulation Experiment (WOCE) and the
GO-SHIP protocols

example: Quaatro auto-analyzer from
SEAL analytics.

Schroeder et al., (2015)

Tanhua et al., (2013)
https://doi.org/10.5194/essd-5-289-
2013

Olsen et al., (2016)

Hydes et al., (2010)

864

865
866

Appendix B: Additional information about quality assurance

Table A2. Summary of the quality check analysis quality assurance of 1981-2017 climatology.

RMS Nitrate  Phosphate  Silicate
Pre-quality check 0.848 0.05 0.763
Post-quality check 0.838 0.049 0.757
Number of suspected points 10 6 2
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Figure Al. Overview of residual distribution and quality check values for Nitrate gridded fields
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Figure A2. Scatterplot of residual as function of nitrate values (1981-2017) colored by the quality
check values. The red dots are the suspect observation (points with gcvalues > 40).
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Figure A3. Position of the suspect points (nitrate climatology, 1981-2017).
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Appendix C: Additional information about temporal comparison
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Figure A4. (a) Difference field at 100 m between the 1981-2004 climatology and the 2005-2017
climatologies; (b) Difference field at 300 m (c) Difference field at 1500.
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