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Abstract 11 

Many nations are challenged by landscape fires. A confident knowledge of the area and distribution of burning is 12 

crucial to monitor these fires and to assess how they might best be reduced. Given the differences that arise using 13 

different detection approaches, and the uncertainties surrounding burned-area estimates, their relative merits 14 

require evaluation.  Here we propose, illustrate, and examine one promising approach for Indonesia where 15 

recurring forest and peatland fires have become an international crisis. 16 

Drawing on Sentinel-2 satellite time-series analysis, we present and validate new 2019 burned-area estimates for 17 

Indonesia. The corresponding burned-area map is available at: https://doi.org/10.5281/zenodo.4551243 (Gaveau 18 

et al., 2021). We show that >3.11 million hectares (Mha) burned in 2019. This burned-area extent is double the 19 

Landsat-derived Official estimate of 1.64 Mha from the Indonesian Ministry of Environment and Forestry, and 20 

50% more that the MODIS MCD64A1 burned-area estimate of 2.03 Mha. Though we observed proportionally 21 

less peatland burning (31% versus 39% and 40% for the Official and MCD64A1 products, respectively), in 22 

absolute terms we still observed a greater area of peatland affected (0.96 Mha) than the Official estimate (0.64 23 

Mha).  This new burned-area dataset has greater reliability as these alternatives, attaining a user’s accuracy of 24 

97.9% (CI: 97.1%-98.8%) compared to 95.1% (CI: 93.5%-96.7%) and 76% (CI: 73.3%-78.7%), respectively.  It 25 

omits fewer burned areas, particularly smaller- (<100 ha) to intermediate-sized (100 ha -1000 ha) burns, attaining 26 

a producer’s accuracy of 75.6% (CI: 68.3%-83.0%) compared to 49.5% (CI: 42.5%-56.6%) and 53.1% (CI: 27 

45.8%-60.5%), respectively. The frequency–area distribution of the Sentinel-2 burn scars follows the apparent 28 

fractal-like power-law or “pareto” pattern often reported in other fire studies, suggesting good detection over 29 

several magnitudes of scale. Our relatively accurate estimates have important implications for carbon-emission 30 

calculations from forest and peatland fires in Indonesia.  31 

 32 

1. Introduction 33 

Accurate burned area maps are key to characterizing landscape fires, clarifying emissions, and identifying the 34 

probable causes. Such information is needed to target interventions, to assess policies and practices intended to 35 

reduce or control fires, such as law enforcement and restoration of fire-prone degraded lands, and to measure 36 

progress to international climate commitments (Sloan et al., 2021). Here, we focus on Indonesia where recurring 37 

forest and peatland fires have become an international crisis (Tacconi, 2016). These concerns arise from the large 38 

carbon emissions associated with these fires, and the impact of associated aerosol emissions for human health in 39 

the wider region (Van der Werf et al., 2008;Marlier et al., 2013). Although fires have occurred locally in Southeast 40 

Asia for millennia, they are increasingly frequent in Indonesia’s disturbed forests and deforested peatlands (Field 41 

et al., 2009;Gaveau et al., 2014). The causes and motivations of fire use can be complex (Dennis et al., 2005), but 42 

many are lit to create or maintain agricultural land (Gaveau et al., 2014; Adrianto et al., 2020). Most fires occur 43 

during drier months (July to October) and the threats are greatly heightened during years of anomalously low 44 

rainfall (Sloan et al., 2017;Field et al., 2016).  During 2015, a strong El Niño-induced drought year,  fires burned 45 

an estimated 2.6 million hectares (Mha) according to official estimates (Sipongi, 2020). Although 2015 burning 46 

was approximately half as extensive as 1997, the most severe El Niño and fire season on record (Fanin and Werf, 47 

2017), about 50% more peatlands burned (Fanin and Werf, 2017). The 2015 fires emitted between 0.89 and 1.5 48 

billion tons of CO2 equivalent  (Huijnen et al., 2016; Lohberger et al., 2018; Van Der Werf et al., 2017), 49 

representing about half of Indonesia’s greenhouse gas emissions for that year (Gütschow et al., 2019). In 50 

Palangkaraya, the capital city of Central Kalimantan province, daily average particulate matter (PM10) 51 

https://doi.org/10.5281/zenodo.4551243
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concentrations often reached 1000 to 3000 µg m-3 amongst the worst sustained air quality ever recorded worldwide 52 

(Wooster et al., 2018). Over half a million people suffered respiratory problems in the aftermath, and between 53 

12,000 and 100,000 premature deaths were estimated (Koplitz et al., 2016;Crippa et al., 2016).  Other impacts 54 

include loss and degradation of habitats with high conservation values, and the associated consequences for 55 

impacted wildlife (Harrison et al., 2016). 56 

 57 

In response to the catastrophic 2015 fires, the Indonesian government instituted several ambitious schemes 58 

including fire bans enforced by dedicated command posts (Sloan et al., 2021) and a national program of peatland 59 

restoration (Carmenta et al., 2020).  Despite the investment in these approaches and measures, and initial success, 60 

severe burning struck Indonesia again in late 2019. While Sloan et al. (2021) suggest that 2019 fire activity was 61 

lower than expected given the severe drought conditions, the total number of MODIS active-fire detections in late 62 

2019 on peatlands was still amongst the greatest recorded since 2001 (Sloan et al., 2021). However, counts of 63 

active-fire detections don’t provide estimates of area burned (Tansey et al., 2008) and for 2019 such estimates 64 

remain uncertain. 65 

 66 

Those wishing to assess and monitor burned areas have various approaches to consider. Several global burned 67 

area products generated using coarse-resolution satellites (>250 m) can be applied over Indonesia. These include 68 

the FireCCI41 product derived from Envisat-MERIS (Alonso-Canas and Chuvieco, 2015), the FireCCI51 and 69 

MCD64A1 products derived from TERRA&AQUA-MODIS (Giglio et al., 2018; Lizundia-Loiola et al., 70 

2020), the FireCCILT11 product derived from AVHRR (Otón et al., 2021) and the C3SBA10 product derived 71 

from Sentinel-3 (Lizundia-Loiola et al., 2021). Currently, the MCD64A1 (collection 6), based on MODIS 500 m 72 

bands, is considered one of the most accurate global products (Chuvieco et al., 2019), with omission and 73 

commission errors of 40% and 22% globally for the ‘burned’ class (Giglio et al., 2018). This validation is based 74 

on independent globally distributed visually interpreted reference satellite data, however none over Indonesia. 75 

These coarse-resolution datasets generally omit small-scale fires and, thus, the reported burned area is 76 

underestimated (Ramo et al., 2021). This has motivated research in the use of medium-resolution satellites (10 to 77 

30 meters) such Sentinel-1 (Lohberger et al., 2018 in Indonesia), Sentinel-2 (Chuvieco et al. 2018 in Sub-Saharan 78 

Africa), and the Landsat constellation (Hawbaker et al., 2020 in North America) to produce more detailed burned 79 

area maps. Lohberger et al. (2018) reported 4.6 Mha burned in 2015 in Indonesia, nearly double the estimate of 80 

2.6 Mha from the Indonesian Ministry of Environment and Forestry (MOEF), using visual interpretations of time-81 

series Landsat-8 imagery (Sipongi, 2020).  82 

 83 

For year 2019, the MOEF (hereafter ‘Official estimate’) estimated that 1.64 Mha burned  (Sipongi, 2020), while 84 

the MCD64A1 (collection 6) indicated 2.03 Mha. The MCD64A1 product omits smaller fires because of the 85 

coarse 500-m spatial resolution and thus likely overlooked many localized events. The Landsat imagery 86 

underlying the Official estimates are, while finer scale, observed every 16 days at best (typically much less due to 87 

cloud and smoke), meaning that many burns may remain undetected.  Also, smaller-scale and/or dispersed fire 88 

activity may be underestimated, considering the challenges of their visual interpretation and delineation.  Visual 89 

interpretation entails a manual delineation of burns perimeters, which yields accurate results for large burn 90 

mapping at local scales, but is very time consuming at large spatial scales, particularly when mapping small fires.  91 

A thorough accuracy assessment is also not available for the Official burned-area products. Given the unknown 92 
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errors around burned-area estimates, and the differences between them, the accuracy, and merits of different 93 

mapping approaches over Indonesia require formal examination.   94 

 95 

Here, we present new and validated 2019 burned-area estimates for Indonesia using a time-series of the 96 

atmospherically corrected surface reflectance multispectral images (level 2A product) taken by the Sentinel-2 A 97 

and B satellites.  With higher spatial resolution (20-m) and more frequent observations (5-day revisit time), the 98 

Sentinel-2A and B satellites offer relatively comprehensive and accurate burned-area mapping (Huang et al., 2016; 99 

Ramo et al., 2021). We used the Google Earth Engine (Gorelick et al., 2017), thus permitting wide application.  100 

We also developed an independent reference dataset to compare the accuracy of our estimate against the Official 101 

and MCD64A1 burned-area maps. Given the lack of objectively distributed ground truthing, we sought ways to 102 

extract reference sites by visually detecting a smoke plume, burn, or heat source (flaming front, or hotspot) from 103 

the archive of original Sentinel-2 images.  Finally, we examined differences in terms of burn-size frequency 104 

distributions among these three burned-area estimates to examine spatial patterns. 105 

 106 

2. Methods 107 

2.1. Summary of methods 108 

A burned area is identified by alteration of vegetation cover and structure along with deposits of char and ash. We 109 

mapped such areas using a change-detection approach, i.e. by comparing Sentinel-2 infrared signals recorded 110 

before and after a burning event (Liu et al., 2020). We analyzed a time-series of the Normalized Burned Area 111 

Ratio (see section 2.2) to assemble two national composite images depicting the spectral condition of vegetation 112 

shortly before and shortly after a disturbance (Figure 1). These composites represent a convenient way to capture 113 

the entire burned landscape stored in just two image files. Although we refer to these images as “pre- and post-114 

fire composites”, they also capture damage due to other causes, for example a cutting event (e.g. mechanical 115 

conversion to agriculture, to timber plantation, to roads, population centers, mining or natural timber harvesting), 116 

a disease, strong winds, floods, or landslides (Gaveau et al., 2021). After the production of the pre- and post-fire 117 

composites, we used a “Random Forest” classification model (see section 2.3) trained on visually identified pairs 118 

of pre- and post-fire pixels to confirm if the spectral changes indicating vegetation damage corresponded to a 119 

burning event. Third, three independent interpreters assembled a reference dataset by visually identifying burns 120 

in the original time-series Sentinel-2 images. Fourth, we assessed our burned-area map, as well as the Official and 121 

MCD64A1 burned-area maps, against the reference dataset to gauge the reliability and accuracy of the three 122 

burned-areas products.  Finally, we tested whether, and how, the three burned-area estimates differed in their 123 

tendencies to incorporate burns of different sizes. 124 

 125 

2.2. Pre- and post-fire Sentinel-2 national composite images of 2019 126 

Here, we describe our automated procedure to create a national pair of pre- and post-fire composites from 47,220 127 

original Sentinel-2 images acquired between 01 November 2018 and 31 December 2019. Prior to creating the 128 

composites, we removed non-valid pixels using the Sentinel-2 imagery quality flag (this flag provides information 129 

about clouds, cloud shadows, and other non-valid observations) produced by the ATCOR algorithm and included 130 

in the atmospherically-corrected surface reflectance multispectral images  of the Sentinel-2 A and B satellites 131 

Surface Reflectance products (Level 2A product) (Fletcher, 2012).  132 
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A time series of the Normalized Burned Ratio (NBR), given as (NIR-SWIR) / (NIR+SWIR), represents a 133 

convenient index to detect the approximate day when the vegetation was damaged. Before damage, vegetated 134 

pixels register high NBR values close to 1 because reflectance in near-infrared spectrum (NIR; wavelength=0.842 135 

µm; Band 8) is high due to the chlorophyll content of the vegetation (open circles before a disturbance, in this 136 

case a fire, in Figure 2). The NBR of damaged vegetation typically declines abruptly towards 0 (or ≤ 0 for severe 137 

damage) because the NIR reflectance declines due to chlorophyll and leaf destruction, while the reflectance of 138 

short-wave-infrared spectrum (SWIR; wavelength = 1.610 µm or 2.190 µm; Band 11 or Band 12) increases due 139 

to dead or charred material and exposed ground cover. NBR values ≤ 0 are often apparent for several weeks after 140 

severe burning or clear-cutting. We analyzed NBR time series for approximately 4.73 billion pixels (1 pixel =0.04 141 

ha; Indonesia’s landmass 189 Mha). We describe the procedure to detect drops in the NBR time series in the 142 

following paragraph.  143 

We detected drops in NBR time series with a moving-window approach. A moving window scanned NBR values 144 

three months prior and one month after the central day of the window. The output value of the moving window 145 

(blue dots in Figure 2) is the difference between average NBR values observed before and after the central day. 146 

The NBR average after the central day included the value at the central day. The difference between the average 147 

NBR values was estimated every 2 days in the time series, skipping the day of year that was an odd number (day 148 

of year equal to 2, 4, 6, 8...). Although Sentinel-2 has a temporal resolution of 5 days, the overlap between satellite 149 

passes may increase the temporal resolution regionally up to 2 days at the equator. Thus, we estimated the NBR 150 

difference (dNBR) every 2 days instead of 5 days. Taking this into consideration, our ‘disturbance’ date estimate 151 

has a maximum temporal precision of 2 days in specific regions, but generally 5 days when satellite passes do not 152 

overlap. The day of the year when dNBR reached a maximum corresponded to the moment NBR dropped most 153 

markedly in each pixel, flagging a disturbance to the pixel’s vegetation potentially caused by fire. At this 154 

date, we created a pair of pre- and post-fire pixels by selecting the median Red, NIR and SWIR spectral values 155 

acquired three months before and one month after the disturbance.  We selected a one-month window rather than 156 

a three-month window to compute the post-fire image to maximize our chances to detect recent burns, given that 157 

burned areas on degraded lands and savanna tend to re-green rapidly. We repeated this procedure for 158 

approximately 4.73 billion pixels to assemble two national composite images depicting the spectral condition of 159 

vegetation shortly before and shortly after a disturbance (Figure 1). 160 

2.3. Supervised burned/unburned classification. 161 

We used the Random Forest supervised classification algorithm (Breiman, 2001),  available via the Google Earth 162 

Engine to determine whether the spectral changes detected by the pre- and post-fore composites corresponded to 163 

a burning event, and subsequently classify burned areas. Supervised classifiers require ‘training data’, that is, 164 

exemplary spectral signatures of ‘burned’ and ‘unburned’ lands in the present case, to guide the algorithm to 165 

reliably classify the target classes. The spectral signatures (i.e., the reflectance values in the pre- and post-fire 166 

composite images) are the predictive variables of the classification model. The features used in the Random Forest 167 

are the bands of Sentinel-2 in the pre- and post-fire composites plus their respective NBR index. We excluded the 168 

bands at 60-meter spatial resolution (bands B1, B9, and B10) since these bands present a low spatial resolution 169 

for the aim of the study. Therefore, we used a total of 22 features: the NBR and bands B2, B3, B4, B5, B6, B7, 170 

B8, B8A, B11, and B12 of the pre and post-composites. 171 

We used a 10-fold cross-validation to assess the accuracy obtained with a set of different parameters in the 172 

Random Forest. The splitting ‘train-test’ in the cross-validation was done only with the training dataset, since the 173 
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reference dataset used for the final validation must be completely independent of the training and model 174 

parametrization. The two parameters that we tuned were the number of trees and the minimum leaf size. Random 175 

Forest is an ensemble classifier composed of several Decision Trees; the parameter number of trees represents the 176 

number of Decision Trees in the Random Forest. The minimum leaf size represents the minimum number of 177 

samples that result from a splitting node at the Decision Tree. We found that a minimum leaf size equal to 1 178 

performed the best on average and, thus, we used this value. We selected a conservative number of trees, 50, to 179 

ensure the good performance of the Random Forest.  We did not set any limit to the maximum nodes in each tree 180 

and the variable to split in the Random Forest was set to the square root of the number of variables, which is the 181 

common practice among machine learning practitioners and the default configuration in Google Earth Engine. 182 

The required number of points used to train our supervised classification model (here a Random Forest) depends 183 

on the spectral separability of the classes (in our case two classes: “burned” and “unburned”). The pixels that 184 

show a burn present a singular spectral signature and, for this reason, it is necessary to collect a large amount of 185 

training points. We collected training points until we were satisfied with the results of the classification by visually 186 

comparing the resulting burned area map against the pre- and post-fire composites. We trained the Random Forest 187 

algorithm using 988 independent training pixels (Supplementary Figure S1 for locations), being point coordinates 188 

labelled as either ‘burned’ (317 points) or as ‘unburned’ (671 points). These pixels were selected by visual 189 

interpretation of the pre- and post- fire image composites. Burned areas show a distinctive dark (low albedo) 190 

brown/red color in the SWIR-NIR-Red composite image when displayed as Red-Green-Blue channels (Figure 1). 191 

The training pixels were collected across landcover types (Supplementary Table S1 for landcover types) to ensure 192 

the representativeness of the training dataset and the satisfactory generalization of the classification model across 193 

Indonesia. We selected training pixels focused explicitly on medium-to-high burn severity, i.e. areas where the 194 

distinctive red color in the SWIR-NIR-Red composite image looked the darkest, indicating that all or most of the 195 

vegetation/soil burned.  This aspect of the method minimized “false positives” but may exclude areas with implied 196 

low-burn severity or low-visibility impacts, such as understory fires (below an intact forest canopy, see e.g., van 197 

Nieuwstadt and Sheil, 2005). By prioritizing confident identification of fires over absolute burned-area coverage, 198 

as well as by duly validating our estimates, this approach avoids the problems caused by frequent false positives  199 

(Rochmyaningsih, 2020). 200 

We assessed burn severity during algorithm training based on visual interpretation. RGB composites with bands 201 

11 (SWIR wavelength = 1.610 µm), 8 (NIR wavelength=0.842 µm) and 4 (RED wavelength = 0.665 µm) provide 202 

information about the severity of the fire; burn with high severity present a dark (low albedo) red/brown color 203 

(Figure 1). We included the histogram of dNBR (NBRpostfire - NBRprefire) for the 317 training points labelled 204 

‘burned’ in Supplementary Figure S2 to corroborate that the ‘burned’ training samples were selected in areas with 205 

medium to high severity fires. Eighty one percent (256) of ‘burned’ training points (317) had dNBR values 206 

(NBRpostfire - NBRprefire) < - 0.44, which represents the threshold for medium to high severity burns according to 207 

the proposed classification table of the United States Geological Survey (USGS). 208 

 209 

2.4. Burned-area map validation. 210 

The Gold standard is to validate the map against a sufficiently large reference dataset developed based on ground 211 

visits to ‘burned’ and ‘unburned’ sites sampled objectively and randomly across the region of interest (Olofsson 212 

et al. 2014). We sought alternative ways to generate the reference dataset because the sample of GPS locations of 213 
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‘burned’ locations collected by Indonesian government were not available. Given the laborious scale of this 214 

validation exercise, we validated our burned-area estimates for only the seven provinces prioritized by the 215 

Indonesian Government for restoration of fire-prone degraded lands (Kalimantan Barat, Kalimantan Tengah, 216 

Kalimantan Selatan, Papua, Jambi, Riau, and Sumatra Selatan). These provinces are also those that typically burn 217 

most extensively.  We used visual interpretations of the original time-series Sentinel-2 imagery acquired every 5 218 

days over 2019 at 1298 randomly selected sites (one site = one pixel of 20 m x 20 m) to detect flaming fronts (fire 219 

hotspots) and other signs of burning (smoke and charred vegetation). We used these reference data to calculate 220 

the overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA) with a 95% confidence interval, 221 

of all three burned area maps (i.e., our Sentinel-derived burned-area classification, the official Landsat-based 222 

burned-area map, and the MCD64A1 product) following “good practices” for estimating area and assessing 223 

accuracy reported by Olofsson et al. 2014. We use the term ‘mapped burned-area’ for the area classified as burned 224 

by each burned-area map. We employ the term ‘corrected burned-area’ for the estimation of the burned area 225 

based on the validation of a given burned-area map against the reference dataset, following the practices in 226 

Olofsson et al. 2014. For instance, a high omission rate in the ‘burned’ class of a given burned-area estimate would 227 

potentially lead to a lower mapped area than a corrected area for that estimate, while a high commission rate 228 

would potentially lead to a higher mapped area than the corrected area. The corrected area represents an 229 

estimation of the actual burned area for year 2019 computed for each of the three datasets separately. The accuracy 230 

of the burned area map, and the sample size of the reference dataset, play a role in the confidence interval of 231 

corrected area estimate.  Lower map accuracy and smaller sample size mean wider confidence intervals. 232 

 233 

2.4.1. Reference site sampling design 234 

Good practices for estimating area and assessing accuracy, as reported in Olofsson et al. (2014), assumes a simple 235 

random sampling or a stratified random sampling in the generation of the reference dataset. In our study, we 236 

employed a stratified-random sampling approach to ensure an acceptable sample of ‘burned’ reference sites.  Our 237 

stratified approach was necessary given that the ‘burned’ class was rare over the study area: the area of seven 238 

provinces of interest is 87.6 Mha and the combined area detected as burned by all three datasets represented only 239 

3.1% of this area.  240 

For the generation of the 1298 reference sites (see Supplementary Table S4 for associated landcover types one 241 

year before fire), we randomly sampled (i) 419 sites across from the areas classified ‘burned’ by the three datasets 242 

(red area in Figure 3a; Supplementary Table S2), and (ii) 879 sites in areas classified as ‘unburned’ by all three 243 

datasets hereafter denoted U (grey area in Figure 3a). This sample size is deemed sufficient and comparable to 244 

other map assessments at larger scale (Stehman et al., 2003;Olofsson et al., 2014). 245 

This initial sample of 1298 total sites present a shortcoming for direct pair-wise comparisons of between the 246 

reference dataset and each of the three burned-area maps individually.  Specifically, sampling densities in the 247 

reference dataset were far greater in areas classified ‘burned’ by the three datasets (red area in Figure 3a) compared 248 

to the area deemed ‘unburned’ by all three datasets, hereafter denoted U (grey area in Figure 3a).  Consequently, 249 

for the validation of a given burned-area dataset, its total number of ‘unburned’ reference sites would be over-250 

sampled upon defining ‘unburned’ reference sites with reference to U as well as areas classified as burned uniquely 251 

by one of the other two maps (cyan areas in Figure 3b, c, d, hereafter denoted as U’).  Such over-sampling of 252 

reference sites in the realm of U’ would violate the stratified-sampling approach described in Olofsson et al. 253 
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(2014) and would lead to an erroneous accuracy assessment. To achieve a balanced stratified sampling of reference 254 

sites across ‘burned’ and ‘unburned’ areas of each dataset, we generated three subsamples from the initial 1298 255 

reference sites (red areas in Figures 3e,f,g) and used these subsamples to validate each dataset. These three 256 

subsamples were generated by randomly excluding reference sites from the realm of U’ in Figure 3b, c and d, 257 

respectively, until the density of reference sites in U’ equaled the density of the larger unburned area U. For 258 

instance, for the validation of the Official burned-area map, the density of reference sites in U was 10.36 sites/Mha, 259 

and the extent of U’ was 1.551 Mha, such that the number of reference sites to retain in U’ for this validation was 260 

given as 1.551 Mha x 10.36 sites/Mha =16 sites.  The calculations of the number of sites removed from each 261 

subsample are illustrated in Supplementary Table S3.   The final, adjusted, stratified subsamples of reference sites 262 

used for validation is given in Table 1. 263 

2.4.2. Interpretation of the burned-area reference dataset 264 

We developed a series of scripts in the Google Earth Engine to streamline the visual interpretation of the reference 265 

sites. Specifically, we adapted a script written by (Olofsson et al. 2014) to rapidly scan the time-series of original 266 

Sentinel-2 images in visible and infrared bands and thus visually detect either a smoke plume, a burn, or a heat 267 

source (flaming front), and determine whether and when in 2019 a reference site burned. The script enabled the 268 

interpreter to interactively track the evolution of NBR values and patterns over the 2019 time series of 5-day 269 

images.  Reference sites were investigated for burning wherever a marked drop in the NBR time series was 270 

detected, indicating a disturbance in the vegetation. For reference sites where a disturbed area was observed, we 271 

subsequently reviewed the last few images before the drop in NBR and the first few images after the drop. 272 

Interpreters looked for three distinct signs of burning in these images to confirm them as burned: (i) smoke plumes; 273 

(ii) flaming fronts – that is, a line of moving fire where the combustion is primarily flaming; and (iii) rapid changes 274 

in color from ‘green’ to ‘dark red’, characteristic of a transition to charred vegetation (Figure 4). If rapid changes 275 

in color were observed over the reference site, with at least one direct feature (smoke or flame) in its vicinity, this 276 

indicated a fresh burn, and the reference site was declared ‘burned’. If rapid changes in color from ‘green’ to ‘dark 277 

red’ were observed without smoke or flame, the reference site was also declared ‘burned’. If no change in color 278 

was observed, with at least one direct feature (smoke or flame) in its vicinity, the reference site was declared 279 

‘unburned’. If none of these three features were observed, the reference site was declared ‘unburned’. 280 

   281 

Three interpreters independently reviewed the time-series of original Sentinel-2 images and associated NBR 282 

trends for all reference sites (N=1298) (see Supplementary Figure S3 for a frequency distribution of burn sizes of 283 

the Sentinel-2 burned-area map, for select spatially coincident ‘burned’ reference sites). To reduce uncertainties 284 

associated with the interpretation of the imagery, the results of the three interpreters were compared to each other. 285 

If all three interpreters recorded the same interpretation and timing of a burning event for a given reference site, 286 

their interpretations were retained. If one or more interpreters disagreed, all interpreters reviewed the data and 287 

resolved discrepancies by consensus. In some cases, it was difficult to reconcile disagreements because of poor 288 

image quality or because of uncertain spectral patterns.  Therefore, if possible, interpreters also explored other 289 

satellite images (e.g. Landsat) to detect the presence of fire and resolve disagreements for a given reference site.  290 

The sites in which the three interpreters disagreed were ultimately excluded (70 sites) from the reference dataset. 291 

For these excluded sites, disagreement typically resulted from uncertainties over the boundary of burned or 292 

unburned areas, or because the imagery was not clear enough. The sample size of reference points explored here, 293 

N=1298, excludes the discarded points of disagreement in question. 294 
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We created a second script to generate snapshot images (see examples in Figure 4) depicting infrared spectral 295 

conditions, shortly before and shortly after a fire, as well as the corresponding image dates. Interpreters recorded 296 

and geotagged a snapshot of before and after fire condition at every reference site (for which a burned area was 297 

detected) to enable third-party reviewers to check the consistency and validity of interpretations on site-by-site 298 

basis (See Data Availability).  299 

 300 

2.4.3. Burn size comparisons. 301 

We tested whether, and how, the three burned-area estimates differed in their tendencies to incorporate burns of 302 

larger or smaller sizes.  Specifically, we compared the frequency distributions of burned areas (or “scars”) amongst 303 

the three estimates to test for similarity and qualify any distinguishing differences on the part of our Sentinel-304 

based estimate.  Differences amongst burn-scar size frequency distributions imply that a given burned-area 305 

estimate is inclusive of burn scars of a given size, regardless of absolute differences to the total burned area 306 

between the estimates.  Inter-estimate comparisons of burn-scar size frequency is effectively a test of whether 307 

each estimate captures the same realms of total fire activity.  Significant inter-estimate differences imply greater 308 

or lesser inclusion of a given realm of fire activity – e.g., small-scale agricultural burning, plantation fires, extreme 309 

wildfires – thus indicating bias (or lack thereof) without defining such realms explicitly. 310 

For all three estimates, we employed the Kruskal-Wallis H test of differences with respect to the ‘location’ of 311 

frequency distributions along a continuum of burn sizes.  Given significant inter-estimate differences according 312 

to this three-way test, we tested for two-way differences in the shape and location of the burn-size frequency 313 

distribution (Kolmogorov-Smirnov test), as well as two-way differences in medians (Mann-Whitney U test), 314 

between our Sentinel estimate and either the Official or MODIS estimate individually.  Testing for similarity over 315 

increasingly large scar-size cohorts clarified the degree to which significant inter-estimate differences were 316 

attributable to the inclusion or omission of a given cohort. 317 

We excluded burns <6.25 ha because this is the minimum observable burn-size of the Landsat-8 Official estimates 318 

due to the challenging nature of visual interpretations at such scales. We note that the minimum size of the MODIS 319 

data is 25 ha, hence for comparison with MCD64A1 product we used a 25-ha threshold.  In relation to Sentinel 320 

and MODIS estimates, for which burned areas were originally mapped as arrays of pixels, we defined a burn to 321 

be any array of pixels contiguous across cardinal directions but not diagonals to render the resultant burned-area 322 

map conservative with respect to patch size (Figure S4).  For the Official estimate, burns are manually delineated 323 

via visual interpretation by interpreters from the Government of Indonesia.  All burns are spatially and temporally 324 

discrete, such that burns of a given estimate that overlap spatially but not temporally are considered separate.  325 

 326 

3. Results 327 

 328 

3.2. Increased Burned-Area Estimates 329 

Our Indonesia-wide burned-area estimate, based on the classification of the pair of pre- and post-fire Sentinel-2 330 

composites, are larger than the Official estimates as well as the MODIS MCD64A1 to a lesser degree.  We estimate 331 

3.11 million hectares (Mha) burned in 2019 across Indonesia, of which 31% were on peat (Figure 5). The extent 332 

of peatlands were defined using a national dataset from the Ministry of Agriculture (Ritung et al., 2011).  In 333 
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contrast, Official burned-area estimates, based on visual interpretation of Landsat-8 imagery, report only about 334 

half as much burned area, at 1.64 Mha, of which 39% was on peat.  Our estimates too are greater than the MODIS 335 

MCD64A1 product, which reports 2.04 Mha burned in 2019, or two-thirds of our estimate, with 40% on peat.  336 

The greater burning extent and proportionally lesser extent of peatland burning according to our estimates suggest 337 

that our estimates are particularly more inclusive of burning across mineral soils. 338 

In the seven provinces for which we assessed accuracy, our Sentinel-2 estimates, and the Official Landsat-8 339 

estimates both report excellent user’s accuracies (UA) for the ‘burned’ class, at 97.9% (CI: 97.1%-98.8%) and 340 

95.1% (CI: 93.5%-96.7%) respectively, indicating a mere 2.9%-4.9% commission-error rate (Table 2, 341 

Supplementary Table S5).  The producer’s accuracies (PA) are comparatively lower for both datasets, but notably 342 

less so for our estimates, at 75.6% (CI: 68.3%-83.0%) and 49.5% (CI: 42.5%-56.6%) for our estimate and the 343 

Official dataset, respectively.  In other words, for any burned area in our reference dataset, there is a 75.6% chance 344 

that it will be correctly mapped as burned by our estimate, compared to only a 49.5% for the official estimate.  345 

This is in keeping with the greater tendency of the Sentinel-2 estimate to capture more smaller and intermediate-346 

size burns.  The MCD64A1 data had a much lower UA for the burned class, at 76.0% (CI: 73.3%-78.7%), as well 347 

as a much lower PA for the burned class, at 53.1% (CI: 45.8%-60.5%), qualifying it as the least reliable and 348 

accurate of the three estimates notwithstanding comparable high overall accuracy (Table 2).    349 

All three burned-area maps underestimate the true burned area extent, as per their respective PA figures, but our 350 

Sentinel-based map has the smallest shortfall and maintained user accuracy. The corrected burned area of the 351 

seven provinces is higher than the mapped area for all the three burned area maps. Again, however, our map area 352 

most closely approximates its corresponding corrected burned area (Table 2). Whereas our Sentinel-based mapped 353 

burned area indicates that 1.84 Mha burned in the seven provinces (or 59% of our total national estimated burned 354 

area), the corrected burned area is 2.38 Mha (CI: 2.14 Mha-2.61 Mha) (Table 2), for a discrepancy of 0.54 Mha. 355 

In contrast, the Official estimate indicates 1.19 Mha burned in the seven provinces (73% of its corresponding 356 

total), and a corrected burned area of 2.29 Mha (CI: 1.96 Mha-2.63 Mha), for a 1.1 Mha discrepancy. Likewise, 357 

the MCD64A1 dataset mapped 1.58 Mha burned in the seven provinces and has a corrected burned area of 2.27 358 

Mha (CI: 1.94 Mha-2.59 Mha), for a 0.69 Mha discrepancy. Although, we cannot extrapolate a corrected burned 359 

area across Indonesia, we are confident that more than 3.11 Mha burned in 2019.   360 

3.1. Burn size comparison. 361 

The Sentinel, Official and MCD64A1 estimates captured significantly distinct realms of fire activity, as 362 

represented by relative burn size frequencies (Figure S6).  The three estimates differ from one another most 363 

notably for small burns, however, they are statistically indistinguishable for burns > 5000 ha indicative of extreme 364 

fire activity (Table 3).  In other words, all three estimates capture very large burns (>5000 ha) equally well, and 365 

distinctions amongst the estimates concentrate amongst small (<100 ha), intermediate (100-1000 ha) and larger 366 

burns (1000-5000 ha), in decreasing order of degree as indicated by the magnitude of the test statistics in Table 3. 367 

Inclusivity of smaller and intermediate burned areas is the primary source of difference among estimates.  368 

Compared to Official or MCD64A1 estimates, the Sentinel estimate has a significantly greater relative frequency 369 

of small, burned areas (< 100 ha), especially amongst the smallest of these (Table 4).  This is indicative of a greater 370 

detection of small fires presumably characterized by small-scale agriculture fires and similar, small-scale 371 

controlled burning.  The Sentinel estimate similarly has a greater relative frequency of intermediate sized burns 372 

(100-1000 ha), but less acutely so, with inter-estimate differences being more moderate for the Official estimate 373 
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than the MCD64A1 estimate (Table 4, Figure 6, Figure S6).  For burns >1000 ha, the Sentinel estimate differs 374 

only relative to the Official estimate (Table 3), seemingly due to the latter’s underestimation of large and very 375 

large scars (Figure 6).  Note for instance the increasingly large divergence between the cumulative burned-area 376 

curves for the Sentinel-2 and the Official estimates in Figure 6 for burn areas > 1000 ha.  For very large burns (> 377 

5000 ha), two-way comparisons in Table 4 again report no significant statistical differences in burn-scar detection 378 

rates between the Sentinel and alternative estimates.  However, given the small sample of patches > 5000 ha, it is 379 

noteworthy that the Sentinel estimate captures more very large scars compared to Official estimates (n=56 vs 380 

n=16) and avoids critical omissions made by both Official, and MCD64A1, estimates for extremely large burns 381 

(>15,000 ha) on peatlands around Berbak National Park in Jambi Province, Sumatra (Figure 7). 382 

In summary, the greater overall burned-area estimate of our Sentinel data compared to the Official and MCD64A1 383 

alternatives reflects differences in the inclusion of smaller and intermediately sized scars.  The sum of all Sentinel 384 

burned areas that are individually <~860 ha equals the entirety of the Official burned-area estimate (Figure 6).  385 

The Sentinel-2 data exhibit a size-frequency pattern that approximates a near scale-free power-law (Figure 6). 386 

4. Discussion 387 

We developed a method that generates two national composite Sentinel-2 images depicting vegetation condition 388 

before and after burning in 2019 (Figure 1), and then classified this pair to extract burned areas using a Random 389 

Forest supervised classification algorithm. We developed a comprehensive validation protocol to strictly assess 390 

the reliability and accuracy of our product based on visual interpretation of dense time-series Sentinel-2 original 391 

images, and also applied this validation to the widely used global MODIS burned-area product (MCD64A1, 392 

collection 6) (Giglio et al., 2018) and to the Official burned-area product of the Indonesian Ministry of 393 

Environment and Forestry (MOEF) (Sipongi, 2020). 394 

Our estimate is the most reliable and accurate and therefore captures more of the 2019 total burned area, 395 

confirming that 20-m Sentinel-2 imagery  is better suited to widespread small-scale burning  in Indonesia (Huang 396 

et al., 2016), while it also captures large burn scars relatively thoroughly. The study finds similar omission and 397 

commission errors (47% and 24%) for the ‘burned’ class of MCD64A1 product as those presented globally (40% 398 

and 22%) (Giglio et al., 2018). The underestimation of total burned area according to the MCD64A1 product 399 

compared with our Sentinel-2 estimate is unsurprising, considering that the MODIS 500-m pixel resolution 400 

struggles to detect smaller fires (Giglio et al., 2018). Similar conclusions were reached by Ramo et al. (2021) 401 

when comparing the new ‘Small Fire Dataset’ derived using Sentinel-2 and the MCD64A1 product over Sub-402 

Sahara Africa (Chuvieco et al., 2018).  More surprising is the near 2:1 ratio by which the Sentinel-2 estimates 403 

surpass the Landsat-8 Official estimate.  Our examination shows that this difference reflects differential detection 404 

of small- (<100 ha) to intermediate-sized (<1000 ha) burn scars.  405 

The Sentinel-2 data exhibit a size-frequency pattern that approximates closer to a near scale-free power-law, or 406 

pareto distribution (Karsai et al., 2020;Falk et al., 2007). These patterns are typical of large-scale fire studies 407 

(Malamud et al., 1998). Both other methods yield an S-shaped curve with less area at smaller and larger sizes than 408 

captured in the Sentinel-2, indicating likely bias by omission over the entire range of scales and are not determined 409 

by image resolution alone (Figure 6). These results, with different frequency patterns arising from burns from the 410 

same regions in the same period, also highlight the danger in interpreting apparent burned-area patterns without 411 

careful consideration of the limitations and biases that arise from the methods used to map them—an issue that 412 

may not have always been sufficiently recognized in past assessments or policy.  413 
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Although both Sentinel-2 and Landsat-8 both observe the infrared wavelengths required to detect charred 414 

vegetation and have similar spatial resolutions (20 m x 20 m and 30 m  x 30 m, respectively), Sentinel-2 detects 415 

more burns because of the greater frequency of its coverage (five- versus sixteen-day revisit time).  Also, our 416 

method avails of the massive computational capabilities and automation of the Google Earth Engine, allowing us 417 

to analyze more images and thus map more and smaller burn scars and associated details than could even the most 418 

well-equipped team of visual interpreters.  419 

Despite high reliability that every burn scar detected on the map was valid (2.9% commission error rate), our 420 

method suffered a 24.4% omission error rate (burned areas that remained undetected).  These rates reflect 421 

necessary tradeoffs between commission and omission error in a context where conservative estimates are much 422 

preferred for environmental policy and monitoring.  We prioritized a low commission error rate (i.e. high user’s 423 

accuracy) over absolute burned-area coverage to address sensitivities (Rochmyaningsih, 2020). By hedging 424 

against commission errors, our approach omitted hard-to-detect events, including low-intensity burns, such as 425 

those that occur beneath the forest canopy on mineral soils (van Nieuwstadt and Sheil, 2005) or on savanna 426 

grasslands, which tend to re-green rapidly. While further work is required to clarify and refine the optimal levels 427 

of inclusivity and reliability, we emphasize that the production of before and after fire annual composite images 428 

is relatively straightforward for the user community, given the availability of both the necessary imagery and our 429 

Google Earth Scripts. 430 

While the accuracy assessment proved that our training dataset is valid for the classification of Sentinel-2 431 

composites for the year 2019 in Indonesia, this training dataset might not achieve equivalent accuracy for other 432 

years and regions. The pre- and post-fire composites might show different spectral changes under different 433 

conditions. For instance, high rainfall in 2020 influenced reflectance. Similarly, representative training points 434 

should be used in other regions. Those adapting these methods should ensure adequate local training data and 435 

validation.  436 

Doubts may persist concerning confident estimates of burned areas without extensive and costly ground-checks. 437 

Modern high-resolution remote sensing makes such on-the-ground checks less essential than in the past as burned 438 

areas are readily identified with good accuracy in modern high-resolution imagery such as that we used for our 439 

validation. The protocol developed here to generate a reference dataset based on visual inspection of dense (5-day 440 

revisit time) infrared satellite imagery is better suited than ground verifications of ‘burned’ and ‘unburned’ 441 

locations, because it allows the generation of extensive randomly distributed well characterised reference sites, a 442 

process too time-consuming and costly with field visits. The identification and quantification of less-readily-443 

detected burned areas, such as those under a closed forest canopy, remain a challenge but will require dedicated 444 

and targeted research and would not be solved by ground-checks alone. 445 

Accurate estimates of burned lands, in particular on peat, are central to addressing concerns about regional air 446 

quality, and to ambitious national climate-change atmospheric carbon reduction commitments heavily reliant on 447 

improved land/fire management (DGCC, 2019). Though we observed proportionally less peatland burning than 448 

the alternative burned-area estimates (31% versus 39% and 40% for the Official and MCD64A1 products, 449 

respectively), we observed more peatland burning absolutely (0.96 Mha) than the official estimate (0.64 Mha). 450 

Given this large discrepancy for peatland burning, we anticipate that our refined burned area product will enable 451 

others to better estimate carbon emissions from the 2019 fires in Indonesia. Combined with daily fire hotspots 452 

detected using thermal remote sensing, our detailed burned-area map can help identify ignition sites and estimate 453 
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fire duration more precisely, and therefore contribute to forensic analyses of burning across landholdings (Gaveau 454 

et al., 2017) as well as assess policies and practices intended to reduce or control ignition events and the scale of 455 

fires (Watts et al., 2019).  456 

The Indonesian government has shown some success in reducing fires (Sloan et al., 2021). Apparent reductions 457 

to fire activity would however ideally be qualified using our more inclusive and accurate burned-area estimates.  458 

Further, the Indonesian government must also develop improved protocols to quantify the resulting carbon 459 

emissions (DGCC, 2019). Our protocols for creating reliable pre- and post-fire composites are replicable. To 460 

further the adoption and reproduction of our approach, we have published all our protocols, scripts, applications, 461 

burned-area map, reference data, pre-fire and post-fire Sentinel-2 composite images, and various other outputs so 462 

that anyone may employ and revise them as they wish (see Data Availability).  463 

 464 

5. Code availability 465 

 The code that generates the Sentinel-2 pre- and post-fire composites can be found at: 466 

https://github.com/thetreemap/IDN_annual_burned_area_detection  467 

6. Data Availability 468 

All the data including pre- and post-fire composites, all three burned area products, and reference points with 469 

screenshots can be visualized online at this application portal: 470 

https://thetreemap.users.earthengine.app/view/burn-area-validation-simplified 471 

The Sentinel-based burned area map and reference dataset are freely available for download at: 472 

https://doi.org/10.5281/zenodo.4551243 (Gaveau et al., 2021). 473 

The dataset 2019_burnedarea_indonesia.shp contains the 2019 burned-area estimates that we developed for 474 

Indonesia using 20 m x 20 m time-series Sentinel-2 imagery. The reference dataset Reference_dataset.shp 475 

contains 1298 reference points that we assembled and used to validate all three burned area products described in 476 

this study. Each reference point includes attribute ‘REFERENCE’ to describe the values obtained by visual 477 

interpretation: either ‘NO’ unburned or ‘YES’ burned.  Each reference point has three attributes: ‘C_SENTINEL’  478 

‘C_OFFICIAL’ and ‘C_MCD64A1’ to describe the values of the classification of each burned area product: either 479 

‘NO’ unburned or ‘YES’ burned. Finally, each reference point has three additional attributes: ‘SENTINEL’, 480 

‘OFFICIAL’, and MCD64A1’ to describe which burned area product this reference point validates. The values 481 

are either 0: not validate or 1: validate. 482 

The MODIS MCD64A1 dataset was obtained at: https://developers.google.com/earth-483 

engine/datasets/catalog/MODIS_006_MCD64A1. The official burned area dataset from the Ministry of 484 

Environment and Forestry (MOEF) was obtained at: https://geoportal.menlhk.go.id/webgis/index.php/en/ 485 

The Sentinel-2 Level 2A used in this study are available at https://scihub.copernicus.eu/ and can be retrieved in 486 

Google Earth Engine. The Sentinel- 2 data are hosted and accessed in the Earth Engine data catalog (the links to 487 

the data are https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR). Data ingested 488 

and hosted in Google Earth Engine are always maintained in their original projection, resolution, and bit depth 489 

(Gorelick et al., 2017). 490 

https://github.com/thetreemap/IDN_annual_burned_area_detection
https://thetreemap.users.earthengine.app/view/burn-area-validation-simplified
https://doi.org/10.5281/zenodo.4551243
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD64A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD64A1
https://geoportal.menlhk.go.id/webgis/index.php/en/
https://scihub.copernicus.eu/
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
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 700 

Figures 701 

 702 

 703 

  704 

Figure 1. The pair of cloud-free pre-and post-fire Sentinel-2 composites shown over six locations in insets A, B, C, D, E, F 705 
(all insets have the same scale). The base Indonesia-wide imagery is the post-fire composite. Imagery displayed in false colors 706 
(RGB: short-wave infrared (band 11); Near infrared (band 8), Blue: red (band 4)). In this pair of composite images acquired 707 
shortly before and after fire a recently burned area will readily appear to have transitioned from ‘green’ to dark ‘brown/red’ 708 
tones. Areas cleared without burning appear bright pink. Areas covered with vegetation appear dark to bright green. 709 
 710 

 711 

 712 

 713 

 714 

 715 

 716 
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 717 

Figure 2. A schematic of Sentinel-2 time-series imagery, associated NBR values (open circles) and NBR differences between 718 
average NBR values observed before and after the central day of a 2-day moving window (blue dots). A burned pixel (20 m x 719 
20 m) is represented by a red rectangle at left. Before fire, the vegetated pixel registers positive NBR values (open circles). 720 
The NBR rapidly drops during the fire and, for a few weeks, the satellite observations show a negative NBR. The day of the 721 
year when the NBR difference observed via the moving window reaches a maximum corresponds to the moment NBR dropped 722 
(red line). This day marks a decline in the pixel’s vegetation, possibly reflecting a burning event. Over time, the vegetation 723 
regenerates (re-greening) and the spectral characteristic of charred vegetation fades. Regreening can happen within days in the 724 
case of savanna grasslands, or within months in the case of forest fires on peatlands. 725 
 726 
 727 
 728 
 729 
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 730 

Figure 3. Representation of the adjusted, stratified-sampling design for the validation of three burned area datasets (A, B, and 731 
C) against reference sites (dots). Panel (a) shows the stratified random sampling of reference sites (black points) over the 732 
combined burned area. Note that the density of samples is higher in the combined burned area than the unburned area. Panels 733 
(b), (c), and (d) show, in cyan, the area U’, being classified as unburned in a given dataset i but classified as burned in at least 734 
one other datasets ≠ i. For a given validation of A, B, and C, the sample points in the corresponding area U’ (panels (b), (c), 735 
(d)) were randomly excluded until the sampling density in the area U’ equaled that of the larger unburned area U (area in gray). 736 
Panels (e), (f) and (g) show the three final, adjusted, stratified subsamples of reference points derived from the initial sample 737 
of 1298 reference points.  Note that the relative areas and number of sites per class in Figure 3 do not correspond to the actual 738 
datasets being evaluated. 739 
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 740 

Figure 4. Two snapshots recording the pre-fire (left panel) and post-fire (right panel) original Sentinel-2 images acquired 741 
shortly before (13 September 2019) and shortly after (08 October 2019) fire for two reference sites (red squares). Imagery 742 
displayed in RGB: SWIR, NIR, RED. Sentinel-2 provides two SWIR Bands. Band 12=2.190 µm is more suitable than Band 743 
11=1.610 µm to detect the intense heat from flaming fronts. On these image pairs, one can see flaming fronts traveling towards 744 
the reference sites (red dot) from the north on the pre-fire images (left), and sharp changes in color from ‘green’ to ‘dark red’ 745 
characteristic of charred remains with continuing flaming on the post-fire images (right). Layout built using © Google Earth 746 
Engine. 747 
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 751 

Figure 5. 2019 burned areas (red) for Indonesia (grey area) derived using a time-series of the atmospherically corrected surface 752 
reflectance multispectral images (level 2A product) taken by the Sentinel-2 A and B satellites.  The spatial resolution of this 753 
map is 20 m x 20 m, and minimum mapping unit is 6.25 ha. The officially recognized peatlands extent is shown with the 754 
darkest shade of grey. A provincial breakdown of burned areas according to our map estimates and those of the Official and 755 
the MCD64A1 product are given in Figure S5.   756 
 757 

 758 

Figure 6. Cumulative national total burned area versus burned-scar area, for Sentinel-2, Landsat-8 (Official), and MODIS 759 
MCD64A1 burned-area estimates.  Note the logarithmic axis.  For a given segment of the x-axis between scar sizes X1 and 760 
X2, a difference in the slopes for any two estimates is indicative of inter-estimate differences in terms of inclusivity of scars 761 
between X1 and X2. 762 
 763 

 764 

 765 
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 766 

Figure 7. The pair of cloud-free pre-and post-fire Sentinel-2 composites over Berback National Park (black line) and 767 
surrounding areas in Jambi Province (see also Inset A, Figure 1), revealing large, burned areas around Berbak National Park 768 
(areas that have transitioned from ‘green’ to dark ‘brown/red’ tones). These large burn scars have been detected by VIIRS 769 
hotspots and by the Sentinel-2 burned area map, but some have been missed by the Official and MCD64A1 datasets. 770 
 771 
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Tables 785 

 786 

Table 1. Adjusted, Stratified Subsamples of Reference Sites to Validate Burned-Area Estimates. 787 

Burned-Area Estimate 

Reference Sites 

Total Reference Sites In Areas Classified as 

Burned 

In Areas Classified as 

Unburned (U & U’) 

Sentinel-2 (this study) 888 280 1168 

MODIS MCD64A1 891 242 1133 

Landsat-8 (Official) 895 182 1077 

 788 

Table 2. Accuracy assessment of each of the three burned area maps performed in seven Indonesian provinces (87.60 Mha) 789 
targeted for peatland restoration. The accuracy metrics were estimated with an initial total of 1,298 points randomly distributed 790 
using stratified sampling. The reported metrics are: 1) the overall accuracy (OA), the user’s accuracy (UA), and the producer’s 791 
accuracy (PA) with their 95% confidence intervals, and 2) the mapped burned area and the corrected burned area with their 792 
95% confidence intervals. 793 

   SENTINEL OFFICIAL MCD64A1 

OA (%)  99.3 (99.1, 99.6) 98.1 (97.8, 98.5) 98.4 (98.1, 98.8) 

  Burned 97.9 (97.1, 98.8) 95.1 (93.5, 96.7) 76.0 (73.3, 78.7) 

UA (%) Unburned 99.3 (99.1, 99.6) 98.6 (98.2, 99.0) 98.8 (98.5, 99.2) 

  Burned 75.6 (68.3, 83.0) 49.5 (42.5, 56.6) 53.1 (45.8, 60.5) 

PA (%) Unburned 99.9 (99.9, 99.9) 99.9 (99.9, 99.9) 99.6 (99.6, 99.7) 

Mapped burned area (Mha)  1.84 1.19 1.58 

Corrected burned area (Mha)  2.38 (2.14 , 2.61) 2.29 (1.96 , 2.63) 2.27 (1.94 , 2.59) 

Difference (Mha)  0.54 1.1 0.69 

 794 

Table 3. Tests statistics with respect to three-way differences in burned area scar-size frequency distributions for Sentinel, 795 
MODIS, and official estimates. 796 

Scar Size (ha) Kruskal-Wallis Ha 

> 25  998* 

> 100  335* 

> 1000  14* 

> 5000a 0.61 
 797 
Significance: * p<0.001  798 
Notes: Scar-size thresholds in the table denote the set of scars included in a test.  Tests pertain to whether frequency 799 
distributions have equivalent ‘distribution location’, that is, position along a continuum of scar sizes.  Tests thus pertain to 800 
whether the estimates capture distinct realms of fire activity, assuming similarly shaped frequency distributions.  Higher test 801 
statistic values indicate greater probability that the estimates differ with respect to distribution location.  The tree-way 802 
comparisons of the estimates may flag differences where all three estimates differ or where only two of the three differ. 803 
Significance is not Bonferroni corrrected. (a) There are 56, 60 and 16 scars > 5000 ha for Sentinel, MCD64A1, Official 804 
estimates, respectively. 805 
 806 

 807 

 808 

 809 

Table 4. Test statistics with respect to two-way differences in burned area scar-size frequency distributions, with respect to 810 
distribution shape and situation (Test I) or situation alone (Test II), for Sentinel estimates compared to either MCD64A1 or 811 
Official estimates. 812 
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 813 
Scar Size 

(ha) 

Sentinel vs. MCD64A1 Sentinel vs. Official 

I. Kolmogorov-Smirnov         Z-score 

(Most Extreme Difference 

[positive/negative])b 

II. Mann-

Whitney U 

Z-score 

I. Kolmogorov-Smirnov         Z-score 

(Most Extreme Difference 

[positive/negative])b 

II. Mann-

Whitney U Z-

score 

> 6.25  N/A  31.8** (+0.32) -70.6** 

> 25  14.7** (+0.24/0.-15) -20.1* 13.2** (+0.18) -28.6* 

> 100  7.9** (+0.23) -16.6* 1.6† (+0.04/-0.04) -0.57 

> 1000  0.76 (+0.06/-0.03) -0.79 1.5‡ (+0.01/-0.12) -3.1• 

> 5000a 0.72 (+0.14/-0.08) -0.77 0.70 (+0.13/-0.20) 0.10 
 814 
Significance: ** p<0.0001; * p<0.001; • p<0.01; † p=0.014; ‡ p<0.05 815 
Notes: Scar-size thresholds denote the cohort of scars included in a test.  Test I and Test II both pertain to whether the Sentinel 816 
estimates capture distinct realms (scar-size cohorts) of fire activity compared to the other two estimates.  Test I pertains to 817 
whether the scar-size frequency distribution of the Sentinel estimate has the same shape and ‘distribution location’ as either 818 
the MODIS or official estimate.  Test II is the same but with respect to distribution location only.  Distribution location refers 819 
to the situation of a frequency distribution along a continuum of scar sizes.  Higher test statistics indicate greater probability 820 
that the estimates differ significantly with respect to distribution shape and/or location.  Reported statistical significance is 821 
without Bonferroni corrections. a) There are 56, 60 and 16 scars > 5000 ha for Sentinel, MODIS, official estimates, 822 
respectively. (b) Largest positive and negative differences in the cumulative probability functions of Sentinel vs. MODIS or 823 
official scar-size estimates.  No difference was reported where it was <0.00 absolutely. 824 
 825 


