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Abstract 14 

Like many tropical forestMany nations, Indonesia is are challenged by landscape fires. Given the significant 15 

impacts that burning episodes have on the global carbon cycle and on human health across South-East Asia, A aA 16 

confident understanding knowledge of the area and distribution of burning is crucial to understanding quantify 17 

monitor the implications impacts of these fires and to assess how they might best be reduced. Given uncertainties 18 

surrounding different burned-area estimates, and the substantial differences that arise using different detection 19 

approaches, and the uncertainties and debates that surrounding such resultsburned-area estimates, their relativethe 20 

accuracy, and merits of such estimates require formal examinationevaluation.  Here we propose, illustrate, and 21 

examine one promising approach for Indonesia. 22 

Despite investment in fire mitigation measures since the severe El-Niño 2015 fire season, severe burning struck 23 

Indonesia again in late 2019. DHere, drawing on Sentinel-2 satellite time-series analysis, we present and validate 24 

new 2019 burned-area estimates for Indonesia. The corresponding burned-area map is available at: 25 

https://doi.org/10.5281/zenodo.4551243. We show that >3.11 million hectares (Mha) burned in 2019, 31% of 26 

which on peatlands. This burned-area extent is double the Landsat-derived Official estimate of 1.64 Mha from the 27 

Indonesian Ministry of Environment and Forestry, and 50% more that the MODIS MCD64A1 burned-area 28 

estimate of 2.03 Mha. Though we observed proportionally less peatland burning (31% versus 39% and 40% for 29 

the Official and MCD64A1 products, respectively), in absolute terms we still observed more peatland burning 30 

absolutelya greater area of peatland affected (0.96 Mha) than the official estimate (0.64 Mha).   This new burned-31 

area It dataset has greater reliability as these alternatives, attaining a user’s accuracy of 97.9% (CI: 97.1%-98.8%) 32 

compared to 95.1% (CI: 93.5%-96.7%) and 76% (CI: 73.3%-78.7%), respectively.  It omits fewer burned areas, 33 

particularly smaller- (<100 ha) to intermediate-sized (100 ha -1000 ha) burns scars, attaining a producer’s 34 

accuracy of 75.6% (CI: 68.3%-83.0%) compared to 49.5% (CI: 42.5%-56.6%) and 53.1% (CI: 45.8%-60.5%), 35 

respectively. The frequency–area distribution of the Sentinel-2 burns scars follows the apparent fractal-like power-36 

law or “pareto” pattern often reported in other extensive fire studies, suggesting good detection over several 37 

magnitudes of scale. Our relatively accurate estimates have important implications for carbon-emission 38 

calculations from forest and peatland fires in Indonesia. Our approach is amenable to the ongoing production of 39 

accurate annual burned-area maps for environmental monitoring and policy in South-East Asia.  40 

 41 

1. Introduction 42 

The accurate identification and characterization of landscape fires supports interventions to reduce their severity 43 

and impacts. RefinedAccurate burned area maps are key to characterizing refine C emissions from landscape fires,  44 

clarifying emissions and to identifying the probable causes. Such information is needed to target interventions, to 45 

identify the result ofassess policies and practices intended to reduce or control fires, such as law enforcement and 46 

restoration of fire-prone degraded lands, and to measure progress to international climate commitments (Sloan et 47 

al., 2021). Such support is needed in extensive tropical regions where fires are a major concern (REF). Here, we 48 

focus on Landscape fForest and peatland fires in Indonesia where recurring landscapeforest and peatland fires, 49 

and their consequences, arehave become an cause of major international concerncrisis (Tacconi, 2016)(REF).  50 

These concerns arise from the majorlarge carbon  because of the large GHG eemissions associated with these 51 
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fires, and the negative impact of associated aerosol emissions for human health in the Southeast Asianwider 52 

regionires are a global concern due to their impacts (Van der Werf et al., 2008;Marlier et al., 2013)(REF). 53 

Although fires have occurred locally in Southeast Asia for millennia, they are increasingly frequent in Indonesia’s 54 

disturbed forests and deforested peatlands (Field et al., 2009;Gaveau et al., 2014).  The causes and motivations of 55 

fire use can be complex (Dennis et al., 2005), but many fires are lit to create or maintain agricultural land (Gaveau 56 

et al., 2014; Adrianto et al., 2020). While human activities are the main cause of ignition local conditions govern 57 

the likelihood of burns spreading. Most burnsfires occur during drier months and years(July to October) and the 58 

threats are greatly heightened during periodsyears of anomalously low rainfall (Sloan et al., 2017;Field et al., 59 

2016).  During 2015, a strong El Niño-induced drought year,  fires burned an estimated 2.6 million hectares 60 

according to official estimates (Sipongi, 2020). Although 2015 burning was approximately half as extensive as 61 

1997, the most severe El Niño and fire season on record (Fanin and Werf, 2017), about 50% more peatlands 62 

burned (Fanin and Werf, 2017). The 2015 fires emitted between 0.89 and 1.5 billion tons of CO2 63 

equivalent  (Huijnen et al., 2016; Lohberger et al., 2018; Van Der Werf et al., 2017), representing about half of 64 

Indonesia’s total greenhouse gas emissions for that year (Gütschow et al., 2019). In Palangkaraya, the capital city 65 

of Central Kalimantan province, daily average particulate matter (PM10) concentrations often reached 1000 to 66 

3000 µg m-3 amongst the worst sustained air quality ever recorded worldwide (Wooster et al., 2018). Over half a 67 

million people suffered respiratory problems in the aftermath, and between 12,000 and 100,000 premature deaths 68 

were estimated (Koplitz et al., 2016;Crippa et al., 2016).  OtherThese impacts impacts include wildlife 69 

habitatecosystems loss and degradation of habitats with high conservation values, the associated emissions of 70 

greenhouse gases and toxic smoke, and the associated consequences for impacted wildlife (Harrison et al., 2016). 71 

 72 

(REF), human health, transport, tourism, and economic activity across Southeast Asia. Fires, though scarce in wet 73 

forest landscapes, have long been an element of traditional swidden agriculture and land clearance.  Although the 74 

causes and motivations of modern-day fire use can be complex (Dennis et al., 2005), many fires are lit by farmers 75 

and plantation companies when conditions permit to burn wood debris after deforestation,  and enrich the soils 76 

before planting, or to maintain existing agricultural land (paddy farm fallow) (Gaveau et al., 2014; Adrianto et al., 77 

2020) or to maintain existing agricultural land (paddy fields, farm fallow). Burning occurs throughout the year, 78 

but generally more often during dry months from July to October. The likelihood, scale and intensity of such fires 79 

are greatly heightened during periods of anomalously low rainfall (Sloan et al., 2017;Field et al., 2016). Droughts 80 

are associated with years when anomalously cold sea surface temperatures surround Indonesia and warm waters 81 

develop in the eastern Pacific Ocean (El Niño Southern Oscillation, ENSO) and in the western Indian Ocean 82 

(Positive Indian Ocean Dipole, IOD+) (Field et al., 2009), although short, but intense, fire episodes can occur 83 

during climatically-normal years, or under Julian Madden weather conditions (Gaveau et al., 2014;Koplitz et al., 84 

2018)., as During drought years, fires readily spread uncontrolled beyond the intended areas (Gaveau et al., 2017), 85 

largely over degraded lands (Miettinen et al., 2017;Lohberger et al., 2018) but can also penetrate into logged-over 86 

and intact forests near the edge  (Nikonovas et al., 2020). Intact rainforests don’t burn without the prolonged 87 

droughts that favor the accumulation of sufficient dry fuel, and while many live trees often remain (van Nieuwstadt 88 

and Sheil, 2005) the resulting changes to forest structure increase the likelihood of further fires (Nikonovas et al., 89 

2020;Cochrane, 2003). In Indonesia, droughts are often associated with years when anomalously cold sea surface 90 

temperatures surround Indonesia and warm waters develop in the eastern Pacific Ocean (El Niño Southern 91 

Oscillation, ENSO) and in the western Indian Ocean (Positive Indian Ocean Dipole, IOD+) (Field et al., 2009), 92 

although short, but intense, fire episodes can also occur during climatically-normal years, or under Julian Madden 93 
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weather conditions (Gaveau et al., 2014;Koplitz et al., 2018). Austin et al. (2019) estimated that forest conversion 94 

to grasslands by repeated fires accounted for 20% of total forest loss in Indonesia between 2001 and 2016. 95 

The location, context, extent, and timing of fires have major implications for their impacts and their management. 96 

Many fires are started intentionally as a traditional, and low cost way to clear land. During drought years in 97 

particular they often spread beyond the intended areas (Gaveau et al., 2017), largely over degraded lands 98 

(Miettinen et al., 2017;Lohberger et al., 2018) but can also penetrate into logged-over and intact forests 99 

(Nikonovas et al., 2020). Intact rainforests don’t burn without the prolonged droughts that favor the accumulation 100 

of sufficient dry fuel, and while many live trees often remain (van Nieuwstadt and Sheil, 2005) the resulting 101 

changes to forest structure increase the likelihood of further fires (Nikonovas et al., 2020;Cochrane, 2003). Careful 102 

observation of burns can help identify the source and origins of the fires (e.g. Gaveau  et al 2014). During 2015, 103 

a strong El Niño year,  fires burned an estimated 2.6-4.5 million hectares across Indonesia (Sipongi, 104 

2020;Lohberger et al., 2018) and emitted 1.2 billion tons of CO2 equivalent (or 884 million tons of CO2)  (Huijnen 105 

et al., 2016), representing half of Indonesia’s total greenhouse gas emissions for that year (Gütschow et al., 2019). 106 

In Palangkaraya, the capital city of Central Kalimantan province, daily average particulate matter (PM10) 107 

concentrations often reached 1000 to 3000 µg m-3 amongst the worst sustained air quality ever recorded worldwide 108 

(Wooster et al., 2018).  For reference, 50 µg m-3 is a short-term (24-h) exposure limit set by the World Health 109 

Organization (WHO), and 300 µg m-3 is “extremely hazardous” according to by the Singapore National 110 

Environment Agency. Over half a million people suffered respiratory problems in the aftermath, and between 111 

12,000 and 100,000 premature deaths were estimated to result (Koplitz et al., 2016;Crippa et al., 2016).  Although 112 

2015 burning was approximately half as severe/extensive as 1997, the most severe El Niño and fire season on 113 

record (Fanin and Werf, 2017), about 50% more peatlands burned about 50% more extensively in 2015 (Fanin 114 

and Werf, 2017).  This pattern tracks a growing incidence of elevated peatland burning despite apparent long-115 

term mitigation (declines) to extreme fire activity (Sloan et al., Under Review). 116 

In response to the catastrophic 2015 fires,  the Indonesian government instituted several ambitious schemes 117 

including fire bans enforced by dedicated command posts (Sloan et al., Under Review2021) and an ambitious 118 

national program of peatland restoration (Carmenta et al., 2020).   119 

In response to severe 2015 burning, the Indonesian government instituted several ambitious mitigation schemes. 120 

Fire bans were enforced by dedicated command posts established in 731 fire-prone agricultural villages or desas 121 

(~12 Mha), recently expanded to some 4000 village areas, with some apparent success in suppressing burning 122 

(Sloan et al., Under Review).  Simultaneously, in recognition that degraded peatlands are the primary source of 123 

haze, the government pursued a new peatland restoration agenda. The Peatland Restoration Agency or Badan 124 

Restorasi Gambut (BRG) was established in 2016 and declared a 2.67 Mha peatland-restoration target across 7 125 

provinces host to >70% of the national burned area (Kalimantan Barat, Kalimantan Tengah and Kalimantan 126 

Selatan, Papua, Jambi, Riau, and Sumatra Selatan). The seven provinces are largely the same as those actively 127 

enforcing targeted fire bans. Restoration and fire-suppression initiatives driven by pulp-and-paper and agro-128 

industrial companies severely impacted by fire also flourished (Carmenta et al., 2020).  These companies are 129 

mandated to actively restore some of the targeted-for-restoration degraded peatlands (2.67 Mha). 130 

 131 

Despite the investment in these approaches and measures since 2015, and some initial success, severe burning 132 

struck Indonesia again in late 2019. This time a positive Indian Ocean Dipole event, rather than an ENSO weather 133 

system, was responsible for widespread droughts, although the changing nature of these relationships and other 134 

weather phenomenon remain a subject of ongoing research (Kurniadi et al., 2021;Cai et al., 2021). While Sloan 135 
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et al. (Under Review2021) suggest that 2019 fire activity was lower than might have occurred under the conditions 136 

otherwiseexpected given the severe drought conditions, the total number of MODIS active-fire detections in late 137 

2019 on peatlands was still amongst the greatest recorded since 2001 in the village areas targeted for fire 138 

suppression, excepting 2015 (Sloan et al., 2021Under Review). However, counts of active-fire detections are not 139 

the same as counts of active-fire detections are not the same asdon’t provide estimates of area burned (Tansey et 140 

al., 2008) and for 2019 such area estimates remain uncertainestimates of area burned (Tansey et al., 2008) and for 141 

2019 such area estimates remain uncertain. (REF).  142 

 143 

Those wishing to assess and monitor burned areas have various approaches to consider.  and to identify the sources 144 

and probably causes Such information is needed to target interventions, totoand international  145 

 146 

Accurate estimates of burned lands, and in particular assessments of peat fires,  are key to ambitious Indonesian 147 

climate-change atmospheric carbon (C) reduction national commitments (DGCC, 2019). Burned-area estimates 148 

are used to calculate annual C emissions from fires, contribute to forensic analyses in landholdings (e.g. oil palm 149 

and pulp & paper concessions), and help identify the result of policies and practices intended to reduce or control 150 

fires, such as land enforcement and restoration of degraded lands. 151 

 152 

Several global burned area products generated using coarse-resolution satellites (>250 m) can be applied over 153 

Indonesia. These include the FireCCI41 product derived from Envisat-MERIS (Alonso-Canas and Chuvieco, 154 

2015), the FireCCI51 and MCD64A1 products derived from TERRA&AQUA-MODIS (Giglio et al., 2018; 155 

Lizundia-Loiola et al., 2020), the FireCCILT10 product derived from AVHRR (Otón et al., 2019) and the 156 

C3SBA10 product derived from Sentinel-3 (Lizundia-Loiola et al., 2021). Currently, the MCD64A1 (collection 157 

6), based on MODIS 500 m bands, is considered one of the most accurate global product (Chuvieco et al., 2019), 158 

with omission and commission errors of 40% and 22% globally for the ‘burned’ class (Giglio et al., 2018). This 159 

validation is based on independent globally distributed visually interpreted reference satellite data, however none 160 

over Indonesia. These coarse-resolution datasets generally omit small-scale fires and, thus, the reported burned 161 

area is underestimated (Ramo et al., 2021). This has motivated research in the use of medium-resolution satellites 162 

(10 to 30 meters) such Sentinel-1 (Lohberger et al., 2018 in Indonesia), Sentinel-2 (Chuvieco et al. 2018 in Sub-163 

Saharan Africa), and the Landsat constellation (Hawbaker et al., 2017 in North America) to produce more detailed 164 

burned area maps. Lohberger et al. (2018) reported 4.6 Mha burned in 2015 in Indonesia, nearly double the 165 

estimate of 2.6 Mha from the Indonesian Ministry of Environment and Forestry (MOEF), using visual 166 

interpretations of time-series Landsat-8 imagery (Sipongi, 2020).  167 

 168 

For year 2019, The MOEF (hereafter ‘Official estimate’) estimated that 1.64 Mha burned in 2019 (Sipongi, 169 

2020)Using visual interpretations of time-series Landsat-8 imagery, the Indonesian Ministry of Environment and 170 

Forestry (MOEF) estimated that 1.64 Mha burned in 2019 (Sipongi, 2020), while the MCD64A1 (collection 6) 171 

indicated 2.03 Mha burned in 2019. The coarse 500-m spatial resolution MCD64A1 data omit smaller fires and 172 

thus likely overlook many localized events. . The commonly used  global MODIS annual burned-area product 173 

(MCD64A1, collection 6) (Giglio et al., 2018) indicated 2.01 Mha burning in 2019.  Both datasets suffer 174 

shortcomings that bias their estimates, however.  The coarse 500-m spatial resolution MCD64A1 data omit smaller 175 

fires and thus overlook many localized events and overestimate larger ones. The MCD64A1 dataset reports 176 

omission and commission errors of 40% and 22% globally for the ‘burned’ class (Giglio et al., 2018). This 177 
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validation is based on independent globally distributed visually interpreted reference satellite data, however none 178 

over Indonesia. The Conversely, the Landsat imagery underlying MOEF estimates (hereafter ‘Official estimate’) 179 

arethe Official estimates are, while finer scale, observed every 16 days at best (typically much less due to cloud 180 

and smoke), meaning that many burns scars may remain undetected.  Also, smaller-scale and/or dispersed fire 181 

activity may be underestimated, considering the challenges of their visual interpretation and delineation.  Visual 182 

interpretation entails a manual delineation of burn scars perimeters, which yields accurate results for large burn 183 

scar mapping at local scales, but is very time consuming at large spatial scales, particularly when mapping small 184 

fires.  A thorough accuracy assessment is also not available for the official burned-area products. Given the 185 

unknown errors around burned-area estimates, and the differences between them, the accuracy, and merits of the 186 

different mapping approaches over Indonesia require formal examination.   187 

 188 

 189 

 190 

 191 

Here, we present new and validated 2019 burned-area estimates for Indonesia using a time-series of the 192 

atmospherically corrected surface reflectance multispectral images (level 2A product) taken by the Sentinel-2 A 193 

and B satellites.  With higher spatial resolution (20-m) and more frequent observations (5-day revisit time), the 194 

Sentinel-2A and B satellites offer relatively comprehensive and accurate burned-area mapping (Huang et al., 2016; 195 

Ramo et al., 2021). As detailed below, wWe developed our method useding the Google Earth Engine (Gorelick 196 

et al., 2017), in turn allowing for its reproduction thus permitting wide applicationfor ongoing burned-area 197 

monitoring.  We also developed an independent reference dataset to compare the accuracy of our estimate against 198 

the Official and MCD64A1 burned-area maps. Given the lack of randomly objectively distributed ground 199 

verifications of ‘burned’ and ‘unburned’ locationstruthing, we sought an efficient ways to extract reference sites 200 

by visually detecting either a smoke plume, a burn scar, or a heat source (flaming front, or hotspot) from the 201 

archive of original Sentinel-2 time series Sentinel-2 images.  Finally, we examined differences in terms of 202 

scarburn-size frequency distributions among these three burned-area estimates to examine spatial patterns. 203 

 204 

2. Methods 205 

2.1. Summary of methods 206 

A burned area is an area of land characterizedidentified by alteration of vegetation cover and structure by along 207 

with deposits of char and ash, and by alteration of vegetation cover and structure. We mapped burned such areas 208 

using a change- -detection approach, i.e. by comparing Sentinel-2 infrared signals recorded before and after a 209 

burning event (Liu et al., 2020). We analyzed a time-series of the Normalized Burned Area Ratio (see section 2.2) 210 

to assembled two national composite images depicting the spectral condition of vegetation shortly condition 211 

before and shortly after damagea disturbance (Figure 1). These composites represent a convenient way to capture 212 

the entire burned landscape stored in just two image files.  2019 burning (Figure 1)Although we refer to these 213 

images as “pre- and post-fire composites”, they also capture vegetation damage caused by automatically extracting 214 

pairs of nominally ‘burned’ and ‘unburned’ pixels from 47,220 original Sentinel-2 images acquired between 01 215 

November 2018 and 31 December 2019.  by fire and by due to other causes, for example a cutting event (e.g. 216 

mechanical conversion to agriculture, to timber plantation, to roads, population centers, mining or natural timber 217 

harvesting), a disease, strong winds, floods, or landslides (Gaveau et al., 2021) . This reconstructed pair of pre- 218 
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and post-fire images spans the entire 2019 burning season. It is a convenient way to capture the entire burned 219 

landscape stored in just two image files. Subsequent toAfter the production of this image pairthe pre- and post-220 

fire composites, we used a “Random Forest” classification model (see section 2.3) trained on visually identified 221 

pairs of pre- and post-fire pixels to confirm if the spectral changes indicating vegetation damage corresponded to 222 

a burning event. classified pixels of the pair as ‘burned’ or ‘unburned’ using a Random Forest classification model 223 

trained on visually-identified pairs of pre- and post-fire pixels. Third, three independent interpreters assembled a 224 

reference dataset by visually interpretating identifying burns scars in the original time-series (5-day repeat pass) 225 

Sentinel-2 images. Fourth and finally, we assessed our burned-area map, as well as the Official and MCD64A1 226 

burned-area maps, against our reference dataset to gauge the reliability and accuracy of the three burned-areas 227 

products.  Finally, we tested whether, and how, the three burned-area estimates differed in their tendencies to 228 

incorporate burn scars of larger or smallerdifferent sizes. 229 

 230 

2.2. Pre- and post-fire Sentinel-2 national composite images of 2019 231 

Here, we describe our automated procedure to create a national pair of pre- and post-fire composites  extract pairs 232 

of ‘burned’ and ‘unburned’ pixels from 47,220 original Sentinel-2 images acquired throughout 2019. between 01 233 

November 2018 and 31 December 2019.This set of pixel pairs was used to create the national composite pre- and 234 

post-fire images and guide subsequent supervised classifications of burned areas nationally.   Prior to running this 235 

procedurecreating the composites, we removed cloud-impactednon-valid pixels using the Sentinel-2 imagery 236 

quality flag (this flag provides information about clouds, cloud shadows, and other non-valid observations) 237 

produced by the ATCOR algorithm and included in the atmospherically-corrected surface reflectance 238 

multispectral images  of the Sentinel-2 A and B satellites Surface Reflectance products (Level 2A product) 239 

(Fletcher, 2012).  240 

A  time series of the Normalized Burned Ratio (NBR), given as (NIR-SWIR) / (NIR+SWIR), represents a 241 

convenient index to detect if and whenthe approximate day when the vegetation was damaged. a disturbance in 242 

the vegetation occurred in 2019, such as a burning event (Key and Benson, 1999). Before damagea,  fire, vegetated 243 

pixels register high NBR values close to 1 because reflectance in near-infrared spectrum (NIR; wavelength=0.842 244 

µm; Band 8) is high due to the chlorophyll content of the vegetation (open circles before a disturbance, in this 245 

case a fire, in Figure 2). The NBR of burned damaged vegetation typically declines abruptlyeclines towards 0 (or 246 

≤ 0 for severe damage) because the NIR reflectance declines due to chlorophyl and leaf destruction, while the 247 

reflectance of short-wave-infrared spectrum (SWIR; wavelength = 1.610 µm or 2.190 µm; Band 11 or Band 12) 248 

increases due to dead or charred material and exposed ground cover. , such that NBR values ≤ 0 of ≤ 0 are often 249 

apparent for a severalfew  weeks  after a fire severe burning or clear-cutting., while the reflectance of short-wave-250 

infrared spectrum (SWIR; wavelength = 1.610 µm or 2.190 µm; Band 11 or Band 12) increases due to charred 251 

material and exposed ground cover. We analyzed a NBR time series  for approximately 94.5 billion 400 m2 pixels 252 

pairs (Indonesia’s landmass =198 Mha) to detect the day when a pixel’s vegetation was disturbed by fire. . We 253 

describe the procedure to detect drops in the NBR time series in the following paragraph.  254 

We detected breaks drops in NBR time series with a moving-window approach. Every two days, aA moving 255 

window scanned NBR values three months prior and one month after the central day of the window. The output 256 

value of the moving window (blue dots in Figure 2) is the difference  between average NBR values observed 257 

before and after the central day. The NBR average after the central day also included the value ofat the central 258 
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day. The difference between the average NBR values was estimated every 2 days in the time series, skipping the 259 

day of year that was an odd number (day of year equal to 2, 4, 6, 8...). Although the Sentinel-2 has a temporal 260 

resolution of 5 days, the overlap between satellite passes may increase the temporal resolution regionally up to 2 261 

days inat the equator. Thus, we estimated the NBR difference (dNBR) every 2 days instead of  5 days. Taking this 262 

into consideration, our burn‘disturbance’ date estimate has a maximum temporal precision of 2 days in specific 263 

regions, but generally 5 days when satellite passes do not overlap. The day of the year when thise dNBR difference 264 

reached a maximum corresponded to the moment NBR dropped most markedly in each pixel over a two-day 265 

period, flagging a disturbance to the pixel’s vegetation potentially caused by fire. At this date, we created a pair 266 

of pre- and post-fire pixels by selecting the median Red, NIR and SWIR spectral values acquired three months 267 

before and one month after the disturbancethe potential burning event.   We selected a one-month window rather 268 

than a three-month window to compute the post-fire image to maximize our chances to detect a fresh recent burns 269 

scars, given that burned areas on degraded lands and savanna tend to re-green rapidly. We repeated this procedure 270 

for approximately 94.5 billion pixels to assemble two national composite images depicting the spectral condition 271 

of vegetation shortly before and shortly after a disturbance (Figure 1). 272 

2.3. Supervised burned/unburned classification. 273 

We used the Random Forest supervised classification algorithm (Breiman, 2001),  available via the Google Earth 274 

Engine, to determine whether the spectral changes detected by the pre- and post-fore composites corresponded to 275 

a burning event, and subsequently classify burned areas from the pair of pre- and post-fire image composites 276 

created above. Supervised classifiers require ‘training data’, that is, exemplary spectral signatures of ‘burned’ and 277 

‘unburned’ lands in the present case, to guide the algorithm to reliably classify the target classes. The spectral 278 

signatures (i.e., the reflectance values in the pre- and post-fire composite images) are the predictive variables of 279 

the classification model. Concretely, tThe features used in the Random Forest are the original bands of Sentinel-280 

2 in the pre- and post-fire composites plus their respective NBR index. We excluded the bands at 60-meter spatial 281 

resolution (bands B1, B9, and B10) since these bands present a low spatial resolution for the aim of the study. 282 

Therefore, we used a total of 22 features; the NBR and bands B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12 of 283 

the pre and post-composites.We used the NBR and all available Sentinel-2 spectral bands of the pre- and post-fire 284 

image composites as input to the Random Forest model.  285 

 286 

We used a 10-fold cross-validation to assess the accuracy obtained with a set of different parameters in the 287 

Random Forest. The splitting ‘train-test’ in the cross-validation was done only with the training dataset, since the 288 

reference dataset used for the final validation must be completely independent of the training and model 289 

parametrization. The two parameters that we tuned were the number of trees and the minimum leaf size. Random 290 

Forest is an ensemble classifier composed of several Decision Trees; the parameter number of trees represents the 291 

number of Decision Trees in the Random Forest. The minimum leaf size represents the minimum number of 292 

samples that result from a splitting node at the Decision Tree. We found that a minimum leaf size equal to 1 293 

performed the best on average and, thus, we used this value. We selected a conservative number of trees, 50, to 294 

ensure the good performance of the Random Forest.  We did not set any limit to the maximum nodes in each tree 295 

and the variable to split in the random forest was set to the square root of the number of variables, which is the 296 

common practice among machine learning practitioners and the default configuration in Google Earth Engine. 297 

 298 
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The required number of points used to train our supervised classification model (here a Random Forest) depends 299 

on the spectral separability of the classes (in our case two classes: “burned” and “unburned”). The pixels that 300 

show the burn scar present a singular spectral signature and, for this reason, it is necessary to collect a large 301 

amount of training points. We collected training points until we were satisfied with the results of the classification 302 

by visually comparing the resulting burned area map against the pre- and post-fire composites. We trained the 303 

Random Forest algorithm using 988 independent training pixels (Supplementary Figure S1 for locations), being 304 

point coordinates labelled as either ‘burned’ (317 points) or as ‘unburned’ (671 points). The selection of these 305 

pixels was were selected realized by visual interpretation of the pre- and post- fire image composites. Burned 306 

areas show a distinctive dark (low albedo) brown/red color in the SWIR-NIR-Red composite image when 307 

displayed as Red-Green-Blue channels (Figure 1). The training pixels were collected in a variety ofacross 308 

landcover types (Supplementary Table S1 for landcover types) to ensure the representativeness of the training 309 

dataset and the satisfactory generalization of the classification model across Indonesia. We selected training pixels 310 

focused explicitly on medium-to-high burn severity, i.e. areas where the distinctive red color in the SWIR-NIR-311 

Red composite image looked the darkest, indicating that all or most of the vegetation/soil burned.  This aspect of 312 

the methodology hedged against over-estimation of total burned area by minimizing so-called ed “false positives”.  313 

It may however but may exclude areas with implied low-burn severity or low-visibility impacts, such as 314 

understorey fires (below an intact forest canopy, see e.g., van Nieuwstadt and Sheil, 2005) and even some 315 

agricultural and grassland fires. By prioritizing confident identification of fires over absolute burned-area 316 

coverage, as well as by duly validating our estimates, this conservative approach has the advantage of assuaging 317 

sensitivities  concerningavoids the problems caused by frequent false positives  (Rochmyaningsih, 2020). 318 

We assessed burn severity during algorithm training based on visual interpretation. RGB composites with bands 319 

11 (SWIR wavelength = 1.610 µm), 8 (NIR wavelength=0.842 µm) and 4 (RED wavelength = 0.665 µm) provide 320 

information about the severity of the fire; burn scars with high severity present a dark (low albedo) red/brown 321 

color (Figure 1). We included the histogram of dNBR (NBRpostfire - NBRprefire) for the 317 training points labelled 322 

‘burned’ in Supplementary Figure S2 to corroborate that the ‘burned’ training samples were selected in areas with 323 

medium to high severity fires. Eighty one percent (256) of ‘burned’ training points (317) had dNBR values 324 

(NBRpostfire-NBRprefire) < - 0.44, which represents the threshold for medium to high severity burns according to the 325 

proposed classification table of the United States Geological Survey (USGS). 326 

 327 

 328 

2.4. Burned-area map validation. 329 

The Gold standard is to validate the map against a sufficiently large reference dataset developed based on ground 330 

visits to ‘burned’ and ‘unburned’ sites sampled randomly objectively and randomly across the country region of 331 

interest (Olofsson et al. 2014). We sought another alternative ways to generate the reference dataset because the 332 

sample of GPS locations of ‘burned’ locations collected by Indonesian government were not available. Given the 333 

laborious scale of this validation exercise, we validated our burned-area estimates for only the seven provinces 334 

prioritized by the Indonesian Government for restoration of fire-prone degraded lands (Kalimantan Barat, 335 

Kalimantan Tengah and Kalimantan Selatan, Papua, Jambi, Riau, and Sumatra Selatan). These provinces are also 336 

those that typically burn most extensively.  We used visual interpretations of the original time-series Sentinel-2 337 

imagery acquired every 5 days over 2019 at 1298 randomly selected sites (one site = one pixel of 20 m x 20 m) 338 



10 

 

to detect flaming fronts (fire hotspots) and other signs of burning (smoke and charred vegetation). We used these 339 

reference data to calculate the overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA) with a 340 

95% confidence interval, of all three burned area maps (i.e., our Sentinel-derived burned-area classification, the 341 

official Landsat-based burned-area map, and the MCD64A1 product) following “good practices” for estimating 342 

area and assessing accuracy reported by Olofsson et al. 2014. We use the term ‘mapped burned-area’ for the area 343 

classified as burned by each burned-area map. We employ the term ‘corrected burned-area’ for the estimation of 344 

the burned area based on the validation of a given burned-area map against the reference dataset, following the 345 

practices in Olofsson et al. 2014. For instance, a high omission rate in the ‘burned’ class of a given burned-area 346 

estimate would potentially lead to a lower mapped area than a corrected area for that estimate, while a high 347 

commission rate would potentially lead to a higher mapped area than the corrected area. The corrected area 348 

represents an estimation of the actual burned area for year 2019 computed for each of the three datasets separately. 349 

The accuracy of the burned area map, and the sample size of the reference dataset, play a role in the confidence 350 

interval of corrected area estimate.  Lower map accuracy and smaller sample size mean wider confidence 351 

intervals. 352 

 353 

2.4.1. Reference site sampling design 354 

The gGood practices for estimating area and assessing accuracy, as reported in Olofsson et al. (2014), assumes a 355 

simple random sampling or a stratified random sampling in the generation of the reference dataset. In our case 356 

study, we employed a stratified-random sampling approach to ensure an acceptable sample of ‘burned’ reference 357 

sites.  Our stratified approach was necessary given that the ‘burned’ class was rare over the study area: the area 358 

of seven provinces of interest is 87.6 Mha and the combined area detected as burned by all three datasets 359 

represented only 3.1% of this area.  360 

For the generation of the 1298 reference sites (see Supplementary Table S4 for associated landcover types one 361 

year before fire), we first randomly sampled (i) 419 sites across from the areas classified ‘burned’ by the three 362 

datasets (red area in Figure 3a; Supplementary Table S21), and (ii) 879 sites in areas classified as ‘unburned’ by 363 

all three datasets hereafter denoted U (grey area in Figure 3a). This sample size is deemed sufficient and 364 

comparable to other map assessments at larger scale (Stehman et al., 2003;Olofsson et al., 2014). 365 

This initial sample of 1298 total sites present a shortcoming for direct pair-wise comparisons of between the 366 

reference dataset and each of the three burned-area maps individually.  Specifically, sampling densities in the 367 

reference dataset were far greater in areas classified ‘burned’ by the three datasets (red area in Figure 3a) compared 368 

to the area deemed ‘unburned’ by all three datasets, hereafter denoted U (grey area in Figure 3a).  Consequently, 369 

for the validation of a given burned-area dataset, its total number of ‘unburned’ reference sites would be over-370 

sampled upon defining ‘unburned’ reference sites with reference to U as well as areas classified as burned uniquely 371 

by one of the other two maps (cyan areas in Figure 3b, c, d, hereafter denoted as U’).  Such over-sampling of 372 

reference sites in the realm of U’ would violate the stratified-sampling approach described in Olofsson et al. 373 

(2014) and would lead to an erroneous accuracy assessment. In order toTo achieve a balanced stratified sampling 374 

of reference sites across ‘burned’ and ‘unburned’ areas of each dataset, we generated three subsamples from the 375 

initial 1298 reference sites (red areas in Figures 4f3e,gf,hg) and used these subsamples to validate each dataset. 376 

These three subsamples were generated by randomly excluding reference sites from the realm of U’ in Figure 3b, 377 

c and d, respectively, until the density of reference sites in U’ equaled the density of the larger unburned area U. 378 
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For instance, for the validation of the Official burned-area map, the density of reference sites in U was 10.36 379 

sites/Mha, and the extent of U’ was 1.551 Mha, such that the number of reference sites to retain in U’ for this 380 

validation was given as 1.551 Mha x 10.36 sites/Mha   =  16 sites.  The calculations of the number of sites removed 381 

from each subsample are illustrated in Supplementary Table S32.   The final, adjusted, stratified subsamples of 382 

reference sites used for validation is given in Table 1. 383 

 384 

 385 

 386 

 387 

 388 

 389 

2.4.2. Interpretation of the burned-area reference dataset 390 

We developed a series of scripts in the Google Earth Engine to streamline the visual interpretation of the reference 391 

sites. Specifically, we adapted a script written by (Olofsson et al. 2014) to rapidly scan the time-series of original 392 

Sentinel-2 images in visible and infrared bands and thus visually detect either a smoke plume, a burn scar, or a 393 

heat source (flaming front), and determine whether and when in 2019 a reference site burned. The script enabled 394 

the interpreter to interactively track the evolution of NBR values and patterns over the 2019 time series of 5-day 395 

images.  Reference sites were investigated for burning wherever a marked drop in the NBR time series was 396 

detected, indicating a disturbance in the vegetation. For reference sites where a disturbed area was observed, we 397 

subsequently reviewed the last few images before the drop in NBR and the first few images after the drop. 398 

Interpreters looked for three distinct signs of burning in these images to confirm them as burned: (i) smoke plumes; 399 

(ii) flaming fronts – that is, a line a moving fire where the combustion is primarily flaming; and (iii) rapid changes 400 

in color from ‘green’ to ‘dark red’, characteristic of a transition to charred vegetation (Figure 4). If rapid changes 401 

in color were observed over the reference site, with at least one direct feature (smoke or flame) in its vicinity, this 402 

indicated a fresh burn scar, and the reference site was declared ‘burned’. If rapid changes in color were observed 403 

over the reference site, with at least one direct feature (smoke or flame) in its vicinity, this indicated a fresh burn 404 

scar, and the reference site was declared ‘burned’. If rapid changes in color from ‘green’ to ‘dark red’ were 405 

observed without smoke or flame, the reference site was also declared ‘burned’. If no change in color was 406 

observed, with at least one direct feature (smoke or flame) in its vicinity, the reference site was declared 407 

‘unburned’. If none of these three features were observed, the reference site was declared ‘unburned’. 408 

   409 

 410 

Three interpreters independently reviewed the time-series of original Sentinel-2 images and associated NBR 411 

trends for all reference sites (N=1298) (see Supplementary Figure S3 for a frequency distribution of burn scar 412 

sizes of the Sentinel-2 burned-area map, for select spatially coincident ‘burned’ reference sites). To reduce 413 

uncertainties associated with the interpretation of the imagery, the results of the three interpreters were compared 414 

to each other. If all three interpreters recorded the same interpretation and timing of a burning event for a given 415 

reference site, their interpretations were retained. If one or more interpreters disagreed, all interpreters reviewed 416 
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the data and resolved discrepancies by consensus. In some cases, it was difficult to reconcile disagreements 417 

because of poor image quality or because of uncertain spectral patterns.  Therefore, if possible, interpreters also 418 

explored other satellite images (e.g. Landsat) to detect the presence of fire and resolve disagreements for a given 419 

reference site.  The sites in which the three interpreters disagreed were ultimately excluded (70 sites) from the 420 

reference dataset. For these excluded sites, disagreement typically resulted from uncertainties over the boundary 421 

of burned or unburned areas, or because the imagery was not clear enough. The final sample size of reference 422 

points explored here, N=1298, excludes the discarded points of disagreement in question. 423 

We created a second script to generate snapshot images (see examples in Figure 4) depicting infrared spectral 424 

conditions, shortly before and shortly after a fire, as well as the corresponding image dates. Interpreters recorded 425 

and geotagged a snapshot of before and after fire condition at every reference site (for which a burned area was 426 

detected) to enable third-party reviewers to check the consistency and validity of interpretations on site-by-site 427 

basis (See Data Availability).  428 

 429 

2.4.3. Burn scar size comparisons. 430 

We tested whether, and how, the three burned-area estimates differed in their tendencies to incorporate burn scars 431 

of larger or smaller sizes.  Specifically, we compared the frequency distributions of burn-scar size areas (or 432 

“scars”) amongst the three estimates to test for similarity and qualify any distinguishing differences on the part of 433 

our Sentinel-based estimate.  Differences amongst burn-scar size frequency distributions implies that a given 434 

burned-area estimate is more or less inclusiveinclusive of burn scars of a given size, regardless of absolute 435 

differences to total burned area between the estimates.  Inter-estimate comparisons of burn-scar size frequency is 436 

analogous to tests of whether the ‘samples’ of burn scars defined by each estimate describe the same, ultimately 437 

partially-observed universe of fire activity.  Significant inter-estimate differences imply greater or lesser inclusion 438 

of a given realm of fire activity – e.g., small-scale agricultural burning, plantation fires, extreme wildfires – thus 439 

indicating bias (or lack thereof) without defining such realms explicitly. 440 

For all three estimates, we employed the Kruskal-Wallis H test of differences with respect to the ‘location’ of 441 

frequency distributions along a continuum of burn-scar sizes.  Given significant inter-estimate differences 442 

according to this three-way test, we tested for two-way differences in the shape and location of the scarburn-size 443 

frequency distribution (Kolmogorov-Smirnov test), as well as two-way differences in medians (Mann-Whitney U 444 

test), between our Sentinel estimate and either the Official or MODIS estimate individually.  We performed all 445 

comparisons for scarburn-size cohorts > 6.25 ha, > 20 ha, > 100 ha, > 1000 ha, and > 5000 ha, without Bonferonni 446 

correction given the nested nature of these cohorts. Testing for similarity over increasingly large scar-size cohorts 447 

clarified the degree to which significant inter-estimate differences were attributable to the inclusion or omission 448 

of a given cohort. 449 

 450 

We excluded scars burns <6.25 ha because this is the minimum observable burn-n scar size according to MODIS 451 

data, given pixel resolution, and it is already evident that our Sentinel estimates are distinguished by their ability 452 

to detect burn scars below this threshold.  The of the Landsat-8 Official estimates similarly have few scars < 6.25 453 

ha due to the challenging nature of visual interpretations at such fine scales. We note that the minimum scar size 454 

of the MODIS data is 25 ha, hence for comparison with MCD64A1 product we used a 25- ha threshold.  In relation 455 

to Sentinel and MODIS estimates, for which burned areas were originally mapped as arrays of pixels, we defined 456 
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a burn scar to be any array of pixels contiguous across cardinal directions but not diagonals to render the resultant 457 

burned-area map conservative with respect to patch size (Figure S4).    For the Official estimate, burns scars are 458 

as manually delineated via visual interpretation by interpreters from the Government of Indonesia.  All scars burns 459 

are spatially and temporally discrete, such that scars burns of a given estimate that overlap spatially but not 460 

temporally are considered separate.  461 

 462 

3. Results 463 

 464 

3.2. Increased Burned-Area Estimates 465 

Our Indonesia-wide burned-area estimate, based on the classification of the pair of pre- and post-fire Sentinel-2 466 

composites, are larger than the Official estimates as well as the MODIS MCD64A1 to a lesser degree.  We estimate 467 

3.11 million hectares (Mha) burned in 2019 across Indonesia, of which 31% were on peat (Figure 5). The extent 468 

of peatlands were defined using a national dataset from the Ministry of Agriculture (Ritung et al., 2011).  In 469 

contrast, Official burned-area estimates, based on visual interpretation of Landsat-8 imagery, report only about 470 

half as much burned area, at 1.64 Mha, of which 39% was on peat.  Our estimates too are similarly considerably 471 

greater than the MODIS MCD64A1 product, which reports 2.04 Mha burned in 2019, or two-thirds of our 472 

estimate, with 40% on peat.  The greater burning extent and proportionally lesser extent of peatland burning 473 

according to our estimates suggest that our estimates are particularly more inclusive of burning across mineral 474 

soils. 475 

 476 

In the seven provinces for which we carried out theassessed accuracy assessment, our Sentinel-2 estimates, and 477 

the Official Landsat-8 estimates both report excellent user’s accuracies (UA) for the ‘burned’ class, at 97.9% (CI: 478 

97.1%-98.8%) and 95.1% (CI: 93.5%-96.7%) respectively, indicating a mere 2.9%-4.9% commission-error rate 479 

(Table 2, Supplementary Table S53).  The producer’s accuracies (PA) are comparatively lower for both datasets, 480 

but notably less so for our estimates, at 75.6% (CI: 68.3%-83.0%) and 49.5% (CI: 42.5%-56.6%) for our estimate 481 

and the Official dataset, respectively.  In other words, for any burned area in our reference dataset, there is a 75.6% 482 

chance that it will be correctly mapped as burned by our estimate, compared to only a 49.5% for the official 483 

estimate.  This is in keeping with the greater tendency of the Sentinel-2 estimate to capture more smaller and 484 

intermediate-size burn scars.  The MCD64A1 data had a much lower UA for the burned class, at 76.0% (CI: 485 

73.3%-78.7%), as well as a much lower and a PA for the burned class, at 53.1% (CI: 45.8%-60.5%), qualifying it 486 

as the least reliable and accurate of the three estimates notwithstanding comparable high overall accuracy (Table 487 

2).    488 

All three burned-area maps underestimate the true burned area extent, as per their respective PA figures, but our 489 

Sentinel-based map underestimates considerably less severelyhas the smallest shortfall without a corresponding 490 

loss ofand also maintains user’s accuracy. The corrected burned area of the seven provinces is higher than the 491 

mapped area for all the three burned area maps. Again, however, our Sentinel-based map area most closely 492 

approximates its corresponding corrected burned area (Table 2). Whereas our Sentinel-based mapped burned area 493 

indicates that 1.84 Mha burned in the seven provinces (or 59% of our total national estimated burned area), the 494 

corrected burned area is 2.38 Mha (CI: 2.14 Mha-2.61 Mha) (Table 2), for a discrepancy of 0.54 Mha. In contrast, 495 
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the official estimate indicates 1.19 Mha burned in the seven provinces (73% of its corresponding total), and a 496 

corrected burned area of 2.29 Mha (CI: 1.96 Mha-2.63 Mha), for a 1.1 Mha discrepancy. Likewise, the MCD64A1 497 

dataset mapped 1.58 Mha burned in the seven provinces and has a corrected burned area of 2.27 Mha (CI: 1.94 498 

Mha-2.59 Mha), for a 0.69 Mha discrepancy. Although, we cannot extrapolate a corrected burned area across 499 

Indonesia, we are confidently conclude that appreciably more than 3.11 Mha burned nationally in 2019.   500 

3.1. Burn scar size comparison. 501 

The Sentinel, Official and MCD64A1 estimates captured significantly distinct realms of fire activity, as 502 

represented by their relative burn size frequencies of scar sizes (Figure S62).  The three estimates differ from one 503 

another decreasingly over increasingly larger minimum scar-size thresholdsmost notably for small burns, 504 

however, and they are statistically indistinguishable for scars burns > 5000 ha indicative of extreme fire activity 505 

(Table 3).  In other words, all three estimates capture very large scars burns (>5000 ha) equally well, and 506 

distinctions amongst the estimates concentrate amongst small (<100 ha), intermediate (100-1000 ha) and larger 507 

burns (1000-5000 ha) scars, in decreasing order of degree as indicated by the magnitude of the test statistics in 508 

Table 3. 509 

   510 

 511 

Inclusivity of smaller and intermediate scars burned areas is the primary source of difference among estimates.  512 

Compared to Official or MCD64A1 estimates, the Sentinel estimate has a significantly greater relative frequency 513 

of small scars burned areas (< 100 ha), especially amongst the smallest of these scars (Table 4).  This is indicative 514 

of a greater detection of the realm of fire activity small fires presumably characterized by small-scale agriculture 515 

fires and similar, small-scale controlled burning.  The Sentinel estimate similarly has a greater relative frequency 516 

of intermediate scars sized burns (100-1000 ha), but less acutely so, with inter-estimate differences being more 517 

moderate for the Official estimate than the MCD64A1 estimate (Table 4, Figure 6, Figure S62).  For scars burns 518 

>1000 ha, the Sentinel estimate differs only relative to the official estimate (Table 3), seemingly due to the latter’s 519 

lesser estimationunderestimation of large and very large scars (Figure 6).  Note for instance the increasingly large 520 

divergence between the cumulative burned-area curves for the Sentinel-2 and the Official estimates in Figure 6 521 

for scars burn areas > 1000 ha.  For very large scars burns (> 5000 ha), two-way comparisons in Table 4 again 522 

report no significant statistical differences in burn-scar detection rates between the Sentinel and alternative 523 

estimates.  However, given the small sample of patches > 5000 ha, it is noteworthy that the Sentinel estimate 524 

captures more very large scars compared to Official estimates (n=56 vs n=16) and avoids critical omissions made 525 

by both Official, or MCD64A1, estimates for extremely large scars burns (>15,000 ha) on peatlands around 526 

Berbak National Park in Jambi Province, Sumatra (Figure  71, Inset A). 527 

 528 

In summary, the greater overall burned-area estimate of our Sentinel data compared to the Official and MCD64A1 529 

alternatives is largely attributable toreflects differences in the inclusion of smaller and intermediately sized scars.  530 

Indeed, tThe aerial sum of all Sentinel burn scars areas that are individually <~860 ha equals the entirety of the 531 

official burned-area estimate (Figure 6).  The . We note that the Sentinel-2 estimate data exhibits a size-frequency 532 

pattern that approximates the linear expectation of a near scale-free power-law (Figure 6).While the finer spatial 533 

resolution of Sentinel data must account for some of the inter-estimate discrepancies, particularly relative to the 534 
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MCD64A1 estimate and scars burns < 100 ha (Figure S2), overall the discrepancies above seem more in keeping 535 

with our estimate’sare dominated by greater different sensitivity detection ofto otherwise overlooked smaller-536 

scale burningsmaller burns.  Hence, the inter-estimate differences qualify our Sentinel estimates not simply as 537 

more extensive but also as qualitatively distinct in terms of the degree to which different realms of fire activity 538 

are captured. The near linear log-log frequency–area distribution over several orders of scar-size of our Sentinel 539 

product as indicated by thes a characteristic comparisons over a range of sizes power-law relationship (Figure 6). 540 

4. Discussion 541 

We developed a method that generates two national composite Sentinel-2 images depicting vegetation condition 542 

before and after burning in 2019 (Figure 1), and then classified this pair to extract burned areas using a Random 543 

Forest supervised classification algorithm. We developed a comprehensive validation protocol to strictly assess 544 

the reliability and accuracy of our product based on visual interpretation of dense time-series Sentinel-2 original 545 

images, and also applied this validation to the  widely used global MODIS burned-area product (MCD64A1, 546 

collection 6) (Giglio et al., 2018) and to the Official burned-area product of the Indonesian Ministry of 547 

Environment and Forestry (MOEF) (Sipongi, 2020). 548 

Our estimate is the most reliable and accurate and therefore captures more of the 2019 total burned area, 549 

confirming that 20-m Sentinel-2 imagery  is better suited to widespread small-scale agricultural burning  in 550 

Indonesia (Huang et al., 2016), while it also captures large burn scars relatively thoroughly. The study finds similar 551 

omission and commission errors (47% and 24%) for the ‘burned’ class of MCD64A1 product as those presented 552 

globally (40% and 22%) (Giglio et al., 2018). The underestimation of total burned area according to the 553 

MCD64A1 product compared with our Sentinel-2 estimate is unsurprising, considering that the MODIS 500-m 554 

pixel resolution struggles to detect smaller fires (Giglio et al., 2018). Similar conclusions were reached by Ramo 555 

et al. (2021) when comparing the new ‘Small Fire Dataset’ derived using Sentinel-2 over Sub-Sahara Africa 556 

(Chuvieco et al., 2018) and the MCD64A1 product.  More surprising is the near 2:1 ratio by which the Sentinel-557 

2 estimates surpass the Landsat-8 Official estimate.  Our examination shows that this difference reflects 558 

differential detection of small- (<100 ha) to intermediate-sized (<1000 ha) burn scars.  559 

The burn-scar frequency distribution of the Sentinel-2 estimate is characteristic of robust power-law relation 560 

(Figure 6), a pattern typical of large scale fire studies (Malamud et al., 1998). Modern studies suggest that these 561 

fractal-like patterns are often subtly more complex and can arise through a range of phenomena  (Karsai et al., 562 

2020;Falk et al., 2007). We note that the Sentinel-2 estimate data exhibits a size-frequency pattern that 563 

approximates closer to the linear expectation of a near scale-free power-law, or pareto distribution (Karsai et al., 564 

2020;Falk et al., 2007). These,  patterns are typical of large-scale fire studies (Malamud et al., 1998). compared 565 

to either of the alternative burned-area estimates, bothBoth other methods yield of which show a clearlyan S-566 

shaped curve with less area at smaller and larger sizes than captured in the Sentinel-2, indicating the likely bias 567 

by omission over the entire range of scales and are not determined by image resolution alone (Figure 6). These 568 

results, with different frequency patterns arising from burns from the same regions in the same period, also 569 

highlight the danger in interpreting apparent burned-area patterns without careful consideration of the limitations 570 

and biases that arise from the methods used to map them—an issue that may not have always been sufficiently 571 

recognized in past assessments or policy.  572 

Although both Sentinel-2 and Landsat-8 both observe the infrared wavelengths required to detect charred 573 

vegetation and have similar spatial resolutions (20 m x 20 m and 30 m x 30 m, respectively), Sentinel-2 detects 574 
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more burns of the greater frequency of its coverage (five- versus sixteen-day revisit time).  Also, our method 575 

avails of the massive computational capabilities and automation of the Google Earth Engine, allowing us to 576 

analyze more images and thus map more and smaller burn scars and associated details than could even the most 577 

well-equipped team of visual interpreters.  578 

Despite high reliability that every burn scar detected on the map was valid (2.9% commission error rate), our 579 

method suffered a 24.4% omission error rate (burned areas that remained undetected).  These rates reflect 580 

necessary tradeoffs between commission and omission error in a context where conservative estimates are much 581 

preferred for environmental policy and monitoring.  We prioritized a low commission error rate (i.e. high user’s 582 

accuracy) over absolute burned-area coverage to address sensitivities (Rochmyaningsih, 2020). By hedging 583 

against commission errors, our approach omitted hard-to-detect events, including low-intensity burns, such as 584 

those that occur beneath the forest canopy on mineral soils (van Nieuwstadt and Sheil, 2005) or on savanna 585 

grasslands, which tend to re-green rapidly. While further work is required to clarify and refine the optimal levels 586 

of inclusivity and reliability, we emphasize that the production of before and after fire annual composite images 587 

is relatively straightforward for the user community, given the availability of both the necessary imagery and our 588 

Google Earth Scripts. 589 

We stress that wWhile Tthe accuracy assessment proved that our training dataset is valid for the classification of 590 

Sentinel-2 composites for the the year 2019 in Indonesia, t. Theis training dataset collected in this study, however, 591 

might not showachieve equivalent the same accuracy results for other years and regions. The pre- and post-fire 592 

composites might show different spectral changes for other years if conditions are differentunder different 593 

conditions. For instance, we noted thatthe high rainfall was higher for thein year 2020 , which  leads to 594 

differentinfluenced reflectance values in the composites. Similarly, representative training points should be used 595 

in other regions. Those adapting these methods should ensure adequate local training data and validation. Thus, 596 

the generalization of our algorithm for other years should consider additional training points that reflect a wider 597 

range of spectral changes not considered in year 2019 (i.e. dry-to-wet peatlands for year 2020). Similarly, our 598 

training dataset is only valid for Indonesia. A, and additional training points should be considered for the 599 

classification of burned areas in other regions of the world since spectral changes might differ from our original 600 

study. 601 

In the past considerable emphasis was placed on the necessity of ground-checks to validate and calibrate remote-602 

sensing-based estimates . DSometimes commentators raise doubts about may persist concerning our ability to 603 

confidently estimates of burn scars areas without extensive and costly on-the-ground ground-truthingground-604 

checks. Modern high-resolution remote sensing makes such on-the-ground checks less essential than in the past 605 

as burned areas are readily identified with good accuracy in modern high-resolution imagery such as that we used 606 

for our validation. The protocol developed here to generate a reference dataset based on visual inspection of dense 607 

(5-day revisit time) satellite imagery is better suited than ground verifications of ‘burned’ and ‘unburned’ 608 

locations, because it allows the generation of extensive randomly-distributedrandomly distributed well 609 

characterised reference sites, a process too time-consuming and costly with field visits. The identification and 610 

quantification of less-readily-detected burned areas, such as those under a closed forest canopy, remain a challenge 611 

but will require dedicated and targeted research and would not be solved by ground-checks alone. 612 

Accurate estimates of burned lands, in particular on peat, are central to addressing concerns about regional air 613 

quality, and to ambitious national climate-change atmospheric carbon reduction commitments heavily reliant on 614 
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improved land/fire management (DGCC, 2019). Though we observed proportionally less peatland burning than 615 

the alternative burned-area estimates (31% versus 39% and 40% for the Official and MCD64A1 products, 616 

respectively), due to our more complete coverage, we observed more peatland burning absolutely (0.96 Mha) than 617 

the official estimate (0.64 Mha). Given this large discrepancy for peatland burning, we anticipate that our 618 

improved mapping approachrefined burned area product will become a “gold-standard” referenceenable others to 619 

better estimate to calculate carbon emissions from the 2019 fires in Indonesia. Combined with daily fire hotspots 620 

detected using thermal remote sensing, our detailed burned-area map can help identify ignition sites and estimate 621 

fire duration more precisely, and therefore contribute to forensic analyses of burning across landholdings (e.g. 622 

concession owners)(Gaveau et al., 2017) as well as assess policies and practices intended to reduce or control 623 

ignition events and the scale of fires (Watts et al., 2019).  624 

The Indonesian government has shown some success in reducing fires (Sloan et al., in review2021). Apparent 625 

reductions to fire activity would however ideally be qualified using our more inclusive and accurate burned-area 626 

estimates.  Further, the Indonesian government must also develop improved protocols to quantify the resulting 627 

carbon emissions (DGCC, 2019). Our protocols for creating reliable and accurate burned area mapspre- and post-628 

fire composites are replicable. To further the adoption and reproduction of our approach, we have published all 629 

our protocols, scripts, applications, burned-area map, reference data, pre-fire and post-fire Sentinel-2 composite 630 

images, and various other outputs so that anyone may employ and revise them as they wish (see Data Availability).  631 

 632 

5. Code availability 633 

 The code that generates the Sentinel-2 pre- and post-fire composites can be found at: 634 

https://github.com/thetreemap/IDN_annual_burned_area_detection  635 

6. Data Availability 636 

All the data including pre- and post-fire composites, all three burned area products, and reference points with 637 

screenshots can be visualized online at this application portal: 638 

https://thetreemap.users.earthengine.app/view/burn-area-validation-simplified 639 

The Sentinel-based burned area map and reference dataset are freely available for download at: 640 

https://doi.org/10.5281/zenodo.4551243.  641 

The dataset 2019_burnedarea_indonesia.shp contains the 2019 burned-area estimates that we developed for 642 

Indonesia using 20 m x 20 m time-series Sentinel-2 imagery. The reference dataset Reference_dataset.shp 643 

contains 1298 reference points that we assembled and used to validate all three burned area products described in 644 

this study. Each reference point includes attribute ‘REFERENCE’ to describe the values obtained by visual 645 

interpretation: either ‘NO’ unburned or ‘YES’ burned.  Each reference point has three attributes: ‘C_SENTINEL’  646 

‘C_OFFICIAL’ and ‘C_MCD64A1’ to describe the values of the classification of each burned area product: either 647 

‘NO’ unburned or ‘YES’ burned. Finally, each reference point has three additional attributes: ‘SENTINEL’, 648 

‘OFFICIAL’, and MCD64A1’ to describe which burned area product this reference point validates. The values 649 

are either 0: not validate or 1: validate. 650 

https://github.com/thetreemap/IDN_annual_burned_area_detection
https://thetreemap.users.earthengine.app/view/burn-area-validation-simplified
https://doi.org/10.5281/zenodo.4551243
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The MODIS MCD64A1 dataset was obtained at: https://developers.google.com/earth-651 

engine/datasets/catalog/MODIS_006_MCD64A1. The official burned area dataset from the Ministry of 652 

Environment and Forestry (MOEF) was obtained at: https://geoportal.menlhk.go.id/webgis/index.php/en/ 653 

The Sentinel-2 Level 2A used in this study are available at https://scihub.copernicus.eu/ and can be retrieved in 654 

Google Earth Engine. The Sentinel- 2 data are hosted and accessed in the Earth Engine data catalog (the links to 655 

the data are https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR). Data ingested 656 

and hosted in Google Earth Engine are always maintained in their original projection, resolution, and bit depth 657 

(Gorelick et al., 2017). 658 
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  888 

Figure 1. TThe pair of cloud-free pre-and post-fire Sentinel-2 composites shown over six locations in insets A, B, C, D, E, F 889 
(all insets have the same scale). The base Indonesia-wide imagery is the post-fire composite. Imagery displayed in false colors 890 
(RGB: short-wave infrared (band 11); Near infrared (band 8), Blue: red (band 4)). In this pair of composite images acquired 891 
shortly before and after fire a recently burned area will readily appear to have transitioned from ‘green’ to dark ‘brown/red’ 892 
tones. Areas cleared without burning appear bright pink. Areas covered with vegetation appear dark to bright green. 893 
 894 

 895 

 896 

 897 

 898 

 899 

 900 
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 901 

Figure 2. A schematic of Sentinel-2 time-series imagery, associated NBR values (open circles) and NBR differences between 902 
average NBR values observed before and after the central day of a 2-day moving window (blue dots). A burned pixel (20 m x 903 
20 m) is represented by a red rectangle at left. Before fire, the vegetated pixel registers positive NBR values (open circles). 904 
The NBR rapidly drops during the fire and, for a few weeks, the satellite observations show a negative NBR. The day of the 905 
year when the NBR difference observed via the moving window reaches a maximum corresponds to the moment NBR dropped 906 
(red line). This day marks a decline in the pixel’s vegetation, possibly reflecting a burning event. Over time, the vegetation 907 
regenerates (re-greening) and the spectral characteristic of charred vegetation fades. Regreening can happen within days in the 908 
case of savanna grasslands, or within months in the case of forest fires on peatlands. 909 
 910 
 911 
 912 
 913 
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 914 

Figure 3. Representation of the adjusted, stratified-sampling design for the validation of three burned area datasets (A, B, and 915 
C) against reference sites (dots). Panel (a) shows the stratified random sampling of reference sites (black points) over the 916 
combined burned area. Note that the density of samples is higher in the combined burned area than the unburned area. Panels 917 
(b), (c), and (d) show, in cyan, the area U’, being classified as unburned in a given dataset i but classified as burned in at least 918 
one other datasets ≠ i. For a given validation of A, B, and C, the sample points in the corresponding area U’ (panels (b), (c), 919 
(de)) were randomly excluded until the sampling density in the area U’ equaled that of the larger unburned area U (area in 920 
gray). Panels (e), (f) and, (g) and (h) show the three final, adjusted, stratified subsamples of reference points derived from the 921 
initial sample of 1298 reference points.  Note that the relative areas and number of sites per class in Figure 3 do not correspond 922 
to the actual datasets being evaluated. 923 
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 924 

Figure 4. Two snapshots recording the pre-fire (left panel) and post-fire (right panel) original Sentinel-2 images acquired 925 
shortly before (13 September 2019) and shortly after (08 October 2019) fire for two reference site (red squares). Imagery 926 
displayed in RGB: SWIR, NIR, RED. Sentinel-2 provides two SWIR Bands. Band 12=2.190 µm is more suitable than Band 927 
11=1.610 µm to detect the intense heat from flaming fronts. On these image pairs, one can see flaming fronts traveling towards 928 
the reference sites (red dot) from the north on the pre fire images (left), and sharp changes in color from ‘green’ to ‘dark red’ 929 
characteristic of charred remains with continuing flaming on the post-fire images (right). Layout built using © Google Earth 930 
Engine. 931 
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935 

 936 

Figure 5. 2019 burned areas (red) for Indonesia (grey area) derived using a time-series of the atmospherically corrected surface 937 
reflectance multispectral images (level 2A product) taken by the Sentinel-2 A and B satellites.  The spatial resolution of this 938 
map is 20 m x 20 m, and mMinimum mmapping uunit is 6.25 ha. The officially recognized peatlands extent is shown with the 939 
darkest shade of grey.  A provincial breakdown of burned areas according to our map estimates and those of the Official and 940 
the MCD64A1 product are given in Figure S51.   941 
 942 
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943 

 944 

Figure 6. Cumulative national total burned area versus burned-scar area, for Sentinel-2, Landsat-8 (Official), and MODIS 945 
MCD64Aa1 burned-area estimates.  Scars < 6.25 ha are not shown.  Note the logarithmic axis.  For a given segment of the x-946 
axis between scar sizes X1 and X2, a difference in the slopes for any two estimates is indicative of inter-estimate differences 947 
in terms of inclusivity of scars between X1 and X2. 948 
 949 
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 951 

 952 

Figure 7. The pair of cloud-free pre-and post-fire Sentinel-2 composites over Berback National Park (black line) and 953 
surrounding areas in Jambi Province (see also Inset A, Figure 1), revealing large, burned areas around Berbak National Park 954 
(areas that have transitioned from ‘green’ to dark ‘brown/red’ tones). These large burn scars have been detected by VIIRS 955 
hotspots and by the Sentinel-2 burned area map, but some have been missed by the Official and MCD64A1 datasets. 956 
 957 
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Table 1. Adjusted, Stratified Subsamples of Reference Sites to Validate Burned-Area Estimates. 973 

Burned-Area Estimate 

Reference Sites 

Total Reference Sites In Areas Classified as 

Burned 

In Areas Classified as 

Unburned (U & U’) 

Sentinel-2 (this study) 888 280 1168 

MODIS MCD64A1 891 242 1133 

Landsat-8 (Official) 895 182 1077 

 974 

Table 2. Accuracy assessment of each of the three burned area maps performed in seven Indonesian provinces (87.60 Mha) 975 
targeted for peatland restoration. The accuracy metrics were estimated with an initial total of 1,298 points randomly distributed 976 
using stratified sampling. The reported metrics are: 1) the overall accuracy (OA), the user’s accuracy (UA), and the producer’s 977 
accuracy (PA) with their 95% confidence intervals, and 2) the mapped burned area and the corrected burned area with their 978 
95% confidence intervals. 979 

   SENTINEL OFFICIAL MCD64A1 

OA (%)  99.3 (99.1, 99.6) 98.1 (97.8, 98.5) 98.4 (98.1, 98.8) 

  Burned 97.9 (97.1, 98.8) 95.1 (93.5, 96.7) 76.0 (73.3, 78.7) 

UA (%) Unburned 99.3 (99.1, 99.6) 98.6 (98.2, 99.0) 98.8 (98.5, 99.2) 

  Burned 75.6 (68.3, 83.0) 49.5 (42.5, 56.6) 53.1 (45.8, 60.5) 

PA (%) Unburned 99.9 (99.9, 99.9) 99.9 (99.9, 99.9) 99.6 (99.6, 99.7) 

Mapped burned area (Mha)  1.84 1.19 1.58 

Corrected burned area (Mha)  2.38 (2.14 , 2.61) 2.29 (1.96 , 2.63) 2.27 (1.94 , 2.59) 

Difference (Mha)  0.54 1.1 0.69 

 980 

Table 3. Tests statistics with respect to three-way differences in burned area scar-size frequency distributions for Sentinel, 981 
MODIS, and official estimates. 982 

Scar Size (ha) Kruskal-Wallis Ha 

> 6.25  10,478** 

> 20 25  998* 

> 100  335* 

> 1000  14* 

> 5000a 0.61 
 983 
Significance: ** p<0.0001; * p<0.001  984 
Notes: Scar-size thresholds in the table denote the set of scars included in a test.  Tests pertain to whether frequency 985 
distributions have equivalent ‘distribution location’, that is, position along a continuum of scar sizes.  Tests thus pertain to 986 
whether the estimates capture distinct realms of fire activity, assuming similarly shaped frequency distributions.  Higher test 987 
statistic values indicate greater probability that the estimates differ with respect to distribution location.  The tree-way 988 
comparisons of the estimates may flag differences where all three estimates differ or where only two of the three differ. 989 
Significance is not Bonferroni corrrected. (a) There are 56, 60 and 16 scars > 5000 ha for Sentinel, MCD64A1, Official 990 
estimates, respectively. 991 
 992 

 993 

 994 
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 995 

Table 4. Test statistics with respect to two-way differences in burned area scar-size frequency distributions, with respect to 996 
distribution shape and situation (Test I) or situation alone (Test II), for Sentinel estimates compared to either MCD64A1 or 997 
Official estimates. 998 
 999 

Scar Size 

(ha) 

Sentinel vs. MCD64A1 Sentinel vs. Official 

I. Kolmogorov-Smirnov         Z-score 

(Most Extreme Difference 

[positive/negative])b 

II. Mann-

Whitney U 

Z-score 

I. Kolmogorov-Smirnov         Z-score 

(Most Extreme Difference 

[positive/negative])b 

II. Mann-

Whitney U Z-

score 

> 6.25  N/A46.9** (+0.69) -82.9** 31.8** (+0.32) -70.6** 

> 250  14.7** (+0.24/0.-15) -20.1* 13.2** (+0.18) -28.6* 

> 100  7.9** (+0.23) -16.6* 1.6† (+0.04/-0.04) -0.57 

> 1000  0.76 (+0.06/-0.03) -0.79 1.5‡ (+0.01/-0.12) -3.1• 

> 5000a 0.72 (+0.14/-0.08) -0.77 0.70 (+0.13/-0.20) 0.10 
 1000 
Significance: ** p<0.0001; * p<0.001; • p<0.01; † p=0.014; ‡ p<0.05 1001 
Notes: Scar-size thresholds denote the cohort of scars included in a test.  Test I and Test II both pertain to whether the Sentinel 1002 
estimates capture distinct realms (scar-size cohorts) of fire activity compared to the other two estimates.  Test I pertains to 1003 
whether the scar-size frequency distribution of the Sentinel estimate has the same shape and ‘distribution location’ as either 1004 
the MODIS or official estimate.  Test II is the same but with respect to distribution location only.  Distribution location refers 1005 
to the situation of a frequency distribution along a continuum of scar sizes.  Higher test statistics indicate greater probability 1006 
that the estimates differ significantly with respect to distribution shape and/or location.  Reported statistical significance is 1007 
without Bonferroni corrections. a) There are 56, 60 and 16 scars > 5000 ha for Sentinel, MODIS, official estimates, 1008 
respectively. (b) Largest positive and negative differences in the cumulative probability functions of Sentinel vs. MODIS or 1009 
official scar-size estimates.  No difference was reported where it was <0.00 absolutely. 1010 
 1011 


