
We are grateful for the many suggestions and comments. These have helped us revise the manuscript 

both in terms of the specific issues raised, and in terms of helping us reorganise and clarify our 

emphasis and give the article greater coherence. We have made many larger and smaller changes in 

the revision that improve the manuscript. Here we describe specific responses to specific queries 

(below) made by three referees, but we underline that the entire article has been revised for flow, 

clarity and focus. 

Referee 1 

Overall, this is an interesting topic and highlights the various limitations in burned area products. I 

applaud the effort that went into creating the validation dataset, however, as highlighted below, there 

are some crucial details lacking in the training and validation descriptions that are necessary for a full 

review. Please see below for specific comments. 

We are grateful for the astute comments raised by Referee #1 as they have helped us clarify and 

improve the manuscript. Here, we answer against each point below. 

Specific/Major Comments 

Section 2.1: I assume the November and December 2018 images were only used for the pre-fire 

window analysis? How did the authors account for any burns that occurred during those 2 months?  

The images taken in November and December 2018 were only used for the pre-fire compositing. Fires 

that occurred during these two months were not detected. We re-wrote sections 2.1 and 2.2 to 

improve clarity.  

Section 2.2: What happens if a pixel burns more than once in a year? This might occur in the agricultural 

regions? 

Our detection method does not record multiple burning events in a year. The day of the year when the 

NBR difference dNBR reached a maximum corresponded to the moment NBR dropped most markedly 

in each pixel, flagging a disturbance to the pixel’s vegetation potentially caused by fire. We reworded 

section 2.2 to this point clearer. 

Line 162: Are the authors not calculating dNBR here? Also, does the moving window continue beyond 

the first instance of detecting a potential burn? i.e. if the drop occurred on February 1st, does the 

moving window continue to Dec 31 to see if it burned again? 

The moving window calculated dNBR values throughout the year and retained the date with the 

highest dNBR, flagging a disturbance to the pixel’s vegetation potentially caused by fire. At this 

date, we created a pair of pre- and post-fire pixels by selecting the median Red, NIR and SWIR spectral 

values acquired three months before and one month after the disturbance. We repeated this 

procedure for approximately 94.5 billion  pixels  to assemble two national composite images depicting 

the spectral condition of vegetation shortly before and shortly after a disturbance (Figure 1).  After the 

production of the pre- and post-fire composites, we used a Random Forest classification model (see 

section 2.3) trained on visually identified pairs of pre- and post-fire pixels to confirm if the spectral 

changes indicating vegetation damage corresponded to a burning event.  

If a fire occurred on 01 February, and the resulting dNBR recorded on this day was the maximum 

difference all the differences calculated (every two days) throughout the year, this day was retained 

as the day of the year when a disturbance to the pixel’s vegetation was potentially caused by fire. If 

the resulting dNBR was not the maximum difference, this day (01 February) was not retained. That 



would be the case if another more severe fire occurred at the same pixel later in the year, which would 

result in a higher dNBR. 

We reworded sections 2.1 and 2.2 to improve clarity. 

Line 177: Can the authors please provide a map of the locations of the 988 training pixels and their 

associated land cover types in the supplementary? Is 988 training pixels enough? How was that number 

decided upon? 

We have included Supplementary Figure S1 to show the location of the 988 training points used to 

train our supervised classification algorithm (Random Forest).  

 

Figure S1. Location of 988 training pixels (317 ‘burned’ and 671 ‘unburned’) used to train our 

supervised classification model (Random Forest) across Indonesia (grey area).  

The required number of points used to train our supervised classification model (here a Random 

Forest) depends on the spectral separability of the classes (in our case two classes: “class burn” and 

“class not-burn”). The pixels that show the burn scar present a singular spectral signature and, for this 

reason, it is necessary to collect a particularly high amount of training points. We collected training 

points until we were satisfied with the results of the classification by visual inspection. Please note that 

the training points differ from the validation points. They do not overlap. An adequate validation set 

is important as the number of validation points limits how narrow the confidence intervals are.    

We added supplementary Table S3 to show that the training pixels were collected in a variety of 

landcover types. 

Table S3. Landcover types associated with the training sites one year before fire (2018) based on the 

ESA CCI global land cover maps described here (http://maps.elie.ucl.ac.be/CCI/viewer/index.php). The 

training sites were associated with 15 landcover types.  

http://maps.elie.ucl.ac.be/CCI/viewer/index.php


 

 

Line 183: dNBR already shows burn severity (here is an article with more information: https://un-

spider.org/advisory-support/recommended-practices/recommended-practiceburn-severity/in-

detail/normalized-burn-ratio). Did the authors quantify these values over their training pixels or simply 

rely on the color? I suggest the authors quantify these values to ensure the training pixels are in fact 

medium-to-high severity especially since the authors are prioritizing mapping high burn severity fires 

to reduce false positives. 

Thank you for providing the link. We assessed burn severity during training based on visual 

interpretation. RGB composites with bands 11 (SWIR wavelength = 1.610 µm), 8 (NIR 

wavelength=0.842 µm) and 4 (RED wavelength = 0.665 µm) provide information about the severity of 

the fire; burn scars with high severity present a dark (low albedo) red/brown color. We understand 

that visual interpretation can be subjective. We included the histogram of dNBR (NBRpostfire - NBRprefire) 

for the 317 training points labelled ‘burned’ in Supplementary Figure S2 to corroborate that the 

training samples were selected in areas with medium to high severity fires.  

81% (256) of ‘burned’ training points (317) had dNBR values (NBRpostfire-NBRprefire) < - 0.44, which 

represents the threshold for medium to high severity burns according to the proposed classification 

table of the United States Geological Survey (USGS). 

 

CCI 2018 Land Cover Unburned Burned

Cropland, rainfed 54 33

Herbaceous cover 58 44

Tree or shrub cover 29 6

Cropland, irrigated or post-flooding 6 0

Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) 93 52

Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland 40 28

Tree cover, broadleaved, evergreen, closed to open (>15%) 132 47

Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 0 5

Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 2 12

Shrubland 9 0

Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 31 39

Tree cover, flooded, fresh or brakish water 57 33

Tree cover, flooded, saline water 18 0

Urban areas 136 18

Water bodies 6 0

Total number of training sites 671 317



 

Figure S2. Histogram of dNBR (NBRpostfire - NBRprefire) for the 317 training points labelled ‘burned’.  

 

Section 2.4.1: As with the training samples, what land cover types were associated with the validation 

samples?  

We added a Supplementary Table S4 to show the landcover types associated with the reference sites 

one year before fire (2018) based on the land cover maps described here 

(http://maps.elie.ucl.ac.be/CCI/viewer/index.php ). The Reference sites were associated with 14 

landcover types. Here the ‘burned’ and ‘unburned’ classes are the ‘truth’ labels deemed ‘burned’ by 

visual inspections. 

Table S4. Landcover types associated with the reference sites one year before fire (2018) based on the 

ESA CCI global land cover maps described here (http://maps.elie.ucl.ac.be/CCI/viewer/index.php ). 

http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://maps.elie.ucl.ac.be/CCI/viewer/index.php


 

 

Secondly, what size burn scars were these validation pixels associated with? For example, if all 

validation pixels were associated with very large burn scars then the validation results will be biased 

because large burns are easy to detect. Also, I assume the training and validation samples did not 

overlap? 

Our reference sites (i.e., validation pixels’) were associated with a wide range of burn sizes.  The 

uppermost histogram in the Figure below (added as Supplementary Figure S3) shows the frequency 

distribution of Sentinel-2 burn scar sizes for scars coincident with a subset of our 1298 reference sites 

used to validate our Sentinel burned-area map and deemed ‘burned’ by visual inspections.  As seen, 

the patches coincident with these reference sites range from very small (a few hectares) to very large 

(over 60,000 ha).  This diversity of patch size is to be expected considering that reference-site sampling 

was realised randomly across the entirety of burned areas, without regard to patch size, with the 

partial exception that patches <6.25 ha were excluded from consideration for reasons noted in the 

main text.  Correspondingly, the positive skew of the reference-site histogram is in keeping with the 

positively skewed frequency distribution of all Sentinel burned-area patches for Indonesia, shown in 

the lower histogram of the Figure below.   

Notwithstanding the points above, the frequency distributions of the upper and lower histograms in 

Figure are ultimately statistically different from one another, insofar as the distribution for the 

reference sites is comparatively biased towards larger patches.  The most likely reason for the 

statistical difference in question is that the hyperabundance of very small patches in our Sentinel-2 

burned-area map would require an exceptionally large sample of reference sites to fully represent such 

small patches alongside a proportional diversity of intermediate and larger patch sizes. 

 

CCI 2018 Land Cover Unburned Burned

Cropland, rainfed 16 13

Herbaceous cover 16 3

Tree or shrub cover 23 6

Cropland, irrigated or post-flooding 1 0

Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) 127 101

Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland 150 73

Tree cover, broadleaved, evergreen, closed to open (>15%) 467 63

Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 5 6

Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 7 20

Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 16 33

Tree cover, flooded, fresh or brakish water 94 31

Tree cover, flooded, saline water 19 4

Urban areas 1 0

Water bodies 3 0

Total number of reference sites 945 353



 

Figure S3. Frequency distributions of patch sizes of the Sentinel burned-area map, for select spatially 

coincident reference sites used to validate the Sentinel burned-area map (top), and for all of Indonesia 

(bottom). Note: Bin widths are not consistent between upper and lower panels.  In the lower panel, 

note the logarithmic scale of the y-axis and the presence of rare patches above 40,000 ha.  Patches 

<6.25 ha are excluded.  Reference sites are those 274 sites deemed ‘burned’ by visual inspections 

(labelled as ‘truth’) and coincident with  Sentinel-2 burns. 

Finally, we affirm that our training and validation samples were independent and did not overlap. 

 

 



Line 310-311: Please explain why the authors only chose the cardinal directions? 

The choice to define burned-area patches in terms of pixel contiguity in the cardinal directions but not 

on diagonals was intended to render the resultant burned-area map conservative with respect to patch 

size.  Given that the Sentinel data has a relatively fine spatial resolution (10 m), minor sub-pixel burning 

within a single ‘burned’ pixel could conceivably link two much larger burned areas into a single discrete 

patch if diagonal contiguity were recognized.  Such an outcome would, in our view, potentially inflate 

overall patch-size estimates, perhaps especially for smaller-scale patches for which burning often 

adopts ‘patchy’ spatial patterns.  Of course, the same issue also applies to a single pixel contiguous in 

a cardinal direction.  However, our preliminary inspections of the geography of burning in our Sentinel 

burned-area map suggested that ‘undo’ contiguity along individual diagonal pixels was more common 

and/or potentially problematic. We revised the text to justify our choice accordingly. 

Line 389: While doing some reading into power laws and fire size, I came across this paper from the 

US Forest Service with the following quote: “ Newman (2005) specifically excludes fire size 

distributions, while admitting that they might follow power laws over portions of their ranges. Current 

opinion is divided among those who would globally assign power laws to fire-size distributions (Minnich 

1983; Bak et al. 1990; Malamud et al. 1998, 2005; Turcotte et al. 2002; Ricotta 2003) and those who 

would attribute them only to portions of distributions or rule them out altogether in favor of 

alternatives (Cumming 2001; Reed and McKelvey 2002; Clauset et al. 2007; Moritz et al., Chap. 3)” - 

https://www.fs.fed.us/rm/pubs_other/rmrs_2011_mckenzie_d001.pdf 

Please can the authors go through the literature and ensure their power-law assumption is correct and 

justify it in the paper. 

We are not making any theoretical claims or assumptions that fire size distribution follows a power 

law. We just note that this pattern has been observed by other studies, and is observed over a greater 

range of scales in our refined burned area analysis as we would expect if these methods are better 

able to detect burns (which is our main point here, and why this emphasis is helpful). Indeed, as we 

note in the discussion the comparisons also highlight how the detection of these patterns depends on 

the nature of the methods used to detect them, which is something that is not appreciated in the 

published literature around this theory. We revised the text to clarify our focus. 

Line 399: The current analysis does not support this finding regarding agricultural burning. Based on 

Figure S3, the small patches are likely associated with the small burn patches surrounding the larger 

burn scars. Agricultural burning is a very difficult fire type to map and although the current 

methodology is likely to map more agricultural burning than MODIS (due to the finer resolution) the 

mapping methods and validation assessment was not adequately designed for agricultural burning. 

The authors can mention that the S2 mapping is better suited for identifying “small fires”. Furthermore, 

it was noted on lines 427 – 433 that the approach omitted hard–to–detect fires (e.g. savanna 

grasslands) which are much easier to detect than agricultural fires therefore that statement is not 

supported. 

We rephrased accordingly by removing the word ‘agricultural’: “Our estimate is the most reliable and 

accurate and therefore captures more of the 2019 total burned area, 399 confirming that 20-m 

Sentinel-2 imagery is better suited to widespread small-scale agricultural burning in Indonesia” 

Minor Comments 

Line 23: change to “..which occur on..” 

We rephrased accordingly.  



Line 27: Should the size of the intermediate fires read (100ha – 1000ha) similar to what you have in 

the main body of the paper? 

Thank you for noting this error. We have corrected it. 

Line 88: change “excepting” to “except” 

Thanks, changed 

Introduction: When are the peak burning months? It seems based on the GWIS country profiles 

(https://gwis.jrc.ec.europa.eu/apps/country.profile/charts ) that the peak occurs August – October 

and since the authors are also referring to agricultural fires then please also include the cropland 

burning months. 

We have added that: Most fires occur during drier months (July to October) and the threats are greatly 

heightened during years of anomalously low rainfall. 

Line 137: Remove “and finally” after “Fourth. The authors go on to a final step on line 139. 

Fixed 

Figure 3: There is no h panel (line 679) 

Thank-you for spotting this mistake. We fixed it 

Line 237: Should that be referencing Figure 3? Also, there is no panel h 

Thank-you for spotting this mistake. It should read Figures 3e,f,g 

Line 696: change to “minimum mapping unit” 

Thanks. Fixed 

Figure 5: Please add to the caption that the light grey represents countries outside of Indonesia. This 

was confusing at first before I looked at a map. 

We removed the grey areas outside of Indonesia to improve the clarity of Figure 5. We also removed 

the outline of ‘burned’ polygons during the display of the burned area shapefile used to generate the 

map because the outline display exaggerated the burned area extent visually. The new Figure 5 is 

below. 

 

https://gwis.jrc.ec.europa.eu/apps/country.profile/charts


Figure 5. 2019 burned areas (red) for Indonesia (grey) derived using a time-series of the 

atmospherically corrected surface reflectance multispectral images (level 2A product) taken by the 

Sentinel-2 A and B satellites.  The spatial resolution of this map is 20 m x 20 m, and minimum mapping 

unit is 6.25 ha. The officially recognized peatlands extent is shown with the darkest shade of grey. A 

provincial breakdown of burned areas according to our map estimates and those of the Official and 

the MCD64A1 product are given in Figure S1.   

 

Table S3: please add the meanings of Am and Wh to the caption 

We added meanings of Am and Wh in Figure caption 

Table S3. Confusion matrix. Am = Area mapped (the area classified as class i by the Random Forest; 

the sum of this column is equal to the total area of study). Wh = Proportion of area mapped (the 

proportion of area classified as class i; the sum of this column equals to 1) 

Line 370: add a comma between “Figure 6 Figure S2” 

Fixed 

Line 702: Change to “MCD64A1”. There were a few other instances where the A was lowercase (i.e. 

MCD64a1) 

Fixed 

Line 377: It would be interesting for the authors to create a 3-panel figure showing this scar from 

each of the 3 products to show the omissions made in MCD64 and the Official dataset. 

We added a 6-panel Figure in the main text (Figure 7) to illustrate this case. 



 

Figure 7. The pair of cloud-free pre-and post-fire Sentinel-2 composites over Berback National Park 

(black line) and surrounding areas in Jambi Province (see also Inset A, Figure 1), revealing large, burned 

areas around Berbak National Park (areas that have transitioned from ‘green’ to dark ‘brown/red’ 

tones). These large burn scars have been detected by VIIRS hotspots and by the Sentinel-2 burned area 

map, but some have been missed by the Official and MCD64A1 datasets. 

 

Line 443: change to “addressing” 

Fixed 

Reviewer2  

The MS has a clear structure and a good description of reference data collection. However, my major 

concern is the design of the mapping framework. The most confusing part is the integration of NBR 

and RF classification. As stated by the authors, NBR and dNBR were used to “detect the day when a 

pixel’s vegetation was disturbed by fire”. If this is valid, what was the point of using RF for burned area 

mapping? On the other hand, RF can be directly used for classification. What was the benefit of 

combining NBR and RF? Another concern is that the authors put the research in the context of national 

burned area mapping in Indonesia only, but there is a lack of clarification on the scientific contribution 

of the work. There is no literature review of the state-of-art on large-scale burned area mapping. There 

is no scientific objective (what scientific issue was addressed), and no comparisons with similar studies 

on the topic (expect for the comparison with the Official and the MODIS results). 

 



We are grateful for the comments raised by Referee #2 as they have helped us clarify the aim of this 

study, methodology, and improve the manuscript. We rewrote the introduction to shift the emphasis 

to burned area mapping. We feel that our methodology was sometimes misunderstood, and we hope 

to have clarified our methods. 

Thank you for pointing out that literature review of the state-of-art on large-scale burned area 

mapping was missing. We have added a review in the Introduction which is now extensively rewritten 

and reorganised. As stated by Reviewer 3, a focus on Indonesian burning is important, given the 

significant impacts that severe burning episodes in Indonesia have on the global carbon cycle and on 

human health across Southeast Asia. A key aspect of our study is the comparison of our burned area 

dataset against two other studies (the official study and the MCD64A1, which is considered one of the 

most accurate global burned area product) using a rigorous validation procedure. The refined burned 

area product presented in this study represents an important development and will be of interest to 

the scientific community because accurate estimates of burned lands, and in particular assessments 

of peat fires, are key to better measure atmospheric carbon emissions. Our goal in this paper in line 

with the aim of this Journal, which is to publish articles on original research datasets, furthering the 

reuse of high-quality data of benefit to Earth system sciences.   

Regarding methods (the use of NBR and RF), we revised sections 2.1, 2.2 and 2.3 (see manuscript with 

track changes) to describe the benefit of combining NBR and RF. Our revision went through several 

rounds among the authors to ensure it was clear to each of us. 

dNBR time-series, despite its name (Normalized Burned Ratio) cannot determine whether fire alone is 

the cause of damage.  For example, tree cutting exhibit a similar drop in NBR as burned vegetation. 

The NBR difference (dNBR) was used to detect the day when a pixel’s vegetation was potentially 

disturbed by fire, but it could be another cause, for example a cutting event (e.g. mechanical 

conversion to agriculture, to timber plantation, to roads, to population centers, mining or natural 

timber harvesting), a disease, strong winds, floods, or landslides. We refer to the satellite composites 

as “pre- and post-fire composites”. However, the pre- and post- fire composites capture all types of 

vegetation damage that may have occurred throughout the year (e.g fire, tree cutting, landslide, 

disease, etc..). Tree cutting exhibit a similar drop in NBR as burned vegetation, but the spectral changes 

before and after the disturbance are different. Usually, the albedo is lower in burned vegetation than 

in clear cut areas, and this difference is best captured using a carefully trained Random Forest. Thus, 

the NBR time-series was used to create two national composite images depicting the spectral condition 

of vegetation before and after a damaging event (potentially a fire), while the Random Forest was used 

to determine if vegetation damage was caused by fire. The features used in the Random Forest are the 

bands of Sentinel-2 in the pre- and post-fire composites plus their respective NBR index. We excluded 

the bands at 60-meter spatial resolution (bands B1, B9, and B10) since these bands present a low 

spatial resolution for the aim of the study. Therefore, we used a total of 22 features; the NBR and 

bands B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12 of the pre and post-composites. 

The classification of pre- and post-fire composites represent a more effective way to capture the 

changes in the time series than using directly the RF for the classification of single satellite images for 

two reason. First, pre- and post-fire composites depict land cover changes while single satellite images 

just show specific instants in the time series. Although both post-fire composites and single satellite 

images show burn events, the pre-fire composite provides useful information that might improve the 

accuracy of the RF classification. For instance, the change burned-to-burned would not be classified as 

burned in the pre- and post-fire composite approach because the RF is trained such as an area that has 

previously burned cannot burn again. Second, in terms of computing time, the classification of two 

images, pre- and post-fire composites, is arguably a more convenient approach than the classification 



of 47,220 original image files used to create them. The reviewer can visualize this pair of composites 

at this application portal against the classified results: 

https://thetreemap.users.earthengine.app/view/burn-area-validation-simplified.  

 

Other comments follow: 

Introduction: The background info about wildfire is too long, especially for the first four paragraphs. 

The emphasis should be burned area mapping. 

We agree, thank-you for the suggestion. We rewrote this to shift the emphasis. We added a literature 

review of current state-of-the-art global and regional mapping products with several new references 

added. (Alonso-Canas and Chuvieco, 2015; Lizundia-Loiola et al., 2020; Otón et al., 2019; Chuvieco et 

al., 2019, Hawbaker et al., 2017, Lohberger et al., 2018, Ramo et al., 2021). 

 

L108: Isn't visual interpretation more accurate than machines? Many field data are from visual 

interpretation, including yours. It is important to point out the issues in their visual interpretation 

strategy/method/data. 

We inserted this sentence in the introduction: Visual interpretation entails a manual delineation of 

burn scars perimeters, which yields accurate results for large burn scar mapping at local scales, but is 

too time consuming at large spatial scales, particularly when mapping small fires.  

L109: It is surprising that such a national campaign does not have protocols for accuracy assessment. 

It is indeed the case that accuracy assessment is not available for the official burned-area product. Our 

study fills this gap. 

Section 2.2.: The purpose of getting the pre- and post-fire composites with NBR is confusing. Why did 

you use RF classification since you already identified the burned pixels with NBR? Or why not directly 

using RF to extract burned areas? 

We hope to have clarified this point earlier. We reworded sections 2.1, 2.2 and 2.3 (see manuscript 

with track changes) to describe the benefit of combining NBR and RF. Our revision went through 

several rounds among the authors to ensure it was clear to each of us. 

L163-165: The description of implementing your method is vague. What NBR and dNBR thresholds did 

you use? How did you know the variation of NBR was caused by wildfire, not other events (e.g., plant 

disease)? Do you also need to have a vegetation baseline map? 

Again, we hope to have clarified this point earlier. The NBR time series (see Figure 2) was used to detect 

the day when vegetation was damaged whether fire or another cause. Despite its name, the 

Normalized Burned Ratio (NBR) and the Normalized Burned Ratio difference (dNBR)  cannot determine 

the cause of vegetation damage. For example, tree cutting events exhibit a similar drop in NBR as 

burned vegetation, but the spectral changes are different. Usually, the Albedo is lower in burned 

vegetation than in clear cut areas, and this difference is best captured using a carefully trained Random 

Forest. We used a Random Forest to determine if vegetation damage was caused by fire. We did not 

need to use any vegetation baseline map. The revision makes this clearer. 

Section 2.3: How did you tune RF? What parameters did you use? 

We added the following text in section 2.3. 

https://thetreemap.users.earthengine.app/view/burn-area-validation-simplified


The features used in the Random Forest are the bands of Sentinel-2 in the pre- and post-fire composites 

plus their respective NBR index. We excluded the bands at 60-meter spatial resolution (bands B1, B9, 

and B10) since these bands present a low spatial resolution for the aim of the study. Therefore, we used 

a total of 22 features; the NBR and bands B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12 of the pre and 

post-composites. 

We used a 10-fold cross-validation in order to assess the accuracy obtained with a set of different 

parameters in the Random Forest. The splitting ‘train-test’ in the cross-validation was done only with 

the training dataset, since the reference dataset used for the final validation must be completely 

independent of the training and model parametrization. The two parameters that we tuned were the 

number of trees and the minimum leaf size (Figure R1). We found that a minimum leaf size equal to 1 

performs the best on average and, thus, we used this value. For a minimum leaf size equal to 1, the 

overall accuracy saturated for the accuracy plateaued for a number of trees >25, however we selected 

a conservative number of trees, 50, in order to ensure the good performance of the RF. Please note that 

the only trade-off when using a larger number of trees is that the RF requires more processing time.   

We did not set any limit to the maximum nodes in each tree and the variable to split in the random 

forest was set to the square root of the number of variables, which is the common practice among 

machine learning practitioners and also the default configuration in Google Earth Engine.  

L177: Aren't the training samples too small for national scale mapping? 

The required number of training points depend on the spectral separability of the classes (in our case 

two classes: “class burn” and “class not-burn”). For instance, the classification of water bodies is less 

complex than the classification of forest types (deciduous versus coniferous trees). This is because 

water has a distinctive spectral signature, low reflectance in most of the light spectrum, which makes 

its detection relatively easy; a low number of training samples can detect water bodies and more 

samples would only add redundancy to the classification. For our case study, vegetation-to-burn 

changes also show a distinctive spectral signature that can only be confused with clear cuttings 

(vegetation-to-bare soil). This is why a relatively small number of points (988) can accurately detect 

the burned areas nation-wide, and it is not necessary to collect a particularly high amount of training 

points. We collected training points until we were satisfied with the results of the classification by 

visual inspection of our pre- and post fire composites. We note that the training points differ from the 

validation points. They do not overlap.     

We have included Supplementary Figure S1 to show the location of the 988 training points used to 

train our supervised classification algorithm (Random Forest).  

 



Figure S1. Location of 988 training pixels (317 ‘burned’ and 671 ‘unburned’) used to train our 

supervised classification model (Random Forest) across Indonesia (grey area).  

 

Results: You compared your overall results with the Official and the MODIS results. However, it is also 

important to pick sample locations to demonstrate what types of areas had high agreements and what 

areas caused discrepancies. 

It is noteworthy that the Sentinel estimate captures more very large scars compared to Official 

estimates (n=56 vs n=16) and avoids critical omissions made by both Official or MCD64A1 estimates 

for extremely large scars (>15,000 ha). These omissions occur particularly on peatlands, for example 

around Berbak National Park in Jambi Province, Sumatra (Figure 7). Section 3.1. explains the 

differences in burn scar size between the three datasets. We have also added a new Figure (Figure 7) 

to show that the Sentinel Estimate avoids critical omissions made by both Official or MCD64A1 

estimates for extremely large scars (>15,000 ha). 

 

Figure 7. The pair of cloud-free pre-and post-fire Sentinel-2 composites over Berbak National Park 

(black line) and surrounding areas in Jambi Province (see also Inset A, Figure 1), revealing large, burned 

areas around Berbak National Park (areas that have transitioned from ‘green’ to dark ‘brown/red’ 

tones). These large burn scars have been detected by VIIRS hotspots and by the Sentinel-2 burned area 

map, but some have been missed by the Official and MCD64A1 datasets. 

 

 



 

Reviewer 3 

The study presents a new burned area product for the year 2019 in Indonesia based on high spatial 

resolution Sentinel 2 imagery and machine learning classification algorithm. Given the significant 

impacts that severe burning episodes in Indonesia have on global carbon cycle and population health 

across the wider region, the product presented in this study represents an important development and 

will be of interest to the scientific community. The approach and the dataset, nonetheless, have several 

limitations which I believe should be better articulated in the revised manuscript. In addition, I don’t 

think that the comparison of fire patch size distributions between different products adds much to the 

discussion here due to (i) large differences in spatial and temporal resolutions (or both) between the 

datasets and (ii) lack of definition what does fire patch represents here. 

While the validation methodology does seem robust and the authors do demonstrate that total burned 

area estimates of the study are more accurate when compared to the alternative sources (MCD64A1 

and the Official ba product), it has to be articulated that the algorithm of this study was optimised for 

the specific region and fire season and for a specific commission/omission error ratio. As a result, it is 

not clear how the burned area estimate for 2019 would change if the algorithm was optimized to fit 

training data from different years and regions by different users. In addition, extending temporal 

coverage of the dataset is not that straightforward as this would require substantial further work 

(somewhat arbitrary and time-intense selection of training data). Please see the bellow specific 

comments for further detail. 

 We are grateful for the comments raised by Referee #3. We expanded on the limitations of our 

methodology, in particular when it comes to applying the algorithm to other years or other regions by 

adding a paragraph in Discussion. The point we are making regarding the comparison of patch size 

distribution is simply to highlight that a more complete size spectrum is likely indicating that we missed 

less burned areas, and that these patterns are influenced by size-dependent detection bias also in 

many other such cases that assume the nature of spectra indicates something about the fires (when it 

may simply reflect methods) 

Specific comments 

Lines 56-57: Given the uncertainty in burned area estimates (line 56), the Huijnen et al., 2016 estimate 

of CO2 emissions quoted in line 57 seems too certain. Do Huijnen et al give uncertainty estimate? Also, 

would be good to give another estimate for the event, given by GFED or Lohberger et al., (2018) or 

some other study etc. Large uncertainties in emission estimates is yet another reason why we need 

better burned area products, hence it would be good to point this out here. 

We rephrased this sentence to incorporate the various estimates reported by several studies, including 

the ones reviewer 3 recommended. We wrote: fires emitted between 0.89 and 1.5 billion tons of CO2 

equivalent  (Huijnen et al., 2016; Lohberger et al., 2018; Van Der Werf et al., 2017) 

The GFED estimate of 1.5 billion tons of CO2 equivalent is reported by Van Der Werf et al., 2017 

Lines 160: Please explain what “Every two days” means here. 

We have rewritten the text to better explain this: “The difference between the average NBR values was 

estimated every 2 days in the time series, skipping the day of year that was an odd number (day of year 

equal to 2, 4, 6, 8...).” 



Line 161: Was data from the central day of the window included in prior or after median values (or 

neither)? 

The central day of the window was included in the after median values. We have added this 

information in the main text: “The NBR average after the central day also included the value of central 

day” 

Line 163: This relates to the previous two points regarding temporal precision. Here and elsewhere the 

authors use “The day of the year”. How day of burn was determined if temporal resolution of Sentinel 

2 is ~5 days as stated earlier? This suggests considerable uncertainty in day of burn estimate? 

Thank you for pointing this out. The text was unclear about the temporal precision. Indeed there is an 

uncertainty in the burn date estimate. We revised any statement claiming that the exact date of burn 

was estimated with the NBR time series. Moreover, we added the following text in the Section 2.2.: 

“Although the Sentinel-2 has a temporal resolution of 5 days, the overlap between satellite passes may 

increase the temporal resolution regionally up to 2 days in the equator. Thus, we estimated the NBR 

difference every 2 days instead of  5 days. Taking this into consideration, our burn date estimate has a 

maximum temporal precision of 2 days in specific regions, but generally 5 days when satellite passes 

do not overlap.” 

Lines 173-176: It is not clear here what was the total number of features used for classification? Please 

state in this paragraph. 

Thank you for pointing this out; this information was incomplete in the text. Since we did not apply 

any feature selection technique, the total number of features is the original bands of Sentinel-2 in the 

pre- and post-composites plus their respective NBR index. We excluded the bands at 60-meter spatial 

resolution (bands B1, B9, and B10) since these bands are mostly designed for atmospheric correction 

and present a low spatial resolution for the aim of the study. Therefore, we used a total of 22 features; 

the NBR and bands B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12 of the pre and post-composites. We 

included this information in the mentioned paragraph. 

Lines 177-178: Was the training sample fully independent from the validation sample? This is 

important to state clearly as it underpins the validity of the study’s findings. 

The training samples are fully independent from the validation samples. They do not overlap. We have 

included Supplementary Figure S1 to show the location of the 988 training points used to train our 

supervised classification algorithm (Random Forest).  

 



Figure S1. Location of 988 training pixels (317 ‘burned’ and 671 ‘unburned’) used to train our 

supervised classification model (Random Forest) across Indonesia (grey area).  

 

Lines 260-265: What was done with classification of the sites which had either direct fire evidence 

(flame or smoke) but not indirect evidence (reddening) observed and vice versa? Where these samples 

(if any) discarded from the analysis? 

We have modified the text to take into account these possibilities. We wrote: If rapid changes in color 

were observed over the reference site, with at least one direct feature (smoke or flame) in its vicinity, 

this indicated a fresh burn scar, and the reference site was declared ‘burned’. If rapid changes in color 

from ‘green’ to ‘dark red’ were observed without smoke or flame, the reference site was also declared 

‘burned’. If no change in color was observed, with at least one direct feature (smoke or flame) in its 

vicinity, the reference site was declared ‘unburned’. If none of these three features were observed, the 

reference site was declared ‘unburned’. 

 

Line 278: The final validation sample number N=1298 is the same as given in line 269 (all reviewed 

sites) and line 227 where it is termed as “initial sample”. Please clarify this. 

We removed the word “final” to remove any confusion.  The final, adjusted, stratified subsamples of 

reference sites used for validation of the three burned area datasets is given in Table 1.  

Line 306: This statement needs a reference and an explanation. MODIS burned area pixel size is ~21ha. 

While sub-pixel burning can be detected, the actual minimum burned scar size will depend on 

environment/vegetation where burning is occurring. Is this estimate of 6.25ha is specific to 

Indonesia/tropical regions? In addition, I am puzzled by how MCD64A1 fire size histogram shown in 

Fig. S2 was computed; i.e. how counts for bins for fires < 21ha were derived given that MODIS pixel 

size is ~21ha? 

We thank you for spotting this error. Given the 500-m grid size of the MCD64A1, 500-m * 500-m = 25 

ha is the minimum size, not 6.25 ha. 

The apparent existence of MCD64A1 burn scars < 25 ha, upon re-checking our data we realised that 

such scars reflected a minor data-processing oversight.  Specifically, it sometimes occurred that a given 

MODIS burn scar was ‘split’ or ‘clipped’ into two scars, one being > 25 ha (as per the original scar) and 

another < 21 (a so-called scar ‘sliver’).  This occurred exclusively where a MODIS BA patch was 

intersected by GIS data defining the administrative boundaries of Indonesia, i.e., along borders, 

coastlines, and broad river courses.  Those scar ‘slivers’ of < 25 ha amounted to only 0.044% of the 

total burned area estimated by the MODIS data, and were by any measure inconsequential.  Upon 

omitting these slivers from consideration, we have precluded any confusion over the minimum scale 

of the MODIS burn scars, while our methods and results have remained unchanged.  The absence of 

MODIS scars < 25 ha is now apparent in the revised Figure 6, Table 3, Table 4, and Figure S6. 

Regarding the 6.25 ha threshold. We excluded scars <6.25 ha in the Sentinel-2 product because this is 

the minimum observable burn scar size of the Landsat-8 Official estimates due to the challenging 

nature of visual interpretations at such fine scales. 

Lines 366-367: The sentence is too “wordy” and complex. “greater detection of the realm of fire activity 

characterized by small-scale…” could be replaced with “greater detection of small fires” to the same 

effect. 



Yes thank you. We reworded accordingly: 

Line 371: “lesser estimation” – perhaps change to underestimation? 

Yes thank you. We reworded accordingly 

Lines 380-389: The paragraph is too wordy. The first two sentences say nearly everything that needs 

to be said. Sentinel 2 sensor can indeed detect smaller fires enabling the detection of small scale 

agricultural burning. Perhaps cut shorter or even merge into previous paragraphs. 

Yes, we revised the text to make it shorter. 

Lines 407-416: This paragraph is very speculative and not well supported. Not sure I agree with such 

interpretation of fire size frequency distributions. Any differences in distribution shape may arise from 

huge differences in sensor spatial (MODIS) and temporal (Official map) resolutions and also from the 

clustering (patch agglomeration) method. For example, the algorithm of the official product may have 

merged diagonally adjacent pixels as well and that would result in shift towards larger sizes. In addition, 

the provided references do not show that power-law approximates fire event sizes in Indonesia. While 

I’m not aware of fire size studies in Indonesia, log normal fire size distributions are common in some 

ecosystems (see Lehsten et al., 2014). As a result, it is perhaps better to avoid saying that fire sizes 

should follow power-law relationship and that this itself is a desirable property. 

Yes, much more could be said, but we decided that that would be tangential to the main focus. The 

point is simply to highlight that a more complete size spectrum is likely indicating that we missed less 

… and that these patterns are influenced by size-dependent detection bias also in many other such 

cases that assume (incorrectly) the nature of spectra indicates something about the fires (when it may 

simply reflect methods). We have revised this paragraph to ensure that we are not claiming any 

broader theoretical insights (that is a distraction here) but using it to (just) help illustrate and enrich 

the comparisons. 

Lines 423-433: While advantages of the approach are discussed across several paragraphs in the 

Discussion, this is the only paragraph considering the limitations. Please add discussion on implications 

of changes in training dataset (due to different selection criteria, addition of data from different year 

etc.) on burned area estimates for 2019 and beyond in future application of the algorithm. 

Thank you for raising this important caveat. We have included the following paragraph in the 

Discussion section to discuss the limitations of our training dataset: 

While the accuracy assessment proved that our training dataset is valid for the classification of Sentinel-

2 composites for the year 2019 in Indonesia, this training dataset might not achieve equivalent accuracy 

for other years and regions. The pre- and post-fire composites might show different spectral changes 

under different conditions. For instance, high rainfall in 2020 influenced reflectance. Similarly, 

representative training points should be used in other regions. Those adapting these methods should 

ensure adequate local training data and validation.  

 

Lines 434-435: Not clear who are those “commentators” and “us” in “our ability” the authors refer to 

in the sentence. Please be more specific. 

Revised to be specific and the problem words are no longer present. 

Lines 448-449: I do not understand why “large discrepancy for peatland burning” between the datasets 

would make the dataset of this study a “gold-standard”? Please explain this bold statement. Also, 



please consider replacing “gold-standard” with something less flashy as only time will tell how the 

dataset fares among users. 

We removed the word “gold-standard” and revised the text using more neutral terminology  

 


