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Abstract: Station-based serially complete datasets (SCDs) of precipitation and temperature observations are important 13 

for hydrometeorological studies. Motivated by the lack of serially-complete station observations for North America, 14 

this study seeks to develop a SCD from 1979 to 2018 from station data. The new SCD for North America (SCDNA) 15 

includes daily precipitation, minimum temperature (Tmin), and maximum temperature (Tmax) data for 27280 stations. 16 

Raw meteorological station data were obtained from the Global Historical Climate Network Daily (GHCN-D), the 17 

Global Surface Summary of the Day (GSOD), Environment and Climate Change Canada (ECCC), and a compiled 18 

station database in Mexico. Stations with at least 8-year records were selected, which underwent location correction 19 

and were subjected to strict quality control. Outputs from three reanalysis products (ERA5, JRA-55, and MERRA-2) 20 

provided auxiliary information to estimate station records and were also used as an assessment benchmark. Infilling 21 

during the observation period and reconstruction beyond the observation period were accomplished by combining 22 

estimates from 16 strategies (variants of quantile mapping, spatial interpolation, and machine learning). A sensitivity 23 

experiment was conducted by assuming 30% observations of stations were missing – this enabled independent 24 

validation and provided a reference for reconstruction. Quantile mapping and mean-value corrections were applied to 25 

the final estimates. The median Kling-Gupta efficiency (KGE) values of the final SCDNA for all stations are 0.90, 26 

0.98, and 0.99 for precipitation, Tmin and Tmax, respectively. The SCDNA is closer to station observations than four 27 

benchmark gridded product, and can be used in applications that require either quality-controlled meteorological 28 

station observations or reconstructed long-term estimates for analysis and modelling. The dataset is available at 29 

https://doi.org/10.5281/zenodo.3735534 (Tang et al., 2020). 30 
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 2 

1 Introduction 32 

Station-based serially complete datasets (SCDs, see Table A1 for all acronyms) are important for meteorological, 33 

climatological and hydrological studies (Kanda et al., 2018; Ramos-Calzado et al., 2008), such as the production of 34 

retrospective gridded products (Di Luzio et al., 2008; Kenawy et al., 2013; Newman et al., 2019; Serrano-Notivoli et 35 

al., 2019), trend analysis (Knowles et al., 2006; Anderson et al., 2009; Papalexiou and Montanari, 2019), and 36 

climatologic index calculation (Alexander et al., 2006; Papalexiou et al., 2018). These SCDs are useful because 37 

station-based observational often contain missing values due to factors such as observer absence, instrumental failures 38 

and interrupted communication (Hasanpour Kashani and Dinpashoh, 2012). Moreover, station observations failing 39 

quality control tests such as outlier and homogeneity checks may not be reliable (Menne et al., 2012), and many 40 

stations are only maintained over a relatively short period of time or portions of the year, resulting in data gaps that 41 

could affect the analysis of climate variability or long-term trends (Rubin, 1976; Stooksbury et al., 1999). Serial 42 

completeness is also a critical requirement for real-time station-based applications, which regularly contend with 43 

missing data values due to latencies in station reporting, quality control and processing (Tang et al., 2009). 44 

Many methods have been developed to estimate missing observations and reconstruct time series of stations; they can 45 

be grouped in self-contained infilling, spatial interpolation, quantile mapping (QM), and machine learning methods. 46 

1. Self-contained infilling only uses records of the target station to estimate its own missing values. Typical methods 47 

include interpolation based on data from previous and subsequent days or replacing missing values by long-term 48 

mean (Kemp et al., 1983; Pappas et al., 2014). Self-contained infilling, however, only performs well for variables 49 

with high temporal autocorrelation such as temperature and is problematic for daily precipitation (Simolo et al., 50 

2010; Teegavarapu and Chandramouli, 2005), and in covering lengthy gaps. 51 

2. Spatial interpolation uses neighboring stations (identified on spatial distance or statistical similarity) to estimate data 52 

at the target station, which can be divided into two types: the first uses information only from neighboring stations; 53 

and common methods include linear interpolation and inverse distance weighting (IDW; Shepard, 1968). The second 54 

method needs information from both neighboring and target stations. Typical examples include the revised normal 55 

ratio (NR; Young, 1992) and the single best estimator (Eischeid et al., 1995, 2000), which use correlation 56 

coefficients (CCs) between target and neighboring stations to estimate merging weights. This second type of spatial 57 

interpolation also includes more sophisticated methods (e.g., multiple linear regression, optimal interpolation, and 58 

kriging) that build a functional relationship between neighboring and target stations (Simolo et al., 2010). Previous 59 

studies have shown that multiple linear regression based on the least absolute deviation criteria (MLAD) performs 60 

better than many interpolation methods such as IDW, NR, and optimal interpolation in infilling/reconstruction 61 

(Eischeid et al., 2000; Kanda et al., 2018). 62 

3. QM is widely used to correct bias of meteorological data (Maraun, 2013; Cannon et al., 2015) and performs well in 63 

estimating missing station data (Simolo et al., 2010; Newman et al., 2015, 2019; Devi et al., 2019). In QM-based 64 

estimation, the cumulative distribution functions (CDFs) of observations from neighboring and target stations are 65 
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 3 

derived, and the record at the target station is estimated as the inverse of its CDF using concurrent CDF probability 66 

information from neighboring stations. QM can avoid the problem of overestimating wet days in precipitation series 67 

and preserve the frequency distribution of time series, which is useful for estimating extreme events (Cannon et al., 68 

2015). 69 

4. Machine learning techniques have been successfully applied to infill station record gaps (Dastorani et al., 2010; 70 

Wambua et al., 2016). For example, Coulibaly and Evora (2007) estimated missing daily precipitation and 71 

temperature in northeastern Canada using six types of artificial neural networks (ANNs). Ustaoglu et al. (2008) 72 

estimated daily temperature using three ANN methods in the Geyve and Sakarya basin, Turkey. Gene expression 73 

programming was applied in the estimation of missing monthly rainfall data in Malaysia (Che Ghani et al., 2014). 74 

Sattari et al. (2017) recommended that a decision-tree algorithm can be used to estimate monthly precipitation due 75 

to its simplicity and high accuracy. Serrano-Notivoli et al. (2019) applied the k-nearest neighbours regression to 76 

reconstruct minimum temperature (Tmin) and maximum temperature (Tmax) observations in Spain to form a gridded 77 

dataset. 78 

Previous SCDs have been developed using multiple infilling and reconstruction methods. For instance, Eischeid et al. 79 

(2000) produced a daily SCD from 1951 to 1991 for the western United States (U.S.), including 2962 precipitation 80 

stations and 2034 temperature stations; Vicente-Serrano et al. (2003) produced a daily SCD from 1901 to 2002 for 81 

northeast Spain using 3106 precipitation stations; Di Piazza et al. (2011) built a monthly SCD from 1921 to 2004 for 82 

Sicily, Italy using 247 precipitation stations; and Woldesenbet et al. (2017) produced a daily SCD of precipitation and 83 

temperature from 1980 to 2013 for the Upper Blue Nile Basin using six stations. There is currently no SCD for North 84 

America; this means that researchers often must collect station data from different databases, which is time-consuming 85 

and may cause inconsistencies between studies based on different methods. 86 

Responding to this need, we develop a retrospective 40-year daily SCD for North America (SCDNA) of precipitation, 87 

Tmin and Tmax from 1979 to 2018. Central America and Caribbean are also covered by SCDNA. Station observations 88 

are collected from four global and regional databases and undergo strict quality control to eliminate dubious records. 89 

Since the performance of infilling and reconstruction methods differs in space and time, the results from 16 strategies 90 

are merged to produce a single deterministic estimate. Finally, the SCDNA is compared to four gridded products to 91 

demonstrate its performance and areas for improvement. The SCDNA is expected to have a wide variety of 92 

applications in North America, and the methodology can be used to produce SCDs in other regions of the world.  93 

2 Datasets 94 

2.1 Meteorological station data 95 

This study uses precipitation, Tmin, and Tmax station data from four databases, the Global Historical Climate Network 96 

Daily (GHCN-D; https://www.ncdc.noaa.gov/ghcnd-data-access; Menne et al., 2012), the Global Surface Summary 97 

of the Day (GSOD; https://catalog.data.gov/dataset/global-surface-summary-of-the-day-gsod), Environment and 98 
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 4 

Climate Change Canada (ECCC; https://climate.weather.gc.ca/historical_data/search_historic_data_e.html), and the 99 

Mexico database from Servicio Meteorológico Nacional, under the Comisión Nacional del Agua (Livneh et al., 2015). 100 

Only stations with at least 8-year precipitation or Tmin and Tmax records between 1979 to 2018 are utilized. The 101 

requirement for minimum recording length is different among studies (e.g., Eischeid et al., 2000; Newman et al., 2015). 102 

We adopted a relatively short time limitation because (1) 8-year records are sufficient to provide basic support for 103 

missing value estimation (Fig. S1), and (2) the open-access dataset and codes enable users to design customized data 104 

selection criteria according to their research requirements. 105 

The numbers of stations with at least 8-year records are 33026, 4619, 3634, and 4049 for GHCN-D, GSOD, ECCC, 106 

and the Mexico database, respectively (Table 1). Their spatial distributions are shown in Fig. S2. GHCN-D has 107 

complied a large amount of data from many sources including the Mexico database and ECCC. For identical stations 108 

from different sources, we keep the one with longer observation history, resulting in the exclusion of ~95% of stations 109 

from the Mexico database and adoption of ~91% of stations from ECCC. Stations with more than 30% missing values 110 

in the observation period are excluded because they could be seasonal stations or suffer serious instrumentation 111 

problems. Stations overlapping in space (same latitude and longitude) and without sufficient metadata for 112 

discrimination are merged (see Sect. 3.2). The above screening reduces the available stations from 45328 to 31772 113 

(Table 1), yet more stations are discarded due to quality control procedures (Sect. 3.1). The final SCDNA includes 114 

24721 precipitation, 19677 Tmin, and 19684 Tmax stations; note that the numbers of Tmin and Tmax stations differ as 115 

quality controls can result in excluding the one and reserving the other in some stations. 116 

Most stations are located in the Contiguous United States (CONUS), southern Canada, and Mexico, while few stations 117 

are located in high-latitude regions such as the Arctic Archipelago (Fig. 1b and c). The spatial distributions of 118 

precipitation and temperature stations are similar, except in eastern CONUS where precipitation stations have a higher 119 

density. 120 

Table 1. Numbers of stations with at least 8-year records from 1979 to 2018 121 

Station numbers GHCN-D GSOD ECCC Mexico Merge Total 

Original numbers 33026 4619 3634 4049 0 45328 

SCDNA input 24765 4331 3100 187 207 31772 

SCDNA output: precipitation 19255 2656 2440 170 200 24721 

SCDNA output: Tmin 13445 3650 2219 167 196 19677 

SCDNA output: Tmax 13453 3651 2217 167 196 19684 

Notification: “Merge” is derived from stations with overlapped locations from all the other data sources (Sect. 3.1.1). 122 
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 123 

Figure 1. (a) Digital elevation model (DEM; Sect. 2.3) of North America. (b) and (c) are the densities of stations at 124 

the 0.5°´0.5° resolution	for precipitation and temperature, respectively. Tmin and Tmax stations are highly consistent, 125 

and thus Tmin is used to represent temperature in (c). The nested black boxes show examples of DEM and station 126 

densities. 127 

In North America, more station observations occur in U.S. than in Canada and Mexico (Fig. 2). The number of samples 128 

in U.S. increases from 1979 to 2018, and there are more precipitation samples than temperature samples. For Canada, 129 

the numbers of precipitation and temperature samples are similar and show a decrease from 1988 to 2018; the sample 130 

number in 2018 is only 61.76% of that in 1988. Mexico has more meteorological samples than Canada, yet this number 131 

decreases after 1983. The decreasing trend is especially sharp after 2012 which may be due to the delay in data 132 

collection or termination of some stations. 133 

Figure 3 shows the fractions of missing values for all stations during the observation period (referred as ratio-1) and 134 

during the entire period from 1979 to 2018 (referred as ratio-2). For temperature, ~20% of the stations have more than 135 

20% missing values in the observation period (ratio-1), and ~20% of the stations have more than 70% missing values 136 

in the entire period (ratio-2). For precipitation, the fraction of missing values is larger. The fractions show strong 137 

spatial variations (Fig. S3). Ratio-2 is smaller for precipitation stations in western U.S. and temperature stations in 138 

central U.S., but larger in Canada and Alaska. Most stations in Mexico have higher ratio-1 than other regions in North 139 

America, indicating that those stations have notable fractions of missing values during the observation period. 140 

In summary, the curves of ratio-1 indicate that a small number of missing values need infilling during the observation 141 

period, while the curves of ratio-2 indicate that extensive reconstruction is needed over the entire period. 142 
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 143 

Figure 2. Sample numbers of stations for each year from 1979 to 2018. CA represents Canada, US represents United 144 

States, and MX represents Mexico. Tmax stations are highly consistent with Tmin stations, and thus Tmin is used to 145 

represent temperature. The numbers of samples could be a better indicator than the numbers of stations because many 146 

stations have notable missing values. 147 

 148 

Figure 3. The fraction of missing values for stations with at least 8-year records. Ratio-1 is the degree of missingness 149 

during the observation period, and ratio-2 is the degree of missingness during the entire period of interest (1979 to 150 

2018). Tmin is used to represent temperature because Tmax show almost overlapped curves with Tmin. 151 
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 7 

2.2 Reanalysis products 152 

We use reanalysis precipitation, Tmin and Tmax from the fifth generation of European Centre for Medium-Range 153 

Weather Forecasts (ECMWF) atmospheric reanalyses of the global climate (ERA5; Copernicus Climate Change 154 

Service (C3S), 2017), the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al., 2015), and the Modern-Era 155 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017) (see Table 2). The 156 

ERA5 and JRA-5 do not provide daily outputs, thus, daily precipitation is accumulated from sub-daily estimates while 157 

daily Tmin and Tmax are estimated by the sub-daily minimum and maximum temperature values. Gridded reanalysis 158 

precipitation is linearly interpolated to match point-scale station data, and Tmin and Tmax are downscaled using 159 

temperature lapse rate (TLR; see Sect. 3.1).  160 

Table 2. Information on the three reanalysis products. 161 

Products 
Spatial 

resolution 

Temporal 

resolution 
Period Agency 

ERA5 0.25°´0.25° 1 h 1979-present 
European Centre for Medium-

Range Weather Forecasts 

JRA-55 ~60 km 3 h 1958-present Japan Meteorological Agency 

MERRA-2* 0.5°´0.625° daily 1980-present 
NASA’s Global Modeling and 

Assimilation Office 

* MERRA-2 provides outputs in temporal resolutions from 1 h to 1 month; here we use daily values. 162 

2.3 Auxiliary data  163 

The Multi-Error-Removed Improved-Terrain digital elevation model (MERIT DEM) at a 3 sec (~90 m at the equator) 164 

resolution (Yamazaki et al., 2017) is used in this study. To enable temperature downscaling, the high-resolution DEM 165 

is spatially averaged to the original resolutions of ERA5, MERRA-2, and JRA-55 (Table 2). The MERIT DEM may 166 

be slightly different than the DEM data used in the three reanalysis products, and this will have a limited impact on 167 

missing data estimation (Sect. 3.3.2). 168 

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2.2 dataset (Beck et al., 2017, 2019) is utilized for 169 

the comparison with the SCDNA developed by this study. MSWEP merges data from ground observations, satellite 170 

products, and reanalysis models, and performs better than all products used for merging (Beck et al., 2019). The 171 

comparison can show whether the SCDNA is a better choice than MSWEP to fill gaps in station precipitation 172 

observations.  173 

3 Methodology 174 

The methodology to produce the SCDNA includes three primary steps (Fig. 4): (1) preparing a unified precipitation 175 

and temperature database from multiple sources (Sect. 2.1 and 3.1); (2) downscaling reanalysis estimates (Sect. 2.2 176 
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 8 

and 3.2) that are used in QM- and machine learning-based data estimation (Sect. 3.3) and comparison with the SCDNA 177 

(Sect. 4.5); and (3) producing the SCDNA from 1979 to 2018 based on 16 strategies (Sect. 3.3). The following sub-178 

sections summarize the work in each step of the methodology (Sect. 3.1, 3.2, and 3.3) as well as the approach used to 179 

evaluate the performance of the method (Sect. 3.4). 180 

 181 

Figure 4. Flowchart of the production of the SCDNA, including station data preparation, reanalysis product processing, 182 

and missing data infilling and reconstruction. 183 

In this study, infilling refers to the estimation of missing values during the observation period, while reconstruction 184 

refers to estimating values outside of the observation period when no station record is available (Fig. 5). Station records 185 

that fail quality control are treated as missing values.  186 

3.1 Prepare a unified precipitation and temperature database 187 

3.1.1 Merging of stations based on location 188 

Stations are merged if their latitude and longitude match other stations. The problem of overlapped locations is caused 189 

by identification alteration of one station for different periods or recording/rounding bias of station location 190 

information. Although it is possible that multiple stations are deployed in the same location for experimental aims, 191 
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 9 

location merging is done to preserve internal consistencies as inconsistent records at the same location are self-192 

contradictory. 193 

The method for location merging includes several steps. First, overlapping stations are extracted and grouped. Stations 194 

within the same group that have non-overlapping recording periods are simply merged into one time series. Otherwise, 195 

the Spearman’s rank CC (SCC) between precipitation series from all station pairs in the group is calculated. For SCC 196 

< 0.7, the station group is discarded due to large discrepancies; for 0.7 < SCC < 0.9 the discrepancy is considered as 197 

tolerable and the station with the longest record is kept; for SCC > 0.9 stations are considered as highly correlated and 198 

their data are merged into one time series, while for overlapping periods the station with longest record is used. 199 

Overall, 1240 stations are involved in location merging, stratified in 586 station groups. Around 10% of the groups 200 

contain more than two stations and the largest group contains five stations. After location merging, only 207 groups 201 

are kept and merged into unified times series (Table 1). Despite the steps taken above, the merged series could contain 202 

inhomogeneities due to the combination of records from multiple stations.  203 

3.1.2 Quality control 204 

To ensure station observations undergo strict and comprehensive quality control, we adopted the methods used to 205 

produce previous station-based datasets. For Tmin and Tmax, we followed the method designed by Durre et al. (2010) 206 

which is adopted by GHCN-D (Menne et al., 2012). The procedures include five types of checks: integrity checks, 207 

outlier checks, internal and temporal consistency checks, spatial consistency checks, and extreme megaconsistency 208 

checks. A few of the procedures in Durre et al. (2010) require other variables such as snowfall, and thus are not 209 

adopted in this study. In addition, the quality flags in this study are partly different with those of GHCN-D because of 210 

the different sources, numbers and temporal periods of stations. 211 

For precipitation, quality control procedures consist of three parts. The first part is similar with that for temperature. 212 

The second part (four types of checks) follows procedures designed by Hamada et al. (2011) which are adopted by 213 

the Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE; Yatagai 214 

et al., 2012). The third part (two types of checks) adopts strategies by Beck et al. (2019) used in the production of 215 

MSWEP. Note that although Durre et al. (2010) and Hamada et al. (2011) share some common traits for precipitation, 216 

both of them are adopted to ensure quality control reliability. 217 

Details of quality checks are in Appendix B. 218 

3.2 Downscale reanalysis data 219 

The reanalysis temperature estimates are downscaled to match point-scale station observations using temperature lapse 220 

rate (TLR) according to 221 

𝑇" = 𝑇$ + TLR× ∆ℎ (1) 
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where 𝑇$ is 2-m reanalysis air temperature,	𝑇" is downscaled temperature, ∆ℎ is the height difference between station 222 

elevation and reanalysis grid elevation. TLR shows notable spatiotemporal variations (Minder et al., 2010) and 223 

estimating TLR based on ground observations over a large domain is difficult due to the sparsity of stations. Yet recent 224 

studies show that reanalysis outputs offer an alternative in estimating gridded TLR (e.g., Gao et al., 2012). The gradient 225 

of air temperature at different pressure levels above the ground can be used to approximate near-surface TLR (Gao et 226 

al., 2012, 2018; Gruber, 2012). Tang et al. (2018) compared eight temperature downscaling methods in CONUS and 227 

found that methods based on reanalysis-derived TLR can achieve higher accuracy compared to fixed TLR (e.g., -228 

6.5°C/km) or statistical interpolation downscaling methods. Hence, this study uses the linear regression slope between 229 

MERRA-2 air temperature and geopotential heights from 300 hPa to 1000 hPa pressure levels to represent TLR for 230 

each month at the resolution of 0.5°´0.625° (Table 2). MERRA-2 is used because it directly provides monthly data 231 

and masks temperature data if the pressure level is below land surface. The choice of pressure levels needs further 232 

investigation because relationships between vertical and near-surface temperature vary with regions. Complicated 233 

TLR phenomena such as inverse lapse rate are not considered for simplicity. The climatological mean of TLR (Fig. 234 

S4) decreases from -4.8°C/km in the northeast continent (i.e., Canadian Arctic Archipelago) to -7.2°C/km in the 235 

southwest continent (i.e., Rocky Mountains in CONUS). The smaller TLR magnitude in high latitudes is consistent 236 

with previous studies (e.g., Gardner et al., 2009; Marshall et al., 2007). 237 

3.3 Produce the serially complete dataset 238 

To produce the high-quality SCDNA for North America, we use 16 strategies: four based on quantile mapping with 239 

neighboring stations (QMN; e.g., Longman et al., 2019; Newman et al., 2015, 2019), four on quantile mapping with 240 

concurrent reanalysis estimates (QMR), four using spatial interpolation methods (INT; e.g., Eischeid et al., 2000; 241 

Kanda et al., 2018; Woldesenbet et al., 2017), two using machine learning methods (MAL; e.g., Dastorani et al., 2010; 242 

Wambua et al., 2016), and two multi-strategy merging methods (MRG). Merging multiple infilling/reconstruction 243 

methods can provide better estimation than individual methods, as shown by previous data merging and gap infilling 244 

studies (e.g., Eischeid et al., 2000; Beck et al., 2017, 2019; Ma et al., 2018). 245 

We generate estimates for every station and every day from 1979 to 2018 (Fig. 5). The estimates from these 16 246 

strategies and the SCDNA are evaluated using station observations, and the performance of the SCDNA is compared 247 

to four benchmark gridded products. Then, the estimates of the SCDNA are corrected for further accuracy 248 

improvement. Finally, estimates are replaced by station observations when observations exist and pass quality control 249 

checks. The variance and spatial correlation analyses are performed to compare the statistical properties of station 250 

observations and estimates (see Sect. 4). 251 
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 252 

Figure 5. Diagram of the infilling and reconstruction for a specific station (referred to as A). The entire period from 253 

1979 to 2018 is divided into the observation period and the reconstruction period. The data flows of variance and 254 

spatial correlation analyses are shown in the nested yellow boxes. Station B is a nearby station of A. 255 

Only stations with at least 3000 valid values are included in the infilling and reconstruction effort. The eight steps 256 

(termed Step-1 to Step-8) of SCDNA production are described as below. Unless otherwise stated, the steps are 257 

implemented for each target station (s), each variable (precipitation, Tmin, and Tmax), and each day of the year (DOY, 258 

i.e., 1-366).  259 

3.3.1 Data extraction 260 

Step-1: Spatiotemporally concurrent reanalysis estimates (ERA5, JRA-55, and MERRA-2) are extracted, including 261 

precipitation, Tmin, Tmax, and TLR. Precipitation is linearly interpolated from gridded reanalysis estimates, and 262 

temperature is downscaled (i.e., corrected for the elevation difference between the reanalysis grid cell and the station 263 

elevation) based on TLR (Sect. 3.1). 264 

Step-2: Neighboring stations (at least one and at most 30) with at least 8-year overlapped period with station s are 265 

found within the searching radius of 200 km. These stations are ranked from closest to farthest according to their CC 266 

with the target station. SCC is used for precipitation, and Pearson CC (PCC) is used for Tmin and Tmax. CC is calculated 267 

using data within a 31-day window centered around the current DOY from all years. 268 

Step-3: The empirical CDFs of s, neighboring stations, and reanalysis estimates are obtained using data within the 269 

same 31-day window. 270 
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3.3.2 Infilling and reconstruction 271 

Step-4: For each day (d) corresponding to the DOY, the estimated data are acquired based on 16 strategies which are 272 

divided into five groups.  273 

Group 1: Quantile Mapping with Neighboring stations (QMN) 274 

• QMN-1: For all neighboring stations with valid records, the station with the highest CC in Step-2 is selected. 275 

The estimated data for s and d is obtained using Eq. (2). 276 

𝑋" = 𝐹"/0(𝐹2(𝑋2)) (2) 

where 𝑋2 is precipitation or temperature for d from the selected neighboring station i, 𝐹2 is the empirical CDF of 277 

i corresponding to the DOY, 𝐹"/0 is the inverse CDF of s corresponding to the DOY, and 𝑋" is the estimated data. 278 

• QMN-2: For all neighboring stations with observations, estimated values are obtained using Eq. (2) which are 279 

merged based on Eq. (3). 280 

𝑋" =
∑ 𝑊2𝐹"/0(𝐹2(𝑋2))	6
2

∑ 𝑊2
6
2

 (3) 

𝑊2 = 𝐶𝐶28 (4) 

where n is the number of neighboring stations, 𝐹"/0(𝐹2(𝑋2)) is the QM-based estimate from i, and 𝑊2 is the weight 281 

calculated using Eq. (4). 𝐶𝐶2 is CC (SCC or PCC) between data from s and i corresponding to the DOY. 𝑊2 is 282 

assigned zero if 𝐶𝐶2 is negative. 283 

• QMN-3: Similar to QMN-2, but the weight is calculated according to the distance (𝐷2) between s and i based on 284 

Eq. (5). Although the exponent of distance (k) varies in different studies, -2 is the most common choice 285 

(Teegavarapu and Chandramouli, 2005). 286 

𝑊2 = 𝐷2:  (5) 

• QMN-4: The median of QMN-1 to QMN-3 is used as the estimated data. The strategy of using median values is 287 

the same with Eischeid et al (2000), which could be closer to actual observations than QMN-1 to 3. 288 

Group 2: Quantile Mapping with Reanalysis products (QMR) 289 

Reanalysis products provide useful information for SCDNA production as (1) remote regions may not have enough 290 

neighboring stations, and (2) neighboring stations also have missing values which could result in gaps of estimates at 291 

the target station. 292 
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• QMR-1 to QMR-3: Similar to QMN-1, but the neighboring station is replaced by concurrent ERA5, JRA-55, 293 

and MERRA-2 estimates, respectively. 294 

• QMR-4: The median of QMR-1 to 3 is used as the estimated data. 295 

Group 3: Interpolation (INT)  296 

The three interpolation methods used in this study are MLAD (referred as INT-1), NR (referred as INT-2), and inverse 297 

distance weighting (IDW, referred as INT-3). They are described below. Following Eischeid et al. (2000), neighboring 298 

stations with CC lower than 0.35 are excluded. The remaining stations are ranked from high CC to low CC. A 299 

maximum of four neighboring stations are used in the interpolation. For Tmin and Tmax, direct interpolation from 300 

neighboring stations to s could be biased due to the elevation differences between stations. Temperature data from 301 

neighboring stations are downscaled to the elevation of s based on Eq. (1). 302 

• INT-1: MLAD minimizes the sum of absolute errors. It is more robust than regression based on least squares 303 

because while least square estimation is effective when the errors are normally distributed and independent, 304 

environmental variables, especially precipitation, often violate the assumption of normality (Eischeid et al., 305 

2000). MLAD has been well documented with better performance in gap infilling than other interpolation 306 

methods (Eischeid et al., 1995, 2000; Kanda et al., 2018; Young, 1992). The formula is shown in Eq. (6). 307 

𝑋" = 𝑐< += 𝑐2𝑋2
6

2
 (6) 

where 𝑐2	(𝑖 =0, 1, …, n) is regression coefficients estimated using data within a 31-day window for each DOY. 308 

Different d corresponding to the same DOY could have different combinations of neighboring stations due to the 309 

limitation of observation availability. MLAD is performed for each combination to ensure that effective estimates 310 

are available for all days. 311 

• INT-2: NR is an interpolation method proposed by Paulhus and Kohler (1952) and modified by Young (1992). 312 

The modified version is adopted in this study, which combines information from neighboring stations by 313 

replacing 𝐹"/0(𝐹2(𝑋2))	with 𝑋2 in Eq. (3). The weight is calculated using Eq. (7). 314 

𝑊2 = 𝐶𝐶28
𝑁2 − 2
1 − 𝐶𝐶28

 (7) 

where 𝑁2 is the number of samples used to calculate 𝐶𝐶2 between s and i. SCC is used for precipitation and PCC 315 

is used for temperature. 316 

• INT-3: IDW is one of the most common interpolation methods. It is implemented similar to NR, where the 317 

inverse squared distance, as shown in Eq. (5), is used as the weight. 318 
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• INT-4: The median of INT1, INT2 and INT3 is used as the estimated data. 319 

Group 4: Machine Learning (MAL) 320 

The two MAL methods used in this study are ANN (referred as MAL-1) and random forest (RF, referred as MAL-2; 321 

Breiman, 2001). Unlike QMN, QMR and INT that are carried out for each DOY, MAL uses complete observation 322 

records of s to ensure that ANN and RF are trained with enough values. MAL models are trained using the first 70% 323 

observations and tested using the remaining 30% observations. The MAL models’ validation based on the 30% 324 

observations can indicate their performance in the reconstruction period.  325 

The input data are from neighboring stations and concurrent reanalysis estimates. For each s, neighboring stations are 326 

determined in a way similar with Step-2, but CC is calculated using data in the entire observation period. Neighboring 327 

stations with CC lower than all reanalysis products (ERA5, JRA-55, and MERRA-2) are excluded. The remaining 328 

neighboring stations and three reanalysis products form a complete repository of input features. Then, for each day 329 

that s has no observation, the input features are extracted from the repository in three steps: (1) neighboring stations 330 

without observations for the day are excluded, (2) the remaining neighboring stations and reanalysis products are 331 

ranked according to their CC with s, and (3) at most five stations/reanalysis products with the highest CC are selected. 332 

In this way, s will have multiple combinations of input features to ensure that all days with missing values have 333 

estimates. All combinations are used to train and test the ANN and RF models, resulting in multiple estimated series 334 

for s. The final estimates of s are generated in three steps: (1) the Kling-Gupta Efficiency (KGE; Kling et al., 2012) 335 

of all estimated series is calculated using all observations of s, and ranked from high to low KGE (see Sect. 3.4 for 336 

definition of KGE); (2) the series with higher KGE is used to constitute the estimates of s in sequence; and (3) the 337 

second step is repeated until there are no missing values for s. This approach ensures that “best” and complete estimates 338 

are provided for s. 339 

• MAL-1: A four-layer ANN is used. The input layer has a maximum of five nodes (depending on the number of 340 

input features), the two hidden layers both have 20 nodes, and the output layer has one node for generating 341 

precipitation or temperature estimates. The transfer functions are hyperbolic tangent sigmoid for hidden layers 342 

and linear for the output layer. The training function is resilient backpropagation. The model is trained using the 343 

first 50% data, validated using the subsequent 20% data, and tested using the final 30% data.  344 

• MAL-2: A RF model with 50 trees is built with 70% training data and 30% testing data. The minimum number 345 

of samples per tree leaf is 5. The input nodes depend on the number of input features like MAL-1. 346 

Group 5: Multi-Strategy Merging (MRG) 347 

• MRG-1: KGE is used to rank the performance of the 11 strategies (QMN-1 to 3, QMR-1 to 3, INT-1 to 3, 348 

and MAL-1 to 2) as CC cannot reflect the magnitude difference (e.g., bias) between target and reference 349 
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series. The first three cases of the 11 strategies are merged using squared KGE as the weight. The individual 350 

weight is assigned zero if KGE is negative.  351 

• MRG-2: The median of the three selected strategies in MRG-1 is used as the estimated data.  352 

3.3.3 Generating serially complete records 353 

Step-5: In this step, Step-3 and -4 are repeated based on 70% data of s in the observation period. Then, the KGE of 354 

estimates from all strategies are calculated using the remaining 30% observations. MAL-1 and 2 are not repeated 355 

because they are trained on the 70% observations. This step is implemented because QMN-1 to 4, QMR-1 to 4, and 356 

INT-1 in Step-4 use all data of s in the observation period to select stations, estimate empirical CDFs and carry out 357 

regression. This potential overfitting problem could lead to better performance of these strategies in the observation 358 

period but worse performance in the reconstruction period. KGE calculated in Step-4 can represent the accuracy of 359 

estimates in the observation period, while KGE calculated in Step-5 can represent the accuracy of estimates in the 360 

reconstruction period. 361 

Step-6: In the observation period, the strategy with the highest KGE in Step-4 is selected to contribute the 362 

extension/reconstruction to the SCDNA. In the reconstruction period, first, the strategy with the highest KGE in Step-363 

5 is determined; then, the estimates from the corresponding strategy in Step-4 are used to constitute the SCDNA 364 

because the empirical CDF and regression based on all observations in Step-4 could be more representative than the 365 

70% observations in Step-5. 366 

Step-7: Estimates in Step-6 are corrected for certain climatological biases using station data in the observation period. 367 

Precipitation estimates are often subjected to wet-day bias. Two methods are implemented to address this problem. 368 

First, QM is performed based on the CDF of s in Step-3. However, QM may reduce the accuracy of estimated 369 

precipitation in some cases, for which the method used in Beck et al. (2019) is adopted. This method subtracts a tiny 370 

value (0.01 mm) from the original precipitation series and rescales the series to restore the original mean value. This 371 

operation is repeated until the estimated series show equal number of wet days (>0.5 mm d-1) with observations of s. 372 

In addition to wet-day bias correction, mean-value correction is implemented. The ratio between the mean values of 373 

precipitation estimates and observations is calculated in the observation period, which is used to rescale estimated 374 

series in both observation and reconstruction periods. For Tmin and Tmax, QM correction and mean-value correction are 375 

also implemented.  376 

Step-8: The accuracy of the SCDNA is evaluated and compared to benchmark datasets based on actual observations 377 

(Fig. 5). Then, the estimates are replaced by observations whenever possible to generate the final SCDNA. Very 378 

occasionally, estimated Tmin could be larger than estimated Tmax, for which Tmax is replaced by the maximum Tmax, and 379 

Tmin is replaced by the minimum Tmin of the estimates from the 16 strategies. 380 
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3.4 Evaluate the precipitation and temperature estimates 381 

KGE, which is proposed by Gupta et al. (2009) and modified by Kling et al. (2012), is used to support the merging of 382 

different strategies (Sect. 3.3) and the evaluation of the estimated precipitation and temperature. It is a useful metric 383 

in evaluating various variables (e.g., Tang et al., 2020) and incorporates information about correlation, bias, and 384 

variance. 385 

⎩
⎪
⎨

⎪
⎧KGE = 1 −J(𝑟 − 1)8 + (𝛽 − 1)8 + (𝛾 − 1)8

𝛽 =
𝜇"
𝜇<
																																																																							

𝛾 =
𝐶𝑉"
𝐶𝑉P

=
𝜎" 𝜇"⁄
𝜎P 𝜇P⁄ 																																																				

 (8) 

where 𝑟 is the PCC, 𝛽  is the bias ratio, and 𝛾 is the variability ratio; 𝜇 is the mean value, and 𝜎 is the standard 386 

deviation. The subscripts s and o represent estimated and reference time series, respectively. KGE ranges from 387 

negative infinity to one. If two series exactly match, the KGE is one. A 𝛽 or	𝛾 value smaller/larger than one indicates 388 

that the mean value or variability of observations is underestimated/overestimated.  389 

In Sect. 4, the evaluation during the observation period is based on the complete station observations (i.e., Step-4 in 390 

Sect. 3.3.2), while the evaluation during the reconstruction period is realized using 30% independent station 391 

observations (i.e., Step-5 in Sect. 3.3.3). Unless otherwise stated, SCDNA estimates in Sect. 4 are after correction 392 

(Step-7 in Sect. 3.3.3). In Sect. 4.5, SCDNA estimates are compared with gridded products (ERA5, JRA-55, MERRA-393 

2, and MSWEP). In addition to the three SCDNA variables (precipitation, Tmin, and Tmax), mean temperature (Tmean, 394 

the mean of Tmin and Tmax) and daily temperature range (Trange, the difference between Tmax and Tmin) are also included. 395 

The involvement of Trange can contribute to more objective comparison between SCDNA and reanalysis products 396 

because the TLR-based downscaling of reanalysis temperature contains uncertainties, which could affect the 397 

evaluation of Tmin, Tmax, and Tmean. Although there exist differences between TLR of Tmin and Tmax, Trange can reduce 398 

the effect of scale-mismatch between gridded reanalysis temperature and point station temperature on evaluation 399 

results.  400 

4 Results 401 

4.1 Comparison of infilling and reconstruction strategies 402 

The value of a given infilling/reconstruction strategy can be quantified by the extent that a strategy is selected for use 403 

in the final SCDNA dataset. In this sense the contribution ratios define the proportion of estimates that come from a 404 

specific strategy. Fig. 6 shows that the contribution ratios of QMN, QMR, and INT to missing value estimation are 405 

generally smaller than 20% in North America. Please note that QMN refers to all strategies within this group unless 406 

the strategy number is specified right after QMN. This also applies to other groups. QMR shows the smallest 407 

contribution ratios for almost all stations among the five groups. Compared with other regions in North America, 408 

contribution ratios of QMR are higher for precipitation stations in western U.S. and temperature stations in Mexico. 409 
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INT shows lower contribution ratios in Rocky Mountains compared with western U.S., indicating statistical 410 

interpolation without considering topographic effect is subjected to substantial uncertainties in complex terrain. MAL 411 

shows notably higher contribution ratios than QMN, QMR, and INT, particularly for Tmin and Tmax. The ratios of MAL 412 

are higher than 20% for ~30% precipitation stations, ~65% Tmin stations, and ~68% Tmax stations. MRG has the highest 413 

contribution ratios throughout North America. The average contribution ratios of MRG are 59.88%, 41.59%, and 414 

40.56% for precipitation, Tmin, and Tmax, respectively. For precipitation, MRG is particularly effective in high-latitude 415 

regions (northern Canada and Alaska), western U.S. and Mexico. 416 

 417 

Figure 6. The contribution ratios of estimates from five infilling/reconstruction groups to the missing values of all 418 

stations from 1979 to 2018. The three columns from left to right represent precipitation, Tmin, and Tmax, respectively. 419 
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The five rows from top to bottom represent Group-1 (QMN), Group-2 (QMR), Group-3 (INT), Group-4 (MAL), and 420 

Group-5 (MRG), respectively. The maps are at the resolution of 0.5°. The ratio for each grid cell is the mean value of 421 

all stations within this grid cell. 422 

Figure 7 shows the KGE and contribution ratios of 16 strategies. The KGE of estimated precipitation is lower than 423 

that of estimated Tmin and Tmax due to the stronger spatial and temporal homogeneity of temperature (Fig. 7). The 424 

median KGE values of Tmin and Tmax are generally above 0.9, and the accuracy of estimated Tmax is higher than that of 425 

Tmin. The KGE during the reconstruction period is smaller than that during the observation period, which is particularly 426 

obvious for QMN, QMR, and INT-1 compared with other strategies, because QMN and QMR transfer CDF during 427 

the observation period to other periods, and INT-1 transfers regression relationship during the observation period to 428 

other periods. MAL suffers a slight degradation in the reconstruction period, and the better performance of MAL-2 429 

than MAL-1 shows that RF could be a better choice than ANN in estimating missing data. For MRG, the differences 430 

of KGE between the two periods are relatively small. For example, the median KGE values of MRG-1 for Tmax are 431 

0.99 and 0.98 for observation and reconstruction periods, respectively. MRG also shows higher KGE and a narrower 432 

quantile ranges than other strategies, particularly for precipitation, benefiting from merging estimates from multiple 433 

strategies 434 

Regarding contribution ratios (Fig. 7), strategies with higher KGE often have larger contributions to the estimated 435 

series. However, this is not always true because the selection of strategies is performed for each DOY. Note that the 436 

contribution ratios of MAL-2 are even higher than MRG-1 during the observation period for Tmin and Tmax, although 437 

MRG-1 achieves higher KGE than MAL-2 for most stations. This is because MAL-2 could be the best choice for 438 

more DOY than MRG-1 even though MRG-1 may achieve the best overall performance. An example using Tmin data 439 

from one station is shown in Fig. S5. 440 

In the reconstruction period when observations are absent, the contribution ratios of MAL-2 decrease drastically 441 

compared with the observation period, contributing to the increased ratios of other strategies (particularly MRG-1). 442 

Although QMR shows the lowest contribution ratios, reanalysis products have implicit contributions to other strategies 443 

(e.g., MAL and MRG). Overall, MRG-1 shows much higher contribution ratios than all the other strategies (including 444 

MRG-2) during the reconstruction periods, indicating that it is the most important strategy in missing value estimation. 445 

Hence, combining information from multiple strategies is more reliable, and KGE-based merging is more effective 446 

than the median-value-based estimation. 447 

https://doi.org/10.5194/essd-2020-92

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 13 May 2020
c© Author(s) 2020. CC BY 4.0 License.



 19 

 448 

Figure 7. Boxplots of (a, c, and e) the KGE and (b, d, and f) the contribution ratio of 16 strategies for all stations. Each 449 

strategy corresponds to two boxes in each sub-figure; the left one with darker color represents the observation period, 450 

and the right one with lighter color represents the reconstruction period. The line within the box is the median. The 451 

upper and lower edges of the box represent the 25th and 75th percentiles, respectively. Values more than 1.5 times 452 

the interquartile range away from the upper or lower edges are outliers (dots). 453 

4.2 Impact of reconstruction on spatial correlation and series variance 454 

All infilling/reconstruction strategies except QMR rely on information from neighboring stations; this could affect the 455 

spatial correlation structure and the variance of SCDNA series. Space-time correlations and other properties (e.g., 456 

intermittency of precipitation) are important considerations because they can influence the performance of follow-on 457 

applications that use the SCDNA as input. Theoretically, QMN strategies could significantly inflate spatial correlation 458 

but retain variance of station observations. The spatial correlation inflation in INT strategies could be lower but the 459 

variance would be underestimated due to smoothing. QMR-1 is used as an example to demonstrate the effect of QM 460 

on spatial correlation and series variance (Fig. S6), because QMN uses different station combinations for every DOY 461 

which would mask the effect of QM on final estimates. If the ERA5 used by QMR-1 is replaced by station observations, 462 

the results should be generally consistent. According to Fig. S6, the spatial correlation is substantially inflated by 463 
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QMR-1, particularly for Tmin and Tmax, while the standard deviation of QMR-1 estimates is very close to that of 464 

observations. This supports the design of estimating missing data using neighboring stations for each DOY as 465 

otherwise the inflation of CC could be very substantial for the entire period. 466 

The spatial correlation based on station observations (Fig. 8a, d, and g) shows obvious seasonal variations, with CC 467 

lower in the warm season and higher in the cold season. The seasonality of CC for Tmax is weaker compared with that 468 

for precipitation and Tmin. The SCDNA estimates capture the seasonal patterns but underestimates the variation (Fig. 469 

8b, e, and h) because the inflation of spatial CC is larger in the warm season than cold season (Fig. 8c, f, and i). 470 

Moreover, the inflation is larger for neighboring stations with lower correlation with the target station. We tested 471 

selecting neighboring stations according to their distance from the target station, and similar results were acquired. 472 

For precipitation, the median CC differences of all stations are close to 0.1 in the cold season and ranges between 0.1 473 

and 0.15 in the warm season. For Tmin, the median CC differences are generally between 0.05 and 0.15. The CC 474 

differences of Tmax are relatively homogeneous for different seasons and generally fluctuate between 0.05 and 0.1. The 475 

inflation of CC is because (1) the estimates from the 10 neighboring stations and the target station are generally derived 476 

using highly overlapped information (Sect. 3.3.1), and (2) estimation is realized for each DOY for all strategies except 477 

MAL, meaning that calculating CC for each DOY show the inflation to the largest extent.  478 

The final SCDNA replaces estimates by observations, which can largely relieve the inflation of spatial correlation 479 

(Fig. S7), depending on the degree to which observations are present in the record. For Tmin and Tmax, CC is very close 480 

to that based on observations; for precipitation, correlation in wintertime is even lower than that based on observations. 481 
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 482 

Figure 8. CC between target and neighboring stations for all DOY using station observations (the first column), 483 

SCDNA estimates (second column), and differences between SCDNA- and observation-based CC (the third column). 484 

CC is calculated in the observation period. For each target station, 10 neighboring stations are selected according to 485 

the correlation between time series from target and neighboring stations. Smaller numbers represent higher correlation. 486 

For example, station 1 represents the neighbor with the highest CC with the target station. Each curve represents the 487 

median CC of all stations. 488 

Figures 9 and 10 show CC between estimates at the target station and observations at the neighboring station. For 489 

precipitation, most strategies exhibit similar spatial correlation structure with observations for most stations. QMR 490 

largely underestimates CC compared with observations, which should be attributed to the differences between 491 

precipitation of reanalysis products and stations. There are notable differences for different strategies within one group. 492 

For example, QMN-1 shows larger inflation when observation-based CC is higher, which is not seen in QMN-2 to 4. 493 

This is probably because QMN-1 only uses information from the one neighboring station with the highest correlation 494 

with the target station for each DOY. Higher observation-based CC in Fig. 9 means this neighboring station could be 495 

more frequently used by QMN-1 to estimate data for the target station, resulting in the larger inflation of CC. Another 496 

example is that INT-1 underestimates the CC for 68.75% stations, whereas INT-2 to 4 overestimates the CC for almost 497 

all stations. For SCD-1, inflation of CC is observed for 76.60% stations, whereas the magnitude of overestimation is 498 
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smaller than that in Fig. 8. The mean values of observation-based and estimate-based CC are 0.71 and 0.77, 499 

respectively. SCD-2 replaces estimates by observations and is the final dataset of this study. It reduces the mean 500 

estimate-based CC to 0.70. The overall spatial correlation structure of observations is generally preserved by SCD-2. 501 

However, SCD-2 calculates CC for the entire period which is different from the period of observation-based CC, 502 

resulting in uncertainties such as the underestimation for some stations when observation-based CC is larger than 0.7. 503 

The spatial correlation of Tmin is much stronger than that of precipitation (Fig. 10). Most strategies overestimate the 504 

CC for most stations, whereas the magnitude is quite small. For example, SCD-1 inflates the CC for 96.96% stations, 505 

while the mean CC values for observations (0.95) and SCD-1 (0.96) are very close to each other. QMR still 506 

underestimates CC similar to Fig. 9 for precipitation. CC based on SCD-2 is generally consistent with that based on 507 

observations, while slight underestimation exists for some stations when observation-based CC is higher than 0.9. Tmax 508 

shows similar spatial correlation patterns with Tmin (Fig. S8). 509 

In summary, inflation of CC is inevitable particularly when estimates are obtained using information from sole data 510 

source such as one neighboring station or one reanalysis product. The inflation is larger if each DOY is treated 511 

separately (Fig. 8 and S7), but smaller if CC is calculated for all years (Fig. 9, 10 and S8). Combining information 512 

from multiple sources (stations and reanalysis) and combining multiple strategies for each DOY are beneficial in 513 

estimating the overall spatial correlation structure. The spatial correlation structures vary for different strategies, and 514 

further studies are needed to clearly demonstrate how and why the estimate-based CC differs from observation-based 515 

CC.  516 
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 517 

Figure 9. Scatter density plots of CC between precipitation from the target station and neighboring stations. For each 518 

target station, the neighboring station with the highest correlation with the target station is selected. X-axis represents 519 

the CC between observed precipitation from target and neighboring stations. Y-axis represents the CC between 520 

estimated precipitation from the target station and the observed precipitation from the neighboring station. Each sub-521 

figure corresponds to one strategy in Sect. 3.3.2. SCD-1 represents SCD estimates after correction, while SCD-2 522 

replaces estimates by observations. CC is calculated during the overlapped observation period between target and 523 

neighboring stations, and the only exception is SCD-2 which calculates CC using precipitation from target and 524 

neighboring stations during the entire period. 525 
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 526 

Figure 10. Similar with Fig. 9, but for Tmin. 527 

The variability of observations and of the corrected and uncorrected SCDNA estimates (Step-7 in Sect. 3.3.3) are 528 

compared using the standard deviation of the observation period (Fig. 11). The standard deviation of uncorrected 529 

SCDNA precipitation is lower than that of observations, while after correction, the standard deviation agrees very well 530 

with observations. The mean values of standard deviation are 7.36, 6.30, and 7.36 for observations, uncorrected 531 

SCDNA, and corrected SCDNA, respectively. For Tmin and Tmax, corrected and uncorrected SCDNA estimates both 532 

show consistent variability with observations.  533 
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 534 

Figure 11. The standard deviation of observations and SCDNA estimates before and after correction. Data in the 535 

observation period are used. 536 

4.3 The performance of the serially complete dataset 537 

Uncorrected SCDNA estimates show high accuracy in North America (Fig. 12). For precipitation, the median KGE 538 

of all stations is 0.87, and the median values of 𝑟, 𝛽, and 𝛾 are 0.91, 0.92, and 0.96, respectively. The KGE for Mexico 539 

stations generally ranges between 0.6 and 0.8, which is smaller than that in U.S. and southern Canada. Some stations 540 

in Rocky Mountains, Caribbean, Alaska and northern Canada (regions with complex topography or climate), also 541 

show lower KGE for precipitation estimates. The spatial distribution of 𝑟 is similar with that of KGE, while the 542 

magnitude is higher. According to 𝛾, most stations underestimate precipitation variability which is consistent with Fig. 543 

11; 𝛽 is generally lower than one in most regions of North America, particularly in Rocky Mountains and Mexico 544 

where SCDNA underestimates precipitation.  545 

Estimated temperature shows much higher KGE compared with precipitation. The median KGE and 𝑟 of Tmin are 0.97 546 

and 0.99, respectively. For Tmax, the median of KGE and 𝑟 are 0.99 and 0.99, respectively. The median 𝛾 and 𝛽 are 547 

both between 0.99 and 1 for Tmin and Tmax with small variations, particularly for Tmax (Fig. 12); the KGE of Tmin and 548 

Tmax is lower in Caribbean and Mexico. For Tmin, the KGE for some stations around 45°N and Rocky Mountains is 549 

lower than surrounding regions although 𝛾 is spatially homogeneous for the same region. Tmax exhibits homogeneous 550 

performance in the same region for all metrics. The discrepancies between Tmin and Tmax need further investigation. 551 
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Corrected SCDNA estimates (see Step-7; Fig. S9) have higher accuracy than uncorrected estimates (Fig. 12). For 552 

example, the median KGE for precipitation is improved from 0.87 to 0.90 after correction. The KGE for Tmin and Tmax 553 

is also improved but not as significant as precipitation. 𝛽 equals to one for all stations due to the mean-value correction. 554 

𝛾 for precipitation changes from negative to positive for all stations, whereas magnitude of bias (deviation from one) 555 

is smaller after correction. The spatial distribution of metrics for Tmin is also more homogeneous. Therefore, the 556 

correction procedures are effective.  557 

 558 

Figure 12. The spatial distributions of KGE and its three components (𝑟 is CC, 𝛽  is the bias ratio, and 𝛾 is the 559 

variability ratio) for uncorrected SCDNA estimates over North America during the observation period. The maps are 560 

at the resolution of 0.5°. The value for each grid cell is the median value of all stations within this grid cell. 561 

The distributions of KGE vary during the year (Fig. 13). For precipitation, more stations show lower KGE during 562 

summer (DOY 150 to 250) than at other times of the year, which may be due to the variability of summertime 563 

convective precipitation. For Tmin, some stations show lower KGE from DOY 100 to 250. The seasonal variation of 564 
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KGE for Tmax is relatively weak, although KGE is slightly more concentred at higher level during spring and autumn 565 

than winter and summer. The overall performance of Tmax is better than Tmin and precipitation. 566 

 567 

Figure 13. The distribution of KGE for each day of year for (a) precipitation, (b) Tmin, and (c) Tmax. Corrected SCDNA 568 

estimates are used.  569 

4.4 Comparison between the serially complete dataset and gridded products 570 

SCDNA precipitation and temperature are compared with benchmark gridded products to demonstrate whether the 571 

SCDNA is a good choice when station data are unavailable. Actual station observations are used as reference. 572 

Although assessing gridded products using point-scale station data contains uncertainties (Tang et al., 2018a), the 573 

objective of this section is to illustrate their agreement with station observations in lieu of provide an exhaustive 574 

quantitative assessment of their real-world accuracy. 575 

Overall, the SCDNA achieves much higher KGE than reanalysis products for all variables (Fig. 14). For precipitation, 576 

the median KGE differences between the SCDNA and ERA5, JRA-55 and MERRA-2 are 0.48, 0.57, and 0.54, 577 

respectively. The corresponding KGE differences for Tmin are 0.46, 0.61, and 0.36, respectively. The improvement for 578 

Tmax is smaller, particularly in eastern U.S. where topography is relatively flatter compared with western U.S. The 579 
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KGE differences of Tmean are lower than Tmin but higher than Tmax due to the offset effect. Trange suffers little from the 580 

elevation differences between stations and reanalysis grids, and is suitable to demonstrate the differences between 581 

SCDNA and reanalysis products. The median KGE differences for Trange between the SCDNA and ERA5, JRA-55 and 582 

MERRA-2 are 0.31, 0.48, and 0.31, respectively. 583 

 584 

Figure 14. Spatial distributions of KGE differences between SCDNA estimates and three reanalysis products (ERA5, 585 

JRA-55, and MERRA-2). The nested histograms show KGE differences between the SCDNA and reanalysis products. 586 

Corrected SCDNA estimates are used. 587 

SCDNA and MSWEP precipitation is compared (Fig. 15). Since MSWEP merges data from numerous stations, the 588 

evaluation of MSWEP based on station data is not independent, which could result in the overestimation of its KGE. 589 

Even so, SCDNA precipitation shows higher KGE than MSWEP for 98.97% stations with a median KGE difference 590 
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of 0.31. Fig. 15 shows notable differences between Canada, U.S. and Mexico which could be due to the differences 591 

in observation time of stations in different countries. The accumulation periods of station and MSWEP precipitation 592 

are inconsistent in some cases, which could affect the evaluation of MSWEP (see Sect. 5.1). 593 

Note that the evaluation does not indicate that the SCDNA has higher accuracy than the gridded products; rather, the 594 

results show that SCDNA is a better substitute than gridded products when station observations are unavailable.  595 

 596 

Figure 15. Spatial distributions of KGE differences between SCDNA and MSWEP precipitation. Corrected SCDNA 597 

estimates are used. 598 

5. Discussion 599 

5.1 Observation time of stations 600 

Meteorological stations in different countries usually have different local observation time, and stations in the same 601 

country may also experience change of observation time (Vincent et al., 2012). Most station databases including those 602 

used in this study do not account for reporting-time inconsistencies due to lack of hourly observations and well-603 

documented station metadata. Vincent et al. (2009) examined several methods to adjust the time of daily precipitation 604 

observations, which, however, often altered observed precipitation intensity. Beck et al. (2019) inferred the reporting 605 

time of daily precipitation observations by calculating SCC between the series of stations and gridded products, which 606 

is useful to correct the bias of gridded products. A simple experiment is carried out using the method of Beck et al. 607 

(2019) to infer the lag day of station series. For precipitation, 6418 stations show nonnegligible time shift from the 608 

reporting date (Fig. S10). However, this method may be unsuitable for temperature because the estimated lag day is 609 

mostly zero, and the inferred reporting time cannot be directly applied to adjust station observations. 610 
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The inconsistent reporting time has different impact on precipitation, Tmin, and Tmax. For example, if a station records 611 

data from 8:00 a.m. on January 1st to 8:00 a.m. on January 2nd, the station will probably use January 2nd as the 612 

reporting time. However, two thirds of the 24-h time are within January 1st, indicating that the accumulated 613 

precipitation could mostly occur on January 1st. Tmax could also occur during the daytime on January 1st, but it is hard 614 

to determine on which day Tmin occurs, which makes it challenging to adjust precipitation, Tmin and Tmax at the same 615 

time. The difference between universal and local time makes this problem more complicated. Thus, the reporting time 616 

of stations is not corrected here due to aforementioned difficulties. 617 

5.2 Homogenization 618 

Inhomogeneities in station observations are defined as variations that are not caused by weather and climate factors. 619 

Long-term station records are often subjected to inhomogeneities due to factors like station re-location, observation 620 

time change, instrument change, and surrounding environment change (Venema et al., 2012). Many methods have 621 

been developed to identify breakpoints and homogenize station series in annual, monthly or even daily scales (e.g., 622 

Ma et al., 2008; Vincent et al., 2002, 2012). Different methods could generate different estimates of inhomogeneities 623 

as shown by many comparison studies (e.g., Beaulieu et al., 2008; Reeves et al., 2007; Venema et al., 2012). The four 624 

station databases (Sect. 2.1) used in this study provide original station records without homogenization. The SCDNA 625 

would inherit the potential inhomogeneities contained in these databases, and the infilling/reconstruction may also 626 

lead to discontinuities. The homogenization of the SCDNA is challenging considering that (1) the dataset covers a 627 

broad range of climate, topography, and countries, (2) the number of stations is large and differences between station 628 

periods (ranging from 8 to 40 years) are substantial, and (3) whether existing methods are suitable for homogenization 629 

of infilling/reconstruction estimates needs exploration. Therefore, homogenization is not carried out in this study, 630 

which, however, is an important direction of future studies. 631 

5.3 Potential improvement directions 632 

Several steps could be taken to improve the SCDNA. First, the optimal strategy could be different for each station as 633 

shown by the results in this study. Therefore, the quality of SCDNA may be further improved by using more 634 

infilling/reconstruction methods, which would yield diminishing returns at some point. For example, the long short-635 

term memory (LSTM) could be suitable to impute missing station observations. Optimizing the configuration of 636 

various strategies will be necessary to balance computation efficiency and estimation accuracy, particularly when the 637 

number of stations is large. Second, some stations suffer from undercatch, which depends on gauge type, precipitation 638 

phase, environmental conditions, etc. The bias caused by undercatch can be substantial for stations located in high 639 

latitudes and in the mountains (Yang et al., 2005; Scaff et al., 2015). Third, the SCDNA does not distinguish between 640 

rainfall and snowfall. Considering that a large part of North America has frequent snowfall in winter, precipitation 641 

phase classification will be useful for hydrometeorological studies. Auxiliary data from reanalysis and satellite 642 

products could be used to partition precipitation into rain and snow. Finally, although the SCDNA agrees well with 643 

station observations, long-term trends are difficult to reconstruct when actual observations are unavailable, meaning 644 

the SCDNA may not be suitable for climate trend analysis in the reconstruction period. Some gridded datasets use 645 
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only stations with long-term records (e.g., (Wood, 2008; Werner et al., 2019) to achieve temporally consistent 646 

estimates, whereas such stations are very few. Reasonable trend estimation is challenging but meaningful for SCD. 647 

6 Data availability 648 

The SCDNA dataset is available at https://doi.org/10.5281/zenodo.3735534 (Tang et al., 2020) in netCDF format. The 649 

basic variables are station identification, latitude, longitude, elevation, date, and TLR derived in Sect. 3.2. Stations 650 

that undergo location merging (Sect. 3.1.1) are identified and all relevant stations are included in the data file. For 651 

precipitation, Tmin, and Tmax, the variables in the netCDF4 file include original station observations, quality flags 652 

provided by original station databases, quality flags provided by this study, estimates from 16 strategies, uncorrected 653 

SCDNA estimates, corrected SCDNA estimates, the final SCDNA with estimates replaced by observations, data 654 

source flags indicating the source of each record in SCDNA (observations or 16 strategies), and accuracy metrics 655 

(KGE and its three components) for all estimates (16 strategies and SCDNA). 656 

Scripts used to produce the SCDNA are available at https://github.com/tgq14/GapFill. The dataset will be regularly 657 

updated to cover latest periods. 658 

7 Conclusions 659 

This study developed a daily SCD of precipitation, Tmin, and Tmax for 27280 stations from 1979 to 2018 over North 660 

America (SCDNA). The original station data are compiled from multiple sources and undergo strict quality control. 661 

Many stations have nonnegligible fractions of missing values in observation and reconstruction periods. For each 662 

station, the infilling and reconstruction are implemented using 16 strategies (quantile mapping, statistical interpolation, 663 

and machine learning) based on information from neighboring stations and concurrent reanalysis estimates (ERA5, 664 

JRA-55, and MERRA-2). The final SCDNA combines estimates from the 16 strategies and is corrected using station 665 

observations. The spatial correlation is preserved and might be slightly inflated. The SCDNA estimates reproduce the 666 

variance of original station observations very well, particularly for temperature. The median KGE of the final 667 

precipitation, Tmin, and Tmax for all stations is 0.90, 0.98, and 0.99, respectively. The comparison with four benchmark 668 

gridded products shows that the SCDNA has much better agreement with station observations. The SCDNA will be 669 

useful for a variety of hydrometeorological studies in North America. 670 
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Appendix A 678 

Table A1. Acronyms used in this paper 679 

Acronym Full name 
ANN Artificial neural network 

APHRODITE Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation 

CC Correlation coefficient 
CDF Cumulative distribution function 

CONUS Contiguous United States 

DEM Digital elevation model 

DOY Day of year 
ECCC Environment and Climate Change Canada 

ERA5 the fifth generation of ECMWF atmospheric reanalyses of the global climate  

fD Fraction of days without precipitation  

GHCN-D Global Historical Climate Network Daily 
GSOD Global Surface Summary of the Day 

IDW  Inverse distance weighting 

INT Interpolation 

JRA-55 Japanese 55-year Reanalysis 
KGE Kling-Gupta Efficiency 

LSTM Long short-term memory 

MAL Machine learning 

MLAD Multiple regression based on the least absolute deviation criteria 
MERIT DEM Multi-Error-Removed Improved-Terrain digital elevation model 

MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2 

MRG Multi-strategy merging 

MSWEP Multi-Source Weighted-Ensemble Precipitation 
NR Revised normal ratio 

PCC Pearson CC  

QM Quantile mapping 

QMN QM using neighboring stations 
QMR Quantile mapping with concurrent reanalysis estimates 

RF Random forest 

SCC Spearman CC 
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SCDs Serially complete datasets 

TLR Temperature lapse rate 
Tmax Maximum temperature 

Tmean Mean temperature 

Tmin Minimum temperature 

Trange Daily temperature range 
U.S. United States 

UTC Universal Time Coordinated 

 680 

Appendix B 681 

Five types of checks (Durre et al., 2010) are adopted for the quality control of temperature. 682 

1. Integrity checks. The first type of integrity check is a duplication check to identify duplicated records for time 683 

series in different time periods. The second type of integrity check includes the streak check to identify 684 

consecutive identical values and the frequent-value check to identify close but not necessarily consecutive 685 

identical values. The world record exceedance check sets lower (-89.4°C) and upper (57.7°C) bounds of 686 

temperature. 687 

2. Outlier checks, including the gap check that examines the frequency distributions for all calendar months, and 688 

the climatological outlier check that is based on the traditional z-score (e.g., Hubbard and You, 2005).  689 

3. Internal and temporal consistency checks, including the iterative temperature consistency check, to ensure some 690 

inherent relationships are abided (e.g., Tmin cannot be larger than Tmax); the spike/dip check, identifies 691 

temperatures which deviate from previous and following days by at least 25℃; and the lagged temperature range 692 

check, which identifies abnormally large differences between Tmin and Tmax during a 3-day time window.  693 

4. Spatial consistency checks, including the regression check and the spatial corroboration check. The regression 694 

check builds regression relationships between temperature at the target location and selected nearby stations to 695 

determine whether temperature at the target station should be flagged according to regression residuals and 696 

standardized residuals. The spatial corroboration check flags temperature at the target station if the value 697 

deviates far from the temperature at neighboring stations.  698 

5. Extreme megaconsistency checks to ensure that certain relationships hold for the entire records of stations. For 699 

example, Tmax cannot be higher than the lowest Tmin for the calendar month, and vice versa.  700 

For precipitation, quality control strategies are from three studies. The first part is similar with temperature, but does 701 

not include the third type of checks (internal and temporal consistency checks). The second part is from Hamada et al. 702 

(2011). 703 
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1. Repetition checks. The non-zero check identifies constant daily values (> 10 mm d-1) that occur for more than 704 

four days. The zero check compares the annual zero-precipitation frequency with its climatological value to spot 705 

unusual frequencies of zero. 706 

2. Duplicated monthly or sub-monthly record check. The temporal CC and the number of days with equal 707 

precipitation are used to identify whether two different months have the same records caused by human errors. 708 

3. Z-score-based outlier check. Daily precipitation is flagged if its difference with the mean value from precipitation 709 

within a 15-day window of all years is larger than nine standard deviations. This step is repeated until no outlier 710 

is identified. 711 

4. Spatiotemporally isolated value check. Extremely large precipitation is identified in both space and time based 712 

on the percentiles of precipitation differences between the target station and neighboring stations within a radius 713 

of 400 km. 714 

The third part is from Beck et al. (2019). 715 

1. Empirical criterion based on the fraction of days without precipitation (fD). This was designed to identify the long 716 

series of erroneous zero precipitation contained in GSOD station records. However, we found that this criterion 717 

misidentifies some acceptable records in GHCN-D. Therefore, the fD-based check is only implemented for GSOD.  718 

2. Discarding stations with fewer than 15 unique values or more than 99.5% dry records (<0.5 mm d-1).  719 

References 720 

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Tank, A. M. G. K., Haylock, M., Collins, D., 721 
Trewin, B., Rahimzadeh, F., Tagipour, A., Kumar, K. R., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., 722 
Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M. and Vazquez-Aguirre, J. L.: Global 723 
observed changes in daily climate extremes of temperature and precipitation, J. Geophys. Res. Atmospheres, 111(D5), 724 
doi:10.1029/2005JD006290, 2006. 725 

Anderson, B. T., Wang, J., Salvucci, G., Gopal, S. and Islam, S.: Observed Trends in Summertime Precipitation over 726 
the Southwestern United States, J. Clim., 23(7), 1937–1944, doi:10.1175/2009JCLI3317.1, 2009. 727 

Beaulieu, C., Seidou, O., Ouarda, T. B. M. J., Zhang, X., Boulet, G. and Yagouti, A.: Intercomparison of 728 
homogenization techniques for precipitation data, Water Resour. Res., 44(2), doi:10.1029/2006WR005615, 2008. 729 

Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B. and de Roo, A.: MSWEP: 730 
3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. 731 
Earth Syst. Sci., 21(1), 589–615, doi:10.5194/hess-21-589-2017, 2017. 732 

Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., van Dijk, A. I. J. M., McVicar, T. R. and Adler, R. 733 
F.: MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment, Bull. Am. Meteorol. 734 
Soc., 100(3), 473–500, doi:10.1175/BAMS-D-17-0138.1, 2019. 735 

Breiman, L.: Random Forests, Mach. Learn., 45(1), 5–32, doi:10.1023/A:1010933404324, 2001. 736 

https://doi.org/10.5194/essd-2020-92

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 13 May 2020
c© Author(s) 2020. CC BY 4.0 License.



 35 

Cannon, A. J., Sobie, S. R. and Murdock, T. Q.: Bias Correction of GCM Precipitation by Quantile Mapping: How 737 
Well Do Methods Preserve Changes in Quantiles and Extremes?, J. Clim., 28(17), 6938–6959, doi:10.1175/JCLI-D-738 
14-00754.1, 2015. 739 

Che Ghani, N. Z., Abu Hasan, Z. and Tze Liang, L.: Estimation of Missing Rainfall Data Using GEP: Case Study of 740 
Raja River, Alor Setar, Kedah, Adv. Artif. Intell., doi:10.1155/2014/716398, 2014. 741 

Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global 742 
climate, Copernic. Clim. Change Serv. Clim. Data Store CDS July 2019 Httpscdsclimatecopernicuseucdsapphome, 743 
2017. 744 

Coulibaly, P. and Evora, N. D.: Comparison of neural network methods for infilling missing daily weather records, J. 745 
Hydrol., 341(1), 27–41, doi:10.1016/j.jhydrol.2007.04.020, 2007. 746 

Dastorani, M. T., Moghadamnia, A., Piri, J. and Rico-Ramirez, M.: Application of ANN and ANFIS models for 747 
reconstructing missing flow data, Environ. Monit. Assess., 166(1), 421–434, doi:10.1007/s10661-009-1012-8, 2010. 748 

Devi, U., Shekhar, M. S., Singh, G. P., Rao, N. N. and Bhatt, U. S.: Methodological application of quantile mapping 749 
to generate precipitation data over Northwest Himalaya, Int. J. Climatol., 39(7), 3160–3170, doi:10.1002/joc.6008, 750 
2019. 751 

Di Luzio, M., Johnson, G. L., Daly, C., Eischeid, J. K. and Arnold, J. G.: Constructing Retrospective Gridded Daily 752 
Precipitation and Temperature Datasets for the Conterminous United States, J. Appl. Meteorol. Climatol., 47(2), 475–753 
497, doi:10.1175/2007JAMC1356.1, 2008. 754 

Di Piazza, A., Conti, F. L., Noto, L. V., Viola, F. and La Loggia, G.: Comparative analysis of different techniques for 755 
spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy, 756 
Int. J. Appl. Earth Obs. Geoinformation, 13(3), 396–408, doi:10.1016/j.jag.2011.01.005, 2011. 757 

Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G. and Vose, R. S.: Comprehensive Automated Quality Assurance 758 
of Daily Surface Observations, J. Appl. Meteorol. Climatol., 49(8), 1615–1633, doi:10.1175/2010JAMC2375.1, 2010. 759 

Eischeid, J. K., Bruce Baker, C., Karl, T. R. and Diaz, H. F.: The Quality Control of Long-Term Climatological Data 760 
Using Objective Data Analysis, J. Appl. Meteorol., 34(12), 2787–2795, doi:10.1175/1520-761 
0450(1995)034<2787:TQCOLT>2.0.CO;2, 1995. 762 

Eischeid, J. K., Pasteris, P. A., Diaz, H. F., Plantico, M. S. and Lott, N. J.: Creating a Serially Complete, National 763 
Daily Time Series of Temperature and Precipitation for the Western United States, J. Appl. Meteorol., 39(9), 1580–764 
1591, doi:10.1175/1520-0450(2000)039<1580:CASCND>2.0.CO;2, 2000. 765 

Gao, L., Bernhardt, M. and Schulz, K.: Elevation correction of ERA-Interim temperature data in complex terrain, 766 
Hydrol. Earth Syst. Sci., 16(12), 4661–4673, doi:10.5194/hess-16-4661-2012, 2012. 767 

Gao, L., Wei, J., Wang, L., Bernhardt, M., Schulz, K. and Chen, X.: A high-resolution air temperature data set for the 768 
Chinese Tian Shan in 1979–2016, Earth Syst. Sci. Data, 10(4), 2097–2114, doi:10.5194/essd-10-2097-2018, 2018. 769 

Gardner, A. S., Sharp, M. J., Koerner, R. M., Labine, C., Boon, S., Marshall, S. J., Burgess, D. O. and Lewis, D.: 770 
Near-Surface Temperature Lapse Rates over Arctic Glaciers and Their Implications for Temperature Downscaling, J. 771 
Clim., 22(16), 4281–4298, doi:10.1175/2009jcli2845.1, 2009. 772 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, 773 
M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. 774 
M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., 775 
Rienecker, M., Schubert, S. D., Sienkiewicz, M. and Zhao, B.: The Modern-Era Retrospective Analysis for Research 776 
and Applications, Version 2 (MERRA-2), J. Clim., 30(14), 5419–5454, doi:10.1175/jcli-d-16-0758.1, 2017. 777 

https://doi.org/10.5194/essd-2020-92

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 13 May 2020
c© Author(s) 2020. CC BY 4.0 License.



 36 

Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6(1), 778 
221–233, doi:10.5194/tc-6-221-2012, 2012. 779 

Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F.: Decomposition of the mean squared error and NSE 780 
performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377(1–2), 80–91, 2009. 781 

Hamada, A., Arakawa, O. and Yatagai, A.: An Automated Quality Control Method for Daily Rain-gauge Data, Glob. 782 
Environ. Res., 15(2), 183–192, 2011. 783 

Hasanpour Kashani, M. and Dinpashoh, Y.: Evaluation of efficiency of different estimation methods for missing 784 
climatological data, Stoch. Environ. Res. Risk Assess., 26(1), 59–71, doi:10.1007/s00477-011-0536-y, 2012. 785 

Hubbard, K. G. and You, J.: Sensitivity Analysis of Quality Assurance Using the Spatial Regression Approach—A 786 
Case Study of the Maximum/Minimum Air Temperature, J. Atmospheric Ocean. Technol., 22(10), 1520–1530, 787 
doi:10.1175/JTECH1790.1, 2005. 788 

Kanda, N., Negi, H. S., Rishi, M. S. and Shekhar, M. S.: Performance of various techniques in estimating missing 789 
climatological data over snowbound mountainous areas of Karakoram Himalaya, Meteorol. Appl., 25(3), 337–349, 790 
doi:10.1002/met.1699, 2018. 791 

Kemp, W. P., Burnell, D. G., Everson, D. O. and Thomson, A. J.: Estimating Missing Daily Maximum and Minimum 792 
Temperatures, J. Clim. Appl. Meteorol., 22(9), 1587–1593, doi:10.1175/1520-793 
0450(1983)022<1587:EMDMAM>2.0.CO;2, 1983. 794 

Kenawy, A. E., López-Moreno, J. I., Stepanek, P. and Vicente-Serrano, S. M.: An assessment of the role of 795 
homogenization protocol in the performance of daily temperature series and trends: application to northeastern Spain, 796 
Int. J. Climatol., 33(1), 87–108, doi:10.1002/joc.3410, 2013. 797 

Kling, H., Fuchs, M. and Paulin, M.: Runoff conditions in the upper Danube basin under an ensemble of climate 798 
change scenarios, J. Hydrol., 424, 264–277, 2012. 799 

Knowles, N., Dettinger, M. D. and Cayan, D. R.: Trends in Snowfall versus Rainfall in the Western United States, J. 800 
Clim., 19(18), 4545–4559, doi:10.1175/JCLI3850.1, 2006. 801 

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, 802 
H., Miyaoka, K. and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. 803 
Meteorol. Soc. Jpn. Ser II, 93(1), 5–48, doi:10.2151/jmsj.2015-001, 2015. 804 

Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D. R. and Brekke, L.: A 805 
spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013, Sci. 806 
Data, 2(1), 150042, doi:10.1038/sdata.2015.42, 2015. 807 

Longman, R. J., Frazier, A. G., Newman, A. J., Giambelluca, T. W., Schanzenbach, D., Kagawa-Viviani, A., Needham, 808 
H., Arnold, J. R. and Clark, M. P.: High-Resolution Gridded Daily Rainfall and Temperature for the Hawaiian Islands 809 
(1990–2014), J. Hydrometeorol., 20(3), 489–508, doi:10.1175/JHM-D-18-0112.1, 2019. 810 

Ma, L., Zhang, T., Li, Q., Frauenfeld, O. W. and Qin, D.: Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air 811 
temperatures with ground-based measurements in China, J. Geophys. Res., 113(D15), doi:10.1029/2007jd009549, 812 
2008. 813 

Ma, Y., Hong, Y., Chen, Y., Yang, Y., Tang, G., Yao, Y., Long, D., Li, C., Han, Z. and Liu, R.: Performance of 814 
Optimally Merged Multisatellite Precipitation Products Using the Dynamic Bayesian Model Averaging Scheme Over 815 
the Tibetan Plateau, J. Geophys. Res. Atmospheres, 123(2), 814–834, doi:10.1002/2017jd026648, 2018. 816 

https://doi.org/10.5194/essd-2020-92

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 13 May 2020
c© Author(s) 2020. CC BY 4.0 License.



 37 

Maraun, D.: Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue, J. Clim., 26(6), 817 
2137–2143, doi:10.1175/JCLI-D-12-00821.1, 2013. 818 

Marshall, S. J., Sharp, M. J., Burgess, D. O. and Anslow, F. S.: Near-surface-temperature lapse rates on the Prince of 819 
Wales Icefield, Ellesmere Island, Canada: implications for regional downscaling of temperature, Int. J. Climatol., 820 
27(3), 385–398, doi:10.1002/joc.1396, 2007. 821 

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. and Houston, T. G.: An overview of the global historical 822 
climatology network-daily database, J. Atmospheric Ocean. Technol., doi:10.1175/JTECH-D-11-00103.1, 2012. 823 

Minder, J. R., Mote, P. W. and Lundquist, J. D.: Surface temperature lapse rates over complex terrain: Lessons from 824 
the Cascade Mountains, J. Geophys. Res., 115(D14), doi:10.1029/2009jd013493, 2010. 825 

Newman, A. J., Clark, M. P., Craig, J., Nijssen, B., Wood, A., Gutmann, E., Mizukami, N., Brekke, L. and Arnold, J. 826 
R.: Gridded Ensemble Precipitation and Temperature Estimates for the Contiguous United States, J. Hydrometeorol., 827 
16(6), 2481–2500, doi:10.1175/JHM-D-15-0026.1, 2015. 828 

Newman, A. J., Clark, M. P., Longman, R. J., Gilleland, E., Giambelluca, T. W. and Arnold, J. R.: Use of Daily Station 829 
Observations to Produce High-Resolution Gridded Probabilistic Precipitation and Temperature Time Series for the 830 
Hawaiian Islands, J. Hydrometeorol., 20(3), 509–529, doi:10.1175/JHM-D-18-0113.1, 2019. 831 

Papalexiou, S. M. and Montanari, A.: Global and regional increase of precipitation extremes under global warming, 832 
Water Resour. Res., 55(6), 4901–4914, 2019. 833 

Papalexiou, S. M., AghaKouchak, A., Trenberth, K. E. and Foufoula-Georgiou, E.: Global, regional, and megacity 834 
trends in the highest temperature of the year: Diagnostics and evidence for accelerating trends, Earths Future, 6(1), 835 
71–79, 2018. 836 

Pappas, C., Papalexiou, S. M. and Koutsoyiannis, D.: A quick gap filling of missing hydrometeorological data, J. 837 
Geophys. Res. Atmospheres, 119(15), 9290–9300, 2014. 838 

Paulhus, J. L. H. and Kohler, M. A.: Interpolation of missing precipitation records, Mon. Weather Rev., 80(8), 129–839 
133, doi:10.1175/1520-0493(1952)080<0129:IOMPR>2.0.CO;2, 1952. 840 

Ramos-Calzado, P., Gómez-Camacho, J., Pérez-Bernal, F. and Pita-López, M. F.: A novel approach to precipitation 841 
series completion in climatological datasets: application to Andalusia, Int. J. Climatol., 28(11), 1525–1534, 842 
doi:10.1002/joc.1657, 2008. 843 

Reeves, J., Chen, J., Wang, X. L., Lund, R. and Lu, Q. Q.: A Review and Comparison of Changepoint Detection 844 
Techniques for Climate Data, J. Appl. Meteorol. Climatol., 46(6), 900–915, doi:10.1175/JAM2493.1, 2007. 845 

Rubin, D. B.: Inference and missing data, Biometrika, 63(3), 581–592, doi:10.1093/biomet/63.3.581, 1976. 846 

Sattari, M.-T., Rezazadeh-Joudi, A. and Kusiak, A.: Assessment of different methods for estimation of missing data 847 
in precipitation studies, Hydrol. Res., 48(4), 1032–1044, doi:10.2166/nh.2016.364, 2017. 848 

Scaff, L., Yang, D., Li, Y. and Mekis, E.: Inconsistency in precipitation measurements across the Alaska–Yukon 849 
border, The Cryosphere, 9(6), 2417–2428, doi:10.5194/tc-9-2417-2015, 2015. 850 

Serrano-Notivoli, R., Beguería, S. and Luis, M. de: STEAD: a high-resolution daily gridded temperature dataset for 851 
Spain, Earth Syst. Sci. Data, 11(3), 1171–1188, doi:https://doi.org/10.5194/essd-11-1171-2019, 2019. 852 

Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data, in Proceedings of the 1968 23rd 853 
ACM national conference, pp. 517–524, ACM., 1968. 854 

https://doi.org/10.5194/essd-2020-92

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 13 May 2020
c© Author(s) 2020. CC BY 4.0 License.



 38 

Simolo, C., Brunetti, M., Maugeri, M. and Nanni, T.: Improving estimation of missing values in daily precipitation 855 
series by a probability density function-preserving approach, Int. J. Climatol., 30(10), 1564–1576, 856 
doi:10.1002/joc.1992, 2010. 857 

Stooksbury, D. E., Idso, C. D. and Hubbard, K. G.: The Effects of Data Gaps on the Calculated Monthly Mean 858 
Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study, J. Clim., 859 
12(5), 1524–1533, doi:10.1175/1520-0442(1999)012<1524:TEODGO>2.0.CO;2, 1999. 860 

Tang, G., Behrangi, A., Long, D., Li, C. and Hong, Y.: Accounting for spatiotemporal errors of gauges: A critical step 861 
to evaluate gridded precipitation products, J. Hydrol., 559, 294–306, doi:10.1016/j.jhydrol.2018.02.057, 2018a. 862 

Tang, G., Behrangi, A., Ma, Z., Long, D. and Hong, Y.: Downscaling of ERA-Interim Temperature in the Contiguous 863 
United States and Its Implications for Rain–Snow Partitioning, J. Hydrometeorol., 19(7), 1215–1233, 864 
doi:10.1175/jhm-d-18-0041.1, 2018b. 865 

Tang, G., Clark, M. P., Papalexiou, S. M., Ma, Z. and Hong, Y.: Have satellite precipitation products improved over 866 
last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets, Remote 867 
Sens. Environ., 240, 111697, doi:10.1016/j.rse.2020.111697, 2020. 868 

Tang, G., Clark, M. P., Newman, A. J., Wood, A. W., Papalexiou, S. M., Vionnet, V., Whitfield, P. H.: SCDNA: a 869 

serially complete precipitation and temperature dataset for North America from 1979 to 2018 [Dataset], Zenodo, 870 

https://zenodo.org/record/3735534 871 

Tang, Q., Wood, A. W. and Lettenmaier, D. P.: Real-Time Precipitation Estimation Based on Index Station Percentiles, 872 
J. Hydrometeorol., 10(1), 266–277, doi:10.1175/2008JHM1017.1, 2009. 873 

Teegavarapu, R. S. V. and Chandramouli, V.: Improved weighting methods, deterministic and stochastic data-driven 874 
models for estimation of missing precipitation records, J. Hydrol., 312(1), 191–206, 875 
doi:10.1016/j.jhydrol.2005.02.015, 2005. 876 

Ustaoglu, B., Cigizoglu, H. K. and Karaca, M.: Forecast of daily mean, maximum and minimum temperature time 877 
series by three artificial neural network methods, Meteorol. Appl., 15(4), 431–445, doi:10.1002/met.83, 2008. 878 

Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., 879 
Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, 880 
R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., 881 
Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P. and Brandsma, T.: Benchmarking 882 
homogenization algorithms for monthly data, Clim. Past, 8(1), 89–115, doi:10.5194/cp-8-89-2012, 2012. 883 

Vicente-Serrano, S. M., Saz-Sanchez, M. A. and Cuadrat, J. M.: Comparative analysis of interpolation methods in the 884 
middle Ebro Valley (Spain): application to annual precipitation and temperature, Clim. Res., 24(2), 161–180, doi:DOI 885 
10.3354/cr024161, 2003. 886 

Vincent, L. A., Zhang, X., Bonsal, B. R. and Hogg, W. D.: Homogenization of Daily Temperatures over Canada, J. 887 
Clim., 15(11), 1322–1334, doi:10.1175/1520-0442(2002)015<1322:HODTOC>2.0.CO;2, 2002. 888 

Vincent, L. A., Milewska, E. J., Hopkinson, R. and Malone, L.: Bias in Minimum Temperature Introduced by a 889 
Redefinition of the Climatological Day at the Canadian Synoptic Stations, J. Appl. Meteorol. Climatol., 48(10), 2160–890 
2168, doi:10.1175/2009JAMC2191.1, 2009. 891 

Vincent, L. A., Wang, X. L., Milewska, E. J., Wan, H., Yang, F. and Swail, V.: A second generation of homogenized 892 
Canadian monthly surface air temperature for climate trend analysis, J. Geophys. Res. Atmospheres, 117(D18), 893 
doi:10.1029/2012JD017859, 2012. 894 

https://doi.org/10.5194/essd-2020-92

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 13 May 2020
c© Author(s) 2020. CC BY 4.0 License.



 39 

Wambua, R. M., Mutua, B. M. and Raude, J. M.: Prediction of Missing Hydro-Meteorological Data Series Using 895 
Artificial Neural Networks (ANN) for Upper Tana River Basin, Kenya, Am. J. Water Resour., 4(2), 35–43, 896 
doi:10.12691/ajwr-4-2-2, 2016. 897 

Werner, A. T., Schnorbus, M. A., Shrestha, R. R., Cannon, A. J., Zwiers, F. W., Dayon, G. and Anslow, F.: A long-898 
term, temporally consistent, gridded daily meteorological dataset for northwestern North America, Sci. Data, 6(1), 1–899 
16, doi:10.1038/sdata.2018.299, 2019. 900 

Woldesenbet, T. A., Elagib, N. A., Ribbe, L. and Heinrich, J.: Gap filling and homogenization of climatological 901 
datasets in the headwater region of the Upper Blue Nile Basin, Ethiopia, Int. J. Climatol., 37(4), 2122–2140, 902 
doi:10.1002/joc.4839, 2017. 903 

Wood, A. W.: The University of Washington Surface Water Monitor: An experimental platform for national 904 
hydrologic assessment and prediction, in 22nd Conf. on Hydrology., 2008. 905 

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S. and 906 
Bates, P. D.: A high-accuracy map of global terrain elevations, Geophys. Res. Lett., 44(11), 5844–5853, 907 
doi:10.1002/2017GL072874, 2017. 908 

Yang, D., Kane, D., Zhang, Z., Legates, D. and Goodison, B.: Bias corrections of long-term (1973-2004) daily 909 
precipitation data over the northern regions, Geophys. Res. Lett., 32(19), n/a-n/a, doi:10.1029/2005gl024057, 2005. 910 

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N. and Kitoh, A.: APHRODITE: Constructing a 911 
Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges, Bull. Am. 912 
Meteorol. Soc., 93(9), 1401–1415, doi:10.1175/bams-d-11-00122.1, 2012. 913 

Young, K. C.: A Three-Way Model for Interpolating for Monthly Precipitation Values, Mon. Weather Rev., 120(11), 914 
2561–2569, doi:10.1175/1520-0493(1992)120<2561:ATWMFI>2.0.CO;2, 1992. 915 

 916 

https://doi.org/10.5194/essd-2020-92

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 13 May 2020
c© Author(s) 2020. CC BY 4.0 License.


