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Response to comments 1 

The authors thank the reviewers for their constructive comments, which provide the basis to improve the quality of 2 
the manuscript and dataset. We address all points in detail and reply to all comments here below. We also updated 3 
SCDNA from V1 to V1.1 on Zenodo based on the reviewer’s comments. The modifications include adding station 4 
source flag, adding original files for location merged stations, and adding a quality control procedure based on the 5 
final SCDNA. SCDNA estimates are generally consistent between the two versions, with the total number of stations 6 
reduced from 27280 to 27276. 7 

 8 

Reviewer 1 9 

General comment 10 

The manuscript presents and advertises a very interesting dataset of temperature and precipitation observation 11 
collected over several years in North America. The work is certainly well suited for the readership of ESSD and it is 12 
overall very important for the meteorological and climatological community. Furthermore, creation of quality 13 
controlled databases is an important contribution to the scientific community in the age of data science. I have a few 14 
points to consider before publication, which I recommend, listed below. 15 

1. Measurement instruments: from my background, I am much closer to the instruments themselves (and their 16 
peculiarities and issues), as hardware tools. What I missed here was a description of the stations and their instruments. 17 
Questions like: which are the instruments deployed in the stations? How is precipitation measured (tipping buckets? 18 
buckets? Weighing gauges? Note for example that some instruments may have biases when measuring snowfall while 19 
others may not)? How is it temperature measured? How is this different from station to station in your database?  20 

Response: We have added the descriptions of measurement instruments in both the manuscript and dataset 21 
documentation. Since a complete introduction to the specifications and the evolution of measurement instruments in 22 
North America is not trivial, we only provide a general introduction here, and guide readers to the official sources for 23 
more comprehensive knowledge (such as design purpose, instrument structure, accuracy for rain/snow, inter-24 
instrument comparison) in the manuscript and dataset page. As station hardware varies among countries, we 25 
successively introduce the overall situations in Canada, U.S., and Mexico as below.  26 

For Canada, the Type-B rain gauge is used since 1970s for most stations by Environment Canada (Devine and Mekis, 27 
2008; Wang et al., 2017). Tipping bucket and weighing gauges are also used in some stations (Metcalfe et al., 1997). 28 
For snowfall measurement, Nipher-shielded snow gauges were introduced at nearly 300 synoptic stations in the early 29 
1960s, while most snow observation stations still rely on ruler measurements (https://www.canada.ca/en/environment-30 
climate-change/services/sky-watchers/weather-instruments-tour.html). For temperature, weather observers use as 31 
many as 4 different thermometers mounted inside the Stevenson screen. Maximum and minimum thermometers use 32 
mercury and alcohol, respectively (https://www.canada.ca/en/environment-climate-change/services/sky-33 
watchers/weather-instruments-tour/thermometers-thermistors.html). However, detailed metadata for an individual 34 
station is hard to obtain (e.g., see the detailed analysis of Whitfield (2014) for the station 3053600 in Kananaskis, 35 
Alberta). 36 

For the U.S.A., station data are provided by many agencies/programs. The sources are denoted in SCDNA using the 37 
source flags provided in the GHCN-D dataset. For stations from the Cooperative Observer Program (COOP), the 38 
instruments are summarized in https://www.weather.gov/ilx/coop-equipment. The Standard Rain Gage (SRG) is used, 39 
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and the method for measuring rainfall and snowfall is summarized in https://www.weather.gov/iwx/coop_8inch. For 40 
stations from Community Collaborative Rain, Hail,and Snow (CoCoRaHS), a 4-inch diameter rain gauge is used 41 
(https://www.cocorahs.org/Content.aspx?page=rain). For the U.S. Automated Surface Observing System (ASOS), 42 
heating Heated Tipping Bucket (HTB) and hygrothermometer are used for most stations, and there is a transition from 43 
HTB to All Weather Precipitation Accumulation Gauge (AWPAG) since 2004 44 
(https://www.weather.gov/asos/ASOSImplementation, file:///Users/localuser/Downloads/ASOS_guide_1998.pdf). 45 
For NCEI Reference Network Database, a combination of weighing gauge, precipitation detector, and tipping bucket 46 
gauge are used, and air temperature is measured using three platinum resistance thermometers housed in fan aspirated 47 
solar radiation shields (https://www.ncdc.noaa.gov/crn/instruments.html). For SNOTEL, storage-type gage or tipping 48 
bucket is used, and temperature is measured using shielded thermistor 49 
(https://www.wcc.nrcs.usda.gov/snotel/snotel_sensors.html, 50 
https://www.wcc.nrcs.usda.gov/about/mon_automate.html).  For Remote Automatic Weather Station (RAWS), THS-51 
3 temperature and humidity sensor and RG-T tipping bucket rain gauge are used 52 
(https://www.fs.fed.us/eacc/library/docs/RAWS_WIMS_Guide.pdf, https://ftsinc.com/fixed-remote-automated-53 
weather-station). For High Plains Regional Climate Center real-time data, tipping bucket or rain gauge is used 54 
(https://hprcc.unl.edu/awdn/index.php).  55 

For Mexico, the automatic weather station, which is a set of electrical and mechanical devices that perform 56 
measurements of meteorological variables automatically (WMO Reference 182) are used by Servicio Meteorológico 57 
Nacional. (https://smn.conagua.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-ema-s). 58 

A useful database, the Historical Observing Metadata Repository (HOMR), is maintained by NOAA NCEI 59 
(https://www.ncdc.noaa.gov/data-access/land-based-station-data/station-metadata). Users can find detailed 60 
information of a station using station ID provided by different station sources, including SCDNA. For example, COOP 61 
station USC00244302 measures precipitation using SRG from 2000 to 2018-10-4 and SRG-STN since 2018-10-4. 62 
However, instrument information could be missing for many stations outside U.S.  63 

We added a paragraph in Section 2.1: “Many types of precipitation and temperature measurement instruments are 64 
used at stations from different sources. For example, the Type-B rain gauge is used by Environment Canada since 65 
1970s for most weather stations (Devine and Mekis, 2008; Wang et al., 2017), while tipping bucket and weighing rain 66 
gauges are also used in some stations (Metcalfe et al., 1997). Nipher-shielded snow gauges have been used by some 67 
synoptic stations, while ruler measurements are still used by more stations (Mekis and Brown, 2010). Station data in 68 
U.S. are from many organizations or programs with different instrument configurations. For instance, the standard 69 
rain gauge is used by the Cooperative Observer Program while Snow Telemetry uses storage-type gauges or tipping 70 
buckets. A better understanding of instrument specifications and historical changes is important for climate studies 71 
(Pielke Sr et al., 2007; Whitfield, 2014; Ma et al., 2019). A detailed summary of station instruments is provided in the 72 
documentation of the dataset (https://doi.org/10.5281/zenodo.3953310).” 73 

 74 

Reference: 75 

Devine, K. A., & Mekis, E. (2008). Field accuracy of Canadian rain measurements. Atmosphere-ocean, 46(2), 213-76 
227. 77 

Mekis, É., & Brown, R. (2010). Derivation of an adjustment factor map for the estimation of the water equivalent of 78 
snowfall from ruler measurements in Canada. Atmosphere-ocean, 48(4), 284-293. 79 
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Metcalfe, J. R., B. Routledge, and K. Devine. 1997. Rainfall measurement in Canada: Changing observational methods 80 
and archive adjustment procedures. Journal of Climate 10: 92-101. 81 

Pielke Sr, R., Nielsen-Gammon, J., Davey, C., Angel, J., Bliss, O., Doesken, N., ... & Hale, R. (2007). Documentation 82 
of uncertainties and biases associated with surface temperature measurement sites for climate change assessment. 83 
Bulletin of the American Meteorological Society, 88(6), 913-928. 84 

Whitfield, P. H. 2014. Climate station analysis and fitness for purpose assessment of 3053600 Kananaskis, Alberta. 85 
Atmosphere-Ocean 52(5): 363-383. 86 

Wang, X. L., Xu, H., Qian, B., Feng, Y., & Mekis, E. (2017). Adjusted daily rainfall and snowfall data for Canada. 87 
Atmosphere-Ocean, 55(3), 155-168. 88 

2. Codes: have you considered adding a little reader with a few capabilities, as additional tool for the interested users?  89 

Response: We have added more detailed descriptions on GitHub 90 
(https://github.com/tgq14/GapFill/blob/master/README.md). The functions and their usage of different modules are 91 
introduced in Readme.md. Users can utilize the entire or part of the code package with the help of comments contained 92 
in scripts. 93 

Minor/Details  94 

1. P2: as trivial as it can be, it is worth to define the term "station".  95 

Response: We added the definition. The revised sentence in P2 is “Many methods have been developed to estimate 96 
missing observations and reconstruct time series of meteorological stations that provide point-scale regular 97 
observations of atmospheric conditions”. 98 

2. P3, L96: Why exactly the variables of Tmin, Tmax, and precipitation have been chosen? Is it a matter of (lack of) 99 
availability of other measurements? (humidity, wind, etc). I just suggest to clarify.  100 

Response: We selected the three variables for two reasons. First, as you have indicated, precipitation, Tmin and Tmax 101 
are the most common variables provided by meteorological stations, while other variables such as wind or humidity 102 
are less common. Second, most previous studies focus on precipitation and temperature, while other variables attract 103 
less attention. Thus, whether our methodology will work for other variables needs further investigation. We added 104 
explanation in the first paragraph in P3: “The three variables are selected because (1) most stations measure 105 
precipitation and temperature, while other variables, such as humidity and wind speed are measured at fewer stations, 106 
and (2) precipitation and temperature data are fundamental inputs for hydrological modeling.” 107 

We also added discussion on involving other variables in future work in Section 5.4. 108 

3. Is precipitation the daily amount? I probably missed this information. 109 

Response: Yes, it is. We added explanation in the first paragraph in Section 2.1: “In this dataset, precipitation is the 110 
daily amount.” 111 

 112 

Reviewer 2 113 
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This study develops a very useful dataset (SCDNA) of serially complete precipitation and temperature in North 114 
America. The dataset will benefit researchers in various fields with the long-term and gap-filled station data collected 115 
from multiple sources. The sophisticated framework for imputing missing values is well designed, which can be 116 
potentially applied in other regions of the world for the production of regional or even global serially complete datasets. 117 
From my perspective, the paper can be published on ESSD after the minor revisions, and I also have a few comments 118 
as below. 119 

1. The differences between SCDNA and MSWEP show distinct differences along the boundaries of CONUS and 120 
Canada. Can you provide more detailed explanation about how observation time inconsistency causes this problem? 121 

Response: MSWEP merges data from satellite products, reanalysis models and ground observations. Station data in 122 
different regions could have different observation time. To match station and reanalysis/satellite data, MSWEP 123 
calculates daily grid- and gauge-based time series, with the grid-based time series shifted by offsets of −36, −33, 124 
−30, …, +30, +33, and +36 h. Then, the temporal offset with the highest correlation is used to calculate 24-h 125 
accumulation of daily precipitation (Beck et al., 2019). Therefore, the final MSWEP estimates do not necessarily 126 
correspond to the raw observation of stations. For CONUS and Canada, the temporal offset is different and thus the 127 
mismatch between MSWEP and original station data is different.  128 

We added an explanation in the third paragraph in Section 4.4: “Fig. 15 shows notable differences between MSWEP 129 
and SCDNA at the Canada-USA border and the USA-Mexico border. This is because MSWEP infers gauge reporting 130 
time by searching for the highest correlation between gauge data and the temporally shifted reanalysis/satellite 131 
estimates (Beck et al., 2019). The estimated temporal shift could vary with countries, which results in distinct 132 
differences of station-based evaluation results along national boundaries.” 133 

Reference: 134 

Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk, A. I., ... & Adler, R. F. (2019). MSWEP 135 
V2 global 3-hourly 0.1 precipitation: methodology and quantitative assessment. Bulletin of the American 136 
Meteorological Society, 100(3), 473-500. 137 

2. The paper said "Outputs from three reanalysis products (ERA5, JRA-55, and MERRA-2) provided auxiliary 138 
information to estimate station records and were also used as an assessment benchmark. ". Can you give more 139 
explanation why you selected reanalysis products for benchmark? 140 

Response: We choose the three products because (1) they are produced by representative reanalysis models from 141 
organizations in U.S., Europe, and Japan, and (2) they or their predecessors (ERA-Interim, JRA-25, and MERRA) 142 
have are been widely used by previous studies (e.g., Sun et al., 2018). The three reanalysis products are used as 143 
benchmark because they are widely used as the source of long-term precipitation and temperature data and have been 144 
applied to support infilling and reconstruction in this study. 145 

We added an explanation in Section 2.2: “The three products are chosen because they are representative products from 146 
different international organizations and they or their predecessor (ERA-Interim, JRA-25, and MERRA) have are been 147 
widely used by researchers.”. 148 

Reference: 149 

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. L. (2018). A review of global precipitation data 150 
sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56(1), 79-107. 151 
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3. The period from 1979 to 2018 is total 40 years. Numbers of stations with only at least 8-year records are shown in 152 
Table 1. Why only 8-year period records are showed? Are only stations with at least 8-year precipitation or Tmin and 153 
Tmax records between 1979 to 2018 utilized to evaluate the performance? Is there some difference between 8-year 154 
records and total records for evaluation? 155 

Response: For the first question, we only show 8-year records because according to our sensitivity analysis, eight 156 
years are enough to ensure gap filling is generally reliable (Figure S1). Using a higher period threshold can improve 157 
the quality of the final dataset but will reduce the number of stations.  158 

For the second question, yes, only stations with at least eight-year records are used for evaluation to be consistent with 159 
inputs. 160 

For the third question, our evaluation is based on 30% samples of each station. For example, if a station has 8-year/40-161 
year observations, the validation samples are about 2.4-year/12-year. Therefore, the evaluation period length could be 162 
different for different stations. According to our results (Figures 6 and 12), the spatial distributions of accuracy metrics 163 
and contribution ratios are smooth, indicating that the difference between 8-year records and total records for 164 
evaluation is not evident. We added explanation in Step-5 in Section 3.3.3: “Although the evaluation samples are 165 
different among stations, the results are reliable and stable as shown in the results section.” 166 

4. Precipitation and minimum/maximum temperature are very widely used in hydrometeorological studies. I think 167 
probably this is why the three variables are chosen. Considering meteorological stations can usually measure more 168 
variables which also suffer from missing values, expanding this work to other variables would be very interesting for 169 
future studies. I suggest that the authors add some discussion about the applicability of your method to other variables. 170 

Response: Thank you for this suggestion. Expanding this work to other variables will be an interesting study. We 171 
added discussion in Section 5.4: “Furthermore, other variables such as wind and humidity observed by stations also 172 
suffer from the same problems faced by precipitation and temperature. Future studies should explore whether the 173 
current methodology is applicable to other variables. A SCD covering more variables would be useful for research in 174 
various fields.” 175 

 176 



 6 

SCDNA: a serially complete precipitation and temperature 177 

dataset for North America from 1979 to 2018 178 
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Abstract: Station-based serially complete datasets (SCDs) of precipitation and temperature observations are important 189 

for hydrometeorological studies. Motivated by the lack of serially-complete station observations for North America, 190 

this study seeks to develop a SCD from 1979 to 2018 from station data. The new SCD for North America (SCDNA) 191 

includes daily precipitation, minimum temperature (Tmin), and maximum temperature (Tmax) data for 2728027276 192 

stations. Raw meteorological station data were obtained from the Global Historical Climate Network Daily (GHCN-193 

D), the Global Surface Summary of the Day (GSOD), Environment and Climate Change Canada (ECCC), and a 194 

compiled station database in Mexico. Stations with at least 8-year records were selected, which underwent location 195 

correction and were subjected to strict quality control. Outputs from three reanalysis products (ERA5, JRA-55, and 196 

MERRA-2) provided auxiliary information to estimate station records and were also used as an assessment benchmark. 197 

Infilling during the observation period and reconstruction beyond the observation period were accomplished by 198 

combining estimates from 16 strategies (variants of quantile mapping, spatial interpolation, and machine learning). A 199 

sensitivity experiment was conducted by assuming 30% observations of stations were missing – this enabled 200 

independent validation and provided a reference for reconstruction. Quantile mapping and mean-value corrections 201 

were applied to the final estimates. The median Kling-Gupta efficiency (KGE') values of the final SCDNA for all 202 

stations are 0.90, 0.98, and 0.99 for precipitation, Tmin and Tmax, respectively. The SCDNA is closer to station 203 

observations than four benchmark gridded product, and can be used in applications that require either quality-204 

controlled meteorological station observations or reconstructed long-term estimates for analysis and modelling. The 205 

dataset is available at https://doi.org/10.5281/zenodo.3735533 https://doi.org/10.5281/zenodo.3735534 (Tang et al., 206 

2020). 207 

 208 
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Key words: serially complete dataset; precipitation; temperature; North America 209 

1 Introduction 210 

Station-based serially complete datasets (SCDs, see Table A1 for all acronyms) are important for meteorological, 211 

climatological and hydrological studies (Kanda et al., 2018; Ramos-Calzado et al., 2008), such as the production 212 

ofproducing retrospective gridded products (Di Luzio et al., 2008; Kenawy et al., 2013; Newman et al., 2019; Serrano-213 

Notivoli et al., 2019), trend analyseis (Knowles et al., 2006; Anderson et al., 2009; Papalexiou and Montanari, 2019), 214 

and climatologic index calculation (Alexander et al., 2006; Papalexiou et al., 2018). These SCDs are useful because 215 

station-based observational datasets often contain missing values due to factors such as observer absence, instrumental 216 

failures and interrupted communication (Hasanpour Kashani and Dinpashoh, 2012). Moreover, station observations 217 

failing quality control tests such as outlier and homogeneity checks may not be reliable (Menne et al., 2012), and many 218 

stations are only maintained over a relatively short period of time or portions of the year, resulting in data gaps that 219 

could affect the analysis of climate variability or long-term trends (Rubin, 1976; Stooksbury et al., 1999). Serial 220 

completeness is also a critical requirement for real-time station-based applications, which regularly contend with 221 

missing data values due to latencies in station reporting, quality control and processing (Tang et al., 2009). 222 

Many methods have been developed to estimate missing observations and reconstruct time series of meteorological 223 

stations that provide point-scale regular observations of atmospheric conditions.; Tthey can be grouped classified in 224 

as self-contained infilling, spatial interpolation, quantile mapping (QM), and machine learning methods. 225 

1. Self-contained infilling only uses records of from the target station to estimate its own missing values. Typical 226 

methods include interpolation based on data from previous and subsequent days or replacing missing values by 227 

long-term mean (Kemp et al., 1983; Pappas et al., 2014). Self-contained infilling, however, only performs well for 228 

variables with high temporal autocorrelation such as temperature and is problematic for daily precipitation (Simolo 229 

et al., 2010; Teegavarapu and Chandramouli, 2005), and in covering lengthy data gaps. 230 

2. Spatial interpolation uses neighboring stations (identified on spatial distance or statistical similarity) to estimate data 231 

at the target station. Spatial interpolation methods, which can be divided into two types: the first uses information 232 

only from neighboring stations; and common methods include linear interpolation and inverse distance weighting 233 

(IDW; Shepard, 1968). The second method needs information from both neighboring and target stations. Typical 234 

examples include the revised normal ratio (NR; Young, 1992) and the single best estimator (Eischeid et al., 1995, 235 

2000), both of which use correlation coefficients (CCs) between target and neighboring stations to estimate merging 236 

weights. This second type of spatial interpolation also includes more sophisticated methods (e.g., multiple linear 237 

regression, optimal interpolation, and kriging) that build a functional relationship between neighboring and target 238 

stations (Simolo et al., 2010). Previous studies have shown that multiple linear regression based on the least absolute 239 

deviation criteria (MLAD) performs better than many interpolation methods such as IDW, NR, and optimal 240 

interpolation in infilling/reconstruction (Eischeid et al., 2000; Kanda et al., 2018). 241 
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3. Quantile mapping (QM) is widely used to correct biases of in meteorological data (Maraun, 2013; Cannon et al., 242 

2015) and performs well in estimating missing station data (Simolo et al., 2010; Newman et al., 2015, 2019; Devi 243 

et al., 2019). In QM-based estimation, the cumulative distribution functions (CDFs) of observations from 244 

neighboring and target stations are derived, and the record at the target station is estimated as the inverse of its CDF 245 

using concurrent CDF probability information from neighboring stations. QM can avoid the problem of 246 

overestimating wet days in precipitation series and preserve the frequency distribution of time series, which is useful 247 

for estimating extreme events (Cannon et al., 2015). 248 

4. Machine learning techniques have been successfully applied to infill station record gaps (Dastorani et al., 2010; 249 

Wambua et al., 2016). For example, Coulibaly and Evora (2007) estimated missing daily precipitation and 250 

temperature in northeastern Canada using six types of artificial neural networks (ANNs). Ustaoglu et al. (2008) 251 

estimated daily temperature using three ANN methods in the Geyve and Sakarya basin, Turkey. Gene expression 252 

programming was applied in the estimation of missing monthly rainfall data in Malaysia (Che Ghani et al., 2014). 253 

Sattari et al. (2017) recommended that a decision-tree algorithm can be used to estimate monthly precipitation due 254 

to its simplicity and high accuracy. Serrano-Notivoli et al. (2019) applied the k-nearest neighbours regression to 255 

reconstruct minimum temperature (Tmin) and maximum temperature (Tmax) observations in Spain to form a gridded 256 

dataset. 257 

Previous SCDs have been developed using multiple infilling and reconstruction methods. For instance, Eischeid et al. 258 

(2000) produced a daily SCD from 1951 to 1991 for the western United States (U.S.), including 2962 precipitation 259 

stations and 2034 temperature stations; Vicente-Serrano et al. (2003) produced a daily SCD from 1901 to 2002 for 260 

northeast Spain using 3106 precipitation stations; Di Piazza et al. (2011) built a monthly SCD from 1921 to 2004 for 261 

Sicily, Italy using 247 precipitation stations; and Woldesenbet et al. (2017) produced a daily SCD of precipitation and 262 

temperature from 1980 to 2013 for the Upper Blue Nile Basin using six stations. There is currently no SCD for North 263 

America; this means that researchers often must collect station data from different databases, which is time-consuming 264 

and may cause inconsistencies between studies based on different methods. 265 

Responding to this need, we develop a retrospective 40-year daily SCD for North America (SCDNA) of precipitation, 266 

Tmin and Tmax from 1979 to 2018. Central America and Caribbean are also covered by SCDNA. The three variables 267 

are selected because (1) most stations measure precipitation and temperature, while other variables, such as humidity 268 

and wind speed are measured at fewer stations, and (2) precipitation and temperature data are fundamental inputs for 269 

hydrological modeling.  Station observations are collected from four global and regional databases and undergo strict 270 

quality control to eliminate dubious records. Since the performance of infilling and reconstruction methods differs in 271 

space and time, the results from 16 strategies are merged to produce a single deterministic estimate. Finally, the 272 

SCDNA is compared to four gridded products to demonstrate its performance and areas for improvement. The SCDNA 273 

is expected to have a wide variety of applications in North America, and the methodology can be used to produce 274 

SCDs in other regions of the world.  275 
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2 Datasets 276 

2.1 Meteorological station data 277 

This study uses precipitation, Tmin, and Tmax station data from four databases, the Global Historical Climate Network 278 

Daily (GHCN-D; https://www.ncdc.noaa.gov/ghcnd-data-access; Menne et al., 2012), the Global Surface Summary 279 

of the Day (GSOD; https://catalog.data.gov/dataset/global-surface-summary-of-the-day-gsod), Environment and 280 

Climate Change Canada (ECCC; https://climate.weather.gc.ca/historical_data/search_historic_data_e.html), and the 281 

Mexico database from Servicio Meteorológico Nacional, under the Comisión Nacional del Agua (Livneh et al., 2015). 282 

This study uses daily precipitation totals from each dataset. Only stations with at least 8-year precipitation or Tmin and 283 

Tmax records between 1979 to 2018 are utilized. The requirement for minimum recording length is different among 284 

studies (e.g., Eischeid et al., 2000; Newman et al., 2015). We adopted a relatively short time limitation because (1) 8-285 

year records are sufficient to provide basic support for missing value estimation (Fig. S1), and (2) the open-access 286 

dataset and codes enable users to design customized data selection criteria according to their research requirements. 287 

The numbers of stations with at least 8-year records are 33026, 4619, 3634, and 4049 for GHCN-D, GSOD, ECCC, 288 

and the Mexico database, respectively (Table 1). Their spatial distributions are shown in Fig. S2. GHCN-D has 289 

complied a large amount of data from many sources including the Mexico database and ECCC. For identical stations 290 

from different sources, we keep the one with longer observation history, resulting in the exclusion of ~95% of stations 291 

from the Mexico database and adoption of ~91% of stations from ECCC. Stations with more than 30% missing values 292 

in the observation period are excluded because they could be seasonal stations or suffer serious instrumentation 293 

problems. Stations overlapping in space (same latitude and longitude) and without sufficient metadata for 294 

discrimination are merged (see Sect. 3.2). The above screening reduces the available stations from 45328 to 31772 295 

(Table 1), yet more stations are discarded due to quality control procedures (Sect. 3.1). The final SCDNA includes 296 

24615 24721 precipitation, 19677 19604 Tmin, and 19684 19611 Tmax stations; note that the numbers of Tmin and Tmax 297 

stations differ as quality controls can result in excluding the one and reserving the other in some stations. 298 

Most stations are located in the Contiguous United States (CONUS), southern Canada, and Mexico, while few stations 299 

are located in high-latitude regions such as the Arctic Archipelago (Fig. 1b and c). The spatial distributions of 300 

precipitation and temperature stations are similar, except in eastern CONUS where precipitation stations have a higher 301 

density. 302 

Table 1. Numbers of stations with at least 8-year records from 1979 to 2018 303 

Station numbers GHCN-D GSOD ECCC Mexico Merge Total 

Original numbers 33026 4619 3634 4049 0 45328 

SCDNA input 24765 4331 3100 187 207 31772 

SCDNA output: precipitation 19255 26562551 2440 170 200199 2472124615 

SCDNA output: Tmin 1344513394 36503631 2219 167166 1946 1960477 
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SCDNA output: Tmax 1340253 363251 2217 1667 1946 1961184 

Notification: “Merge” is derived from stations with overlapped locations from all the other data sources (Sect. 3.1.1). 304 

 305 

Figure 1. (a) Digital elevation model (DEM; Sect. 2.3) of North America. (b) and (c) are the densities of stations at 306 

the 0.5°´0.5° resolution	for precipitation and temperature, respectively. Tmin and Tmax stations are highly consistent, 307 

and thus Tmin is used to represent temperature in (c). The nested black boxes show examples of DEM and station 308 

densities. 309 

In North America, more station observations occur in U.S. than in Canada and Mexico (Fig. 2). The number of samples 310 

in U.S. increases from 1979 to 2018, and there are more precipitation samples than temperature samples. For Canada, 311 

the numbers of precipitation and temperature samples are similar and show a decrease from 1988 to 2018; the sample 312 

number in 2018 is only 61.76% of that in 1988. Mexico has more meteorological samples than Canada, yet this number 313 

decreases after 1983. The decreasing trend is especially sharp after 2012 which may be due to the delay in data 314 

collection or termination of some stations. 315 

Figure 3 shows the fractions of missing values for all stations during the observation period (referred as ratio-1) and 316 

during the entire period from 1979 to 2018 (referred as ratio-2). For temperature, ~20% of the stations have more than 317 

20% missing values in the observation period (ratio-1), and ~20% of the stations have more than 70% missing values 318 

in the entire period (ratio-2). For precipitation, the fraction of missing values is larger. The fractions show strong 319 

spatial variations (Fig. S3). Ratio-2 is smaller for precipitation stations in western U.S. and temperature stations in 320 

central U.S., but larger in Canada and Alaska. Most stations in Mexico have higher ratio-1 than other regions in North 321 

America, indicating that those stations have notable fractions of missing values during the observation period. 322 
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In summary, the curves of ratio-1 indicate that a small number of missing values need infilling during the observation 323 

period, while the curves of ratio-2 indicate that extensive reconstruction is needed over the entire period. 324 

 325 

Figure 2. Sample numbers of stations for each year from 1979 to 2018. CA represents Canada, US represents United 326 

States, and MX represents Mexico. Tmax stations are highly consistent with Tmin stations, and thus Tmin is used to 327 

represent temperature. The numbers of samples could be a better indicator than the numbers of stations because many 328 

stations have notable missing values. 329 

 330 

1979 1992 2005 2018
Year

0

1

2

3

4

5

6

Sa
m

pl
e 

nu
m

be
r

106

Precipitation: CA
Precipitation: US
Precipitation: MX
Temperature: CA
Temperature: US
Temperature: MX

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of missing values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n 

of
 s

ta
tio

ns

Precipitation: ratio-1
Precipitation: ratio-2
Temperature: ratio-1
Temperature: ratio-2



 12 

Figure 3. The fraction of missing values for stations with at least 8-year records. Ratio-1 is the degree of missingness 331 

during the observation period, and ratio-2 is the degree of missingness during the entire period of interest (1979 to 332 

2018). Tmin is used to represent temperature because Tmax show almost overlapped curves with Tmin. 333 

Many types of precipitation and temperature measurement instruments are used at stations from different sources. For 334 

example, the Type-B rain gauge is used by Environment Canada since 1970s for most weather stations (Devine and 335 

Mekis, 2008; Wang et al., 2017), while tipping bucket and weighing rain gauges are also used in some stations 336 

(Metcalfe et al., 1997). Nipher-shielded snow gauges have been used by some synoptic stations, while ruler 337 

measurements are still used by more stations (Mekis and Brown, 2010). Station data in U.S. are from many 338 

organizations or programs with different instrument configurations. For instance, the standard rain gauge is used by 339 

the Cooperative Observer Program while Snow Telemetry uses storage-type gauges or tipping buckets. A better 340 

understanding of instrument specifications and historical changes is important for climate studies (Pielke Sr et al., 341 

2007; Whitfield, 2014; Ma et al., 2019). A detailed summary of station instruments is provided in the documentation 342 

of the dataset (https://doi.org/10.5281/zenodo.3735533).  343 

2.2 Reanalysis products 344 

We use reanalysis precipitation, Tmin and Tmax from the fifth generation of European Centre for Medium-Range 345 

Weather Forecasts (ECMWF) atmospheric reanalyses of the global climate (ERA5; Copernicus Climate Change 346 

Service (C3S), 2017), the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al., 2015), and the Modern-Era 347 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017) (see Table 2). The 348 

three products are chosen because they are representative products from different international organizations and they 349 

or their predecessor (ERA-Interim, JRA-25, and MERRA) have are been widely used by researchers. The ERA5 and 350 

JRA-55 do not provide daily outputs, thus, daily precipitation is accumulated from sub-daily estimates while daily 351 

Tmin and Tmax are estimated by the sub-daily minimum and maximum temperature values. Gridded reanalysis 352 

precipitation is linearly interpolated to match point-scale station data, and Tmin and Tmax are downscaled using 353 

temperature lapse rate (TLR; see Sect. 3.1).  354 

Table 2. Information on the three reanalysis products. 355 

Products 
Spatial 

resolution 

Temporal 

resolution 
Period Agency 

ERA5 0.25°´0.25° 1 h 1979-present 
European Centre for Medium-

Range Weather Forecasts 

JRA-55 ~5560 km 3 h 1958-present Japan Meteorological Agency 

MERRA-2* 0.5°´0.625° daily 1980-present 
NASA’s Global Modeling and 

Assimilation Office 

* MERRA-2 provides outputs in temporal resolutions from 1 h to 1 month; here we use daily values. 356 
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2.3 Auxiliary data  357 

The Multi-Error-Removed Improved-Terrain digital elevation model (MERIT DEM) at a 3 sec (~90 m at the equator) 358 

resolution (Yamazaki et al., 2017) is used in this study. To enable temperature downscaling, the high-resolution DEM 359 

is spatially averaged to the original resolutions of ERA5, MERRA-2, and JRA-55 (Table 2). The MERIT DEM may 360 

be slightly different than the DEM data used in the three reanalysis products, and this will have a limited impact on 361 

missing data estimation (Sect. 3.3.2). 362 

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2.2 dataset (Beck et al., 2017, 2019) is utilized for 363 

the comparison with the SCDNA developed by this study. MSWEP merges data from ground observations, satellite 364 

products, and reanalysis models, and performs better than all products used for merging (Beck et al., 2019). The 365 

comparison can show whether the SCDNA is a better choice than MSWEP to fill gaps in station precipitation 366 

observations.  367 

3 Methodology 368 

The methodology to produce the SCDNA includes three primary steps (Fig. 4): (1) preparing a unified precipitation 369 

and temperature database from multiple sources (Sect. 2.1 and 3.1); (2) downscaling reanalysis estimates (Sect. 2.2 370 

and 3.2) that are used in QM- and machine learning-based data estimation (Sect. 3.3) and comparison with the SCDNA 371 

(Sect. 4.5); and (3) producing the SCDNA from 1979 to 2018 based on 16 strategies (Sect. 3.3). The following sub-372 

sections summarize the work in each step of the methodology (Sect. 3.1, 3.2, and 3.3) as well as the approach used to 373 

evaluate the performance of the method (Sect. 3.4). 374 
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 375 

Figure 4. Flowchart of the production of the SCDNA, including station data preparation, reanalysis product processing, 376 

and missing data infilling and reconstruction. 377 

In this study, infilling refers to the estimation of missing values during the observation period, while reconstruction 378 

refers to estimating values outside of the observation period when no station record is available (Fig. 5). Station records 379 

that fail quality control are treated as missing values.  380 

3.1 Prepare a unified precipitation and temperature database 381 

3.1.1 Merging of stations based on location 382 

Stations are merged if their latitude and longitude match other stations. The problem of overlapped locations is caused 383 

by identification alteration of one station for different periods, or recording/rounding bias of station location 384 

information, inconsistent naming rules of different sources, and other factors. Although it is possible that multiple 385 

stations are deployed in the same location for experimental aims, location merging is done to preserve internal 386 

consistencies as inconsistent records at the same location are self-contradictory. 387 

The method for location merging includes several steps. First, overlapping stations are extracted and grouped. Stations 388 

within the same group that have non-overlapping recording periods are simply merged into one time series. Otherwise, 389 
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the Spearman’s rank CC (SCC) between precipitation series from all station pairs in the group is calculated. For SCC 390 

< 0.7, the station group is discarded due to large discrepancies; for 0.7 < SCC < 0.9 the discrepancy is considered as 391 

tolerable and the station with the longest record is kept; for SCC > 0.9 stations are considered as highly correlated and 392 

their data are merged into one time series, while for overlapping periods the station with longest record is used. 393 

Overall, 1240 stations are involved in location merging, stratified in 586 station groups. Around 10% of the groups 394 

contain more than two stations and the largest group contains five stations. After location merging, only 207 groups 395 

are kept and merged into unified times series (Table 1). Despite the steps taken above, the merged series could contain 396 

inhomogeneities due to the combination of records from multiple stations.  397 

3.1.2 Quality control 398 

To ensure station observations undergo strict and comprehensive quality control, we adopted the methods used to 399 

produce previous station-based datasets. For Tmin and Tmax, we followed the method designed by Durre et al. (2010) 400 

which is adopted by GHCN-D (Menne et al., 2012). The procedures include five types of checks: integrity checks, 401 

outlier checks, internal and temporal consistency checks, spatial consistency checks, and extreme megaconsistency 402 

checks. A few of the procedures in Durre et al. (2010) require other variables such as snowfall, and thus are not 403 

adopted in this study. In addition, the quality flags in this study are partly different with those of GHCN-D because of 404 

the different sources, numbers and temporal periods of stations. 405 

For precipitation, quality control procedures consist of three parts. The first part is similar with that for temperature. 406 

The second part (four types of checks) follows procedures designed by Hamada et al. (2011) which are adopted by 407 

the Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE; Yatagai 408 

et al., 2012). The third part (two types of checks) adopts strategies by Beck et al. (2019) used in the production of 409 

MSWEP. Note that although Durre et al. (2010) and Hamada et al. (2011) share some common traits for precipitation, 410 

both of them are adopted to ensure quality control reliability. 411 

Details The details of quality checks are in Appendix B. 412 

3.2 Downscale reanalysis data 413 

The reanalysis temperature estimates are downscaled to match point-scale station observations using temperature lapse 414 

rate (TLR) according to 415 

𝑇" = 𝑇$ + TLR× ∆ℎ (1) 

where 𝑇$ is 2-m reanalysis air temperature,	𝑇" is downscaled temperature, ∆ℎ is the height difference between station 416 

elevation and reanalysis grid elevation. TLR shows notable spatiotemporal variations (Minder et al., 2010) and 417 

estimating TLR based on ground observations over a large domain is difficult due to the sparsity of stations. Yet recent 418 

studies show that reanalysis outputs offer an alternative in estimating gridded TLR (e.g., Gao et al., 2012). The gradient 419 

of air temperature at different pressure levels above the ground can be used to approximate near-surface TLR (Gao et 420 
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al., 2012, 2018; Gruber, 2012). Tang et al. (2018) compared eight temperature downscaling methods in CONUS and 421 

found that methods based on reanalysis-derived TLR can achieve higher accuracy compared to fixed TLR (e.g., -422 

6.5°C/km) or statistical interpolation downscaling methods. Hence, this study uses the linear regression slope between 423 

MERRA-2 air temperature and geopotential heights from 300 hPa to 1000 hPa pressure levels to represent TLR for 424 

each month at the resolution of 0.5°´0.625° (Table 2). MERRA-2 is used because it directly provides monthly data 425 

and masks temperature data if the pressure level is below land surface. The choice of pressure levels needs further 426 

investigation because relationships between vertical and near-surface temperature vary with regions. Complicated 427 

TLR phenomena such as inverse lapse rate are not considered for simplicity. The climatological mean of TLR (Fig. 428 

S4) decreases from -4.8°C/km in the northeast continent (i.e., Canadian Arctic Archipelago) to -7.2°C/km in the 429 

southwest continent (i.e., Rocky Mountains in CONUS). The smaller TLR magnitude in high latitudes is consistent 430 

with previous studies (e.g., Gardner et al., 2009; Marshall et al., 2007). 431 

3.3 Produce the serially complete dataset 432 

To produce the high-quality SCDNA for North America, we use 16 strategies: four based on quantile mapping with 433 

neighboring stations (QMN; e.g., Longman et al., 2019; Newman et al., 2015, 2019), four on quantile mapping with 434 

concurrent reanalysis estimates (QMR), four using spatial interpolation methods (INT; e.g., Eischeid et al., 2000; 435 

Kanda et al., 2018; Woldesenbet et al., 2017), two using machine learning methods (MAL; e.g., Dastorani et al., 2010; 436 

Wambua et al., 2016), and two multi-strategy merging methods (MRG). Merging multiple infilling/reconstruction 437 

methods can provide better estimation than individual methods, as shown by previous data merging and gap infilling 438 

studies (e.g., Eischeid et al., 2000; Beck et al., 2017, 2019; Ma et al., 2018). 439 

We generate estimates for every station and every day from 1979 to 2018 (Fig. 5). The estimates from these 16 440 

strategies and the SCDNA are evaluated using station observations, and the performance of the SCDNA is compared 441 

to four benchmark gridded products. Then, the estimates of the SCDNA are corrected for further accuracy 442 

improvement. Finally, estimates are replaced by station observations when observations exist and pass quality control 443 

checks. The variance and spatial correlation analyses are performed to compare the statistical properties of station 444 

observations and estimates (see Sect. 4). 445 
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446 

 447 

Figure 5. Diagram of the infilling and reconstruction for a specific station (referred to as A). The entire period from 448 

1979 to 2018 is divided into the observation period and the reconstruction period. The data flows of variance and 449 

spatial correlation analyses are shown in the nested yellow boxes. Station B is a nearby station of A. 450 
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Only stations with at least 3000 valid values are included in the infilling and reconstruction effort. The eight nine steps 451 

(termed Step-1 to Step-98) of SCDNA production are described as below. Unless otherwise stated, the steps are 452 

implemented for each target station (s), each variable (precipitation, Tmin, and Tmax), and each day of the year (DOY, 453 

i.e., 1-366).  454 

3.3.1 Data extraction 455 

Step-1: Spatiotemporally concurrent reanalysis estimates (ERA5, JRA-55, and MERRA-2) are extracted, including 456 

precipitation, Tmin, Tmax, and TLR. Precipitation is linearly interpolated from gridded reanalysis estimates, and 457 

temperature is downscaled (i.e., corrected for the elevation difference between the reanalysis grid cell and the station 458 

elevation) based on TLR (Sect. 3.1). 459 

Step-2: Neighboring stations (at least one and at most 30) with at least 8-year overlapped period with station s are 460 

found within the searching radius of 200 km. These stations are ranked from closest to farthest according to their CC 461 

with the target station. SCC is used for precipitation, and Pearson CC (PCC) is used for Tmin and Tmax. CC is calculated 462 

using data within a 31-day window centered around the current DOY from all years. 463 

Step-3: The empirical CDFs of s, neighboring stations, and reanalysis estimates are obtained using data within the 464 

same 31-day window. 465 

3.3.2 Infilling and reconstruction 466 

Step-4: For each day (d) corresponding to the DOY, the estimated data are acquired based on 16 strategies which are 467 

divided into five groups.  468 

Group 1: Quantile Mapping with Neighboring stations (QMN) 469 

• QMN-1: For all neighboring stations with valid records, the station with the highest CC in Step-2 is selected. 470 

The estimated data for s and d is obtained using Eq. (2). 471 

𝑋" = 𝐹"/0(𝐹2(𝑋2)) (2) 

where 𝑋2 is precipitation or temperature for d from the selected neighboring station i, 𝐹2 is the empirical CDF of 472 

i corresponding to the DOY, 𝐹"/0 is the inverse CDF of s corresponding to the DOY, and 𝑋" is the estimated data. 473 

• QMN-2: For all neighboring stations with observations, estimated values are obtained using Eq. (2) which are 474 

merged based on Eq. (3). 475 

𝑋" =
∑ 𝑊2𝐹"/0(𝐹2(𝑋2))	6
2

∑ 𝑊2
6
2

 (3) 



 19 

𝑊2 = 𝐶𝐶28 (4) 

where n is the number of neighboring stations, 𝐹"/0(𝐹2(𝑋2)) is the QM-based estimate from i, and 𝑊2 is the weight 476 

calculated using Eq. (4). 𝐶𝐶2 is CC (SCC or PCC) between data from s and i corresponding to the DOY. 𝑊2 is 477 

assigned zero if 𝐶𝐶2 is negative. 478 

• QMN-3: Similar to QMN-2, but the weight is calculated according to the distance (𝐷2) between s and i based on 479 

Eq. (5). Although the exponent of distance (k) varies in different studies, -2 is the most common choice 480 

(Teegavarapu and Chandramouli, 2005). 481 

𝑊2 = 𝐷2:  (5) 

• QMN-4: The median of QMN-1 to QMN-3 is used as the estimated data. The strategy of using median values is 482 

the same with Eischeid et al (2000), which could be closer to actual observations than QMN-1 to 3. 483 

Group 2: Quantile Mapping with Reanalysis products (QMR) 484 

Reanalysis products provide useful information for SCDNA production as (1) remote regions may not have enough 485 

neighboring stations, and (2) neighboring stations also have missing values which could result in gaps of estimates at 486 

the target station. 487 

• QMR-1 to QMR-3: Similar to QMN-1, but the neighboring station is replaced by concurrent ERA5, JRA-55, 488 

and MERRA-2 estimates, respectively. 489 

• QMR-4: The median of QMR-1 to 3 is used as the estimated data. 490 

Group 3: Interpolation (INT)  491 

The three interpolation methods used in this study are MLAD (referred as INT-1), NR (referred as INT-2), and inverse 492 

distance weighting (IDW, referred as INT-3). They are described below. Following Eischeid et al. (2000), neighboring 493 

stations with CC lower than 0.35 are excluded. The remaining stations are ranked from high CC to low CC. A 494 

maximum of four neighboring stations are used in the interpolation. For Tmin and Tmax, direct interpolation from 495 

neighboring stations to s could be biased due to the elevation differences between stations. Temperature data from 496 

neighboring stations are downscaled to the elevation of s based on Eq. (1). 497 

• INT-1: MLAD minimizes the sum of absolute errors. It is more robust than regression based on least squares 498 

because while least square estimation is effective when the errors are normally distributed and independent, 499 

environmental variables, especially precipitation, often violate the assumption of normality (Eischeid et al., 500 

2000). MLAD has been well documented with better performance in gap infilling than other interpolation 501 

methods (Eischeid et al., 1995, 2000; Kanda et al., 2018; Young, 1992). The formula is shown in Eq. (6). 502 



 20 

𝑋" = 𝑐< += 𝑐2𝑋2
6

2
 (6) 

where 𝑐2	(𝑖 =0, 1, …, n) is regression coefficients estimated using data within a 31-day window for each DOY. 503 

Different d corresponding to the same DOY could have different combinations of neighboring stations due to the 504 

limitation of observation availability. MLAD is performed for each combination to ensure that effective estimates 505 

are available for all days. 506 

• INT-2: NR is an interpolation method proposed by Paulhus and Kohler (1952) and modified by Young (1992). 507 

The modified version is adopted in this study, which combines information from neighboring stations by 508 

replacing 𝐹"/0(𝐹2(𝑋2))	with 𝑋2 in Eq. (3). The weight is calculated using Eq. (7). 509 

𝑊2 = 𝐶𝐶28
𝑁2 − 2
1 − 𝐶𝐶28

 (7) 

where 𝑁2 is the number of samples used to calculate 𝐶𝐶2 between s and i. SCC is used for precipitation and PCC 510 

is used for temperature. 511 

• INT-3: IDW is one of the most common interpolation methods. It is implemented similar to NR, where the 512 

inverse squared distance, as shown in Eq. (5), is used as the weight. 513 

• INT-4: The median of INT1, INT2 and INT3 is used as the estimated data. 514 

Group 4: Machine Learning (MAL) 515 

The two MAL methods used in this study are ANN (referred as MAL-1) and random forest (RF, referred as MAL-2; 516 

Breiman, 2001). Unlike QMN, QMR and INT that are carried out for each DOY, MAL uses complete observation 517 

records of s to ensure that ANN and RF are trained with enough values. MAL models are trained using the first 70% 518 

observations and tested using the remaining 30% observations. The MAL models’ validation based on the 30% 519 

observations can indicate their performance in the reconstruction period.  520 

The input data are from neighboring stations and concurrent reanalysis estimates. For each s, neighboring stations are 521 

determined in a way similar with Step-2, but CC is calculated using data in the entire observation period. Neighboring 522 

stations with CC lower than all reanalysis products (ERA5, JRA-55, and MERRA-2) are excluded. The remaining 523 

neighboring stations and three reanalysis products form a complete repository of input features. Then, for each day 524 

that s has no observation, the input features are extracted from the repository in three steps: (1) neighboring stations 525 

without observations for the day are excluded, (2) the remaining neighboring stations and reanalysis products are 526 

ranked according to their CC with s, and (3) at most five stations/reanalysis products with the highest CC are selected. 527 

In this way, s will have multiple combinations of input features to ensure that all days with missing values have 528 

estimates. All combinations are used to train and test the ANN and RF models, resulting in multiple estimated series 529 
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for s. The final estimates of s are generated in three steps: (1) the Kling-Gupta Efficiency (KGE'; Kling et al., 2012) 530 

of all estimated series is calculated using all observations of s, and ranked from high to low KGE' (see Sect. 3.4 for 531 

definition of KGE'); (2) the series with higher KGE' is used to constitute the estimates of s in sequence; and (3) the 532 

second step is repeated until there are no missing values for s. This approach ensures that “best” and complete estimates 533 

are provided for s. 534 

• MAL-1: A four-layer ANN is used. The input layer has a maximum of five nodes (depending on the number of 535 

input features), the two hidden layers both have 20 nodes, and the output layer has one node for generating 536 

precipitation or temperature estimates. The transfer functions are hyperbolic tangent sigmoid for hidden layers 537 

and linear for the output layer. The training function is resilient backpropagation. The model is trained using the 538 

first 50% data, validated using the subsequent 20% data, and tested using the final 30% data.  539 

• MAL-2: A RF model with 50 trees is built with 70% training data and 30% testing data. The minimum number 540 

of samples per tree leaf is 5. The input nodes depend on the number of input features like MAL-1. 541 

Group 5: Multi-Strategy Merging (MRG) 542 

• MRG-1: KGE' is used to rank the performance of the 11 strategies (QMN-1 to 3, QMR-1 to 3, INT-1 to 3, 543 

and MAL-1 to 2) as CC cannot reflect the magnitude difference (e.g., bias) between target and reference 544 

series. The first three cases of the 11 strategies are merged using squared KGE' as the weight. The individual 545 

weight is assigned zero if KGE' is negative.  546 

• MRG-2: The median of the three selected strategies in MRG-1 is used as the estimated data.  547 

3.3.3 Generating serially complete records 548 

Step-5: In this step, Step-3 and -4 are repeated based on 70% data of s in the observation period. Then, the KGE' of 549 

estimates from all strategies are calculated using the remaining 30% observations. MAL-1 and 2 are not repeated 550 

because they are trained on the 70% observations. Although the evaluation samples are different among stations, the 551 

results are reliable and stable as shown in the results section. This step is implemented because QMN-1 to 4, QMR-1 552 

to 4, and INT-1 in Step-4 use all data of s in the observation period to select stations, estimate empirical CDFs and 553 

carry out regression. This potential overfitting problem could lead to better performance of these strategies in the 554 

observation period but worse performance in the reconstruction period. KGE' calculated in Step-4 can represent the 555 

accuracy of estimates in the observation period, while KGE' calculated in Step-5 can represent the accuracy of 556 

estimates in the reconstruction period. 557 

Step-6: In the observation period, the strategy with the highest KGE' in Step-4 is selected to contribute the 558 

extension/reconstruction to the SCDNA. In the reconstruction period, first, the strategy with the highest KGE' in Step-559 

5 is determined; then, the estimates from the corresponding strategy in Step-4 are used to constitute the SCDNA 560 
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because the empirical CDF and regression based on all observations in Step-4 could be more representative than the 561 

70% observations in Step-5. 562 

Step-7: Estimates in Step-6 are corrected for certain climatological biases using station data in the observation period. 563 

Precipitation estimates are often subjected to wet-day bias. Two methods are implemented to address this problem. 564 

First, QM is performed based on the CDF of s in Step-3. However, QM may reduce the accuracy of estimated 565 

precipitation in some cases, for which the method used in Beck et al. (2019) is adopted. This method subtracts a tiny 566 

value (0.01 mm) from the original precipitation series and rescales the series to restore the original mean value. This 567 

operation is repeated until the estimated series show equal number of wet days (>0.5 mm d-1) with observations of s. 568 

In addition to wet-day bias correction, mean-value correction is implemented. The ratio between the mean values of 569 

precipitation estimates and observations is calculated in the observation period, which is used to rescale estimated 570 

series in both observation and reconstruction periods. For Tmin and Tmax, QM correction and mean-value correction are 571 

also implemented.  572 

Step-8: The accuracy of the SCDNA is evaluated and compared to benchmark datasets based on actual observations 573 

(Fig. 5). Then, the estimates are replaced by observations whenever possible to generate the final SCDNA. Very 574 

occasionally, estimated Tmin could be larger than estimated Tmax, for which Tmax is replaced by the maximum Tmax, and 575 

Tmin is replaced by the minimum Tmin of the estimates from the 16 strategies. 576 

Step-9: The serially complete data of SCDNA is quality controlled again using methods introduced Sect. 3.1.2 to 577 

exclude stations with unreliable estimates. 578 

3.4 Evaluate the precipitation and temperature estimates 579 

KGE', which is proposed by Gupta et al. (2009) and modified by Kling et al. (2012), is used to support the merging 580 

of different strategies (Sect. 3.3) and the evaluation of the estimated precipitation and temperature. It is a useful metric 581 

in evaluating various variables (e.g., Tang et al., 2020) and incorporates information about correlation, bias, and 582 

variance. 583 

⎩
⎪
⎨

⎪
⎧KGE′ = 1 −K(𝑟 − 1)8 + (𝛽 − 1)8 + (𝛾 − 1)8

𝛽 =
𝜇"
𝜇<
																																																																							

𝛾 =
𝐶𝑉"
𝐶𝑉Q

=
𝜎" 𝜇"⁄
𝜎Q 𝜇Q⁄ 																																																				

 (8) 

where 𝑟 is the PCC, 𝛽  is the bias ratio, and 𝛾 is the variability ratio; 𝜇 is the mean value, and 𝜎 is the standard 584 

deviation. The subscripts s and o represent estimated and reference time series, respectively. KGE' ranges from 585 

negative infinity to one. If two series exactly match, the KGE' is one. A 𝛽 or	𝛾 value smaller/larger than one indicates 586 

that the mean value or variability of observations is underestimated/overestimated.  587 
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In Sect. 4, the evaluation during the observation period is based on the complete station observations (i.e., Step-4 in 588 

Sect. 3.3.2), while the evaluation during the reconstruction period is realized using 30% independent station 589 

observations (i.e., Step-5 in Sect. 3.3.3). Unless otherwise stated, SCDNA estimates in Sect. 4 are after correction 590 

(Step-7 in Sect. 3.3.3). In Sect. 4.5, SCDNA estimates are compared with gridded products (ERA5, JRA-55, MERRA-591 

2, and MSWEP). In addition to the three SCDNA variables (precipitation, Tmin, and Tmax), mean temperature (Tmean, 592 

the mean of Tmin and Tmax) and daily temperature range (Trange, the difference between Tmax and Tmin) are also included. 593 

The involvement of Trange can contribute to more objective comparison between SCDNA and reanalysis products 594 

because the TLR-based downscaling of reanalysis temperature contains uncertainties, which could affect the 595 

evaluation of Tmin, Tmax, and Tmean. Although there exist differences between TLR of Tmin and Tmax, Trange can reduce 596 

the effect of scale-mismatch between gridded reanalysis temperature and point station temperature on evaluation 597 

results.  598 

4 Results 599 

4.1 Comparison of infilling and reconstruction strategies 600 

The value of a given infilling/reconstruction strategy can be quantified by the extent that a strategy is selected for use 601 

in the final SCDNA dataset. In this sense the contribution ratios define the proportion of estimates that come from a 602 

specific strategy. Fig. 6 shows that the contribution ratios of QMN, QMR, and INT to missing value estimation are 603 

generally smaller than 20% in North America. Please note that QMN refers to all strategies within this group unless 604 

the strategy number is specified right after QMN. This also applies to other groups. QMR shows the smallest 605 

contribution ratios for almost all stations among the five groups. Compared with other regions in North America, 606 

contribution ratios of QMR are higher for precipitation stations in western U.S. and temperature stations in Mexico. 607 

INT shows lower contribution ratios in Rocky Mountains compared with western U.S., indicating statistical 608 

interpolation without considering topographic effect is subjected to substantial uncertainties in complex terrain. MAL 609 

shows notably higher contribution ratios than QMN, QMR, and INT, particularly for Tmin and Tmax. The ratios of MAL 610 

are higher than 20% for ~30% precipitation stations, ~65% Tmin stations, and ~68% Tmax stations. MRG has the highest 611 

contribution ratios throughout North America. The average contribution ratios of MRG are 59.88%, 41.59%, and 612 

40.56% for precipitation, Tmin, and Tmax, respectively. For precipitation, MRG is particularly effective in high-latitude 613 

regions (northern Canada and Alaska), western U.S. and Mexico. 614 
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 615 

Figure 6. The contribution ratios of estimates from five infilling/reconstruction groups to the missing values of all 616 

stations from 1979 to 2018. The three columns from left to right represent precipitation, Tmin, and Tmax, respectively. 617 

The five rows from top to bottom represent Group-1 (QMN), Group-2 (QMR), Group-3 (INT), Group-4 (MAL), and 618 

Group-5 (MRG), respectively. The maps are at the resolution of 0.5°. The ratio for each grid cell is the mean value of 619 

all stations within this grid cell. 620 

Figure 7 shows the KGE' and contribution ratios of 16 strategies. The KGE' of estimated precipitation is lower than 621 

that of estimated Tmin and Tmax due to the stronger spatial and temporal homogeneity of temperature (Fig. 7). The 622 

median KGE' values of Tmin and Tmax are generally above 0.9, and the accuracy of estimated Tmax is higher than that 623 

of Tmin. The KGE' during the reconstruction period is smaller than that during the observation period, which is 624 
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particularly obvious for QMN, QMR, and INT-1 compared with other strategies, because QMN and QMR transfer 625 

CDF during the observation period to other periods, and INT-1 transfers regression relationship during the observation 626 

period to other periods. MAL suffers a slight degradation in the reconstruction period, and the better performance of 627 

MAL-2 than MAL-1 shows that RF could be a better choice than ANN in estimating missing data. For MRG, the 628 

differences of KGE' between the two periods are relatively small. For example, the median KGE' values of MRG-1 629 

for Tmax are 0.99 and 0.98 for observation and reconstruction periods, respectively. MRG also shows higher KGE' and 630 

a narrower quantile ranges than other strategies, particularly for precipitation, benefiting from merging estimates from 631 

multiple strategies 632 

Regarding contribution ratios (Fig. 7), strategies with higher KGE' often have larger contributions to the estimated 633 

series. However, this is not always true because the selection of strategies is performed for each DOY. Note that the 634 

contribution ratios of MAL-2 are even higher than MRG-1 during the observation period for Tmin and Tmax, although 635 

MRG-1 achieves higher KGE' than MAL-2 for most stations. This is because MAL-2 could be the best choice for 636 

more DOY than MRG-1 even though MRG-1 may achieve the best overall performance. An example using Tmin data 637 

from one station is shown in Fig. S5. 638 

In the reconstruction period when observations are absent, the contribution ratios of MAL-2 decrease drastically 639 

compared with the observation period, contributing to the increased ratios of other strategies (particularly MRG-1). 640 

Although QMR shows the lowest contribution ratios, reanalysis products have implicit contributions to other strategies 641 

(e.g., MAL and MRG). Overall, MRG-1 shows much higher contribution ratios than all the other strategies (including 642 

MRG-2) during the reconstruction periods, indicating that it is the most important strategy in missing value estimation. 643 

Hence, combining information from multiple strategies is more reliable, and KGE'-based merging is more effective 644 

than the median-value-based estimation. 645 

 646 
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 647 

Figure 7. Boxplots of (a, c, and e) the KGE' and (b, d, and f) the contribution ratio of 16 strategies for all stations. 648 

Each strategy corresponds to two boxes in each sub-figure; the left one with darker color represents the observation 649 

period, and the right one with lighter color represents the reconstruction period. The line within the box is the median. 650 

The upper and lower edges of the box represent the 25th and 75th percentiles, respectively. Values more than 1.5 651 

times the interquartile range away from the upper or lower edges are outliers (dots). 652 

4.2 Impact of reconstruction on spatial correlation and series variance 653 

All infilling/reconstruction strategies except QMR rely on information from neighboring stations; this could affect the 654 

spatial correlation structure and the variance of SCDNA series. Space-time correlations and other properties (e.g., 655 

intermittency of precipitation) are important considerations because they can influence the performance of follow-on 656 

applications that use the SCDNA as input. Theoretically, QMN strategies could significantly inflate spatial correlation 657 

but retain variance of station observations. The spatial correlation inflation in INT strategies could be lower but the 658 

variance would be underestimated due to smoothing. QMR-1 is used as an example to demonstrate the effect of QM 659 

on spatial correlation and series variance (Fig. S6), because QMN uses different station combinations for every DOY 660 

which would mask the effect of QM on final estimates. If the ERA5 used by QMR-1 is replaced by station observations, 661 

the results should be generally consistent. According to Fig. S6, the spatial correlation is substantially inflated by 662 

'

'

'

'
'

'
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QMR-1, particularly for Tmin and Tmax, while the standard deviation of QMR-1 estimates is very close to that of 663 

observations. This supports the design of estimating missing data using neighboring stations for each DOY as 664 

otherwise the inflation of CC could be very substantial for the entire period. 665 

The spatial correlation based on station observations (Fig. 8a, d, and g) shows obvious seasonal variations, with CC 666 

lower in the warm season and higher in the cold season. The seasonality of CC for Tmax is weaker compared with that 667 

for precipitation and Tmin. The SCDNA estimates capture the seasonal patterns but underestimates the variation (Fig. 668 

8b, e, and h) because the inflation of spatial CC is larger in the warm season than cold season (Fig. 8c, f, and i). 669 

Moreover, the inflation is larger for neighboring stations with lower correlation with the target station. We tested 670 

selecting neighboring stations according to their distance from the target station, and similar results were acquired. 671 

For precipitation, the median CC differences of all stations are close to 0.1 in the cold season and ranges between 0.1 672 

and 0.15 in the warm season. For Tmin, the median CC differences are generally between 0.05 and 0.15. The CC 673 

differences of Tmax are relatively homogeneous for different seasons and generally fluctuate between 0.05 and 0.1. The 674 

inflation of CC is because (1) the estimates from the 10 neighboring stations and the target station are generally derived 675 

using highly overlapped information (Sect. 3.3.1), and (2) estimation is realized for each DOY for all strategies except 676 

MAL, meaning that calculating CC for each DOY show the inflation to the largest extent.  677 

The final SCDNA replaces estimates by observations, which can largely relieve the inflation of spatial correlation 678 

(Fig. S7), depending on the degree to which observations are present in the record. For Tmin and Tmax, CC is very close 679 

to that based on observations; for precipitation, correlation in wintertime is even lower than that based on observations. 680 
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 681 

Figure 8. CC between target and neighboring stations for all DOY using station observations (the first column), 682 

SCDNA estimates (second column), and differences between SCDNA- and observation-based CC (the third column). 683 

CC is calculated in the observation period. For each target station, 10 neighboring stations are selected according to 684 

the correlation between time series from target and neighboring stations. Smaller numbers represent higher correlation. 685 

For example, station 1 represents the neighbor with the highest CC with the target station. Each curve represents the 686 

median CC of all stations. 687 

Figures 9 and 10 show CC between estimates at the target station and observations at the neighboring station. For 688 

precipitation, most strategies exhibit similar spatial correlation structure with observations for most stations. QMR 689 

largely underestimates CC compared with observations, which should be attributed to the differences between 690 

precipitation of reanalysis products and stations. There are notable differences for different strategies within one group. 691 

For example, QMN-1 shows larger inflation when observation-based CC is higher, which is not seen in QMN-2 to 4. 692 

This is probably because QMN-1 only uses information from the one neighboring station with the highest correlation 693 

with the target station for each DOY. Higher observation-based CC in Fig. 9 means this neighboring station could be 694 

more frequently used by QMN-1 to estimate data for the target station, resulting in the larger inflation of CC. Another 695 

example is that INT-1 underestimates the CC for 68.75% stations, whereas INT-2 to 4 overestimates the CC for almost 696 

all stations. For SCD-1, inflation of CC is observed for 76.60% stations, whereas the magnitude of overestimation is 697 
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smaller than that in Fig. 8. The mean values of observation-based and estimate-based CC are 0.71 and 0.77, 698 

respectively. SCD-2 replaces estimates by observations and is the final dataset of this study. It reduces the mean 699 

estimate-based CC to 0.70. The overall spatial correlation structure of observations is generally preserved by SCD-2. 700 

However, SCD-2 calculates CC for the entire period which is different from the period of observation-based CC, 701 

resulting in uncertainties such as the underestimation for some stations when observation-based CC is larger than 0.7. 702 

The spatial correlation of Tmin is much stronger than that of precipitation (Fig. 10). Most strategies overestimate the 703 

CC for most stations, whereas the magnitude is quite small. For example, SCD-1 inflates the CC for 96.96% stations, 704 

while the mean CC values for observations (0.95) and SCD-1 (0.96) are very close to each other. QMR still 705 

underestimates CC similar to Fig. 9 for precipitation. CC based on SCD-2 is generally consistent with that based on 706 

observations, while slight underestimation exists for some stations when observation-based CC is higher than 0.9. Tmax 707 

shows similar spatial correlation patterns with Tmin (Fig. S8). 708 

In summary, inflation of CC is inevitable particularly when estimates are obtained using information from sole data 709 

source such as one neighboring station or one reanalysis product. The inflation is larger if each DOY is treated 710 

separately (Fig. 8 and S7), but smaller if CC is calculated for all years (Fig. 9, 10 and S8). Combining information 711 

from multiple sources (stations and reanalysis) and combining multiple strategies for each DOY are beneficial in 712 

estimating the overall spatial correlation structure. The spatial correlation structures vary for different strategies, and 713 

further studies are needed to clearly demonstrate how and why the estimate-based CC differs from observation-based 714 

CC.  715 
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 716 

Figure 9. Scatter density plots of CC between precipitation from the target station and neighboring stations. For each 717 

target station, the neighboring station with the highest correlation with the target station is selected. X-axis represents 718 

the CC between observed precipitation from target and neighboring stations. Y-axis represents the CC between 719 

estimated precipitation from the target station and the observed precipitation from the neighboring station. Each sub-720 

figure corresponds to one strategy in Sect. 3.3.2. SCD-1 represents SCD estimates after correction, while SCD-2 721 

replaces estimates by observations. CC is calculated during the overlapped observation period between target and 722 

neighboring stations, and the only exception is SCD-2 which calculates CC using precipitation from target and 723 

neighboring stations during the entire period. 724 
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 725 

Figure 10. Similar with Fig. 9, but for Tmin. 726 

The variability of observations and of the corrected and uncorrected SCDNA estimates (Step-7 in Sect. 3.3.3) are 727 

compared using the standard deviation of the observation period (Fig. 11). The standard deviation of uncorrected 728 

SCDNA precipitation is lower than that of observations, while after correction, the standard deviation agrees very well 729 

with observations. The mean values of standard deviation are 7.36, 6.30, and 7.36 for observations, uncorrected 730 

SCDNA, and corrected SCDNA, respectively. For Tmin and Tmax, corrected and uncorrected SCDNA estimates both 731 

show consistent variability with observations.  732 
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 733 

Figure 11. The standard deviation of observations and SCDNA estimates before and after correction. Data in the 734 

observation period are used. 735 

4.3 The performance of the serially complete dataset 736 

Uncorrected SCDNA estimates show high accuracy in North America (Fig. 12). For precipitation, the median KGE' 737 

of all stations is 0.87, and the median values of 𝑟, 𝛽, and 𝛾 are 0.91, 0.92, and 0.96, respectively. The KGE' for Mexico 738 

stations generally ranges between 0.6 and 0.8, which is smaller than that in U.S. and southern Canada. Some stations 739 

in Rocky Mountains, Caribbean, Alaska and northern Canada (regions with complex topography or climate), also 740 

show lower KGE' for precipitation estimates. The spatial distribution of 𝑟 is similar with that of KGE', while the 741 

magnitude is higher. According to 𝛾, most stations underestimate precipitation variability which is consistent with Fig. 742 

11; 𝛽 is generally lower than one in most regions of North America, particularly in Rocky Mountains and Mexico 743 

where SCDNA underestimates precipitation.  744 

Estimated temperature shows much higher KGE' compared with precipitation. The median KGE' and 𝑟 of Tmin are 745 

0.97 and 0.99, respectively. For Tmax, the median of KGE' and 𝑟 are 0.99 and 0.99, respectively. The median 𝛾 and 𝛽 746 

are both between 0.99 and 1 for Tmin and Tmax with small variations, particularly for Tmax (Fig. 12); the KGE' of Tmin 747 

and Tmax is lower in Caribbean and Mexico. For Tmin, the KGE' for some stations around 45°N and Rocky Mountains 748 

is lower than surrounding regions although 𝛾 is spatially homogeneous for the same region. This is because the mean  749 

Tmin is close to zero for some stations in this region, resulting in the large magnitude of 𝛽 and 𝛾. In contrast, Tmax 750 
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exhibits homogeneous performance in the same region for all metrics.. The discrepancies between Tmin and Tmax need 751 

further investigation. 752 

Corrected SCDNA estimates (see Step-7; Fig. S9) have higher accuracy than uncorrected estimates (Fig. 12). For 753 

example, the median KGE' for precipitation is improved from 0.87 to 0.90 after correction. The KGE' for Tmin and 754 

Tmax is also improved but not as significant as precipitation. 𝛽 equals to one for all stations due to the mean-value 755 

correction. 𝛾 for precipitation changes from negative to positive for all stations, whereas magnitude of bias (deviation 756 

from one) is smaller after correction. As a result, tThe spatial distribution of metrics for Tmin is also more homogeneous. 757 

Therefore, the correction procedures are effective.  758 

 759 

Figure 12. The spatial distributions of KGE' and its three components (𝑟 is CC, 𝛽  is the bias ratio, and 𝛾 is the 760 

variability ratio) for uncorrected SCDNA estimates over North America during the observation period. The maps are 761 

at the resolution of 0.5°. The value for each grid cell is the median value of all stations within this grid cell. 762 

'
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The distributions of KGE' vary during the year (Fig. 13). For precipitation, more stations show lower KGE' during 763 

summer (DOY 150 to 250) than at other times of the year, which may be due to the variability of summertime 764 

convective precipitation. For Tmin, some stations show lower KGE' from DOY 100 to 250. The seasonal variation of 765 

KGE' for Tmax is relatively weak, although KGE' is slightly more concentred at higher level during spring and autumn 766 

than winter and summer. The overall performance of Tmax is better than Tmin and precipitation. 767 

 768 

Figure 13. The distribution of KGE' for each day of year for (a) precipitation, (b) Tmin, and (c) Tmax. Corrected SCDNA 769 

estimates are used.  770 

4.4 Comparison between the serially complete dataset and gridded products 771 

SCDNA precipitation and temperature are compared with benchmark gridded products to demonstrate whether the 772 

SCDNA is a good choice when station data are unavailable. Actual station observations are used as reference. 773 

Although assessing gridded products using point-scale station data contains uncertainties (Tang et al., 2018a), the 774 

objective of this section is to illustrate their agreement with station observations in lieu of provide an exhaustive 775 

quantitative assessment of their real-world accuracy. 776 

'
'
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Overall, the SCDNA achieves much higher KGE' than reanalysis products for all variables (Fig. 14). For precipitation, 777 

the median KGE' differences between the SCDNA and ERA5, JRA-55 and MERRA-2 are 0.48, 0.57, and 0.54, 778 

respectively. The corresponding KGE' differences for Tmin are 0.46, 0.61, and 0.36, respectively. The improvement 779 

for Tmax is smaller, particularly in eastern U.S. where topography is relatively flatter compared with western U.S. The 780 

KGE' differences of Tmean are lower than Tmin but higher than Tmax due to the offset effect. Trange suffers little from the 781 

elevation differences between stations and reanalysis grids, and is suitable to demonstrate the differences between 782 

SCDNA and reanalysis products. The median KGE' differences for Trange between the SCDNA and ERA5, JRA-55 783 

and MERRA-2 are 0.31, 0.48, and 0.31, respectively. 784 

 785 
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Figure 14. Spatial distributions of KGE' differences between SCDNA estimates and three reanalysis products (ERA5, 786 

JRA-55, and MERRA-2). The nested histograms show KGE' differences between the SCDNA and reanalysis products. 787 

Corrected SCDNA estimates are used. 788 

SCDNA and MSWEP precipitation is compared (Fig. 15). Since MSWEP merges data from numerous stations, the 789 

evaluation of MSWEP based on station data is not independent, which could result in the overestimation of its KGE'. 790 

Even so, SCDNA precipitation shows higher KGE' than MSWEP for 98.97% stations with a median KGE' difference 791 

of 0.31. Fig. 15 shows notable differences between MSWEP and SCDNA at the Canada-USA border and the USA-792 

Mexico border. This is because MSWEP infers gauge reporting time by searching for the highest correlation between 793 

gauge data and the temporally shifted reanalysis/satellite estimates (Beck et al., 2019). Fig. 15 shows notable 794 

differences between Canada, U.S. and Mexico The estimated temporal shift could vary with countries, which results 795 

in distinct differences of station-based evaluation results along national boundaries which could be due to the 796 

differences in observation time of stations in different countries. The accumulation periods of station and MSWEP 797 

precipitation are inconsistent in some cases, which could affect the evaluation of MSWEP (see Sect. 5.1). 798 

Note that the evaluation does not indicate that the SCDNA has higher accuracy than the gridded products; rather, the 799 

results show that SCDNA is a better substitute than gridded products when station observations are unavailable.  800 

 801 

Figure 15. Spatial distributions of KGE' differences between SCDNA and MSWEP precipitation. Corrected SCDNA 802 

estimates are used. 803 
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5. Discussion 804 

5.1 Observation time of stations 805 

Meteorological stations in different countries usually have different local observation time, and stations in the same 806 

country may also experience change of observation time (Vincent et al., 2012). Most station databases including those 807 

used in this study do not account for reporting-time inconsistencies due to lack of hourly observations and well-808 

documented station metadata. Vincent et al. (2009) examined several methods to adjust the time of daily precipitation 809 

observations, which, however, often altered observed precipitation intensity. Beck et al. (2019) inferred the reporting 810 

time of daily precipitation observations by calculating SCC between the series of stations and gridded products, which 811 

is useful to correct the bias of gridded products. A simple experiment is carried out using the method of Beck et al. 812 

(2019) to infer the lag day of station series. For precipitation, 6418 stations show nonnegligible time shift from the 813 

reporting date (Fig. S10). However, this method may be unsuitable for temperature because the estimated lag day is 814 

mostly zero, and the inferred reporting time cannot be directly applied to adjust station observations. 815 

The inconsistent reporting time has different impact on precipitation, Tmin, and Tmax. For example, if a station records 816 

data from 8:00 a.m. on January 1st to 8:00 a.m. on January 2nd, the station will probably use January 2nd as the 817 

reporting time. However, two thirds of the 24-h time are within January 1st, indicating that the accumulated 818 

precipitation could mostly occur on January 1st. Tmax could also occur during the daytime on January 1st, but it is hard 819 

to determine on which day Tmin occurs, which makes it challenging to adjust precipitation, Tmin and Tmax at the same 820 

time. The difference between universal and local time makes this problem more complicated. Thus, the reporting time 821 

of stations is not corrected here due to aforementioned difficulties. 822 

5.2 Homogenization 823 

Inhomogeneities in station observations are defined as variations that are not caused by weather and climate factors. 824 

Long-term station records are often subjected to inhomogeneities due to factors like station re-location, observation 825 

time change, instrument change, and surrounding environment change (Venema et al., 2012). Many methods have 826 

been developed to identify breakpoints and homogenize station series in annual, monthly or even daily scales (e.g., 827 

Ma et al., 2008; Vincent et al., 2002, 2012). Different methods could generate different estimates of inhomogeneities 828 

as shown by many comparison studies (e.g., Beaulieu et al., 2008; Reeves et al., 2007; Venema et al., 2012). The four 829 

station databases (Sect. 2.1) used in this study provide original station records without homogenization. The SCDNA 830 

would inherit the potential inhomogeneities contained in these databases, and the infilling/reconstruction may also 831 

lead to discontinuities. The homogenization of the SCDNA is challenging considering that (1) the dataset covers a 832 

broad range of climate, topography, and countries, (2) the number of stations is large and differences between station 833 

periods (ranging from 8 to 40 years) are substantial, and (3) whether existing methods are suitable for homogenization 834 

of infilling/reconstruction estimates needs exploration. Therefore, homogenization is not carried out in this study, 835 

which, however, is an important direction of future studies. 836 
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5.3 Limitations of the KGE'	statistic 837 

We use KGE' because it incorporates information about correlation, bias, and variability, and hence provides more 838 

information on methodological performance than an individual metric. For example, the PCC between temperature 839 

estimates and observations is usually close to one and cannot reflect the bias term, while the mean square error is 840 

prone to the effect of extreme values (or outliers). However, KGE' also has limitations. For example, the values of 841 

KGE' depend on the units of measurement (e.g., Santos et al., 2018) – in our case, the 𝛽 values for temperature are 842 

clearly always close to one if the units of measurement for temperature are in Kelvin. Since these statistics incorrectly 843 

indicate very small temperature biases, we used ℃ for all KGE' calculations in this study, ensuring that 𝛽 has more 844 

leverage in the KGE' statistic. Moreover, and critical for our analysis, the normalization used in the KGE' formula (𝛽 845 

and	𝛾) means that the KGE' values are low when the denominators of 𝛽 and	𝛾 are close to zero (e.g., Santos et al., 846 

2018). This problem is especially acute for temperature – for instance, we found that KGE' values were very small for 847 

cases where 𝜇Q is close to zero. Nevertheless, the number of cases where 𝜇Q is close to zero is rather small, where 848 

~0.5% of all cases (based on all stations and all DOY) show absolute values of mean Tmin smaller than 0.1℃. For cases 849 

with 𝜇Q close to zero, the ranking based on KGE'	is	similar	to	the	ranking	based	on	mean	absolute	error,	which	850 

means	that	KGE'	can	still	function	as	a	ranking	indicator	when	its	value	is	low.	Further work is needed to both 851 

comprehensively evaluate the alternative infilling strategies presented in this paper and evaluate more advanced multi-852 

method merging strategies.  853 

5.43 Potential improvement directions 854 

Several steps could be taken to improve the SCDNA. First, the optimal strategy could be different for each station as 855 

shown by the results in this study. Therefore, the quality of SCDNA may be further improved by using more 856 

infilling/reconstruction methods, which would yield diminishing returns at some point. For example, the long short-857 

term memory (LSTM) could be suitable to impute missing station observations. Optimizing the configuration of 858 

various strategies will be necessary to balance computation efficiency and estimation accuracy, particularly when the 859 

number of stations is large. Second, some stations suffer from undercatch, which depends on gauge type, precipitation 860 

phase, environmental conditions, etc. The bias caused by undercatch can be substantial for stations located in high 861 

latitudes and in the mountains (Yang et al., 2005; Scaff et al., 2015). Third, the SCDNA does not distinguish between 862 

rainfall and snowfall. Considering that a large part of North America has frequent snowfall in winter, precipitation 863 

phase classification will be useful for hydrometeorological studies. Auxiliary data from reanalysis and satellite 864 

products could be used to partition precipitation into rain and snow. Finally, although the SCDNA agrees well with 865 

station observations, long-term trends are difficult to reconstruct when actual observations are unavailable, meaning 866 

the SCDNA may not be suitable for climate trend analysis in the reconstruction period. Some gridded datasets use 867 

only stations with long-term records (e.g., (Wood, 2008; Werner et al., 2019) to achieve temporally consistent 868 

estimates, whereas such stations are very few. Reasonable trend estimation is challenging but meaningful for SCD. 869 
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Furthermore, other variables such as wind and humidity observed by stations also suffer from the same problems faced 870 

by precipitation and temperature. Future studies should explore whether the current methodology is applicable to other 871 

variables. A SCD covering more variables would be useful for research in various fields. 872 

6 Data availability 873 

The SCDNA dataset is available at https://doi.org/10.5281/zenodo.3735533https://doi.org/10.5281/zenodo.3735534 874 

(Tang et al., 2020) in netCDF format. The basic variables are station identification, latitude, longitude, elevation, date, 875 

and TLR derived in Sect. 3.2. Stations that undergo location merging (Sect. 3.1.1) are identified and all relevant 876 

stations are included in the data file. For precipitation, Tmin, and Tmax, the variables in the netCDF4 file include original 877 

station observations, quality flags provided by original station databases, quality flags provided by this study, estimates 878 

from 16 strategies, uncorrected SCDNA estimates, corrected SCDNA estimates, the final SCDNA with estimates 879 

replaced by observations, data source flags indicating the source of each record in SCDNA (observations or 16 880 

strategies), and accuracy metrics (KGE' and its three components) for all estimates (16 strategies and SCDNA). 881 

Scripts used to produce the SCDNA are available at https://github.com/tgq14/GapFill. The dataset will be regularly 882 

updated to cover latest periods. 883 

7 Conclusions 884 

This study developed a daily SCD of precipitation, Tmin, and Tmax for 2728027276 stations from 1979 to 2018 over 885 

North America (SCDNA). The original station data are compiled from multiple sources and undergo strict quality 886 

control. Many stations have nonnegligible fractions of missing values in observation and reconstruction periods. For 887 

each station, the infilling and reconstruction are implemented using 16 strategies (quantile mapping, statistical 888 

interpolation, and machine learning) based on information from neighboring stations and concurrent reanalysis 889 

estimates (ERA5, JRA-55, and MERRA-2). The final SCDNA combines estimates from the 16 strategies and is 890 

corrected using station observations. The spatial correlation is preserved and might be slightly inflated. The SCDNA 891 

estimates reproduce the variance of original station observations very well, particularly for temperature. The median 892 

KGE’ of the final precipitation, Tmin, and Tmax for all stations is 0.90, 0.98, and 0.99, respectively. The comparison 893 

with four benchmark gridded products shows that the SCDNA has much better agreement with station observations. 894 

The SCDNA will be useful for a variety of hydrometeorological studies in North America. 895 
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Appendix A 903 

Table A1. Acronyms used in this paper 904 

Acronym Full name 
ANN Artificial neural network 

APHRODITE Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation 

CC Correlation coefficient 
CDF Cumulative distribution function 

CONUS Contiguous United States 

DEM Digital elevation model 

DOY Day of year 
ECCC Environment and Climate Change Canada 

ERA5 the fifth generation of ECMWF atmospheric reanalyses of the global climate  

fD Fraction of days without precipitation  

GHCN-D Global Historical Climate Network Daily 
GSOD Global Surface Summary of the Day 

IDW  Inverse distance weighting 

INT Interpolation 

JRA-55 Japanese 55-year Reanalysis 

KGE' Kling-Gupta Efficiency 

LSTM Long short-term memory 

MAL Machine learning 

MLAD Multiple regression based on the least absolute deviation criteria 
MERIT DEM Multi-Error-Removed Improved-Terrain digital elevation model 

MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2 

MRG Multi-strategy merging 

MSWEP Multi-Source Weighted-Ensemble Precipitation 
NR Revised normal ratio 

PCC Pearson CC  

QM Quantile mapping 

QMN QM using neighboring stations 
QMR Quantile mapping with concurrent reanalysis estimates 

RF Random forest 

SCC Spearman CC 
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SCDs Serially complete datasets 

TLR Temperature lapse rate 
Tmax Maximum temperature 

Tmean Mean temperature 

Tmin Minimum temperature 

Trange Daily temperature range 
U.S. United States 

UTC Universal Time Coordinated 

 905 

Appendix B 906 

Five types of checks (Durre et al., 2010) are adopted for the quality control of temperature. 907 

1. Integrity checks. The first type of integrity check is a duplication check to identify duplicated records for time 908 

series in different time periods. The second type of integrity check includes the streak check to identify 909 

consecutive identical values and the frequent-value check to identify close but not necessarily consecutive 910 

identical values. The world record exceedance check sets lower (-89.4°C) and upper (57.7°C) bounds of 911 

temperature. 912 

2. Outlier checks, including the gap check that examines the frequency distributions for all calendar months, and 913 

the climatological outlier check that is based on the traditional z-score (e.g., Hubbard and You, 2005).  914 

3. Internal and temporal consistency checks, including the iterative temperature consistency check, to ensure some 915 

inherent relationships are abided (e.g., Tmin cannot be larger than Tmax); the spike/dip check, identifies 916 

temperatures which deviate from previous and following days by at least 25℃; and the lagged temperature range 917 

check, which identifies abnormally large differences between Tmin and Tmax during a 3-day time window.  918 

4. Spatial consistency checks, including the regression check and the spatial corroboration check. The regression 919 

check builds regression relationships between temperature at the target location and selected nearby stations to 920 

determine whether temperature at the target station should be flagged according to regression residuals and 921 

standardized residuals. The spatial corroboration check flags temperature at the target station if the value 922 

deviates far from the temperature at neighboring stations.  923 

5. Extreme megaconsistency checks to ensure that certain relationships hold for the entire records of stations. For 924 

example, Tmax cannot be higher than the lowest Tmin for the calendar month, and vice versa.  925 

For precipitation, quality control strategies are from three studies. The first part is similar with temperature, but does 926 

not include the third type of checks (internal and temporal consistency checks). The second part is from Hamada et al. 927 

(2011). 928 
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1. Repetition checks. The non-zero check identifies constant daily values (> 10 mm d-1) that occur for more than 929 

four days. The zero check compares the annual zero-precipitation frequency with its climatological value to spot 930 

unusual frequencies of zero. 931 

2. Duplicated monthly or sub-monthly record check. The temporal CC and the number of days with equal 932 

precipitation are used to identify whether two different months have the same records caused by human errors. 933 

3. Z-score-based outlier check. Daily precipitation is flagged if its difference with the mean value from precipitation 934 

within a 15-day window of all years is larger than nine standard deviations. This step is repeated until no outlier 935 

is identified. 936 

4. Spatiotemporally isolated value check. Extremely large precipitation is identified in both space and time based 937 

on the percentiles of precipitation differences between the target station and neighboring stations within a radius 938 

of 400 km. 939 

The third part is from Beck et al. (2019). 940 

1. Empirical criterion based on the fraction of days without precipitation (fD). This was designed to identify the long 941 

series of erroneous zero precipitation contained in GSOD station records. However, we found that this criterion 942 

misidentifies some acceptable records in GHCN-D. Therefore, the fD-based check is only implemented for GSOD.  943 

2. Discarding stations with fewer than 15 unique values or more than 99.5% dry records (<0.5 mm d-1).  944 
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