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Abstract. The Tibetan Plateau (TP) plays a critical role in influencing regional and global climate, via both thermal and 

dynamical mechanisms. Meanwhile, as the largest high-elevation part of the cryosphere outside the polar regions, with vast 20 

areas of mountain glaciers, permafrost and seasonally frozen ground, the TP is characterized as an area sensitive to global 

climate change. However, meteorological stations are sparsely and biased distributed over the TP, owing to the harsh 

environmental conditions, high elevations, complex topography, and heterogeneous surfaces. Moreover, due to the weak 

representation of the stations, atmospheric conditions and the local land-atmosphere coupled system over the TP as well as its 

effects on surrounding regions are poorly quantified. This paper presents a long-term (2005-2016) in-situ observational dataset 25 

of hourly land-atmosphere interaction observations from an integrated high-elevation and cold region observation network, 

composed of six field stations on the TP. These in-situ observations contain both meteorological and micrometeorological 

measurements including gradient meteorology, surface radiation, eddy covariance (EC), soil temperature and soil water content 

profiles. Meteorological data were monitored by automatic weather stations (AWS) or  planetary boundary layer (PBL) 

observation systems. Multilayer soil temperature and moisture were recorded to capture vertical hydrothermal variations and 30 

the soil freeze-thaw process. In addition, an EC system consisting of an ultrasonic anemometer and an infrared gas analyzer 

was installed at each station to capture the high-frequency vertical exchanges of energy, momentum, water vapor and carbon 

dioxide within the atmospheric boundary layer. The release of these continuous and long-term datasets with hourly resolution 

represents a leap forward in scientific data sharing across the TP, and it has been partially used in the past to assist in 

understanding key land surface processes. This dataset is described here comprehensively for facilitating a broader 35 

multidisciplinary community by enabling the evaluation and development of existing or new remote sensing algorithms as 
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well as geophysical models for climate research and forecasting. The whole datasets are freely available at Science Data Bank 

(http://www.dx.doi.org/10.11922/sciencedb.00103, Ma et al., 2020) and, additionally at the National Tibetan Plateau Data 

Center (https://data.tpdc.ac.cn/en/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/). 

1 Introduction 40 

The Tibetan Plateau (TP) is the world's highest and largest plateau with highly complex terrain and is referred as the 

"Third Pole of the World" (Qiu,2008). Moreover, the TP has the most extensive high-elevation distribution of cryosphere 

outside the polar regions. There are vast areas of mountain glaciers, snow, permafrost and seasonally frozen earth across the 

TP (Zhou and Guo, 1982;Kang et al., 2010;Cheng and Jin, 2013). Therefore, it also acts as the "Water Tower of Asia" 

(Immerzeel et al., 2010). Numerous researches indicate that the TP plays an essential role in controlling regional and global 45 

climate through its thermal and mechanical mechanisms (Manabe and Broccoli, 1990;Yanai et al., 1992;Duan and Wu, 

2005;Liu et al., 2007). It exerts a major control on atmospheric circulation at the local and continental scale (Ding, 1992;Ye 

and Wu, 1998;Li et al., 2018) through its latent heat release (Wu et al., 2016) and interactions between the Asian monsoon and 

mid-latitude westerlies (Yao et al., 2012). Meanwhile, the TP is highly sensitive to climate change (Pepin and Lundquist, 

2008;Kang et al., 2010;Chen et al., 2015). It is the driving force for regional environmental changes, and it amplifies 50 

environmental changes to global scale as well (Pan et al., 1996;Kang et al., 2010).  

Land-atmosphere interactions over the TP play a crucial role in controlling the hemispheric atmospheric circulation 

pattern and climate evolution (Yang et al., 2004;Duan and Wu, 2005;Xiao and Duan, 2016;Li et al., 2018). Previous studies 

have revealed that accurate simulation of water and heat flux exchanges between the land surface and the atmosphere is a 

pivotal step towards improving the predictability and the projection accuracy of the climate system (Sellers et al., 1997;Pitman, 55 

2003); this can be achieved through a comprehensive and accurate understanding of the land-atmosphere interactions based 

on in-situ observations (Yang et al., 2009). However, compared with other terrestrial regions of the world, observational data 

are scarce over the TP, owing to its vast geographic area with steep terrain, varied landforms, complex and diverse climates, 

harsh environmental conditions. The sparse and biased spatial distribution of observation stations is hard to match the high 

degree of landscape heterogeneity over the TP. In addition, high uncertainties in the satellite-retrieved land and atmospheric 60 

environmental variables of the TP impair the establishment of continuous, long-term regional-scale observations in remote 

areas of the TP. The lack of sufficient observational data limits our understanding of the interactions between the different 

earth spheres with heterogeneous land surface conditions and hinders the development of parameterization schemes in some 

critical physical processes of the land surface and atmospheric boundary layer, thereby, leading to associated uncertainties in 

estimating the past, present, and future climate change and its impacts. Therefore, it is essential to improve the atmospheric 65 

observation capability on the TP and its surrounding areas and obtain accurate atmospheric physical parameters for the near-

surface and boundary layers over the TP, which can significantly contribute to the scientific understanding of the weather, 

climate and environmental changes, as well as their impacts, from regional scale (TP) to global scale. 
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To mitigate the scarcity of observational data and to improve our understanding of the coupled local land-atmosphere 

system and its effects, a series of atmospheric field experiments have been carried out over the TP since the 1970s. For example, 70 

the first Qinghai-Xizang Plateau Meteorology Experiment (QXPMEX) (Tao et al., 1986), the Global Energy and Water Cycle 

Experiment (GEWEX) Asian Monsoon Experiment (GAME)/Tibet intensive observation (Wang, 1999), the Coordinated 

Enhanced Observing Period (CEOP) Asia–Australia Monsoon Project on the Tibetan Plateau (CAMP/ Tibet) (Ma et al., 2006), 

and so on. Based on these meteorological experiments, several field observational stations have been established and kept on 

operation as yet. After decades of effort, with an optimized scientific design and layout, the synthesis level of atmospheric 75 

observation has been greatly enhanced and improved with respect to the observation infrastructure and technology used, and 

meteorological elements observed. With the construction of the Tibetan Observation and Research Platform (TORP, Ma et al., 

2008) and the implementation of long-term multi-site collaborative field experiments, the limitations of the layout and function 

of the observation network over the TP have been mitigated to some extent. A large volume of land surface processes and PBL 

observations have been collected, and have played a crucial role in many disciplines, these including: land-atmosphere 80 

interactions (Wang et al., 2017;Xie et al., 2018;Zhong et al., 2019), the characteristics of the PBL and troposphere (Sun et al., 

2006;Li et al., 2012;Ma et al., 2015;Chen et al., 2016), and the development of land surface parameterization schemes (Yang 

et al., 2003;Chen et al., 2013). 

The aforementioned field experiments and multi-site collaborative observations have yielded significant progress in 

advancing our understanding of the land-atmosphere interactions. However, integrated observations from field stations over 85 

the TP are still not open for sharing and only very limited data are accessible. For instance, some in-situ observations can be 

obtained only through cooperation; others are restricted (e.g., only limited variables during a specified period are provided). 

Although some meteorological data can be requested from the National Tibetan Plateau Data Center (TPDC) in recent years 

(http://www.tpdc.ac.cn), only the daily mean values are provided, which are commonly lack of consistent and information of 

standard data processing methods. Furthermore, the temporal resolution of these daily mean value is too coarse for the land 90 

surface and climate modeling community, for which at least hourly values are required to run models and to evaluate detailed 

physical models. To overcome the above issues, a continuous and long-term integrated observational dataset of land-

atmosphere interaction with high temporal resolution is now provided (Ma et al., 2020). The underlying observation network 

is composed of six stations over the TP. At each station, the following measurements are available: meteorological gradient, 

surface radiation, EC and soil hydrothermal. This dataset is released in a unified format that can be easily accessed and used 95 

by many communities, aiming to facilitate the consistency and continuity in scientific understanding of the interactions among 

the multi-sphere coupled systems over the TP. We expect this dataset will be widely used in studying the environment of the 

"Third Pole", especially by the atmosphere, hydrology, ecology and cryosphere communities. We also hope this dataset will 

promote the sharing, opening and value-added exploitation of the in-situ land-atmosphere interaction observations over the TP. 

In this paper, we introduce and provide access to the long-term hourly dataset of the integrated land-atmosphere 100 

interaction observations over the TP. The integrated land-atmosphere interaction observation network is first described in 

Section 2. Section 3 deals specifically with a description of the meteorological, solar radiation, EC and soil hydrothermal data, 
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and presents an overview of the observation infrastructure, highlighting differences and similarities between the stations with 

respect to the observation items, and their variations at diurnal, daily and monthly scales. The availability of this dataset is 

documented in Section 4 and a final summary is presented in Section 5.  105 

2 Site descriptions 

The integrated land-atmosphere interaction observation network in this study consists of six field stations (Figure 1): the 

Muztagh Ata Westerly Observation and Research Station, Chinese Academy of Sciences (MAWORS, CAS); the Ngari Desert 

Observation and Research Station, CAS (NADORS); the BJ site of Nagqu Station of Plateau Climate and Environment, CAS 

(NPCE-BJ, hereinafter abbreviated to BJ) in the central TP; the Nam Co Monitoring and Research Station for Multisphere 110 

Interactions, CAS (NAMORS), as well as the Qomolangma Atmospheric and Environmental Observation and Research Station, 

CAS (QOMS) in the north region of Mt. Everest; and the Southeast Tibet Observation and Research Station for the Alpine 

Environment, CAS (SETORS).  

The MAWORS station was located in the region where the atmospheric circulation was influenced by the westerly wind 

all year round. Soil at this station was predominately sandy soil and gravel with sparse and short grass-covered. Large scale 115 

modern glaciers are distributed around the station (the standard deviation of elevation within a kilometer around the station is 

152.92 m, which is the highest among the six stations as shown in Table 1) and exert great influence on the local weather and 

climate. The observations from this station are of great significance for the study of interactions between westerly winds and 

monsoon and their effects on land-glacier-atmosphere changes, as well as changes in snow and ice resources. 

The NADORS station was built in a flat and open mountain valley in the northwestern TP (with the lowest standard 120 

deviation of elevation). The land use type here is Gobi Desert with very short grasses (about 1-2 cm) on the sandy soil and 

gravel surface. It is located at the convergence zone of the Indian monsoon and westerly wind, where these two atmospheric 

circulations interact intensively, making the NADORS as an excellent location for the study of westerly-monsoon interactions 

on the desert landscape.  

The BJ site is located in a flat, open prairie except for the north, where there stand low hills (the standard deviation of 125 

elevation is 15.14 m). The site is well-vegetation-covered and the dense grasses are relatively high with height up to 5 cm. Soil 

at the site is predominantly sandy silt loam. The BJ site is an ideal place to observe the land-atmospheric interactions on the 

alpine meadow ecosystem. 

The NAMORS station is located on the banks of Lake Nam Co, with the Nyainqentanglha Mountain behind. The land is 

covered by alpine meadows and the soil type is predominantly sandy silt loam, but the gravel content is high at 30-40 cm 130 

below the ground. As lake has a significant influence on the atmospheric circulation in this region, and plays a certain role in 

regulating temperature variation and precipitation, etc. Thus, this station is an ideal place to measure the land-atmosphere 

interactions in the water-land-mountain mesoscale system.  
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The QOMS is situated at the bottom of the lower Rongbuk Valley, to the north of Mt. Everest. The surface is barren and 

the ground is relatively flat and open, with sparse and short vegetation. Sand and gravel dominant here from surface to deep 135 

soil. The Himalayas acts as the channel for the exchange of energy and materials between surface and tropospheric atmosphere. 

Moreover, local circulation patterns, such as valley winds, link the near-surface atmosphere on the north side of Mt. Everest 

with the upper free atmosphere, making this region the best location for monitoring atmospheric conditions in the Northern 

Hemisphere.  

The SETORS station lies in a mountain valley close to the forested southeastern TP (the terrain is highly heterogeneous, 140 

but is not as complex as the MAWORS). It’s surrounded by a dense vegetation cover (mainly temperate needle-leaf trees and 

alpine meadows). The shallow soil here is well developed and the water-holding capacity of the soil is greatly enhanced due 

to the presence of organic matter, while the deep soil is predominantly gravel. The observations from the SETORS station are 

important for studying the water and heat transport along the alpine valleys by the South Asian monsoon, the alpine forest-

glacier-atmosphere interactions, and the transport of hydrothermal components of the vertical belt in the mountainous regions.            145 

This high-cold region observation network is an essential component of the meteorological observation platform over the 

TP, carrying out land surface processes observations in areas that are typical in geography while currently lack of in-situ 

observations. This network serves as key locations for field observations and experiments: in particular, for monitoring the 

interactions between geological processes and climate; for collecting first-hand, high-resolution records of modern 

environmental variations; and for monitoring land surface processes and atmospheric processes. The observation system at 150 

each station primarily includes the following four categories of measurements: meteorological variables either from the PBL 

tower or the AWS, solar radiation components, eddy covariance fluxes and soil hydrothermal conditions. The meteorological 

instruments consist of up to 5 levels of wind speed and direction, air temperature, relative humidity instruments, surface air 

pressure, and precipitation. The surface radiation components include the incoming and outgoing shortwave and longwave 

radiations. The open-path EC turbulent flux measurement system is used to sample the high frequency vertical turbulent fluxes 155 

of the sensible heat flux, latent heat flux and carbon dioxide flux. Vertical profiles of soil temperature and soil moisture content 

are measured by multilayer temperature probes and water content reflectometers (5 or 6 layers). A list of the observation items 

and instruments in detail can be found in Table 2. To ensure the accuracy and reliability of the observations, periodic inspection, 

maintenance and calibration are carried out by professional engineers. Meanwhile, all stations are manned except for the cold 

winter season, and the instruments are checked and data are collected and processed regularly. 160 

3 Integrated land-atmosphere interaction observations 

3.1 Meteorological observations 

To fully characterize the meteorological conditions and their vertical distributions in the surface layer, instruments were 

installed at several heights on a multi-layer PBL tower (QOMS, NAMORS, SETORS and BJ). For stations without the PBL 

tower, meteorological variables are recorded by a one-layer AWS at MAWORS and two-layer AWS at NADORS. The layer 165 
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arrangements of sensors are not the same at these 6 stations. For example, five layers of wind speed and wind direction 

anemometers, air temperature and humidity probes were installed at QOMS and NAMORS; four layers of sensors were 

installed at SETORS; for BJ, three layers of wind and two layers of air temperature and relative humidity probes were available 

during 2006-2014, while four levels of these measurements were provided during 2015-2016 (see Table 2 for details). Besides, 

a surface pressure barometer and precipitation gauge are available at all the stations except MAWORS, where precipitation is 170 

not measured. The meteorological elements of each station are detailed in the following sections, starting with the observation 

infrastructure, and followed by variations of the climatological average meteorological variables (except for wind direction 

and precipitation) at the lowest level of each station. We should note that the term "climatological" here does not strictly follow 

the definition recommended by the World Meteorological Organization (WMO), for which averages are based on 30 years of 

data. Here, "climatological" refers to the period for which variables are available at each station. At BJ, the climatological 175 

averages of wind speed, air temperature, relative humidity and pressure were calculated from 2006 to 2014. 

3.1.1 Wind speed and wind direction 

Wind speed and wind direction were monitored using non-heated anemometers at NADORS, MAWORS, NAMORS, 

QOMS, and SETORS, while using heated ultrasonic anemometers at BJ. At NADORS and MAWORS, the horizontal wind 

variations were monitored at heights of 1.5 and 2 m above the ground, respectively. At the NAMORS and QOMS, wind speed 180 

was measured at heights of 1.5, 2, 4, 10 and 20 m, while wind direction was only available at 1.5, 10 and 20 m. At SETORS, 

wind speed and wind direction were measured at four levels (1.3, 4.94, 9.95 and 18 m). At BJ, three layers of wind speed (at 

heights of 0.91, 5.02 and 10.36 m) and one-layer wind direction (at a height of 10.36 m) were available from 2006 to 2014 

while the wind speed and wind direction were available at four levels (1.5, 3, 6, and 12 m) during 2015-2016. 

The climatological averaged wind speeds at diurnal, daily and monthly scales are shown in Figure 2 (a-c). Clear inner 185 

diurnal variations were observed, characterizing with a maximum in the afternoon and a constant wind speed in the early 

morning and throughout the night. At the diurnal scale, wind speed at SETORS showed the lowest diurnal variation throughout 

the year, while that at BJ showed the largest variations (the multi-year average here reached 8.13 m/s in the afternoon in 

January). At BJ, MAWORS, NADORS and NAMORS, the variations in wind speed in winter (December, January and 

February) were larger than those in the other seasons, while the greatest variability was observed in spring and early summer 190 

at QOMS. Significant differences exist in the climatological averaged monthly wind speeds at all stations, except at SETORS, 

where the wind speed ranged only from 0.79 to 1.26 m/s. Generally, the wind speed was relatively lower during the monsoon 

season than the non-monsoon periods, particularly at QOMS, BJ, NAMORS and MAWORS, where wind speeds in winter 

were the highest throughout the year, while the largest values of wind speed were observed in spring at NADORS. 

3.1.2 Air temperature  195 

Air temperature is available at different heights at NAMORS (1.5, 2.0, 4.0, 10 and 20 m), QOMS (1.5, 2.0, 4.0, 10 and 

20 m), SETORS (1.3, 4.94, 9.95 and 18 m) and MAWORS (1.9 m). Air temperatures were recorded at a single height of 1.5 
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m at NDORS and two heights of 1.03 and 8.41 m at BJ during 2006 to 2014. Identical to the wind sensors configuration, an 

air temperature gradient observation system with temperature probes at four heights (1.5, 3.0, 6.0 and 12 m) was used at BJ 

since 2015.  200 

 The multi-year monthly averaged diurnal variations of air temperature (Figure 2d) show that the values at NAMORS, 

QOMS and MAWORS were below 0°C in November, December, January and February. At BJ, the air temperature in January 

were below 0°C and the maximum values in December and February were also around freezing temperature (1.17°C and 

0.72°C, respectively). As shown in Figure 2e, the minimum daily air temperatures at BJ, MAWORS, NAMORS and NADORS 

dropped below 0°C from mid-October until the end of March or early April of the following year, but they were approximately 205 

5°C higher at QOMS and SETORS. These differences in the variations in daily mean air temperature among stations are clearly 

shown in Figure 2f. In summer (June, July and August), the average daily and monthly air temperature at the lowest level at 

NADORS was the highest among the six stations. Moreover, a wide variability was detected in the multi-year daily mean air 

temperatures at SETORS, especially in late March to early April, late May, and early December (Figure 2e). This abnormal 

variation indicates an instrument failure in the air temperature observations at 1.3 m at SETORS. Although this issue has been 210 

detected, the air temperature data provided at present are in raw format without any post-processing applied. Consequently, 

careful inspection is crucial when air temperature observations are required. In subsequent work, stricter data quality controls 

will be applied to detect problematic data and quality flags will be provided for each observational element.   

3.1.3 Humidity  

The heights of the humidity sensors are the same as those of the air temperature probes. Besides the relative humidity, up 215 

to four layers of water vapor pressure observations are also available at MAWORS (1.9 m), NADORS (1.5 and 2.8 m) and BJ 

(only available for the period 2015-2016, at 1.5, 3, 6, and 12 m); the heights of the water vapor pressure sensors at BJ are 

consistent with the heights of air temperature during the period from 2015 to 2016. Note that the unit of water vapor pressure 

is kPa at MAWORS and NADORS, while it is 0.1 hPa at BJ.  

The relative humidity showed obvious diurnal variations, peaking in the afternoon (Figure 2g). Compared with the 220 

magnitude of diurnal variations in summer, the diurnal range of relative humidity at SETORS in winter and spring was much 

greater, reaching 50%, and the maximum value of the average diurnal cycle of relative humidity was about 80%, which was 

also significantly higher than those at other stations. In contrast, the diurnal variability during the monsoon season was much 

smaller than that at BJ, QOMS, NAMORS and MAWORS. The monthly relative humidity was lowest at NADORS, however, 

there was a marked increase in summer due to the transition of mid-latitude westerlies to the Asian summer monsoon. 225 

Differences in humidity among the six stations presented in the diurnal and daily relative humidity records were clearly 

reflected in the seasonal variations at the monthly scale.       
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3.1.4 Air pressure  

Barometers produced by Vaisala were installed at each station. Compared with variations in wind speed, air temperature 

and relative humidity, the diurnal and seasonal variations in air pressure were not obvious (Figure 2j-l), and pressure remained 230 

at a relatively stable level throughout the year. Air pressure is elevation-dependent amongst the six stations, with the highest 

value at SETORS and the lowest value at NAMORS, while a consistent diurnal and seasonal variations were found both at 

QOMS and NADORS of similar altitude.  

3.1.5 Precipitation 

Precipitation is measured at all stations except for MAWORS, either with tipping buckets or weighting gauges. At BJ and 235 

NADORS, the cumulative precipitation is recorded, while the total half-hourly precipitation is recorded at NAMORS, QOMS 

and SETORS. For the cumulative precipitation, negative growth resulting from the evaporation from the rain gauge can 

seriously affect the measurement accuracy. Moreover, large errors can be introduced in the precipitation time series by wind-

induced under-catch, wetting loss, evaporation loss, and underestimation of trace precipitation amounts; it is difficult to apply 

bias correction to account for these losses (Goodison et al., 1998). While precipitation data are extremely valuable, accurate 240 

measurement is notoriously difficult due to the large errors mentioned above, particularly in cold regions such as the TP. 

Therefore, in the released datasets, the precipitation data are provided in raw format without any post-processing, which might 

potentially be underestimated, thus further bias correction or data selection is necessary before the precipitation observations 

are used. 

3.2 Surface radiations 245 

Surface radiations are an important component of surface meteorological observations and are released as a separate 

category. A four-component radiation flux observing system was installed at each station. The surface radiation flux 

monitoring system consists of upward and downward pyranometers for outgoing and incoming shortwave radiation flux; and 

upward and downward pyrgeometers for outgoing and incoming long-wave radiation flux. A separate measurement 

system (CM21 and PIR) was used to measure the radiation fluxes at BJ station, while the K&Z CNR1, consisting 250 

of a pyranometer and pyrgeometer pair that can measure shortwave and longwave radiation, respectively, was used 

at other stations. 
Figure 3a-c shows that the diurnal variations in downward shortwave radiation flux at QOMS were the highest among 

the six stations, and the largest amplitude occurred in April with a range of 0-1027W m-2. In winter, the MAWARS showed 

the smallest diurnal variation in downward shortwave radiation flux, while the variations at SETORS were the smallest in 255 

other seasons. When combined with the relatively higher solar radiation flux in this area, variations in upward shortwave 

radiation flux at QOMS were relatively high (Figure 3d). The multi-year averaged daily series showed wide fluctuations in 

upward shortwave radiation at NAMORS in September and October, as well as at QOMS in the winter and spring (Figure 3e), 
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which may result from high fractional snow cover during these periods. In the early stage of the summer monsoon, the 

downward shortwave radiation decreased gradually with increasing cloud cover, as a result of the increase of moisture in the 260 

upper atmosphere. Both the incoming and outgoing long-wave radiation flux at each station (Figure 3g-i and 3j-l, respectively) 

showed significant seasonal variations, with high values in summer and low values in winter because of its dependence on air 

and ground temperatures. Upward longwave radiation flux at QOMS was higher than that at other stations (excluding SETORS) 

except in July and August when NADORS showed the largest values (Figure 3k and 3l, note the time series of longwave 

radiation fluxes at SETORS are not plotted in Figure 3 because of monitoring problems, but some of the remaining valid 265 

observations show that the longwave radiation fluxes at SETORS are the largest among all the stations). These differences 

showed high consistency with the differences in uppermost layer soil temperature as shown in Figure 5d-f.  

3.3 EC data  

The EC technique was applied to provide high-quality and continuous surface turbulent flux data for momentum, sensible, 

and latent heat. The EC system comprises a sonic anemometer (CSAT3, Campbell Scientific, Inc.) and a fast-response gas 270 

analyzer (LI-7500 open-path gas analyzer, Li-COR). All of the turbulence data were processed and quality-controlled using 

the TK3 software package (Mauder and Foken, 2011); the main processing procedures were as follows: excluding physically 

invalid values and spikes, revising the time delay of the high-frequency water vapor and carbon dioxide sampling, planar fit 

coordinate rotation, correction of the loss of frequency response, correction of the ultrasonic virtual temperature and density 

fluctuations. The quality of each turbulent flux data series was evaluated by using the stationarity test and integral turbulence 275 

characteristics test. By combining the quality flags for stationarity and the integral turbulence characteristics test, a final quality 

flag (1-9) was assigned to each specific turbulent flux value except those for BJ, where classes 0-2 were used. Classes 1-3 (or 

0 at BJ) indicate good quality suitable for fundamental research purposes, and classes 4-6 (1 at BJ) indicate suitability for 

general use, such as long-term analysis. Classes 7-9 (2 at BJ) should be discarded. The multi-year diurnal variation and seasonal 

variation of sensible and latent heat flux were calculated based on the data with medium or higher quality. 280 

3.3.1 Sensible heat flux 

As can be seen from the diurnal variations of sensible heat flux in Figure 4a, the sensible heat fluxes at all stations were 

negative at night. During the period from March to October, the atmospheric heating effect on the ground at NADORS was 

the strongest during the night, while the magnitude of diurnal variation in the sensible heat flux was the lowest here among the 

six stations from April to September. The variations in sensible heat flux (Figure 4a-c) show that prior to the monsoon season, 285 

and the sensible heat flux was the main consumer of surface available energy, then the diurnal variation in sensible heat flux 

decreased significantly with the onset of summer monsoon and was comparable to the latent heat flux. In other words, sensible 

heat flux exchanges prevail during the pre-monsoon periods. The timing of the onset of decreasing sensible heat flux following 

the spring maximum varied, occurring earliest at SETORS and NAMORS, followed by BJ and NADORS. Influenced by the 



10 
 

interactions between the midlatitude westerlies and the summer monsoon, the summer sensible heat fluxes were significantly 290 

lower than those in spring at all stations.   

3.3.2 Latent heat flux  

In contrast to the bimodal pattern of the seasonal variations in sensible heat flux, the seasonal variation in latent heat flux 

revealed a unimodal pattern, that is, the latent heat flux was small during the pre-monsoon period, and when monsoon outbreaks, 

it increased rapidly as precipitation became frequent and the surface soil turned wet. The latent heat flux then increased 295 

gradually and it became comparable to the sensible heat flux during the summer monsoon period. A comparison of the seasonal 

variation of sensible heat flux (Figure 4c) and latent heat flux (Figure 4f) reveals that the latent heat flux was more significant 

to the sensible heat flux during the Asia summer monsoon season. During this period, the latent heat flux predominated in the 

surface energy budget (excluding the QOMS and NADORS), and the magnitudes of diurnal variations of latent heat flux were 

greatest at SETORS and BJ, and weakest in the desert landscapes of QOMS and NADORS (Figure 4d).  300 

3.3.3 Carbon dioxide flux  

The carbon dioxide flux is an important component of the atmospheric carbon balance and is a very important variable in 

the study of global climate change. As one of the key components of the EC monitoring system, the observed carbon dioxide 

fluxes at each station are provided through the density correction and frequency response correction applied by the TK3 

software package (Mauder and Foken, 2011). A previous study has reported that the self-heating of the infrared gas analyzer 305 

in the open-path EC system can cause notable differences in temperature between the observation path and the ambient air, 

which may result in signal distortion (Burba et al., 2008); therefore, it is necessary to apply a specific correction to the carbon 

dioxide flux data to eliminate the heating impact and to accurately reveal the intensity of carbon dioxide exchange in the TP 

ecosystem (Zhu et al., 2012). However, the heating effect of the instrument was not been considered in the carbon dioxide flux 

data provided in this manuscript, more detailed information can refer to the studies of Burba et al. (2008) and Zhu et al. (2012). 310 

When these data are used in studies of carbon dioxide exchange or related works (for example, estimating the net ecosystem 

production and its components), this specific correction of the data is needed to fully account for the impact of instrumental 

heating on observations.  

3.4 Soil hydrothermal observations  

3.4.1 Ground surface temperature  315 

Ground temperatures at NADORS, SETORS and BJ are provided in this dataset. The variations in ground temperature 

show the weakest diurnal variations at BJ and the strongest at SETORS, where the ground temperature during the night was 

highest among the six stations. On the daily scale, the daily mean ground temperature at BJ was lower than that at SETORS 

and NADORS throughout the year, although its amplitude of the diurnal cycles was larger than that at the other two stations 
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owing to the lower night-time temperatures (Figure 5a). Daily mean and monthly ground temperatures at BJ dropped below 320 

0 °C during all months from October to April.    

3.4.2 Soil temperature and soil moisture 

Soil temperature and soil moisture are key physical quantities characterizing the land surface conditions and play 

important roles in controlling the energy and mass interactions between land and the overlying atmosphere. To capture the 

continuous, real-time soil thermal and soil moisture conditions on different ground surfaces of the TP, five layers of soil profile 325 

sensors (soil temperature probes and water content reflectometers) were installed at SETORS (4, 10, 20, 60 and 100 cm), 

MAWORS (10, 20, 40, 80 and 160 cm) and NADORS (0, 20, 50, 100 and 200 cm). At NAMORS and QOMS, soil temperature 

and soil moisture were observed at depths of 0, 10, 20, 40, 80 and 160 cm. At BJ, soil temperature and soil water content were 

measured at four depths (0, 4, 10, 20 and 40 cm) during 2006-2014, and then at six depths (5, 10, 20, 40, 80 and 160 cm) 

during 2015-2016. 330 

Figure 5a-f and Figure 5g-i demonstrate the variations of soil temperature and soil moisture, respectively, in the uppermost 

layer of each station (i.e., the top layer after excluding observations at a depth of 0 cm). Specifically, these were at depths of 4 

cm at SETORS and BJ, 10 cm at MAWORS, NAMORS and QOMS, and 20 cm at NADORS. Soil temperature in the shallow 

layers show obvious variation at the diurnal scale, and are highly consistent with the variations in air temperature. The soil 

water content quickly responded to precipitation with an obvious increase with the onset of summer monsoon, particularly at 335 

BJ. Wiring problems at SETORS caused erroneous soil temperature and soil water content readings in all layers, which 

seriously affected the reliability of the respective observations. Although the two variables from SETORS are available in this 

dataset, data quality control and correction are needed.  

3.4.3 Soil heat flux 

Soil heat flux was measured by soil heat flux plates buried at BJ (10 and 20 cm for 2006-2014, 5 and 10 cm for 2015-340 

2016), QOMS (10 cm) and SETORS (4, 10, 20, 60 and 100 cm). All the available soil heat flux data at each depth are released 

through this data descriptor. Due to abnormal fluctuations of the top-layer soil heat flux at QOMS and SETORS at both the 

diurnal and daily scale, only the variations in top-layer soil heat flux at BJ site were presented in Figure 5. The soil heat flux 

at BJ showed that it was usually relatively small and had evident diurnal and seasonal variations.  

4 Data availability  345 

Raw data were converted from binary mode to ASCII mode, and then key variables were extracted and saved as comma-

separated values (.csv format). The CSV format was chosen as it is one of the most widely supported structured data format in 

scientific applications. The plausible value check, time consistency check, and internal consistency check were applied to 

ensure the accuracy and reliability of the observations. However, to retain the observations in their original form as much as 
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possible, there is no further process taken except for replacing outliers with missing value (NaN). Data consistency check 350 

procedures were applied to ensure the accuracy and reliability of the observations, but the data quality flag is not available for 

the moment. For turbulent flux data, classes 1-3 (0 for BJ station) were recommended for fundamental research, such as surface 

energy balance analysis. Classes 4-6 (1 for BJ station) can be used in continuously-running systems or for long-term analysis. 

Some time series of observations should be used with caution (for example, the soil hydrothermal data in SETORS), as 

anomalous changes or values were detected. In this case, further procedures such as bias correction or data selection are 355 

required. The local time was used in all the data files (UTC+8). All datasets presented and described in this article have been 

released and are available to free download from the Science Data Bank (http://www.dx.doi.org/10.11922/sciencedb.00103, 

Ma et al., 2020) and the TPDC (https://data.tpdc.ac.cn/en/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/). Special 

compressed files were designated for each station with four categories: turbulent flux data (FLUX), gradient meteorological 

data (GRAD), soil hydrothermal data (SOIL) and radiation data (RADM). Meanwhile, the data integrity of each variable was 360 

also provided every year, with the value of 100 indicates complete continuous data, with no missing data. The heat maps shown 

in the Appendix are used to provide the data integrity information. These figures are very useful as they provide an intuitive 

depiction of the availability of each variable, facilitating data selection when analyzing land-atmosphere interactions and 

structure of PBL, driving land surface models, or evaluating model results.  

5 Summary  365 

As in-situ observations are scarce yet invaluable in cold regions, the model parameterization schemes are generally 

developed and evaluated based on a small number of sites, of which very few are located in high mountainous regions. Current 

numerical models suffer from a poor representation of the cold region processes, particularly on the TP (Xia et al., 2014;Toure 

et al., 2016;Orsolini et al., 2019;Xie et al., 2019). Long-term, high-quality and high temporal resolution observational data in 

the Third Pole region are not only extremely scarce, but are also very important for a deeper understanding of the key land 370 

surface processes. In this paper, a suite of land-atmosphere interactions observations from the integrated observation network 

over the TP is presented. Compared with previously open-accessed daily meteorological observations over the TP, this dataset 

provides the most comprehensive and high-quality continuous in-situ observations, with the highest temporal resolution 

(hourly) to date. Therefore, this fine-resolution data product can help to promote comprehensive scientific understanding of 

the interactions among the multi-sphere coupled systems over the TP and even the globe; to quantify uncertainties in satellite 375 

and model products; to assess the biases and gaps existing between the model simulations and reality; and to facilitate the 

development and improvement of land surface process models in cold regions. We believe that the datasets presented in this 

paper will contribute to these research areas and that they will be widely used in model development and evaluation. 
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Appendix A: Annual data integrity 380 

Figures A1-A4 illustrate the annual data integrity of the gradient meteorological observing elements at different level, surface 

radiation fluxes, soil hydrothermal observations and turbulent flux observations, respectively. The value of 100 indicates 

complete continuous data, with no missing data. 

 

Figure A1. The annual data integrity of the gradient meteorological observing elements at different level, with value 100 385 

indicates complete continuous data, with no missing data. WS and WD represent wind speed and direction, respectively, 

followed by heights of each level with the underline symbol as connection; Ta refers to the air temperature; Relative humidity 

and water vapor pressure are expressed using RH and Vapor, respectively. 

 

Figure A2. Same as Figure A1, but for the surface radiations. Rsd and Rsu represent the incoming and outcoming solar radiation, 390 

respectively; Rld and Rlu refer to the downward and upward longwave radiation. The net radiation is expressed using Rn. 

 

Figure A3. Same as Figure A1, but for the soil hydrothermal observations. Ground temperature is represented by Tg, and the 

soil temperature and soil water content are expressed with Ts and SWC, respectively; SHF refers to the soil heat flux. 

 395 

Figure A4. Same as Figure A1, but for the turbulent flux observations. H represents sensible heat flux and LE represents 

latent heat flux, and the CO2 flux is expressed with Fc. 
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Table 1. List of the geographic characteristics of the six sites. 

Note: * elevation range and standard deviation of elevation are calculated within a kilometer around the station based 

on the 30 m resolution ASTER DEM data (source: https://asterweb.jpl.nasa.gov/gdem.asp)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Site Latitude longitude 
Elevation 

(m) 
Elevation 
range (m)* 

Standard 
deviation of 

elevation 
(m)* 

Land 
cover 

Soil type 

BJ 31.37oN 91.90oE 4509 4438-4547 15.14 
Alpine 

meadow 
Sandy silt 

loam 

QOMS 28.36oN 86.95oE 4298 4207-4508 44.44 
Alpine 
desert 

Sand and 
gravel 

SETORS 29.77oN 94.73oE 3327 3267-3760 78.72 
Alpine 

meadow 
Sandy 

clay loam 

NADORS 33.39oN 79.70oE 4270 4211-4308 11.99 
Alpine 
desert 

Sand and 
gravel 

MAWORS 38.76oN 75.05oE 3668 3626-4327 152.91 
Alpine 
desert 

Sand and 
gravel 

NAMORS 30.77oN 90.98oE 4730 4697-4806 14.09 
Alpine 
steppe 

Sandy silt 
loam 
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Table 2. Overview of the sensors used at each station. 
Site Variables Sensors models Manufacturers Period Heights Accuracy Units 

BJ 

Air temperature 

HMP45D Vaisala 2006-2014 1.03 and 8.41 m Depend on air 

temperature a 
oC 

 HMP155 Vaisala 2015-2016 1.5, 3, 6, and 12 m Depend on air 

temperature b 

 
Wind speed and 

direction 

05103 RM Young 2006-2014 0.91, 5.02, and 10.36 m ±0.3m/s and ±3º 

m/s  WindSonic Gill 2015-2016 1.5, 3, 6, and 12 m ±2% and ±2º @ 

12m/s 

 
Humidity 

HMP45D Vaisala 2006-2014 1.03 and 8.41 m Depend on humidity a 
% 

 HMP155 Vaisala 2015-2016 1.5, 3, 6, and 12 m Depend on humidity b 

 Pressure PTB220C Vaisala 2006-2014 - ±0.3 hPa (20 oC) hPa 

 

Radiations 

CM21 for shortwave 

radiation 

Kipp & Zonen 2006-2016 - ±2% 

W m-

2  PIR for longwave 

radiation 

Eppley 2006-2016 - ±5 W m-2 

 
Precipitation 

NOAH-II ETI 2006-2014 - ±0.01 inch 
mm 

 T200B Geonor 2015-2016 - 0.1 % FS 

 
Soil temperature 

TS-301 Okazaki 2006-2014 0.04, 0.1, 0.2, and 0.4 m Unknow 
oC 

 TR-219L Tri-Tronics 2015-2016 0.05, 0,1, 0.2, 0.4, 0.8 and 1.6 m Unknow 

 
Soil moisture 

CS616-L  Campbell 2006-2014 0.04 and 0.2m ±2.5% VWC v/v 

%  CS616-L Campbell 2015-2016 0.05, 0,1, 0.2, 0.4, 0.8 and 1.6 m ±2.5% VWC 

 
Soil heat flux 

HFP01 Hukseflux 2006-2014 0.1and 0.2 m 
±3% 

W m-

2  HFP01 Hukseflux 2015-2016 0.05 and 0.1 m 

 
EC 

CSAT3  Campbell  
2006-2016 3.02 m 

CO2: within 1 %  

H2O: within 2 % 

 

LI-7500 Li-COR 

QOMS Air temperature HMP45C-GM Vaisala 2005-2016 1.5, 2, 4, 10, and 20 m Depend on air 

temperature a 

oC 

 Wind speed and 

direction 

034B MetOne 2005-2016 1.5, 2, 4, 10, and 20 m 0.11m/s (<10.1m/s),±

1.1%(>10.1m/s) and 

±4º 

m s-1 

 Humidity HMP45C-GM Vaisala 2005-2016 1.5, 2, 4, 10, and 20 m Depend on humidity a % 

 Pressure PTB220A Vaisala 2005-2016 - ±0.3 hPa (20 oC) hPa 

 Radiations CNR1 Kipp & Zonen 2005-2016 - ±10% W m-

2 

 Precipitation RG13H Vaisala 2005-2016 - ±2% mm 

 Soil temperature Model 107 Campbell 2005-2016 0, 0.1, 0.2, 0.4, 0.8 and 1.6 m ≤ ±0.01°C oC 

 Soil moisture CS616 Campbell 2005-2016 0, 0.1, 0.2, 0.4, 0.8 and 1.6 m ±2.5% VWC v/v 

% 

 Soil heat flux HFP01 Hukseflux 2005-2016 0.05 m ±3% W m-

2 

 
EC 

CSAT3  Campbell  
2007-2016 3.25 m 

CO2: within 1 %  

H2O: within 2 % 

 

LI-7500 Li-COR 
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SETORS Air temperature HMP45C-GM Vaisala 2007-2016 1.3, 4.94, 9.95, and 18 m Depend on air 

temperature a 

oC 

 Wind speed and 

direction 

034B MetOne 2007-2016 1.3, 4.94, 9.95, and 18 m 0.11m/s (<10.1m/s),±

1.1%(>10.1m/s) and 

±4º 

m s-1 

 Humidity HMP45C-GM Vaisala 2007-2016 1.3, 4.94, 9.95, and 18 m Depend on humidity a % 

 Pressure PTB220A Vaisala 2007-2016 - ±0.3 hPa (20 oC) hPa 

 Radiations CNR1 Kipp & Zonen 2007-2016 - ±10% W m-

2 

 Precipitation RG13H Vaisala 2007-2016 - ±2% mm 

 Soil temperature Model 107 Campbell 2007-2016 0.04, 0.1, 0.2, 0.6 and 1 m ≤ ±0.01°C oC 

 Soil moisture CS616 Campbell 2007-2016 0.04, 0.1, 0.2, 0.6 and 1 m ±2.5% VWC v/v 

 Soil heat flux HFP01 Hukseflux 2007-2016 0.04, 0.1, 0.2, 0.6 and 1 m ±3% W m-

2 

 EC 
CSAT3 Campbell  

2007-2016 3.04 m 
CO2: within 1 %  

H2O: within 2 % 

 

LI-7500 Li-COR 

NADORS Air temperature HMP45C Vaisala 2009-2016 1.5 m Depend on air 

temperature a 

oC 

 Wind speed and 

direction 

05103 RM Young 2009-2016 1.5 m ±0.3m/s and ±3º m s-1 

 Relative humidity HMP45C Campbell 2009-2016 1.5 and 2.8 m Depend on humidity a % 

 Water vapor 

pressure 

Unknow Unknow 2009-2016 1.5 and 2.8 m Unknow kPa 

 Pressure PTB210 Vaisala 2009-2016 - ±0.15 hPa hPa 

 Radiations NR01 Kipp & Zonen 2009-2016 - ±10% W m-

2 

 Precipitation T-200B Geonor 2009-2016 - 0.1 % FS mm 

 Soil temperature CSI 109 Campbell 2011-2016 0, 0.2, 0.5, 1.0 and 2.0 m ≤ 0.03°C oC 

 Soil moisture CS616 Campbell 2011-2016 0, 0.2, 0.5, 1.0 and 2.0 m ±2.5% VWC v/v  

 EC CSAT3 Campbell 
2005-2016 2.75 m 

CO2: within 1 %  

H2O: within 2 % 

 

LI-7500 Li-COR 

MAWORS Air temperature HMP155A Vaisala 2010-2016 1.9 m Depend on air 

temperature b 

oC 

 Wind speed and 

direction 

05103-L RM Young 2010-2016 2 m ±0.3m/s and ±3º m s-1 

 Relative humidity HMP155A Vaisala 2010-2016 1.9 m Depend on humidity b % 

 Water vapor 

pressure 

Unknow Unknow 2010-2016 1.9 m Unknow kPa 

 Pressure PTB210 Vaisala 2010-2016 - ±0.15 hPa (20 oC) hPa 

 Radiations NR01 Kipp & Zonen 2010-2016 - ±10% W m-

2 

 Soil temperature CSI 109 Campbell 2010-2016 0.1, 0.2, 0.4, 0.8 and 1.60 m ≤ 0.03°C oC 

 Soil moisture CS616 Campbell 2010-2016 0.1, 0.2, 0.4, 0.8 and 1.60 m ±2.5% VWC v/v  
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EC 

CSAT3  Campbell  
2010-2016 2.3m 

CO2: within 1 %  

H2O: within 2 % 

 

LI-7500 Li-COR 

NAMORS Air temperature HMP45D Vaisala 2005-2016 1.5, 2.0, 4.0, 10.0 and 20.0 m Depend on air 

temperature a 

oC 

 Wind speed and 

direction 

WAA151 Vaisala 2005-2016 1.5, 2.0, 4.0, 10.0 and 20.0 m Depend on wind speed 
c 

m s-1 

 Humidity HMP45D Vaisala 2005-2016 1.5, 2.0, 4.0, 10.0 and 20.0 m Depend on humidity a % 

 Pressure PTB210 Vaisala 2005-2016 - ±0.15 hPa (20 oC) hPa 

 Radiations NR01 Vaisala 2005-2016 - ±10% W m-

2 

 Precipitation RG13H Vaisala 2005-2016 - ±2% mm 

 Soil temperature Model 107 Campbell 2005-2016 0, 0.1, 0.2, 0.4, 0.8, 1.6 m ≤ ±0.01°C oC 

 Soil moisture CS616 Campbell 2005-2016 0, 0.1, 0.2, 0.4, 0.8, 1.6 m ±2.5% VWC v/v 

% 

 
EC 

CSAT3  Campbell  
2005-2016 3.06m 

CO2: within 1 %  

H2O: within 2 %  

 

LI-7500 Li-COR 

a. https://www.vaisala.com/sites/default/files/documents/HMP45AD-User-Guide-U274EN.pdf  
b. https://www.vaisala.com/sites/default/files/documents/HMP155-User-Guide-in-English-
M210912EN.pdf 
c. https://www.techrentals.com.au/uploads/vai_waa151.pdf 
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Figure 1. The integrated land-atmosphere observation network on the TP. At each site, the near 

surface atmospheric conditions are sampled with multilayer wind speed and direction, air 
temperature and humidity instruments. Surface pressure, precipitation and four-component surface 
radiation fluxes are also measured. Vertical profiles of soil temperature and soil moisture content 
are monitored by multilayer temperature probes and water content reflectometers. An open path 

eddy covariance turbulent measurement system is installed at each site to provide continuous 
monitoring of the vertical turbulent fluxes within the atmospheric boundary layers (The data 

source of the land cover map in the top of this figure is Ran and Li, 2019). 
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Figure 2. The climatological averages of the lowest-level of wind speed, air temperature, relative 

humidity and surface pressure at diurnal (left-most), daily (middle) and monthly (right-most) 
scales. For sites except BJ, the climatological mean of each variable was calculated based on all 

the available observations; for BJ, only the observations during the period of 2006-2014 were used 
[Color figure can be viewed in the online issue].    
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Figure 3. Same as Figure 2, but for the climatological average of the downward and upward solar 

radiation (Rsd and Rsu), and incoming and outgoing longwave radiation (Rld and Rlu), 
respectively [Color figure can be viewed in the online issue]. 
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Figure 4. Same as Figure 2, but for the climatological average of the sensible heat flux (H) and 

latent heat flux (LE) variation, respectively [Color figure can be viewed in the online issue]. 
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Figure 5. Same as Figure 2, but for the climatological average of ground temperature and first 

layer (except for the observations at depths of 0cm) soil temperature, soil moisture and soil heat 
flux, respectively [Color figure can be viewed in the online issue]. 
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Figure A1. The annual data integrity of the gradient meteorological observing elements at different 

level, with value 100 indicates complete continuous data, with no missing data. WS and WD 
represent wind speed and direction, respectively, followed by heights of each level with the 

underline symbol as connection; Ta refers to the air temperature; Relative humidity and water 
vapor pressure are expressed using RH and Vapor, respectively [Color figure can be viewed in the 

online issue].  



 26 

 
Figure A2. Same as Figure A1, but for the surface radiations. Rsd and Rsu represent the incoming 

and outcoming solar radiation, respectively; Rld and Rlu refer to the downward and upward 
longwave radiation. The net radiation is expressed using Rn [Color figure can be viewed in the 

online issue]. 
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Figure A3. Same as Figure A1, but for the soil hydrothermal observations. Ground temperature is 

represented by Tg, and the soil temperature and soil water content are expressed with Ts and 
SWC, respectively; SHF refers to the soil heat flux [Color figure can be viewed in the online 

issue]. 
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Figure A4. Same as Figure A1, but for the turbulent flux observations. H represents sensible heat 

flux and LE represents latent heat flux, and the CO2 flux is expressed with Fc [Color figure can be 
viewed in the online issue]. 

 


