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Abstract. Over the past two decades, several global burned area products have been produced and released to the public. 

However, the accuracy assessment of such products largely depends on the availability of reliable reference data that currently 

do not exist on a global scale or whose production require a high level of dedication of project resources. The important lack 20 

of reference data for the validation of burned area products is addressed in this paper. We provide the first publicly available 

Burned Area Reference Database (BARD) that was created by compiling existing reference BA datasets from different 

international projects. BARD contains a total of 2,661 reference files derived from Landsat and Sentinel-2 imagery. All those 

files have been checked for internal quality and are freely provided by the authors. To ensure database consistency, all files 

were transformed to a common format and were properly documented by following metadata standards. The goal of generating 25 

this database was to facilitate BA algorithm developers and product testers reference information that would help to develop 

or validate new BA products. BARD is freely available at: https://doi.org/10.21950/BBQQU7 (Franquesa et al., 2020). 

1 Introduction 

Validation is defined by the Committee on Earth Observing Satellites Working Group on Calibration and Validation (CEOS-

WGCV) as “the process of assessing, by independent means, the quality of the data products derived from the system outputs” 30 

(CEOS-WGCV, 2012). Validation helps in evaluating the utility and limitations of using any remote sensing (RS) product, 

particularly on whether user accuracy requirements are met. For this reason, validation should be part of any RS project, even 

though it requires additional effort and cost that is not aimed at improving accuracy but rather to measure it. Validation implies 

https://doi.org/10.21950/BBQQU7
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comparing our results to reference data, assumed to represent the actual conditions of the target variable at the satellite overpass 

time. In the case of global studies, it is very difficult to generate reference data for the wide variety of planetary conditions, 35 

thereby complicating validation. Some of the global variables (e.g. temperature and surface radiation) can be validated from 

ground sensor networks, such as weather stations, buoys or Aerosol Robotic NETwork (AERONET) sensors. Other variables 

are more difficult to validate, as they require generating global reference data that are based on higher-resolution sensors than 

those used to obtain the global product. This is the case of land cover or burned area products, which require first designing a 

sample strategy using statistically valid protocols and then extracting from the selected sites the reference polygons to be 40 

compared with the global datasets. Despite the time and effort required to derive reference datasets, accuracy assessment is a 

critical part of any global RS project and making these reference datasets publicly available will facilitate product comparison 

and lower the burden of validating future products. 

Several global burned area (BA) products have been produced in the last two decades, providing an estimation of fire activity 

worldwide (Chuvieco et al., 2019). The first of these products was the Global Burned Area (GBA2000), based on daily 45 

VEGETATION (VGT, 1 km resolution) images acquired in the year 2000 and was generated by the Joint Research Centre of 

the European Union (Grégoire et al., 2003). The same year, the European Space Agency developed the GLOBSCAR BA 

product, also at 1 km2, derived from daytime ERS-2 (European Remote Sensing Satellite) ATSR-2 (Along Track Scanning 

Radiometer) data (Simon et al., 2004). Other 1 km resolution global BA products released by European projects include the 

L3JRC (Tansey et al., 2008) covering the period from 2000 to 2007; GlobCarbon (Plummer et al., 2006), produced from 1998 50 

to 2007; and the Copernicus GIO_GL1_BA products. These three products were derived from VGT images, although in the 

GlobCarbon project, ATSR images were used as well. More recently, the FireCCI (Climate Change Initiative) project 

(https://esa-fire-cci.org, last access: 25 March 2020), part of the European Space Agency (ESA) CCI programme, has generated 

three global BA products, based on Medium Resolution Imaging Spectrometer (MERIS) at 300m resolution (FireCCI41: 

Alonso-Canas and Chuvieco, 2015) and Moderate Resolution Imaging Spectroradiometer (MODIS) 250m data (FireCCI50: 55 

Chuvieco et al., 2018 and FireCCI51: Lizundia-Loiola et al., 2020). NASA (National Aeronautics Space Administration) 

released in mid-2008 the MCD45A1 product derived from 500 m MODIS imagery (Roy et al., 2008), which has now been 

superseded by MCD64A1 at the same resolution but with a different BA algorithm approach (Giglio et al., 2009; 2018). 

These global BA products have been validated by comparing them with reference data generated from medium resolution 

sensors (such as those on board the Landsat, SPOT (Satellite Pour l’Observation de la Terre), or Sentinel-2 missions). These 60 

reference data were typically derived from multitemporal pairs of images to properly date the validation period. 

According to the representativeness of samples used to perform product validation, the CEOS-WGCV Land Product Validation 

(LPV) subgroup defined four validation stages with the level of sampling effort and statistical rigor increasing at each stage 

(https://lpvs.gsfc.nasa.gov/, last access: 25 March 2020). Early validation exercises were subjected to a first stage validation, 

usually based on small samples of reference sites that were not selected using a probability sampling design, but rather by a 65 

purposeful or convenience selection based on data availability or expert knowledge to ensure diverse wildfire conditions were 

included in the sample (Tansey et al., 2004; Roy et al., 2005). Roy and Boschetti (2009), for instance, reported validation 

https://esa-fire-cci.org/
https://lpvs.gsfc.nasa.gov/
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results for the MCD45A1 product using a set of 11 Landsat scenes distributed across southern Africa. Chuvieco et al. (2008) 

validated a regional product for Latin America using 19 Landsat scenes and 9 China–Brazil Earth Resources Satellite (CBERS) 

scenes that were donated by regional space agencies when access to the Landsat archive was not yet free and open to the 70 

public, thereby limiting the number of selected validation sites. The MCD64A1 Collection 5 was not formally validated, and 

the most recent MCD64A1 Collection 6 products were first validated using a set of 108 Landsat scenes distributed across a 

wide range of fire-affected ecosystems but not selected via probability sampling (Giglio et al., 2018). A recent study has 

provided a validation of the MCD64A1 product implementing a probability sampling design and using Landsat-8 Operational 

Land Imager (OLI) images, but only for a single year (Boschetti et al., 2019). Previous statistical validation of NASA and 75 

FireCCI BA products were conducted by Padilla et al. (2014; 2015) using a set of 105 randomly selected Landsat scenes for a 

single year (2008) and by Chuvieco et al. (2018) using a multitemporal reference dataset of 12 years. Other projects covering 

large areas have been developed in the USA using Landsat data across six years (Vanderhoof et al., 2017) and Africa using 

Sentinel-2 Multispectral Instrument (MSI) images (Roteta et al., 2019) where validation sites were selected through probability 

sampling. In all cases, reference datasets were created based on independent interpretation of BA, controlled by visual 80 

inspection. The importance of applying probability sampling to collect reference data has been highlighted by different authors 

as a critical feature of the sampling design protocol to achieve statistically rigorous assessment (Stehman, 2001; 2009; Olofsson 

et al., 2014; Stehman and Foody, 2019). Thus, in contrast to such reference data collected by convenience, ease of access, or 

other methods that lack randomization, data collected through probability sampling makes it possible to obtain rigorous 

estimates of accuracy. 85 

The main bottleneck for validating global BA products or global BA algorithms is the generation of reference BA datasets. To 

facilitate the activity of BA algorithm developers, this paper aims to present and deliver to the scientific community the Burned 

Area Reference Database (BARD), a set of reference BA perimeters that can be used as reference data for validation of BA 

products or to help the development of BA algorithms (obviously, the same files cannot be used for both training and validating 

an algorithm). These validation files were compiled from different international projects and years, therefore the resulting 90 

database will facilitate the assessment of BA algorithms in a wide range of ground conditions. 

The BARD includes the following datasets of reference data: FireCCI global (2008), FireCCI global (2003-2014), FireCCI 

Africa (2016), FireCCI Africa S2 (2016) that were produced within the framework of the FireCCI project; the CONUS 

(contiguous United States) Landsat Burned Area (1988-2013), developed within the Landsat Level-3 Science Products project, 

and NOFFi Greece (National Observatory of Forest Fires, 2016-2018) that was produced within the NOFFi project. 95 

The paper presents the methods that were used to generate the BA reference data paying particular attention to the sampling 

design and reference data retrieval methods applied to the different BARD datasets. The data specifications to transform all 

the files to a common standard format and file structure are then presented. Finally, a detailed description of each dataset 

included in BARD is provided and the main dataset features are then summarized to facilitate a general overview. 
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2 Methods 100 

2.1 Selection of validation sites: sampling design 

High-quality reference data generation is an expensive and time-consuming task, which constrains the total number of 

validation sites that can be established in any validation exercise. For this reason, sampling design is critical to make the most 

of the resources available and ensure the highest precision of accuracy estimates given the available resources to generate 

reference data. Padilla et al. (2014; 2015) implemented a stratified random sampling design that allowed for global BA 105 

accuracy inferences for the first time. Boschetti et al. (2016) extended the sampling design to include the temporal dimension 

of the sampling units. More recently, Padilla et al. (2017) presented a first approach to efficiently stratify the population and 

allocate the samples across strata. Chuvieco et al. (2018) conducted a multi-annual accuracy assessment across 12 calendar 

years (2003-2014), reporting for the first time the temporal accuracy variation of global BA products. Meanwhile, Boschetti 

et al. (2019) validated the MCD64 c6 BA product, but instead of using the calendar year, the authors used a fire year (from 110 

March 1st 2014 to March 19th 2015) as defined in Boschetti and Roy (2008). 

The sampling design protocols to validate BA products were therefore developed considering the rarity and ephemeral nature 

of the BA, which is indeed a special case of land-cover change (Stehman and Foody, 2019). When selecting samples for 

obtaining probability inferences, the allocation of samples should follow a probability sampling design, to compute unbiased 

population estimates. For BA product validation, this implies selecting samples considering the spatial and temporal 115 

dimension. The spatial dimension of sampling units is usually defined by the Thiessen scene areas (TSAs) constructed by 

Cohen et al. (2010) and Kennedy et al. (2010) specifically for use with Landsat WRS-2 frames (Worldwide Reference System, 

Fig. 1a). The key advantage of TSAs is that they provide non-overlapping Landsat-like frames, which allow for a convenient 

computation of unbiased estimators (Gallego, 2005). The temporal dimension of sample units is defined by the acquisition 

dates of the pre- and post-fire images. For example, in Boschetti et al. (2019), the validation period (1 year) was divided into 120 

equal temporal size sampling units using the 16-day Landsat 8 acquisition interval, thus allowing for the temporal random 

selection of the reference images. This temporal partitioning, also makes it possible to intensify the sample in strata that 

comprise the fire season and where burning is more likely to occur (Stehman and Foody, 2019). However, longer period 

intervals (>100 days) are used to define sampling units to allow a long temporal overlap of reference data with the BA product, 

which helps to disentangle the spatial errors from the temporal errors of the BA product (Roteta et al., 2019; Lizundia-Loiola 125 

et al., 2020).  

In any case, sample units are then stratified to properly represent the variety of conditions that affect the accuracy of BA 

products. This stratification is usually based on (a) major Olson biomes (Olson et al., 2001) (Fig. 1b) and (b) the BA extent 

provided by a global BA product considered to be reliable or active fire detections, assigning each sample unit to high or low 

BA strata based on a threshold that can be specifically adapted to each biome stratum as in Padilla et al. (2017) or simply set 130 

as the 20th quantile of the cumulative distribution of active fire counts as in Boschetti et al. (2016; 2019). 



5 

 

One of the advantages of the stratified sampling design adopted for BA maps validation previously mentioned was that it 

allows for rigorous estimates of global BA accuracy. However, another key advantage of stratified random sampling design 

that should be strongly emphasized is that it makes it possible to increase the sample size of an initial global sample for specific 

regions or rare land-cover classes (Stehman et al., 2012). This is the case of the CONUS Landsat Burned Area (1988-2013) 135 

dataset where reference sites for the CONUS extent were augmented based on the initial sample of the FireCCI global (2008) 

dataset. 

Stratified random sampling design was applied to several datasets included in BARD: FireCCI global (2008), FireCCI global 

(2003-2014), FireCCI Africa (2016) and the CONUS Landsat Burned Area (1988-2013). FireCCI Africa S2 (2016) was 

obtained also by probability sampling but, in this case, applying a systematic sampling design. NOFFi Greece (2016-2018) is 140 

the only dataset of BARD that was obtained through convenience sampling rather than probability sampling. 

To report BA accuracy from these stratified sample datasets, users should apply the proper estimation formulas detailed in the 

associated articles (see Table 2) and use the additional information as the stratum of each sampled unit and the stratum sizes 

of the stratified sampling, provided in the metadata files and tables of appendix A, respectively. 

2.2 Reference data generation methods 145 

Following the recommendations of the CEOS Calibration/Validation group, all the burn perimeters of BARD were derived 

from multitemporal comparison of medium resolution satellite imagery (Landsat TM (Thematic Mapper)/ETM+ (Enhanced 

Thematic Mapper plus)/OLI or Sentinel-2 MSI). Burned patches included in the files are only those that occurred in between 

the two satellite images used to generate the reference data (Fig. 2). The procedures implemented to obtain those burned 

patches are diverse, depending on the dataset, but all include a semi-automatic procedure (e.g. Bastarrika et al., 2011) and then 150 

a visual inspection to confirm that the detected perimeters were actually burned areas. In some cases, the semiautomatic 

classification was enhanced with polygons manually digitized. In several cases, this visual inspection was confirmed by another 

interpreter to double check the quality. When parts of the scene could not be observed or interpreted because of clouds or 

sensor problems (i.e. Scan Line Corrector (SLC)-off problems of ETM+), either in the pre- or post-fire images, they were 

classified as no-data. This was done to make sure that only areas with reliable data were included in the reference files. 155 

Regarding ‘unburned’ category of reference data, different criteria were applied to label seas and inland water bodies in the 

different datasets. Thus, for FireCCI global (2008), FireCCI global (2003-2014), FireCCI Africa (2016) and CONUS Landsat 

Burned Area (1988-2013) datasets, surface waters were classified as ‘unburned’ while in FireCCI Africa S2 (2016) and NOFFi 

Greece (2016-2018), the ‘no-data’ category was applied to label them. 

It should be noted that reference data are not just high accuracy BA products generated by well-designed algorithms using 160 

medium- or high-resolution imagery. Rather, reference data following international standards should provide reliable burned 

area but also the unburned surface of the interpreted geographic region and the unobserved/unmapped areas within the region, 

as shown in Fig. 2c. 
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Like the sampling units from which reference data are derived, reference data can be defined by its spatial and temporal 

dimension. The spatial dimension is a function of the geographic extent interpreted to obtain the reference data, where the size 165 

varies depending on the criteria adopted in each project. For example, reference data from the FireCCI global (2003-2014) 

dataset were spatially defined by a frame of 30 x 20 km located at the centre of the Landsat images, whereas the entire Landsat 

scenes were used in the case of the CONUS Landsat Burned Area (1988-2013) dataset. The spatial extent used in the datasets 

included in BARD will be specified in section 2.4 where a detailed description of each dataset is provided.  

The temporal dimension of the reference data represents the period defined by the acquisition date of the pre- and post-fire 170 

images used to generate them. Regarding the temporal length of the reference data, the FireCCI project adopted the terms 

'short unit' (SU) and 'long unit' (LU). The former refers to those reference data derived from a pair of consecutive images 

separated by 16 days or less (the temporal span between two Landsat acquisitions). The latter is defined by a series of 

consecutive SUs covering at least 100 days. LUs allow for long temporal overlaps between validation and product data, 

reducing or minimizing the impact of the product’s temporal reporting accuracy in the accuracy estimates (Padilla et al., 2018). 175 

The combined use of SUs and LUs is useful to assess such and contextualize impact (Lizundia-Loiola et al., 2020). A LU BA 

map consists in the combination of consecutive SU maps (Fig. 3). A pixel classified as no-data in any of the SU maps is kept 

as such in the LU BA map. This is to ensure that any pixel available data is observed frequently (every 16 days or less) and an 

eventual burn is not missed due to simply a fast recovery of the vegetation. The permanently observed pixels, were classified 

as burned in the LU if they were detected as burned in any SU of the time series covered by the LU. The presence of no-data 180 

(e.g. due to clouds) in a single image may reduce drastically the spatial cover of available data in the resulting LU. Therefore, 

BA maps are generated for every single SU, but the BA map for a LU is generated by accumulating the consecutive SUs of 

the same TSA. The length of the LU would depend on the existing cloud-free consecutive SUs. For example, if 8 consecutive 

SUs, all covering the same temporal length (e.g. 16 days) are cloud free and the 9th image has 90% of the area cloud covered, 

the LU would include only the first 8 SU maps, even if SU were generated for the 9th and 10th consecutive images. 185 

As burning is detected on any given single image in between the period covered by two satellite acquisitions, all burned patches 

are dated based on the second reference image of a multitemporal pair. Therefore, SUs will have the same date for all the 

burned patches, while LU reference data will have burned patches from different dates as multiple pairs of images are used to 

build the LU (Fig. 3). 

Among the datasets included in BARD, SUs were used in the FireCCI global (2003-2014) dataset as part of the sampling 190 

design, and LUs were used for the FireCCI Africa (2016) dataset. Reference data from the rest of the FireCCI project datasets 

(FireCCI global (2008) and FireCCI Africa S2 (2016)) and CONUS Landsat Burned Area (1988-2013) dataset, were retrieved 

from a single pair of images with a variable time lapse between pre- and post-fire images. Thus, the temporal length of those 

reference data was determined by the availability of suitable images and the duration of the burned signal. The NOFFi Greece 

(2016-2018) reference data were obtained considering a time-series of Sentinel-2 images, but with variable length and non-195 

consecutive time-series step. 
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2.3 Data specifications 

Each dataset of BARD is organised in three folders with associated files including: (a) ‘metadata’, which contains a .csv file 

containing the file name of all the reference files included in the dataset, along with additional information such as the temporal 

length (days), the total number of images interpreted (n_images), the area (m2) of each mapped category (‘burned’, ‘unburned’ 200 

and ‘unobserved’), the land surface and total area of each reference data file. For those datasets where a stratified random 

sampling design was used, the .csv file also specifies the stratum of each sampled unit and the size (tsa_area) of the 

corresponding TSA; (b) ‘regions’, which contains an ESRI shapefile (*.shp) containing all the sample sites (TSAs or Sentinel-

2 tiles) covered by the dataset; and (c) ‘shapefiles’, containing the validation reference shapefiles ordered by year. They are 

also released in shape (.shp) format. 205 

All datasets are in UTM/WGS84 projection. The name of the files is defined as follows: 

‘Project_RD_ppprrr_yyyymmdd_yyyymmdd’ (e.g. FireCCI_RD_164069_20160514_20160709’), where: 

Project = Project in which the reference data were generated. 

RD = stands for Reference Data. 

ppprrr = refers to the Landsat Worldwide Reference System (WRS) path (ppp) and row (rrr) of the scene. For collections where 210 

Sentinel-2 was used instead of Landsat images, ppprrr refers to the Sentinel-2 tile (e.g. FireCCI_RD_T28PET_ 2016011 

1_20160311’). 

yyyymmdd (year, month, day). The first date corresponds to the pre-fire date, which is the date of the first image used for BA 

detection; the second one refers to the post-fire date, which is the date of the last image used for generating the reference fire 

perimeters. 215 

The following attribute fields are included in the shapefiles (Table 1): 

 category: 

o 1: Burned area. This category includes all polygons detected as burned 

o 2: No-Data. This category includes all polygons that could not be interpreted or were not observed by the 

sensor, either by clouds and/or cloud shadows, topographic shadows, smoke, or sensor errors (for instance, 220 

those caused by SLC-off problems of ETM+ after May 31, 2003). 

o 3: Unburned. This category includes all polygons observed as not burned within the limits of the area covered 

by the image. 

 preDate: Acquisition date of the image taken before the occurrence of the fire: yyyy-mm-dd (year, month, day).  

 postDate: Acquisition date of the image taken after the fire: yyyy-mm-dd (year, month, day). 225 

 preImg and postImg: The pre- and post-fire Landsat scene identifier (e.g. ‘LC80260422013124LGN01’). For 

reference files based on S2 images, the datastrip ID is used instead. 

(e.g. ‘S2A_OPER_MSI_L1C_TL_SGS__20160420T171415_A004324_T28PEB_N02.01’). 
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 path: The Worldwide Reference System-2 (WRS-2) path of the Landsat scene. For reference files based on S2, the 

tile number was used. 230 

 row: The row of the Landsat scene. For reference files based on S2, the tile number was used. 

 year: The year of the validation dataset. 

 area: Area in square meters (m2) calculated on the WGS84/UTM Cartesian plane. 

2.4 Reference datasets 

2.4.1 FireCCI global (2008) 235 

The FireCCI global 2008 reference dataset was created using a stratified random sampling design ((Padilla et al., 2014; 2015), 

Table A1). Two levels of spatial stratification were used to select the spatial units based on TSAs derived from the Landsat 

World Reference System 2 (WRS-2). Spatial units were first stratified across seven aggregated Olson biomes (Olson et al., 

2001). Each biome was stratified into high and low BA extent based on the Global Fire Emissions Database (GFED) Version 

3 (Giglio et al., 2009; 2010). A total of 101 images from Landsat-5 TM and 109 for Landsat-7 ETM+ satellite sensors were 240 

used to retrieve BA perimeters. The complete scene was used for Landsat-5 TM images, whereas only the centre of Landsat-

7 ETM+ scenes were interpreted in order to avoid data SLC gaps. BA perimeters were derived using a semi-automatic 

algorithm developed by Bastarrika et al. (2011), where high burn severity pixels were selected to train core burned area, and 

adjacent lower burn severity pixels were added to the core detected patches using a region-growing algorithm. 

The FireCCI global 2008 dataset includes 105 reference data files, derived from single pair of images, for the year 2008. The 245 

temporal length of reference data varies between 8 and 144 days: 79% of image pairs were separated by 32 days or less, 16% 

between 32 and 100 days, and 5% by more than 100 days with a maximum time gap between the pre- and post-fire image of 

144 days. The total area of reference data is 1.76∙106 km2, of which 1.35% corresponds to burned category, 88.35% to unburned 

and 10.30% to unobserved category. The location and temporal length of the reference data is shown in Fig. 4. This reference 

dataset is compliant with CEOS-LPVS Stage 3. 250 

2.4.2 FireCCI global (2003-2014) 

The FireCCI global (2003-2014) dataset covers a period of 12 years, from 2003 to 2014 (Padilla et al., 2018), and was generated 

in the framework of the FireCCI project with the collaboration of the Copernicus Global Land Service (CGLS). The reference 

data were derived from consecutive Landsat images separated by 8-16 days for each selected TSA and year. A total of 585 

images from Landsat-5 TM, 1564 from Landsat-7 ETM+ and 209 from Landsat-8 OLI satellite sensors, were used to retrieve 255 

BA perimeters. The sampling units were selected following a stratified random sampling design (Table A2). The total 

population of sample units were defined spatially by TSAs and temporally by the dates of Landsat images available, filtering 

out those with a cloud cover greater than 30%. For each calendar year, the sample units were stratified by Olson biomes (Olson 

et al., 2001) and BA based on MCD64A1 (Giglio et al., 2009). The threshold used to assign the high/low BA strata was defined 
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separately for each year and biome. Once the strata were defined by year-biome-BA, a set of 100 sampling units were selected 260 

for each calendar year applying a sample allocation according to Eq. (1): 

𝑛ℎ ∝ 𝑁ℎ 𝐵𝐴̅̅ ̅̅
ℎ            (1) 

where 𝑛ℎ is the sample size to be selected in stratum h, 𝑁ℎ is the stratum size and 𝐵𝐴̅̅ ̅̅
ℎ the BA mean in stratum h. 

Finally, a spatial subset window of 30 x 20 km located at the centre of the images was applied for interpretation and BA 

reference data retrieval. The reference perimeters were extracted from a dedicated Random Forest algorithm, trained for each 265 

sampling site, and output maps were visually inspected by two interpreters (Padilla et al., 2018). 

The FireCCI global (2003-2014) dataset includes 1200 reference data files from 722 different TSAs and 12 years, from 2003 

to 2014. The temporal length of reference data varies between 8 and 16 days. The total area of reference data is 0.72∙106 km2, 

of which 3.85% corresponds to burned category, 71.85% to unburned, and 24.29% to unobserved category. The location and 

total number of reference data in each TSA are shown in Fig. 5. This reference dataset is compliant with CEOS-LPVS Stage 270 

3. 

2.4.3 FireCCI Africa (2016) 

The FireCCI Africa reference dataset consists of LU BA maps and was generated for the year 2016 from Landsat imagery 

(Padilla et al., 2018). It was also generated in the framework of the FireCCI project with the collaboration of the CGLS. The 

sampling was designed with long units and it was similar to that for the FireCCI global (2003-2014) dataset, as mentioned in 275 

the previous section (Table A3). The only difference was the sample size, 50 units instead of 100 units per year. Note that each 

unit here is much larger, as it consists of multiple image pairs. Two reference perimeter datasets are released: (a) Reference 

data at SU level, 1052 files with 8-16 day BA maps; and (b) Reference data at LU level, 50 files. The temporal length covered 

at each LU varies from 24 to 256 days (Fig. 6b): 18% of the LUs cover a temporal length below 50 days, 34% between 50 and 

100 days, and 48% are above 100 days. As mentioned in Section 2.2., LUs were defined to be at least 100 days long, although 280 

the presence of clouds reduced the actual temporal periods with available data. The total area of LU reference data is 0.023∙106 

km2, of which 15.72% corresponds to burned category, 49.61% to unburned, and 34.67% to unobserved category. The location, 

number of image pairs, and temporal length of the LUs reference data are shown in Fig. 6. This reference dataset is compliant 

with CEOS-LPVS Stage 3. 

2.4.4 FireCCI Africa S2 (2016) 285 

The FireCCI Africa S2 BA reference dataset was created to perform an initial validation assessment of the Small Fire Database 

Fire_cci v1.1 product (FireCCISFD11) produced for the year 2016 for the whole Sub-Saharan Africa (Roteta et al., 2019). 

Reference data were generated from the comparison of two Sentinel-2 MSI images at 20 m resolution per reference site. 

Systematic sampling was used to select 52 validation sites based on Sentinel-2 tiles (110 x 110 km) over Sub-Saharan Africa. 

BA was mapped with the BAMS methodology, which is a semi-automated algorithm (Bastarrika et al., 2014). In short, training 290 

polygons for the burned category were defined in each tile, and burned seeds were detected. Then, burned pixels were grown 



10 

 

out from these seeds until all pixels for each burned patches were detected. The results were visually analysed to determine 

the accuracy of the classification and new training polygons were defined if needed. This was done sequentially until all burned 

areas were mapped and no commission or omission errors were visually detected. Finally, if there was noise created by 

unmasked clouds and cloud shadows, it was edited and removed manually. 295 

The temporal length of the reference data varies between 10 and 120 days: 86% of the pairs of images were separated by less 

than 50 days and 14% by more than 50 days with a maximum time lapse of 120 days. The total area of reference data is 

0.63∙106 km2, of which 8.87% corresponds to burned category, 72.42% to unburned, and 18.71% to unobserved category. The 

location and temporal length of the reference data are shown in Fig. 7. This reference dataset is compliant with CEOS-LPVS 

Stage 1. 300 

2.4.5 CONUS Landsat Burned Area (1988-2013) 

CONUS Landsat Burned Area (1988-2013) reference dataset (Vanderhoof et al., 2017; 2020) extends across the contiguous 

United States (CONUS) and was generated to validate the Landsat Burned Area product (Hawbaker et al., 2017; 2020). The 

sampling design was adapted from the methods used by the ESACCI FireCCI project. Existing FireCCI validation TSAs (n=9) 

within CONUS were augmented with an additional 19 TSAs for a total of 28 TSAs. The TSAs were stratified across the major 305 

Olson biomes (Olson et al., 2001) including (1) temperate forest, (2) Mediterranean forest, (3) temperate grassland and 

savannah, (4) tropical and subtropical grasslands and savannah, and (5) xeric/desert shrub. TSAs selected within each biome 

were meant to represent high and low burned areas as specified by the Global Fire Emissions Database (GFED) version 3 

(Table A4). Systematic sampling was applied to select 6 validation years spaced out in 5-year increments (2013, 2008, 2003, 

1998, 1993 and 1988). 310 

A total of 269 images from Landsat-5 TM, 10 from Landsat-7 ETM+, and 56 from Landsat-8 OLI were used to derive the BA 

extent. Landsat reference images were limited to those with a geometric Root Mean Square Error (RMSE) < 10 m, <20% cloud 

cover, and available as a L1T Surface Reflectance product. Time lapse between images was not limited to 16 days and only 

two images (pre- and post-fire) were used to retrieve BA reference data for each validation site and year. The pre- and post-

fire image pairs did not specifically represent a probability sample within a year but were designed to target changes incurred 315 

over the peak fire season. Peak fire season was determined using the distribution of total burned area by month as derived from 

the MCD45 burned area product (2001-2015). The FMask from the Landsat surface reflectance product was applied to mask 

clouds, cloud shadows, snow and open water from each image used (Zhu and Woodcock, 2014). For Landsat-7 ETM+ images, 

SLC off pixels were masked. The low-, medium- and high-intensity development classes (i.e. urban areas) were masked using 

the National Land Cover Database (NLCD, https://www.mrlc.gov/national-land-cover-database-nlcd-2016) (Homer et al., 320 

2015) to reduce spectral confusion between burned areas and impervious surfaces. Similarly, agricultural burns were not used 

to train the reference data burn classification, therefore the accuracy of the reference dataset in agricultural areas is unknown. 

If this is of concern to users, then users can mask the ‘cultivated crops’ land cover type from the reference data using the 

NLCD. 

https://www.mrlc.gov/national-land-cover-database-nlcd-2016
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Burned area maps were generated using BAMS (Bastarrika et al., 2014). The Normalized Burn Ratio (NBR), Mid-infrared 325 

Burned Index (MIRBI), Global Environmental Monitoring Index (GEMI) and Normalized Difference Vegetation Index 

(NDVI) were calculated for the pre- and post-fire images and utilized in a supervised classification. The algorithm was trained 

on manually selected polygons containing (1) clearly burned pixels and (2) spectrally similar but less distinct burned pixels. 

The algorithm applied a region-growing function between the two types of training polygons, while cut-off values for each 

variable were extracted from the training polygons. Each classified burned area was then manually edited. When available, the 330 

analysts utilized ancillary datasets (e.g. Monitoring Trends in Burn Severity (MTBS, Eidenshink et al., 2007), MODIS active 

fire points (MOD14 collection 5, Giglio et al., 2009), MODIS burned area (MCD45A1 collection 5, Roy et al., 2008), and 

aerial imagery) to improve the confidence in their selection of training pixels and manual edits. To maximize the accuracy of 

the reference dataset, each image pair was classified into burned area extent and visually evaluated and edited independently 

by three different analysts. A pixel was then classified as burned if it was identified as burned by two of the three analysts. 335 

Additional processing details can be found in Vanderhoof et al. (2017). 

The CONUS Landsat Burned Area (1988-2013) dataset includes 168 reference data files from 28 Landsat path/rows and six 

years (1988, 1993, 1998, 2003, 2008, 2013). The temporal length of reference data varies between 16 and 288 days: 37% of 

pairs of images were separated by less than 50 days, 35% between 50 and 100 days, and 28% by more than 100 days with a 

maximum time lapse between the pre- and post-fire image of 288 days. The total area of reference data is 5.23∙106 km2, of 340 

which 0.12% corresponds to burned category, 82.33% to unburned, and 17.55% to unobserved category. Location of reference 

sites based on TSAs is shown in Fig. 8. With the publication of Hawbaker et al. (2020), this reference dataset is compliant 

with CEOS-LPVS Stage 4. 

2.4.6 NOFFi Greece (2016-2018) 

The reference data were obtained using the perimeters produced by the National Observatory of Forest Fires (NOFFi) 345 

(http://epadap.web.auth.gr, last access: 25 March 2020) and, specifically, its Object-based Burned Area Mapping (OBAM) 

service, implemented by the Laboratory of Forest Management and Remote Sensing (FMRS) of the Aristotle University of 

Thessaloniki. NOFFi-OBAM is an on-demand service, meaning that it is activated after large wildfire events and under explicit 

requests by the local forest offices. It relies solely on Sentinel-2 imagery and is employed only for fires within Greece. The 

NOFFi-OBAM algorithm is designed to map fire perimeters and follows a supervised learning approach using a post-fire 350 

Sentinel-2 (Level-1C) image, although a pre-fire image is also used for photo-interpretation purposes. The methodology 

applied to retrieve the fire perimeters is fully described in Tompoulidou et al. (2016). Non-probability sampling design was 

applied for this dataset; reference sites were selected by convenience based on images previously processed in the NOFFi-

OBAM service. 

The NOFFi-OBAM fire perimeters were used as the basis for creating the reference data for the NOFFi Greece reference 355 

dataset considering the burned area mapping years 2016, 2017 and 2018. For each Sentinel-2 tile ID (e.g. T34SDH) in which 

fire perimeters were available, the whole time-series of images were visually checked and the date range for the reference file 

http://epadap.web.auth.gr/


12 

 

creation was defined from the first pre-fire image to the last post-fire image. Small fires within the specific time series that 

were not mapped from the NOFFi-OBAM service were explicitly digitized. Since NOFFi-OBAM only serves Greece, areas 

outside Greece’s official land boundaries (e.g. seas and land areas of neighboring countries) were masked and classified as 360 

unobserved surfaces (category = 2). Some burned scars in overlapping border tiles were mapped by using images from those 

neighboring tiles only if the post-fire image used for the mapping was inside the time span of the former tile ID. For example, 

the file ‘NOFFi_RD_T34SGH_20160710_20160730.shp’, includes polygons with preImg/postImg from T35SCK. This can 

be identified from the preImg, postImg, and tile columns of the file. Clouds and cloud shadows were manually digitized and 

masked (category = 2), considering the last postImg. Although a non-probability sampling design was applied for this dataset, 365 

the NOFFi-OBAM service has been activated for all wildfires greater than 100 ha during the period 2016–2018 and, in many 

cases, for smaller (or even much smaller) wildfires. Therefore, the dataset contains a representative set of Sentinel-2 tiles that 

are frequently affected by wildfires in Greece, at least for the given time-period. 

The NOFFi Greece dataset includes 34 reference data files from 25 different Sentinel-2 tiles. The temporal length of reference 

data varies between 5 and 132 days. The total area of reference data is 0.41∙106 km2, of which 0.10% corresponds to burned 370 

category, 25.83% to unburned, and 74.08% to unobserved category. As shown in Fig. 9, most of the surface of the tiles from 

this dataset corresponds to sea surface that was labelled as ‘no-data’ (section 2.2.), this is the reason the unobserved category 

is so high compared to the rest of the datasets. The location and temporal length of the reference data as well as the number of 

images used in each reference site are shown Fig. 9. This reference dataset is compliant with CEOS-LPVS Stage 1. 

3 Data availability 375 

The BARD compiled in this effort is freely available on the e-cienciaDatos repository (https://doi.org/10.21950/BBQQU7 

(Franquesa et al., 2020)). All burned area reference data files have been visually checked, reprojected and reformatted to 

provide a uniform set of attributes and metadata descriptions to maximize the ease with which these reference files can be used 

to evaluate global burned area products. A summary of the data included in each dataset is described in Table 2 and 3. Reference 

shapefiles and metadata files can be downloaded grouped by the datasets described in this publication: FireCCI global (2008), 380 

FireCCI global (2003-2014), FireCCI Africa (2016), FireCCI Africa S2 (2016), CONUS Landsat Burned Area (1988-2013), 

and NOFFi Greece (2016-2018). Plans are underway to expand the Burned Area Reference Database with new reference files 

that the FireCCI project produces, and we encourage future contributions from the scientific community. 

4 Conclusions 

BARD is the first publicly available database that compiles and standardizes previously generated validation reference data. 385 

Reference datasets included in this database were produced throughout the life of the FireCCI project since 2010, and other 

initiatives as Landsat Level-3 Science Products and NOFFi projects have joined and contributed to this effort. BARD gathers 

https://doi.org/10.21950/BBQQU7
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and compiles a total of 2661 standardized shapefiles representing reference burned area data generated from approximately 

4500 Landsat and Sentinel-2 images and 8 million square kilometres of interpreted land surface. Reference data were produced 

following the recommendations of the CEOS Calibration/Validation group and visually inspected by two or more experienced 390 

interpreters to ensure the accuracy of the data. As BARD is a compilation of datasets that were produced in different projects 

and years in which different methods were applied (e.g. different sampling methods, sensors, years or region extent), it is 

highly recommended that the user clearly understands the characteristics of the dataset or datasets that best suits their needs. 

BA reference database and future updates remedy the lack of an extensive global and regional, multitemporal validation dataset 

(Humber et al., 2019) and, certainly, can serve as a valuable source for validation of existing products and developing new BA 395 

algorithms, particularly those requiring large amounts of training data. 
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Figure 1: (a)Thiessen scene areas (TSAs) based on Landsat Worldwide Reference System-2 (WRS-2) frames. TSAs are used as non-

overlapping spatial units in the sampling design. (b) Distribution of major Olson biomes reclassified as in Padilla et al. (2014). 

 545 

Figure 2: Example of Landsat-7 pre-fire (a) RGB (7,4,3) image and Landsat-8 post-fire (b) RGB (7,5,4) image. Both (a, b), were used 

to derive the ‘FireCCI_RD_169065_20140712_20140720’ BA reference file (c) at WRS-2 Landsat 169-065 path-row (East Africa). 
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Time period between both images is 8 days: from 12 June to 20 June 2014. Only the land surface that burns between the two dates 

is classified as burned, while burned scars in the pre-fire image are assigned to the unburned category. Unobserved pixels on either 

pre- or post-fire image due to the presence of clouds, cloud-shadows, SLC-gaps or smoke plumes are classified as no-data. 550 

 

Figure 3: Schematic process of long unit reference data generation. Consecutive image pairs are selected from the multitemporal 

image series at same location (left: Landsat-8 RGB (7,5,4) images time series) to derive the correspondent short unit reference data 

files (e.g. Image t0 and t1 to obtain the reference data t0-t1). From the union of the different short units we generate the long unit 

reference data (right). The long unit t0-t3 includes all the burned scars that occurred between the first image (t0) and the last image 555 
interpreted (t3), burned scars from the first image (t0) are not included or mapped. Unobserved areas in any of the images are labeled 

as no-data in the final long unit reference data. Colours (orange-t1, red-t2, brown-t3) represent the dates in which the burned area 

patches were observed. 

 

 560 

Figure 4: Spatial distribution of the reference sites for FireCCI global (2008) dataset. The legend shows the temporal distance (days) 

between the pre- and post-fire images used in each validation site for the year 2008. 
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Figure 5: Spatial distribution of the validation Thiessen scene areas (TSAs) for FireCCI global (2003-2014) dataset. The legend 

shows the total number of reference data files generated for each TSA between the period 2003-2014. 565 

 

Figure 6: Spatial distribution of the reference sites for the FireCCI Africa (2016) dataset: (a) number of short units interpreted in 

each validation site and (b) temporal length of the long units. 
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Figure 7: Spatial distribution of the reference sites for FireCCI Africa S2 (2016) dataset. The legend shows the temporal distance 570 
(days) between the pre- and post-fire images used in each validation site for the year 2016. 

 

Figure 8: Spatial distribution of the validation Thiessen scene areas (TSAs) for CONUS Landsat Burned Area (1988-2013) dataset. 

Modified from Vanderhoof et al. (2017). Reference data were generated for each TSA in each of the six sample years (1988, 1993, 

1998, 2003, 2008, 2013). 575 
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Figure 9: Spatial distribution of validation sites for NOFFi Greece (2016-2018) reference dataset based on Sentinel-2 tiles. The orange 

figures above show the number of images used in each validation site for each year, whereas the yellow ones below show the temporal 

length (days) of the reference data files generated in each validation site. 

 580 

Table 1: Example of the standard attribute table of the reference shapefiles. 

category preDate postDate preImg postImg path row year area 

3 1988-07-05 1988-10-25 LT50150351988187XXX05 LT50150351988299XXX08 15 35 1988 267043.6 

2 1988-07-05 1988-10-25 LT50150351988187XXX05 LT50150351988299XXX08 15 35 1988 4557.8 

1 1988-07-05 1988-10-25 LT50150351988187XXX05 LT50150351988299XXX08 15 35 1988 2043.3 

1 1988-07-05 1988-10-25 LT50150351988187XXX05 LT50150351988299XXX08 15 35 1988 900.4 

 

 

 

 585 

 

 

 

 

 590 
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Table 2: Datasets included in the Burned Area Reference Database. CCI: Climate Change Initiative, CONUS: contiguous United 

States, NOFFi: National Observatory of Forest Fires, TM: Thematic Mapper, ETM+: Enhanced TM, OLI: Operational Land 595 
Imager, CEOS-LPVS: Committee on Earth Observing Satellites-Land Product Validation Subgroup, SRS: Stratified Random 

Sampling, SS: Systematic Sampling, NPS: Non-probability sampling. 

Dataset Project Years Extent 
Source 

Imagery 

Sampling 

Method 

CEOS-LPVS 

Stage 
Reference 

FireCCI global 

(2008) 
FireCCI 2008 global 

Landsat TM, 

ETM+ 
SRS 3 Padilla et al. (2014) 

FireCCI global 

(2003-2014) 
FireCCI 2003-2014 global 

Landsat TM, 

ETM+, OLI 
SRS 3 Padilla et al. (2018) 

FireCCI Africa 

(2016) 
FireCCI 2016 Africa 

Landsat 

ETM+, OLI 
SRS 3 Padilla et al. (2018) 

FireCCI Africa 

S2 (2016) 
FireCCI 2016 Africa 

Sentinel-2 

MSI 
SS 1 Unpublished 

CONUS Landsat 

Burned Area 

(1988-2013) 

Landsat 

Level-3 

Science 

Products 

1988, 1993, 

1998, 2003, 

2008, 2013 

United 

States 

Landsat TM, 

ETM+, OLI 
SRS 4 

Vanderhoof et al. 

(2017;2020) 

NOFFi Greece 

(2016-2018) 
NOFFi 2016-2018 Greece 

Sentinel-2 

MSI 
NPS 1 Unpublished 

 

Table 3: Summary of the total area (km2) of the 3 mapped categories (burned, unburned and no-data) and percentage of each 

category respect the total area mapped for each dataset. Additionaly, the total land surface and percentage respect the total area 600 
interpreted is provided. The region extent and the total number of reference files included in each dataset is also indicated. 

Dataset Region extent 
Reference 

Files (#) 

Burned 

(km2) 

Unburned  

(km2) 

No-data 

(km2) 

Land surface 

(km2) 

Total area 

(km2) 

FireCCI global 

(2008) 

L5: complete scene 

L7: central regions 

without SLC-off gaps 

105 
23802.26 

(1.35%) 

1558931.69 

(88.35%) 

181761.84 

(10.30%) 

1679627.66 

(95.19%) 
1764495.79 

FireCCI global  

(2003-2014) 
30 x 20 km 1200 

27692.96 

(3.85%) 

516396.61 

(71.85%) 

174591.03 

(24.29%) 

674926.47 

(93.91%) 
718680.59 

FireCCI 

Africa 

(2016)  

SU 

30 x 20 km 

1052  
8398.07 

(1.33%) 

474349.56 

(75.23%) 

147821.16 

(23.44%) 

576181.91 

(91.37%) 
630568.80 

LU 50  
3663.84 

(15.72%) 

11562.91 

(49.61%) 

8081.50 

(34.67%) 

20737.37 

(88.97%) 
23308.25 

FireCCI Africa S2 

(2016) 
110 x 110 km 52 

55583.10 

(8.87%) 

454013.51 

(72.42%) 

117317.47 

(18.71%) 

616483.40 

(98.34%) 
626914.08 

CONUS Landsat 

Burned Area  

(1988-2013) 

L5-7-8: complete 

scene 
168 

6226.45 

(0.12%) 

4308711 

(82.33%) 

918382.18 

(17.55%) 

4251639.569 

(81.24%) 
5233319.62 

NOFFi Greece 

(2016-2018) 
110 x 110 km 34 

398.62 

(0.10%) 

105865.87 

(25.83%) 

303640.87 

(74.08%) 

129072.703 

(31.49%) 
409905.36 
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Table A1: FireCCI global (2008) stratified sampling data. Distribution of sampled (nh) and total population (Nh) Thiessen scene 

areas (TSAs) by biome and BA stratum. BA: burned area. 605 

Biome Number of TSAs sampled (nh)  Total number of TSAs (Nh) 

 High BA stratum  Low BA stratum   High BA stratum Low BA stratum 

Boreal forest 8 4 
 

215 857 

Mediterranean forest 4 3 
 

28 113 

Others 3 2 
 

559 2148 

Temperate forest 8 9 
 

178 704 

Temperate grassland & savanna 4 3 
 

160 637 

Tropical forest 9 7 
 

174 696 

Tropical & Subtropical savanna 12 29 
 

151 602 

 

Table A2: FireCCI global (2003-2014) stratified sampling data. Distribution of sampled units (nh) and total population (Nh) by year, 

biome and BA stratum. H: high, L: Low, BA: burned area. 

Biome 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Boreal forest 

 Sampled H BA 2 2 2 2 2 2 2 2 2 2 2 2 

 Sampled L BA 2 2 2 2 2 2 2 2 2 2 2 2 

 Population H BA 752 745 1344 537 664 826 926 533 1295 1213 726 633 

 Population L BA 40924 47189 33173 33711 37976 35641 41324 37341 22503 26626 29644 35299 

Mediterranean forest 

 Sampled H BA 2 2 2 2 2 2 2 2 2 2 2 2 

 Sampled L BA 2 2 2 2 2 2 2 2 2 2 2 2 

 Population H BA 179 287 212 292 217 346 329 269 247 314 223 172 

 Population L BA 8333 7116 7553 7139 7923 6853 7846 7202 7857 5516 7920 8789 

Others 

 Sampled H BA 2 4 2 6 4 2 2 3 13 2 2 4 

 Sampled L BA 2 2 2 2 2 2 2 2 2 2 2 2 

 Population H BA 1694 791 996 768 734 494 798 792 1134 1043 709 764 

 Population L BA 68577 58049 58971 61564 59484 58978 62512 60303 55806 40999 60530 69961 

Temperate forest 

 Sampled H BA 2 2 2 2 2 2 2 2 2 2 2 2 

 Sampled L BA 2 2 2 2 2 2 2 2 2 2 2 2 

 Population H BA 584 1343 1309 323 951 601 818 1021 907 345 748 729 

 Population L BA 38622 32424 32747 34122 33850 31544 34438 32708 33925 23146 29994 33036 

Temperate grassland & savanna 

 Sampled H BA 5 3 4 4 4 6 5 3 3 3 3 5 

 Sampled L BA 2 2 2 2 2 2 2 2 2 2 2 2 

 Population H BA 1642 943 1220 996 985 1257 587 858 568 601 488 973 

 Population L BA 26124 24516 24402 24702 24697 23761 26517 25079 24804 17071 23684 25603 

Tropical forest 
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 Sampled H BA 5 5 5 4 5 3 4 6 3 4 4 4 

 Sampled L BA 2 2 2 2 2 2 2 2 2 2 2 2 

 Population H BA 2433 1909 2052 1825 1701 1272 1731 1642 1548 1435 1210 1231 

 Population L BA 43609 42228 42188 40038 41325 41673 41109 41137 40775 27552 38253 40208 

Tropical & subtropical savanna 

 Sampled H BA 61 62 55 50 55 60 61 60 50 64 55 62 

 Sampled L BA 9 8 16 18 14 11 10 10 13 9 10 7 

 Population H BA 4662 4673 2974 2153 3559 3646 3727 4660 3119 3195 3496 3918 

 Population L BA 22878 22496 24916 25124 23098 23049 22997 22343 22503 15632 23228 26382 

 

Table A3: FireCCI Africa (2016) stratified sampling data. Distribution of sampled long units and total population by biome and 610 
stratum. BA: burned area. 

Biome Number of sampled units (nh)  Total number of units (Nh) 

 High BA stratum  Low BA stratum   High BA stratum Low BA stratum 

Mediterranean forest 2 2 
 

22 120 

Others 2 2 
 

20 549 

Temperate grassland & savanna 2 2 
 

24 82 

Tropical forest 2 2 
 

96 220 

Tropical & subtropical savanna 32 2 
 

393 709 

 

Table A4: CONUS Landsat Burned Area (1988-2013) stratified sampling data. Distribution of sampled and population Thiessen 

scene areas (TSAs) by biome and stratum. Each sampled TSA was then sampled for 5 separate years; however, high/low BA stratum 

was determined from 2008, alone. Total number of TSAs is calculated for the contiguous United States (CONUS). BA: burned area. 615 

Biome Number of TSAs sampled (nh)  Total number of TSAs (Nh) 

 High BA stratum  Low BA stratum   High BA stratum Low BA stratum 

Temperate forest 6 5 
 

45 179 

Mediterranean forest 2 1 
 

2 10 

Temperate grassland & savanna 2 3 
 

25 99 

Tropical & subtropical savanna 2 2 
 

2 5 

Xeric/desert shrub 3 2 
 

17 66 

 

 


