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Abstract. Early season crop identification is of great importance for monitoring crop growth and predicting yield for decision-15 

makers and private sectors. As one of the largest producers of winter wheat worldwide, China outputs more than 18% of the 

global production of winter wheat. However, there are no distribution maps of winter wheat over a large spatial extent with 

high spatial resolution. In this study, we applied a phenology-based approach to distinguish winter wheat from other crops by 

comparing the similarity of the seasonal changes of satellite-based vegetation index over all croplands with a standard seasonal 

change derived from known winter wheat fields. Especially, this study examined the potential of early season large-area 20 

mapping of winter wheat and developed accurate winter wheat maps with 30 m spatial resolution for three years (2016-2018) 

over eleven provinces, which produce more than 98% of the winter wheat in China. A comprehensive assessment based on 

survey samples revealed producer’ and user’ accuracies higher than 89.30% and 90.59%, respectively. The estimated winter 

wheat area exhibited good correlations with the agricultural statistical area data at the municipal and county levels. In addition, 

the earliest identifiable time of the geographical location of winter wheat was achieved by the end of March, giving a lead time 25 

of approximately three months before harvest, and the optimal identifiable time of winter wheat was at the end of April with 

an overall accuracy of 89.88%. These results are expected to aid in the timely monitoring of crop growth. The 30 m winter 

wheat maps in China are available via an open-data repository (DOI: http://doi.org/10.6084/m9.figshare.12003990. Dong et 

al., 2020).   

1 Introduction 30 

Wheat is one of the most important cereal crops in the world (FAOSTAT, 2018; Guo et al., 2019). According to the statistics 

provided by the Food and Agriculture Organization (FAO), the harvested area of wheat reached 215 million hectares in 2018 
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worldwide, accounting for 30% of the global grain area and 29% of the grain production (FAOSTAT, 2018). As a major type 

of wheat, winter wheat dominates the wheat production in many countries including China, United States, France, Russia, 

Ukraine, Argentina, and Australia (National Bureau of Statistics of China, 2018; USDA-ERS, 2018). It accounts for more than 35 

70% of the total wheat production in the United States (USDA-ERS, 2018). Quickly acquiring the detailed location and 

planting area of winter wheat provides the basis for forecasting winter wheat yield, understanding winter wheat management, 

and assessing food security (Franch et al., 2015, 2019; Huang et al., 2015; Wang et al., 2019; Zhang et al., 2019; Zhuo et al., 

2019). 

Satellite-based methods are an effective and quick tool for crops mapping owing to their great spatial coverage and temporal 40 

continuity (Belgiu and Csillik, 2017; Griffiths et al., 2019; Jin et al., 2019). Most studies have used supervised classification 

methods, such as decision tree classification (Brown and Pervez, 2014; Wardlow and Egbert, 2008), and supervised machine 

learning methods (Yang et al., 2019), such as random forests (Wang et al., 2019; Yin et al., 2020), support vector machines 

(Zheng et al., 2015), and neural networks (Cai et al., 2018; Zhong et al., 2019) to distinguish crop types. However, these 

methods strongly depend on the selection of the training samples, which is time-consuming and labor-intensive (Skakun et al., 45 

2017b). For instance, 30 m-resolution Cropland Data Layer (CDL) product generated by the USDA National Agricultural 

Statistics Service (NASS), classified more than 100 types of crops grown in the United States using the decision tree 

classification method (Boryan et al., 2011). The CDL product uses a large volume of USDA Common Land Unit (CLU) data 

as training samples, which are renewed every year. In Nebraska alone, more than 250,000 CLU polygon records were used to 

train and validate the CDL product (Boryan et al., 2011). Such large volumes of CLU data can only be acquired with 50 

government supports and are usually confidential (Boryan et al., 2011). Therefore, the accuracy of national and sub-national 

crop classification products based on supervised classification algorithms is limited because of the lack of training datasets 

(Petitjean et al., 2012). 

As an alternative approach, several studies have used phenological characteristics as a metric for identifying geographic 

locations of winter wheat (Qiu et al., 2017; Skakun et al., 2017b; Wardlow et al., 2007). The common method differentiates 55 

winter wheat from other crops based on the differences in key phenological phases (e.g., tillering, heading, and harvesting) in 

combination with spectral signatures (Pan et al., 2012; Skakun et al., 2017a). Some studies integrate accumulated Growing 

Degree Day (GDD) to consider the phenology difference to reduce phenology variability due to different climatic conditions 

(Franch et al., 2015; Skakun et al., 2017b; Zhong et al., 2014). Other methods like Dynamic Time Warping (DTW), has been 

proven to be an effective solution for mapping crop distribution, e.g., for identifying rice paddy fields (Guan et al., 2016) and 60 

classifying vegetables types (Li and Bijker, 2019).  DTW was initially designed for speech recognition (Sakoe and Chiba, 

1978). Maus et al. (2016) proposed a time-weighted version of the DTW method, namely Time-Weighted Dynamic Time 

Warping (TWDTW), which accounts for seasonality in crop types, thus further improving the classification accuracy. Unlike 
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supervised classification methods, these methods require very low volumes of training data, thus substantially reducing the 

need for field surveys (Belgiu and Csillik, 2017). 65 

China produces approximately one-sixth of the world wheat in one-tenth of the world wheat land (FAOSTAT, 2018), with 

winter wheat constituting 95% of the total wheat production in China (National Bureau of Statistics of China, 2018). Numerous 

studies have been conducted to identify the cultivation map of winter wheat at county (Pan et al., 2012), province (He et al., 

2019) and regional scale (Wu et al., 2007). Significant efforts have been made to generate a planting area map of winter wheat 

over the large regions of China. Based on MODIS surface reflectance products, Qiu et al. (2017) used the differences in 70 

Enhanced Vegetation Index before and after heading dates to develop two indicators to map winter wheat in the major winter 

wheat producing regions of China. A recent study generated a 30 m-resolution distribution map of winter crop, instead of 

winter wheat over the main producing areas in China using the decision tree classification method (Tian et al., 2019). However, 

several limitations in existing winter wheat maps remain. First, previous studies showed that MODIS dataset failed to identify 

the planting areas of winter wheat because of the relatively low spatial resolution (Tian et al., 2019). In China, because of the 75 

large population and implementation of household responsibilities, farmers have the freedom to select the type of crop they 

wish to plant. The planting areas per household is only 1.37 ha on average (Guo, 2008), which accounts for 5% of a 500-m 

MODIS pixel. Therefore, identification methods with low spatial resolution data (e.g., MODIS dataset) will result in large 

misclassifications (Qiu et al., 2017). Second, identifications based on high spatial resolution satellite datasets still show large 

uncertainty in several regions. For example, based on the Landsat-7, -8 and Sentinel-2 images with a spatial resolution of 30 80 

m, Tian et al., (2019) found a relative error greater than 50% in identifying the planting areas compared to statistical data for 

Hubei and Shanxi provinces. 

Especially, identifying the geographic location and areas of winter wheat as earlier as possible is important for monitoring 

crop growth, simulating crop water use, and meeting the timeliness requirement of yield predictions (Chipanshi et al., 2015; 

Song et al., 2017a). Under the background of climate change, the frequencies of extreme weather events and natural disasters 85 

are expected to increase (Trenberth et al., 2014; Zambrano et al., 2018). Therefore, early mapping of crop distribution is 

urgently necessary for policy-makers to reduce economic loss and assess food security (Inglada et al., 2016). Identifying the 

crop distribution at the early season is more challenging than that by the end of growing season, because of the limited input 

information.  

In this research, we used a phenology-based method to identify the geographic locations of winter wheat in China and produced 90 

a 30 m-resolution winter wheat map for the period of 2016-2018. Moreover, we explored the potential for early season mapping 

of the planting areas of winter wheat and determined the earliest identifiable time and optimal identifiable time. The 

identification accuracy was assessed based on field surveys, visual interpretation results of very high-spatial resolution images, 

and agricultural statistical data. The proposed method can generate winter wheat maps that can be updated annually, proving 

a useful tool for crop management and policy making. 95 
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2 Data and Method 

2.1 Study Area 

This study identified planting areas of winter wheat for the period of 2016-2018 in eleven provinces covering an area of 390 

million ha: Henan (HN), Shandong (SD), Anhui (AH), Jiangsu (JS), Hebei (HB), Hubei (HuB), Shanxi (SX), Shaanxi (SAX), 

Sichuan (SC), Xinjiang (XJ), and Gansu (GS) (Figure 1). These provinces are the most important winter wheat producing 100 

regions of China, constituting 96% of the total planting areas with 21.6 million ha and 98% of the total production of winter 

wheat in China with 125 million tons reported in 2017 (National Bureau of Statistics of China, 2018).  

<<Figure 1>> 

2.2 Method 

The methodological workflow consists of the following steps: (1) image pre-processing to construct monthly maximum 105 

composite NDVI images, and extract that of cropland based on FROM-GLC product (see section 2.3 for more details); (2) 

data processing, which produces standard seasonal change of NDVI for winter wheat for each province based on the winter 

wheat samples; (3) winter wheat identification, where TWDTW is used to measure the similarity of seasonal changes of NDVI 

for known winter wheat fields with investigated fields, and area statistical data at province-level are used to determine the 

thresholds of similarity measurements; (4) evaluation, for assessing the classification accuracies (Figure 2). 110 

<<Figure 2>> 

2.2.1 Time-weighted Dynamic Time Warping 

In this study, we used the Time-Weighted Dynamic Time Warping (TWDTW) method to identify the planting locations and 

areas of winter wheat. The TWDTW is an improved version of the DTW algorithm (Petitjean et al., 2012; Sakoe and Chiba, 

1978). In the DTW algorithm, the distance (i.e., cost) (Figure 3a) between two time series, namely series X of known winter 115 

wheat field and series Y of unknown land cover, is calculated by warping the series Y via stretching or shortening the time 

dimension (Figures 3b and c), in order to find the optimal warping path, which is the minimum distance between the two series. 

Compared to other similarity-based methods, such as the Euclidean distance, the DTW is more advantageous in that it can 

flexibly deal with the temporal distortions associated with seasonal change, such as amplitude, time scaling, or shifting 

(Lhermitte et al., 2011). Taking the seasonal change in land cover types into consideration, Maus et al., (2016) added a time-120 

constraint to the DTW (i.e., TWDTW) to balance shape matching and phenological change, thus further increasing 

identification reliability contrast with the DTW method. 

<<Figure 3>> 
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In order to use the TWDTW method, first, the standard seasonal change curve of NDVI of winter wheat retrieved at some 

known winter wheat fields is required (Figure 4). Taken each province as a unit, the dissimilarity values can then be calculated 125 

by comparing the seasonal change in NDVI of each investigated pixel with the standard seasonal curve of winter wheat in a 

given province. The pixels with low dissimilarity values have a higher probability of being winter wheat. In this research, we 

employ the area statistical data of winter wheat at the province level to determine the thresholds of dissimilarity. The pixels 

(Nth) having the lowest dissimilarity values are considered winter wheat in a given province, and the total area of all N pixels 

should be equal to the statistical area of winter wheat in the investigated province. 130 

This study used satellite-based NDVI extracted from Sentinel-2 and Landsat composite imageries to indicate the seasonal 

change in the vegetation. The standard seasonal curve of winter wheat was generated by averaging the NDVI with 20% of the 

winter wheat pixels randomly selected from field surveys in each province (see Section 2.3). The winter wheat over all the 

eleven provinces has similar seasonal changes (Figure 4). Generally, winter wheat reaches the maximum growth period during 

March to June and is harvested during May to June. We assumed that the seasonal change of winter wheat for each province 135 

does not vary from year to year. We used the standard seasonal curves derived from NDVI measurements taken in 2018 to 

identify the planting area of winter wheat for the period of 2016–2018 to further examine the applicability of the method. 

<<Figure 4>> 

To determine the earliest identifiable time, we employed incremental time windows by setting October 1 of the previous year 

as the start and extending it with an increment of one month until next June, to compare the seasonal changes with different 140 

lengths. In other words, we started to identify the planting areas from previous October, and subsequently, at each month, a 

new image is acquired to compose longer time series and generate a new identification. The influence of seasonal change 

length on identification accuracies was assessed based on these classification accuracies. 

2.2.2 Removing the Disturbances of Winter Rapeseed 

Three winter crops are grown over the whole study area, including winter wheat, winter rapeseed, and winter garlic. The first 145 

two crops constitute 91 and 8% of the planting area of winter crops, respectively (National Bureau of Statistics of China, 2018); 

winter rapeseed may affect the identification of winter wheat. Relying solely on optical imagery to discriminate them would 

be a challenge because of their similar spectral characteristics and phenological stages (Veloso et al., 2017). Widely planted 

in HuB province, winter rapeseeds cover an area of 0.97 million ha, nearly equal to that of winter wheat with 1.1 million ha 

reported in 2017 (Hubei Statistical Bureau, 2018). In addition, winter rapeseed is grown in AH and JS provinces, and its total 150 

area is 0.78 million ha, whereas the total area of winter wheat grown here is 4.57 million ha (Anhui Statistical Bureau, 2018; 

Jiangsu Statistical Bureau, 2018). Winter garlic is mainly distributed in SD, HN, JS, and HB provinces. Compared with winter 

wheat, the planting area of winter garlic is very small. For example, as the largest garlic producer, SD province plants 0.15 
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million ha of garlic, accounting for only 3.8% of winter wheat in 2017 (Shandong Statistical Bureau, 2018). Therefore, this 

study ignored the impact of garlic when identifying the planting areas of winter wheat.  155 

Fortunately, the difference in the plant structure between winter wheat and winter rapeseed makes it possible to differentiate 

them based on radar data (Veloso et al., 2017). Therefore, we used radar data to exclude the interference from winter rapeseed 

in this study. By investigating the survey samples in HuB province, we found that the VH backscatter values in April are a 

good indicator to differentiate winter wheat from winter rapeseed. The VH backscatter values in April for winter wheat were 

lower than −15.5 whereas they were higher for winter rapeseed (Figure 5), which meant the pixels (with VH values greater 160 

than −15.5) had less possibility to plant winter wheat. Accordingly, by assigning a higher dissimilarity to these pixels, this 

study distinguished winter wheat and rapeseed in HuB, JS, and AH provinces. 

<<Figure 5>> 

2.2.3 Classification Accuracy Assessment 

The identification accuracy of winter wheat was evaluated based on two methods: 1) validation using the ground truth samples 165 

at the field level, including ground surveys and visual interpretation of very high-resolution images from Google Earth, and 2) 

comparisons with agricultural statistical data at administrative units. Eighty percent of the winter wheat samples and all non-

winter wheat samples were selected to obtain the confusion matrix of the winter wheat map for each province (see Section 3 

for more details). The overall accuracy (OA) was measured to investigate the overall effectiveness of the method. The 

producer’s accuracy (PA) shows the proportion of ground truth samples properly judged as the target class, and the user’s 170 

accuracy (UA) shows the proportion of samples judged as the target class on the classification map that are actually present 

on the ground. In addition, the planting area of winter wheat identified in this study were compared with those obtained from 

agricultural statistical data at the county and municipal levels through Pearson’s correlation coefficient. Other statistical 

indicators, including the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE), were also used to evaluate 

the performance. 175 

2.3. Data 

2.3.1 Satellite Data 

The methodology in this study mainly relied on the similarity measurement between the NDVI seasonal change in an 

investigated pixel and a known seasonal change of winter wheat. Two different data sources were used to calculate the NDVI: 

the constellation of Landsat-7, 8 and Sentinel-2 satellites. The NDVI was derived from the Surface Reflectance (SR) products 180 

produced by the United States Geological Survey (USGS), which have been processed for atmospheric corrections. The quality 

bands provided by the SR products were used to remove pixels contaminated by clouds. The study also used the NDVI obtained 

from the Multi-Spectral Instrument (MSI) sensor onboard Sentinel-2. The SR products generated from Level-2A products by 
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running Sen2Cor provided by ESA (https://github.com/senbox-org) were used. We employed the QA60 band to mask clouds 

from the Sentinel-2 images (ESA, n.d.). As a result, the study region with an area of 390 million ha corresponded to 4.3 billion 185 

30-m pixels covering the entire winter wheat growing season (October to July) during the period of 2016–2018. Monthly 

cloud-free image frequencies from October to July at each pixel are visualized in Figure 6.  

To differentiate winter wheat from other winter crops (i.e., winter rapeseed), this study used the synthetic aperture radar (SAR) 

(i.e., Ground Range Detected, Level-1, GRD) product from Sentinel-1. It had a dual-polarized vertical transmission with VV 

(vertical transmit/vertical receive) and VH (vertical transmit/horizontal receive) bands. We processed each image and acquired 190 

the backscatter coefficient (σ°) in decibels (dB) on the platform of Google Earth Engine (GEE) (as operated by the Sentinel-1 

Toolbox [44]), comprising thermal noise removal, radiometric calibration, and terrain correction (orthorectification). Even 

with standard noise-reduction techniques applied, SAR images contained a speckle noise due to the interferences between 

adjacent backscatter returns. In this study, we chose the refined Lee filter, as described in (Abramov et al., 2017), to further 

correct the SAR images for speckle noise.  195 

In this study, the VH and NDVI data are both composited into their corresponding monthly maximum images, respectively, 

for the period between October 1, 2015 and July 31, 2018 on the platform of GEE. The operations were run on GEE in pixels: 

within a month, we obtained NDVI values of all available clean pixels, and got the maximum for the monthly composite. The 

pixels of the monthly composite imageries had the highest quality and represented the whole month. Whereas a small number 

of pixels had no values. The reason for this is that imageries from Landsat 7, 8 and Sentinel had several pixels with bad quality 200 

owing to clouds, cloud shadows, and/or no data acquisition (e.g., failure of Landsat 7) (Figure 6). 

<<Figure 6>> 

2.3.2 Field Data  

To obtain the standard seasonal change curve of winter wheat and validate how the proposed method performs, we collected 

survey samples from the following three sources. First, thirty-eight sites (red triangles in Figure 1) were investigated through 205 

field surveys during 2018 in the six provinces (i.e., SD, HN, HB, JS, SAX and HuB provinces) (Tian et al., 2019) (Figure 1). 

Each field site covered 1 km2. In all the field sites, the available field samples cover 29754 pixels (i.e., 30 m × 30 m), of which 

17971 pixels are winter wheat samples, and 11783 are non-winter wheat samples. Second, we collected 291 field survey 

samples (five-pointed stars in Figure 1) through cooperating with other researchers. MG858 hand-held GPS was used for 

ground survey. Third, we made visual interpretations of the very high-resolution images from Google Earth for 2018 to select 210 

large fields for winter wheat and acquired a total of 3759 samples, among which 1750 samples are for winter wheat and another 

2009 samples for non-winter wheat. The three sets of samples were used to validate and evaluate the accuracy of the method. 

Moreover, the total number of field sites, survey samples, and Google Earth samples for each province are showed in Table 1. 
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<<Table 1>> 

2.3.3 Land-cover dataset and Agricultural Statistical Data 215 

In this study, Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) product with 30 m resolution 

was used to extract cropland locations. The product can be downloaded via http://data.ess.tsinghua.edu.cn/ (Gong et al., 2013; 

Li et al., 2017).  Agricultural statistical area data of winter wheat at the county, municipal and province levels during the period 

of 2016–2018 were acquired from the National Bureau of Statistics of China (2018). The winter wheat growth conditions were 

collected by agro-technicians from survey samples via investigating the registered farmlands or gathering the estimates made 220 

by farmers; they were then reported to the National Bureau of Statistics of China (2018), where the planting areas were inferred 

based on weighting of the sampling croplands. The area statistical data are the most reliable data with a high accuracy (Franch 

et al., 2015). The municipality-level statistical data of winter wheat can be found in only eight provinces and county-level data 

in only six provinces. 

3 Results 225 

To examine the potential for early season identification of winter wheat and explore how early we could produce the 

distribution maps before the harvest, we investigated the method with shorter time windows and assessed its performance 

based on all the survey samples collected, which correspond to 33776 pixels in total. We compared the producer’s accuracy 

(PA), user’s accuracy (UA), and overall accuracy (OA) for different seasonal change lengths starting from October, with 

monthly increments thereafter (Figure 7). The identification accuracy increases with seasonal change length until March with 230 

an overall accuracy of 87.3%. From April onward, the identification results reach saturation in terms of the accuracy, with an 

overall accuracy close to maximum, 89.88%. This indicates that the method can identify the planting area of winter wheat 

three months before harvest (i.e., March), with stable performance until April. 

<<Figure 7>> 

We used the time window from October to April to compare the similarity between the seasonal change of investigated fields 235 

and that of known winter wheat field; thus, we produced winter wheat distribution maps (Figure 8). Our method shows good 

performance in identifying the planting areas of winter wheat over all the eleven provinces. Based on winter wheat and non-

winter wheat survey samples, the overall identification accuracy varies among the eleven provinces, ranging from 84.97% to 

95.85% (Table 2). The user’s accuracy (UA) and producer’s accuracy (PA) are high in most provinces. For SC and GS 

provinces, the same approach produced the lowest PA of winter wheat, 72.78 and 73.08%, respectively (Table 2).  240 

<< Table 2>> 

http://data.ess.tsinghua.edu.cn/
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<< Figure 8>> 

In addition, this method accurately estimates the areas of winter wheat compared to the available agricultural statistical data at 

the municipal and county levels (Figure 9). The correlation coefficient (R2 values) between the identified and agricultural 

statistical areas ranges from 0.85 to 0.99 at the municipal level (Figure 9Ⅰ,a-h), indicating a strong correlation. At the county 245 

level, the method performs a little worse, with correlation coefficient (R2 values) ranging from 0.7 to 0.88 (Figure 9Ⅱ, a-h). 

Considering the MAE and the RMSE, JS, HN, and AH show higher error at the municipal and county level.  

<< Figure 9>> 

Finally, we examined the capability of the method for extending the standard seasonal change of NDVI acquired from a single 

year to apply it in other years (i.e., 2016 and 2017). We used the same seasonal change of NDVI of winter wheat for each 250 

province derived from field samples obtained from 2018 to compare the dissimilarity with that of unknown fields for 2016–

2017. We then compared the estimated winter wheat areas with agricultural statistical area for the two years (Figure 10). R2 

and slope for the period of 2016–2018 changed little in most provinces, except for JS and HN provinces at the county level. 

<< Figure 10>> 

4 Discussion 255 

Winter wheat is one of the most important crops in the world, and information on its spatial extent is critical for making 

economic and grain subsidy policies (FAOSTAT, 2018). To our knowledge, there are currently no distribution maps for winter 

wheat over China on a large scale with a spatial resolution of 30 m. Previous studies have made efforts to generate the 

distribution map of winter wheat over the major producing areas in China based on moderate spatial resolution satellite data 

(i.e., MODIS) (Qiu et al., 2017). However, owing to small plot sizes for crops, the distribution map with moderate resolution 260 

may lead to large uncertainties because of mixed pixels, further restricting the classification accuracy (Tian et al., 2019). 

Machine learning methods, such as random forests and support vector machine, have been proven to be effective in identifying 

the spatial distribution of various crops (Cai et al., 2018; Liu et al., 2018); these methods, however, strongly depend on the 

number of training samples, thus restricting the large-area crop mapping because of the lack of data (Belgiu and Csillik, 2017; 

Millard and Richardson, 2015; Valero et al., 2016).  265 

In this study, we generated winter wheat distribution maps with a spatial resolution of 30 m for the period of 2016–2018 based 

on the TWDTW method using Landsat and Sentinel-derived monthly maximum composite NDVI. The results obtained based 

on field surveys and statistical data indicate that the proposed method can accurately identify the winter wheat planting areas 

over all the eleven provinces. Compared to machine learning methods, our method performs well even if with only a few 
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training samples, which is a significant advantage for large-scale crop identification given the lack of survey samples available 270 

(King et al., 2017). In addition, the performance is ideal even when using the same standard seasonal change of the winter 

wheat for each province for the years when ground surveys are lacking (Figure 10). Therefore, the proposed method can 

identify winter wheat quickly with a few training samples and can be extended for years when training samples are scarce 

(Maus et al., 2016). A recent research suggested that the TWDTW method is more robust contrast to other identification 

techniques, such as the random forests, when there are only a small number of training samples (Belgiu and Csillik, 2017). 275 

More importantly, this method can identify planting areas of winter wheat before three months of harvesting (i.e., March) and 

can achieve a stable performance in April, which are significant for early and continuous winter wheat production predictions 

(Franch et al., 2015; McNairn et al., 2014). Therefore, understanding where crops are distributed, especially during early 

within-season, is a top priority in predicting total production and monitoring trends in production (Shao et al., 2015; Skakun 

et al., 2017b). Existing agricultural estimates on crop area or mapping of crop distribution are usually available at the end of 280 

the season or after crop harvest (Boryan et al., 2011; Zhong et al., 2019), and the limited input information makes early 

identification of winter wheat distribution a challenge (Kontgis et al., 2015; Song et al., 2017b). For example, machine learning 

methods strongly depend on field survey data and time-series features as input; this increases the difficulty in early 

identification because collecting field data during the season is time-consuming and laborious, especially over large areas 

(Skakun et al., 2017b; Song et al., 2017a). Moreover, the time-series input features are generally obtained for the entire growing 285 

season, making early mapping more challenging (Johnson, 2016). In this study, our results indicate that early-season 

identification of winter wheat planting area is feasible up to three months before harvesting with limited imageries and time 

information. 

Some potential uncertainties could affect the identification accuracy. First, the quantity of cloud-free satellite data substantially 

determines effectiveness of retrieving the seasonal change of crop growth; this can influence the identification quality (Dong 290 

et al., 2020). In this study, we used all the available satellite data of Landsat and Sentinel and composited multi-temporal 

monthly maximum NDVI images, in order to avoid cloud contamination as much as possible. However, there are large 

differences in the available images among various provinces; it remains a challenge to acquire cloud-free images in cloudy 

and rainy southern areas, such as in SC, HuB and JS provinces (Song et al., 2017b). The low identification accuracy at these 

provinces is likely due to the relatively poor data quality of satellite data (Dong et al., 2015). Second, although the seasonal 295 

change of winter wheat is relatively consistent in most provinces (i.e., a low peak in NDVI in winter and a high peak in NDVI 

in spring), there is an inter-class difference in winter wheat in each province, such as wheat variety, sowing time, and irrigation 

conditions. Some winter wheat fields may have an earlier sowing time, showing a pattern deviation from standard average 

pattern of this province, and therefore, may lead to some omission errors. Besides, there are some specialness in the NDVI 

seasonal change curves of SC and HB provinces, where NDVI shows increasing trend from October to April. This is different 300 

from the typical seasonal change curves with two NDVI peaks during the growing season and this may make it difficult to 
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differentiate winter wheat from other crops. That maybe the reason for relatively lower identification accuracy. So, the 

identification of winter crops in warmer regions should be paid more attention. 

5 Data availability 

The derived winter wheat maps in China for three years (2016-2018) are available at 305 

http://doi.org/10.6084/m9.figshare.12003990 (Dong et al., 2020).   

To help the readers to reproduce this work, Table 3 summarizes the data source and platform information of datasets and 

processing steps in this study. The input datasets came from three parts including: GEE platform, our group, and free access 

websites. Specifically, the four satellite datasets in section 2.3.1 were available at GEE platform. The survey samples were 

collected by our group from the three sources, which has been introduced in detail in section 2.3.2. The land cover product 310 

(i.e., FROM-GLC product) in section 2.3.3 was downloaded from the free website from Tsinghua University, and the 

agricultural statistical area data in section 2.3.3 was downloaded from the National Bureau of Statistics of China.  

In addition, the process of monthly maximum NDVI composition was implemented on the GEE platform. TWDTW algorithm, 

the exclusion of disturbances of winter rapeseed, and classification accuracy assessment were operated on the localhost 

platform. 315 

<< Table 3>> 

6 Conclusions 

Information on the geographical location and distribution of crops at global, national and regional scales is valuable for many 

applications. To our knowledge, there are no published distribution maps for winter wheat over China on a large scale with a 

spatial resolution of 30 m. Based on the available Landsat and Sentinel imageries and a time-weighted dynamic time warping 320 

(TWDTW) method, this study produced an unprecedented 30 m-spatial resolution winter wheat distribution map of China for 

the period of 2016–2018. The method performed well over the eleven provinces that produce more than 98% of the winter 

wheat in China. When validated with 33776 survey samples, the overall accuracy was 89.88%, and the producer’s and user’s 

accuracies reached 89.30% and 90.59%, respectively. The resultant planting areas of winter wheat were spatially consistent 

with the agricultural statistical area, and the method explained 78% of the spatial variabilities in the planting areas at the county 325 

level averaged over six provinces. More importantly, this method is effective in identifying the planting areas of winter wheat 

three months prior to harvest, which is beneficial for early yield estimation. In general, this paper produced a 30 m-spatial 

resolution winter wheat map of China, which are expected to contribute to the timely monitoring of winter wheat growth. In 

the future work, the main goal to be achieved is to improve the method and apply to other staple crop (e.g., corn and rice), and 

complete the staple crops maps at national scales eventually. 330 

http://doi.org/10.6084/m9.figshare.12003990
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List of Figures and Tables 

Figures 490 

 

Figure 1. Study area spans eleven provinces over China (the region covered by oblique lines). The solid black lines represent the 

boundary of the provinces. The black dots indicate survey sites obtained from Google Earth, the red triangles indicate field survey 

sites, and each site covers 1 km2. The green five-pointed stars show field survey samples. Provincial administrative boundary data 

and global country administrative boundary data are sourced from http://www.resdc.cn/DOI/ © Institute of Geographic Sciences 495 
and Natural Resources Research, Chinese Academy Sciences. 

 

 

 



18 

 

 500 
 

Figure 2. Flowchart of the proposed methodology for winter wheat classification. 

 

 

 505 
 

Figure 3. (a) Accumulated cost matrix and optimal warping path between two NDVI sequences; (b) and (c) Original and warped 

time series, respectively. 
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Figure 4. Seasonal changes of NDVI for winter wheat over 11 provinces in the study area. 515 

 

 

 

Figure 5. The seasonal change in monthly maximum composite NDVI (a) and VH (b) of winter wheat and winter rapeseed at HuB 

province; (c) Frequency histograms of winter wheat and winter rapeseed in terms of VH in April. 520 
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Figure 6. Times of good observations in the study area obtained from monthly maximum NDVI composite images between October 

1, 2017 and July 31, 2018. The right column shows the frequency of the times of good observations during the period of 2016–2018 525 
from October of the previous year to July of this year. Provincial administrative boundary data and global country administrative 

boundary data are sourced from http://www.resdc.cn/DOI/ © Institute of Geographic Sciences and Natural Resources Research, 

Chinese Academy Sciences. 
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Figure 7. Evolution of producer’s accuracy (PA), user’s accuracy (UA), and overall accuracy (OA) with monthly increments. PA of 535 
non-winter wheat and PA of winter wheat represent the probabilities that the ground true reference data of non-winter wheat and 

wheat class are correctly classified, respectively. UA of non-winter wheat and UA of winter wheat indicate the ratio of the total 

quantity of pixels correctly classified into the objective class (i.e., non-winter wheat and winter wheat) to the total quantity of pixels 

classified into the objective class using proposed method. 
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 540 

Figure 8. Final winter wheat identification map of China in 2018. The figures 1-6 on the right and bottom are the zoomed-in maps, 

indicating the local details in the different provinces and regions, including SD, HN, AH and JS, HuB, central and western regions 

of China, and XJ, respectively. Provincial administrative boundary data and global country administrative boundary data come 

from the Resource and Environment Data Cloud Platform (http://www.resdc.cn/DOI/). 
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Figure 9. Comparison between the estimated planting area of winter wheat and agricultural statistical area at the municipal (I) and 

county level (II) for 2018. The dotted line denotes the 1:1 line. The agricultural statistical area at county level for AH and SAX 

provinces are not available. The units of RMSE and MAE are 1000 ha. 
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 550 
 

Figure 10. Comparison between the estimated and statistical winter wheat area at the municipal (a and b), and county level (c and 

d) for the period of 2016–2018. The agricultural statistical area at county level for AH and SAX provinces are not available. 
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Tables 555 

Table 1. The total number of samples of different types for each province during 2018. 

Province Field Sites Survey Samples 
Google Earth 

Samples 

Shandong (SD) 8 65 158 

Henan (HN) 11 81 159 

Hebei (HB) 6 27 201 

Hubei (HuB) 10 28 114 

Jiangsu (JS) 1 37 655 

Shaanxi (SAX) 2 2 1009 

Anhui (AH) — 29 378 

Shanxi (SX) — 6 327 

Sichuan (SC) — 16 290 

Gansu (GS) — — 226 

Xinjiang (XJ) — — 242 
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Table 2. Confusion matrix for the identification map of planting areas of winter wheat in eleven provinces during 2018. 

Province  Class  
Non-

Wheat  
Wheat  

User’s 

accuracy  

Producer’s 

accuracy  

Overall 

accuracy 

SD 
Non-Wheat  2786  109 90.84%  96.23%  

94.49% 
Wheat  281  3896  97.28%  93.27%  

HN 
Non-Wheat  2495  615 94.12%  80.23%  

91.85% 
Wheat  156  6191  90.96% 97.54% 

HB 
Non-Wheat  2013  189  97.62% 91.42% 

95.85% 
Wheat  49  3478 94.85% 98.61% 

HuB 
Non-Wheat  3443  447 93.43% 88.51% 

91.70% 
Wheat  242  4169 90.23% 94.51% 

AH 
Non-Wheat  166 12  86.46% 93.26% 

90.66% 
Wheat  26  203  94.42% 88.65% 

JS 
Non-Wheat  377  20  84.15% 94.96% 

86.85% 
Wheat  71 224 91.8% 75.93% 

SAX 
Non-Wheat   529 54  97.24% 90.74% 

93.18% 
Wheat  15  413  88.44% 96.5% 

SX 
Non-Wheat  187  9  86.57% 95.41% 

88.59% 
Wheat  29  108  92.31% 78.83% 

GS 
Non-Wheat  117 5 80.69% 95.9% 

85.4% 
Wheat  28 76 93.83% 73.08% 

XJ 
Non-Wheat  115 6 79.31% 95.04% 

85.12% 
Wheat  30 91 93.81% 75.21% 

SC 
Non-Wheat  145 3 77.13% 97.97% 

84.97% 
Wheat  43 115 97.46% 72.78% 

 560 
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Table 3. The detailed information of the datasets and processes in this study. 

 Data source and platform Detailed datasets and processing steps 

Datasets 

GEE platform 
Landsat-8 optical, Landsat-7 optical, Sentinel-2 optical, 

Sentinel-1 SAR 

Our group Survey samples 

Free access websites 
FROM-GLC 

Agricultural statistical area data 

Processes 

GEE platform Composition of monthly maximum NDVI 

Localhost platform 

Running of TWDTW algorithm 

Removing the disturbances of winter rapeseed 

Classification Accuracy Assessment 

 


